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Ramı́rez con ID 98347 quien realizó la tesis titulada: Numerical methods to approx-

imate traveling-wave solutions of nonlinear advection-diffusion-reaction equa-

tions — Semilinear discretizations, y con fundamento en el Art́ıculo 175, Apartado II
del Reglamento General de Docencia, me permito emitir el VOTO APROBATORIO,
para que él pueda proceder a imprimirla, y aśı continuar con el procedimiento adminis-
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Resumen

En el presente trabajo, se proponen métodos numéricos para aproximar las soluciones de
formas generalizadas de dos modelos multidimensionales famosos de la f́ısica matemática,
a saber, la ecuación de Fisher y la ecuación de Huxley. Los modelos que se investi-
gan en este trabajo son ecuaciones con difusión que consideran la inclusión de varios
términos genéricos, como coeficientes variables de advección/convección, reacción y amor-
tiguamiento alineales. Aśı, por ejemplo, las leyes de reacción son generalizaciones o exten-
siones de los términos correspondientes en la ecuación clásica de dinámica poblacional de
Fisher, mientras que los factores generalizados de advección/convección son extensiones
de los términos de advección/convección de la famosa ecuación de Burgers. Por su parte,
los modelos con amortiguamiento alineal aparecen como generalizaciones de las ecuaciones
de Fisher y de Huxley al caso hiperbólico

En el caso unidimensional, la literatura especializada en el área reporta la existencia de
soluciones anaĺıticas para la mayoŕıa de dichos modelos, en la forma de soluciones de onda
viajera acotadas dentro de un intervalo I del conjunto de los números reales. Con esta mo-
tivación, se propone una metodoloǵıa en diferencias finitas que garantiza que, bajo ciertas
condiciones anaĺıticas sobre los parámetros del modelo y las constantes computacionales,
aproximaciones iniciales que se encuentran acotadas en I, producen nuevas aproxima-
ciones que están también acotadas dentro de I. La conservación de las propiedades de
positividad y acotación de las soluciones aproximadas se demuestra usando la teoŕıa de
M -matrices, las cuales son matrices cuadradas, reales, no singulares, en las que todas las
entradas de sus matrices inversas son números reales positivos. Además, se demuestra la
propiedad de conservación de la antisimetŕıa en los modelos computacionales propuestos.
La implementación computacional de nuestras técnicas confirma numéricamente que las
propiedades de positividad y acotación son conservadas bajo las restricciones anaĺıticas
derivadas en la teoŕıa. Las técnicas propuestas son métodos de dos pasos (tres pasos en el
escenario hiperbólico), consistentes de primer orden en el tiempo, y de segundo orden en el
espacio. En la práctica, las simulaciones muestran buenas aproximaciones a las soluciones
anaĺıticas empleadas en el presente trabajo.
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Abstract

In this work, we propose numerical methods to approximate the solutions of generalized
forms of two famous, multi-dimensional models of mathematical physics, namely, Fisher’s
and Huxley’s equations. The diffusive models investigated in this thesis consider the inclu-
sion of several, generalized terms, like nonlinear advection/convection, nonlinear reaction,
and nonlinear damping. The reaction laws considered are generalizations or extensions
of the corresponding term in the classical Fisher’s equation from population dynamics,
while the generalized advection/convection factors are extended forms of the correspond-
ing advection/convection term in the famous Burgers equation. Meanwhile, the models
with nonlinear damping appear as generalizations of Fisher’s and Huxley’s equation to the
hyperbolic case.

In the one-dimensional scenario, the specialized literature in the area gives account of
the existence of analytical solutions for most of these models, in the form of traveling-
wave fronts bounded within an interval I of the real numbers. Motivated by this fact,
we propose a finite-difference methodology that guarantees that, under certain analyt-
ical conditions on the model and computer parameters, estimates within I will evolve
discretely into new estimates which are likewise bounded within I. The preservation of
the properties of positivity and boundedness of the approximate solutions is carried out
using the theory ofM -matrices, which are non-singular, real, square matrices in which the
entries of the inverses are positive numbers. Additionally, we establish the preservation
in the discrete domain of the skew-symmetry of the solutions of the models under study.
Our computational implementation of the method confirms numerically that the proper-
ties of positivity and boundedness are preserved under the analytical constraints derived
theoretically. The techniques are two-step methods (three-step methods in the hyperbolic
scenario), and they are consistent of first order in time and second order in space. In prac-
tice, our simulations evince a good agreement between the analytical solutions derived in
the present work and the corresponding numerical approximations.
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Chapter 1

Introduction

1.1 The Newell-Whitehead-Segel equation

1.1.1 Mathematical model

Let a, b and κ be real numbers with κ > 0, and let q be a positive integer. Let u be
a function of the spatial variable x and the temporal variable t, with x ∈ R and t ≥ 0.
Consider the nonlinear, parabolic partial differential equation

∂u

∂t
= κ

∂2u

∂x2
+ au− buq, (1.1)

where the function u may be though of as the (nonlinear) distribution of heat in an
infinitely thin and infinitely long rod, or as the flow velocity of a fluid in an infinitely thin
and infinitely long pipe.

It is readily verified that this mathematical model is a generalization of the Newell-
Whitehead-Segel equation which appeared historically in the investigation of fluid me-
chanics [75, 83]. Here, the constant κ is the coefficient of diffusion, the constants a and
b are the coefficients of linear and nonlinear reaction, respectively, and q will assume the
form q = 2p + 1, where p is a positive integer. In our manuscript, both a and b will be
strictly positive real numbers.

It is important to notice that our mathematical model may be seen as a generalization
or as a particular case of other meaningful partial differential equations of mathematical
physics or biology. For instance, Eq. (1.1) is the classical heat equation with constant of
diffusivity κ if both a and b are equal to zero; it is a modified Fisher-KPP equation (a model
employed in population dynamics [27, 47] and nuclear reactor kinetics [45]) with reaction
term of the form au− buq if both a and b are positive; the model is a FitzHugh-Nagumo
equation [78] (a model employed in the investigation of the transmission of electric impulses
in the nervous system [28, 74]) with nonlinear reaction term given by au(1− u)(u+1), in
which case both parameters a and b in (1.1) are equal, and q = 3.

On the other hand, (1.1) assumes many interesting roles in the hyperbolic scenario.
More precisely, let τ be a positive real number, and consider the partial differential equa-
tion

τ
∂2u

∂t2
+
∂u

∂t
= κ

∂2u

∂x2
+ au− buq. (1.2)

For instance, if b is equal to zero, then the Telegraph equation (a linear partial differen-
tial equation studied by O. Heaviside in the investigation of electrical transmission lines)
immediately appears [43]; if a and b are positive numbers, then the resulting equation is
the Ginzburg-Landau equation in the investigation of φ4-theories [49]; if both a and b are
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equal to zero, then the resulting regime is the classical wave equation. Finally, if a and b
are negative, then a damped, nonlinear Klein-Gordon equation emerges [57].

It is useful to notice that (1.1) may be simplified for its study, when a and b are both
positive numbers, and q is of the form 2p+ 1. Indeed, a simple non-dimensional analysis
shows that it is enough to consider the model under investigation with all of κ, a and b
being equal to 1. In our investigation, we will restrict our attention to the approximation
of bounded solutions of the diffusive equation with nonlinear reaction

∂u

∂t
=
∂2u

∂x2
+ u(1− u2p), (1.3)

where p is a positive integer number.

1.1.2 Particular solutions

The one-dimensional Newell-Whitehead-Segel equation (that is, Eq. (1.3) with p equal to
1) admits bounded solutions on the real line given by the formulas

u±1 (x, t) = ±
C1 exp(

1√
2
x)− C2 exp(− 1√

2
x)

C1 exp(
1√
2
x) + C2 exp(− 1√

2
x) + C3 exp(−3

2 t)
(1.4)

and

u±2 (x, t) = ±
[

2C1 exp(
√
2x) + C2 exp(

1√
2
x− 3

2 t)

C1 exp(
√
2x) + C2 exp(

1√
2
x− 3

2 t) + C3

− 1

]

, (1.5)

where C1, C2 and C3 are arbitrary real constants [78]. Throughout this work, we will
restrict our attention to the case when the coefficients C1, C2 and C3 are non-negative.

Under the considerations stated above, it is important to remark that both particular
solutions satisfy the constraints |u±1 (x, t)| ≤ 1 and |u±2 (x, t)| ≤ 1, for every x ∈ R and every
t ≥ 0. Also, it is worthwhile to notice that the second solution satisfies 0 ≤ u±2 (x, t) ≤ 1
when C3 is equal to zero; evidently, the expression u±2 represents a traveling wave solution
in this particular case.

1.2 The FitzHugh-Nagumo equation

1.2.1 Mathematical model

Let u be a function of the spatial variable x and the temporal variable t, where x ∈ R and
t > 0. Assume that a is a real number in the interval [0, 12 ], and let κ and m be positive,
real numbers. In this work, we approximate non-negative and bounded solutions of the
partial differential equation

∂u

∂t
= κ

∂2u

∂x2
+m2uf(u), (1.6)

where
f(u) = (1− u)(u− a). (1.7)

This model is called the FitzHugh-Nagumo equation or, for short, simply the Nagumo
equation, and it is one of the simplest reaction-diffusion equations with nonlinear reaction.
Evidently, it differs from the Fisher-KPP equation in the reaction term: In the Fisher-
KPP model, f(u) = 1 − u. Moreover, as we mentioned in the introductory section, (1.6)
is a particular case of the Burgers-Huxley equation given.

Before closing this section of our study, we must point out that appropriate initial
and boundary conditions must be imposed upon (1.6) in order to be able to numerically
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approximate solutions to this model. As we will mention in time, we will consider non-
negative Dirichlet conditions bounded from above by 1. At the same time, we will consider
non-negative and bounded profiles satisfying (1.6) at any instant.

1.2.2 Particular solutions

For the rest of this manuscript, we tacitly let κ and m be both equal to 1 in (1.6). This
assumption is fully justified by an elementary non-dimensional analysis of the equation
(1.6). Under this convention, the FitzHugh-Nagumo equation presented in this work
admits a solution in the form of a traveling wave front, namely, the function

u(x, t) =
A exp(z1) + aB exp(z2)

A exp(z1) +B exp(z2) + C
, (1.8)

where

z1 = ± 1√
2
x+

(

1

2
− a

)

t, (1.9)

z2 = ± 1√
2
ax+ a

(

1

2
a− 1

)

t, (1.10)

and A, B and C are arbitrary constants [78].

1.3 The Burgers-Huxley equation

1.3.1 Mathematical model

Let α be a non-negative real number, let β, κ and δ be positive numbers with δ ≥ 1, and
let γ be a real number in (0, 1). Suppose that I is a (bounded or unbounded) interval
in the set of real numbers. Throughout, u will be a function that depends on the spatial
variable x ∈ I and the temporal variable t ≥ 0, which satisfies the advection-diffusion
equation with nonlinear reaction term

∂u

∂t
+ αuδ

∂u

∂x
− κ

∂2u

∂x2
− βuf(u) = 0, (1.11)

for every x ∈ I and every t ≥ 0, where

f(u) = (1− uδ)(uδ − γ). (1.12)

This model is called the generalized Burgers-Huxley equation, and it is a quantitative
paradigm which describes the interaction between reaction mechanisms, convection effects
and diffusion transport. We immediately identify here the constant κ as the coefficient
of diffusivity, while α is the advection coefficient and β is the coefficient of reaction. The
function (1.12) is the factor of (nonlinear) reaction, and it will be fixed throughout this
work, unless stated otherwise.

It is worthwhile noticing that this mathematical model is actually a generalization of
several important partial differential equations from mathematical physics. For instance,
the partial differential equation (2.1) is the classical heat equation if α and β are equal to
zero. If the advection coefficient is equal to zero, then our model becomes a generalization
of the FitzHugh-Nagumo equation [28, 74, 85], which is a model employed in the study of
the transmission of electric impulses in nervous systems. On the other hand, if α is equal to
zero and the function f assumes the general form f(u) = 1−uδ, then the resulting equation
is a generalized Fisher-KPP model [1], an equation that was investigated simultaneously
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and independently by R. A. Fisher [27], and A. Kolmogorov, I. Petrovski and N. Piscounov
[47], in the context of population dynamics. In the frame of the Fisher-KPP equation, the
case when δ equals 2 is of particular interest in the investigation of fluid dynamics, the
arising model being identified as the Newell-Whitehead-Segel equation [75, 83]. Finally,
the partial differential equation (1.11) is a generalized Burgers-Fisher equation [93] if f is
the reaction function of the generalized Fisher-KPP equation.

As we mentioned above, we will assume that κ and β are positive real numbers. It
is pragmatically important to notice that the partial differential equation (1.11) may be
conveniently simplified for its study. In fact, if we let ξ = x

√

β/κ and τ = βt, then the
model (1.11) can be written in terms of the new independent variables as

L(u) = 0, (1.13)

where

L(u) = ∂u

∂t
+ αuδ

∂u

∂x
− ∂2u

∂x2
− uf(u), (1.14)

for every x ∈ I and every t ≥ 0. Here, the new coefficient α and the variables x and t have
replaced the constant α/

√
βκ and the variables ξ and τ , respectively. It is important to

point out that this simplified model will be our equation of interest in Section 4.4, which
will be the proper scenario to perform some numerical simulations in order to assess the
validity of the method presented in this manuscript.

1.3.2 Particular solutions

Throughout this section, we will let κ be equal to 1. Moreover, for computational purposes,
we may think of β as equal to 1, too, as it will be the case in Section 4.4.

Example 1. The generalized Burgers-Huxley equation under investigation has a particu-
lar solution in the interval I = [a, b], which satisfies the set of initial-boundary conditions























u(x, 0) =
(γ

2
+
γ

2
tanh(a1x)

)1/δ
, for every x ∈ I,

u(a, t) =
(γ

2
+
γ

2
tanh(a1(a− a2t))

)1/δ
, for every t ≥ 0,

u(b, t) =
(γ

2
+
γ

2
tanh(a1(b− a2t))

)1/δ
, for every t ≥ 0,

(1.15)

where

a1 =
−αδ + δ

√

α2 + 4β(1 + δ)

4(1 + δ)
γ, (1.16)

a2 =
γα

1 + δ
− (1 + δ − γ)(−α+

√

α2 + 4β(1 + δ))

2(1 + δ)
. (1.17)

Such particular solution is given by the expression

u(x, t) =
(γ

2
+
γ

2
tanh(a1(x− a2t))

)1/δ
, (1.18)

for every x ∈ I and every t ≥ 0 (see [39]). Evidently, if we consider the entire set of
real numbers as the interval I, then the function (1.18) is a traveling-wave solution of
the parabolic partial differential equation (1.11). These remarks will be important in the
investigation of the performance of the method presented in Section 4.3.
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Example 2. Let us consider once again the partial differential equation (1.11), with non-
negative parameter α, a positive value of β, γ being a real number in the interval (0, 1),
and both κ and δ equal to 1. In this case, assume first that the spatial domain I is the
entire real line. Then, the following function is a traveling-wave solution of the equation
(1.11) which connects the two steady-state solutions u = 0 and u = 1, independently of
the value of γ:

u(x, t) =
1

2
− 1

2
tanh

[

β

r − α
(x− vt)

]

, (1.19)

where the constant r and the wave velocity v are given by

r =
√

α2 + 8β, (1.20)

v =
(α− r)(2γ − 1) + 2α

4
. (1.21)

These solutions are the result of employing symbolic computations and some relevant
nonlinear transformations [50, 24, 92]. Evidently, the formula (1.19) is the particular
solution in the interval I = [a, b] of the associated initial-boundary-value problem































u(x, 0) =
1

2
− 1

2
tanh

(

βx

r − α

)

, for every x ∈ I,

u(a, t) =
1

2
− 1

2
tanh

[

β

r − α
(a− vt)

]

, for every t ≥ 0,

u(b, t) =
1

2
− 1

2
tanh

[

β

r − α
(b− vt)

]

, for every t ≥ 0.

(1.22)
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Chapter 2

A generalized

Newell-Whitehead-Segel equation

In this work, we propose a finite-difference scheme to approximate the solu-
tions of a generalization of the classical, one-dimensional, Newell-Whitehead-
Segel equation from fluid mechanics, which is an equation for which the exis-
tence of bounded solutions is a well-known fact. The numerical method pre-
serves the skew-symmetry of the problem of interest, and it is a non-standard
technique which consistently approximates the solutions of the equation under
investigation, with a consistency of the first order in time and of the second
order in space. We prove that, under relatively flexible conditions on the com-
putational parameters of the method, our technique yields bounded numerical
approximations for every set of bounded initial estimates. Some simulations
are provided in order to verify the validity of our analytical results. In turn,
the validity of the computational constraints under which the method guaran-
tees the preservation of the boundedness of the approximations, is successfully
tested by means of computational experiments in some particular instances.

2.1 Introduction

The class of non-standard numerical methods is a family of techniques that has been
extensively used in the computational approximation of the solutions of many integral
equations, as well as ordinary and partial differential equations. This family includes a
wide range of non-traditional techniques to approximate linear and nonlinear terms in
differential equations, and it has been satisfactorily applied, for instance, to the solu-
tion of Lotka-Volterra systems [65], wave equations with nonlinear reaction of the logistic
type [56], linear wave equations with damping [68, 69], Gauss-type predator-prey models
[71], nonlinear heat equations for thin, finite rods [41], among many other physically or
mathematically interesting problems.

Some of the numerical techniques designed under the non-standard methodologies
(methodologies which, by the way, have been popularized in the literature by R. E. Mickens
[65, 68, 69, 64, 63, 66]) have been created in order to preserve certain physical characteris-
tics which are of interest in the context of the mathematical problem under investigation.
For instance, some non-standard techniques have been developed in order to preserve
the non-negative character of the solutions of problems where the independent variable
is measured in an absolute scale. Such problems arise naturally in population dynam-
ics, where the population size is a non-negative function of time [36, 30, 29], or in those
thermodynamical problems where the variable of interest is the temperature measured in
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Kelvin [60, 61], or in problems involving the dynamics of the concentration of a chemical
substance or of the biological colony on a certain substrate [22], in which the characteristic
of interest is given as a percentage or, equivalently, as a real number in the interval [0, 1].

In view of its physical relevance, it is not surprising to know that the study of the
condition of non-negativity is important both mathematically and numerically [7, 37, 7,
44, 38, 14, 48]. However, several other preserved properties in physical systems are of
mathematical and numerical interest. For example, many numerical methods have been
built, having in mind the property of conservation of energy [32, 20, 12, 94, 25, 18] or,
more generally, the property of preservation of the dissipation of energy [57, 55]. In the
present work, we consider the property of preservation of the boundedness of solutions
of a generalized Newell-Whitehead-Segel equation, which is a diffusive equation with a
nonlinear reaction term, employed in the investigation of fluid mechanics [75, 83]. The
present study is motivated by a previous work of the corresponding author, in which
both non-negativity and boundedness were fundamental properties in the design of a
non-standard, finite-difference scheme for a nonlinear wave equation [56]. In the present
manuscript, non-negativity plays an important part in the design of a numerical method for
the equation of interest, however, boundedness takes the central stage in our study. As we
will see in this article, the concept of M -matrix exploited in [56] will take, once more, the
main role in the problem of designing a non-standard, symmetry-preserving, boundedness-
preserving, computational technique to approximate solutions of the generalized Newell-
Whitehead-Segel model under study.

Section 2.2 of this work presents the nonlinear, parabolic partial differential equation
under investigation in its general form. Here, we provide some particular solutions of our
equation for comparison purposes, and we observe that a non-dimensional analysis leads to
a parametric simplification of the model under investigation: In fact, when all coefficients
are positive, solving the problem under study is equivalent to solving the same equation
with all coefficients equal to 1. In Section 2.3, we propose a non-standard, finite-difference
method to approximate solutions of the generalized Newell-Whitehead-Segel model of
interest. Our numerical technique is seen to be explicit, and it is represented in matrix
form after imposing discrete, homogeneous Neumann boundary conditions; this matrix
representation is employed to establish conditions under which bounded initial conditions
yield bounded new approximations. The most important result is presented as Proposition
5, and the numerical constraint derived is seen to be relatively flexible. Section 2.4 is
devoted to show some numerical simulations to evidence that the method approximates
well the solutions of our equation, and that the property of boundedness is preserved when
the conditions of Proposition 5 are satisfied. In fact, we compute numerically the regions
for which the numerical parameters of the method provide bounded approximations. It
is worth mentioning beforehand that the region provided by Proposition 5 is a subset of
the region obtained through our simulations, confirming thus the validity of the analytical
apparatus.

2.2 Preliminaries

2.2.1 Mathematical model

Let a, b and κ be real numbers with κ > 0, and let q be a positive integer. Let u be a
function of the spatial variable x and the temporal variable t, with x ∈ R and t ≥ 0. In this
work, we design a numerical method to approximate bounded solutions of the nonlinear,
parabolic partial differential equation

∂u

∂t
= κ

∂2u

∂x2
+ au− buq, (2.1)
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where the function u may be though of as the (nonlinear) distribution of heat in an
infinitely thin and infinitely long rod, or as the flow velocity of a fluid in an infinitely thin
and infinitely long pipe.

It is readily verified that this mathematical model is a generalization of the Newell-
Whitehead-Segel equation which appeared historically in the investigation of fluid me-
chanics [75, 83]. Here, the constant κ is the coefficient of diffusion, the constants a and
b are the coefficients of linear and nonlinear reaction, respectively, and q will assume the
form q = 2p + 1, where p is a positive integer. In our manuscript, both a and b will be
strictly positive real numbers.

It is important to notice that our mathematical model may be seen as a generalization
or as a particular case of other meaningful partial differential equations of mathematical
physics or biology. For instance, Eq. (2.1) is the classical heat equation with constant of
diffusivity κ if both a and b are equal to zero; it is a modified Fisher-KPP equation (a model
employed in population dynamics [27, 47] and nuclear reactor kinetics [45]) with reaction
term of the form au− buq if both a and b are positive; the model is a FitzHugh-Nagumo
equation [78] (a model employed in the investigation of the transmission of electric impulses
in the nervous system [28, 74]) with nonlinear reaction term given by au(1− u)(u+1), in
which case both parameters a and b in (2.1) are equal, and q = 3.

On the other hand, (2.1) assumes many interesting roles in the hyperbolic scenario.
More precisely, let τ be a positive real number, and consider the partial differential equa-
tion

τ
∂2u

∂t2
+
∂u

∂t
= κ

∂2u

∂x2
+ au− buq. (2.2)

For instance, if b is equal to zero, then the Telegraph equation (a linear partial differen-
tial equation studied by O. Heaviside in the investigation of electrical transmission lines)
immediately appears [43]; if a and b are positive numbers, then the resulting equation is
the Ginzburg-Landau equation in the investigation of φ4-theories [49]; if both a and b are
equal to zero, then the resulting regime is the classical wave equation. Finally, if a and b
are negative, then a damped, nonlinear Klein-Gordon equation emerges [57].

Before closing this stage of our work, it is useful to notice that (2.1) may be simplified
for its study, when a and b are both positive numbers, and q is of the form 2p+1. Indeed,
a simple non-dimensional analysis shows that it is enough to consider the model under
investigation with all of κ, a and b being equal to 1. So, for the rest of this manuscript,
we will restrict our attention to the approximation of bounded solutions of the diffusive
equation with nonlinear reaction

∂u

∂t
=
∂2u

∂x2
+ u(1− u2p), (2.3)

where p is a positive integer number.

2.2.2 Particular solutions

The one-dimensional Newell-Whitehead-Segel equation (that is, Eq. (2.3) with p equal to
1) admits bounded solutions on the real line given by the formulas

u±1 (x, t) = ±
C1 exp(

1√
2
x)− C2 exp(− 1√

2
x)

C1 exp(
1√
2
x) + C2 exp(− 1√

2
x) + C3 exp(−3

2 t)
(2.4)

and

u±2 (x, t) = ±
[

2C1 exp(
√
2x) + C2 exp(

1√
2
x− 3

2 t)

C1 exp(
√
2x) + C2 exp(

1√
2
x− 3

2 t) + C3

− 1

]

, (2.5)
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Figure 2.1: Forward-difference stencil for the approximation to the partial differential
equation (2.3) at time tk, using the finite-difference scheme (2.6). The black circles rep-
resent known approximations to the actual solutions at the times tk−1 and tk, and the
crosses denote the unknown approximations at the time tk+1.

where C1, C2 and C3 are arbitrary real constants [78]. Throughout this work, we will
restrict our attention to the case when the coefficients C1, C2 and C3 are non-negative.

Under the considerations stated above, it is important to remark that both particular
solutions satisfy the constraints |u±1 (x, t)| ≤ 1 and |u±2 (x, t)| ≤ 1, for every x ∈ R and every
t ≥ 0. Also, it is worthwhile to notice that the second solution satisfies 0 ≤ u±2 (x, t) ≤ 1
when C3 is equal to zero; evidently, the expression u±2 represents a traveling wave solution
in this particular case.

2.3 Numerical method

2.3.1 Finite-difference scheme

Let M and N be positive integers, and fix a spatial domain [a, b] and a temporal interval
[0, T ], where a < b and T > 0. Let a = x0 < x1 < . . . < xN = b and 0 = t0 < t1 < . . . <
tM = T be regular partitions of [a, b] and [0, T ], respectively, and let ∆x = (b − a)/N
and ∆t = T/M be their respective norms. For every n ∈ {0, 1, . . . , N} and every k ∈
{0, 1, . . . ,M}, let ukn be an approximation to the exact value of u(xn, tk).

For every k ∈ {0, 1, . . . ,M}, let uk = (uk0, u
k
1, . . . , u

k
N )t, where the symbol t indicates

the matrix (and, in particular, the vector) operation of transposition. Assuming that
the respective approximations uk and uk−1 at times tk and tk−1 are known, for some
k ∈ {1, . . . ,M − 1}, we approximate the exact solution u(xn, tk+1) of (2.3) by means of
the finite-difference scheme

δt,αu
k
n = δ(2)x uk+1

n + uk+1
n (1− (ukn)

2p), (2.6)

where the following linear operators are employed:

δt,αu
k
n = (1− α)

uk+1
n − ukn

∆t
+ α

uk+1
n − uk−1

n

2∆t
, (2.7)

δ(2)x ukn =
ukn+1 − 2ukn + ukn−1

(∆x)2
. (2.8)
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It is clear that (2.7) is a weighted estimation of the exact value of ∂u
∂t at (xn, tk),

formed by a linear combination of a first-order approximation and a second-order approxi-
mation. Meanwhile, (2.8) is the standard, second-order approximation to the value of ∂2u

∂x2

at (xn, tk). However, employing Taylor series approximations around the point (xn, tk+1),
it is easy to show that (2.7) is a first order approximation of ∂u

∂t (xn, tk+1). It follows that
the linearized version of (2.3) is consistently estimated by the linearized version of the
finite-difference scheme (2.6), with a consistency of the order of O(∆t+ (∆x)2).

2.3.2 Matrix representation

In order to conveniently represent the finite-difference scheme (2.6) in matrix form, it is
important to notice first that our numerical method can be expressed explicitly as

k1u
k+1
n+1 + k2u

k+1
n + k1u

k+1
n−1 = k3u

k
n + k4u

k−1
n , (2.9)

where the coefficients k1, k2, k3 and k4 are, in general, the functions of uk given by

k1 = −R, (2.10)

k2 = 1− α

2
+ 2R−∆t(1− (ukn)

2p), (2.11)

k3 = 1− α, (2.12)

k4 =
α

2
. (2.13)

Here, we employ the auxiliary notation

R =
∆t

(∆x)2
, (2.14)

for the sake of convenience. As a corollary, the forward-difference stencil of the computa-
tional technique employed in this work is the one depicted in Fig. 2.1.

The explicit form of our numerical scheme, as provided by (2.9), yields a convenient
matrix representation if we impose appropriate boundary conditions on the end points of
the interval [a, b]. For practical reasons, we will consider discrete, homogeneous Neumann
boundary data at the end points of the spatial interval, that is, we assume that, for every
k = 0, 1, . . . ,M ,

uk0 − uk1 = ukN − ukN−1 = 0. (2.15)

As a consequence, the numerical method (2.6) takes the matrix form

A
ukuk+1 = Buk + Cuk−1, (2.16)

where A
uk , B and C are the real matrices of sizes (N + 1)× (N + 1), given by

A
uk =



















1 −1 0 0 · · · 0 0 0
k1 k2 k1 0 · · · 0 0 0
0 k1 k2 k1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · k1 k2 k1
0 0 0 0 · · · 0 −1 1



















, (2.17)

and

B =















0 0 · · · 0 0
0 k3 · · · 0 0
...

...
. . .

...
...

0 0 · · · k3 0
0 0 · · · 0 0















, C =















0 0 · · · 0 0
0 k4 · · · 0 0
...

...
. . .

...
...

0 0 · · · k4 0
0 0 · · · 0 0















. (2.18)
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Let V be the real vector space R
N+1. We must keep in mind that the matrix A

uk

is actually a function of uk, while B and C are constant matrices. Moreover, the finite-
difference scheme (2.6) may be more accurately presented as the equation

L(uk+1,uk,uk−1) = 0, (2.19)

for every k ∈ {1, . . . ,M − 1}, where L : V3 → V is the operator defined by

L(x,y, z) = Ayx−By − Cz. (2.20)

Evidently, V3 = V × V × V . We observe here that the function L is not a linear operator;
however, it satisfies the following useful property, which is denominated skew-symmetry in
the literature [90]. Here, we must mention that this symmetry condition arises naturally
in many problems of turbulent flows where advection is present [90]. In mathematical
physics, the Poisson manifolds (that is, smooth manifolds endowed with a Poisson bracket
structure satisfying a skew-symmetry condition among other properties) are crucial in
the foundation of the generalized Nabu mechanics [87]. Finally, skew-symmetry is of the
utmost importance in the recognition of planar polygons [11] and surfaces [82].

Lemma 3. If x,y, z ∈ V, then L(−x,−y,−z) = −L(x,y, z).

Proof. The result is straight-forward.

An easy consequence of this result indicates that L(uk+1,uk,uk−1) = 0 if and only if
L(−uk+1,−uk,−uk−1) = 0. This statement is in agreement with the fact that a function
u on the variables x ∈ R and t ≥ 0 satisfies (2.3) if and only if −u satisfies the same
equation. Therefore, our numerical method preserves the skew-symmetry of solutions,
among several other properties that we will derive in the subsequent discussions.

2.3.3 Boundedness preservation

Let A be a (non necessarily square) matrix over the field R, and let s and t be real numbers
with s ≤ t. We employ the notation A ≤ t when every entry ai,j of A satisfies ai,j ≤ t.
Similarly, A ≥ s holds when every ai,j ≥ s. Moreover, we convey that s ≤ A ≤ t if and
only if A ≥ s and A ≤ t.

Recall that an M -matrix is a square matrix A with entries in the set of real numbers,
which satisfies the following properties:

(i) the off-diagonal elements of A are non-positive,

(ii) the diagonal elements of A are positive, and

(iii) A is strictly diagonally dominant.

TheM -matrices have been successfully used in some computational studies such as [56, 21],
in view that they are non-singular, and the entries of their inverses are non-negative real
numbers [33].

In the following, p will be a positive integer, ∆t and ∆x will be positive real numbers,
and α will be a real number in the interval (0, 1).

Lemma 4. Let uk be a vector in R
N+1 satisfying −1 ≤ uk ≤ 1. The matrix A

uk in (2.17)
is an M -matrix if the following inequality is satisfied:

∆t < 1− α

2
. (2.21)
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Figure 2.2: Graphs of the exact solution and the corresponding approximate solution
versus the spatial variable x of a medium governed by (2.3) with p = 1, at four different
times, namely, (a) t = 0.08, (b) t = 0.8, (c) t = 8 and (d) t = 80. The initial data were
given by the function u+1 in (2.4) around the time t = 0, with the coefficients C1 = 30,
C2 = 20 and C3 = 10. Computationally, we fixed the spatial domain [−15, 15], imposed
discrete, homogeneous Neumann boundary conditions, and set α = 0.328, ∆x = 0.1 and
∆t = 0.001.

Proof. We only need to establish properties (ii) and (iii) in the definition of an M -matrix.
Observe that the constraint (2.21) implies that

∆t(1− (xn)
2p) < 1− α

2
. (2.22)

Subtracting the term ∆t(1− (ukn)
2p) on both sides of this inequality, and adding then the

term 2R on both sides, we establish the inequality |k1|+ |k1| < k2, for every n = 2, . . . , N .
This proves (iii), and the property (ii) follows from the fact that |k1| + |k1| = 2R is a
positive number.

Next, we want to establish conditions under which the finite-difference scheme (2.6)
preserves the boundedness of solutions. To that end, let D = (−∞, 1] × (−∞, 1], and
define the function G : D → R by means of the rule

G(x, y) = 1− α

2
−∆t(1− x2p)− (1− α)x− α

2
y. (2.23)
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Figure 2.3: Graphs of the exact solution and the corresponding approximate solution
versus the spatial variable x of a medium governed by (2.3) with p = 1, at four different
times, namely, (a) t = 0.08, (b) t = 0.8, (c) t = 8 and (d) t = 80. The initial data were
given by the function u+2 in (2.5) around the time t = 0, with the coefficients C1 = 30,
C2 = 20 and C3 = 10. Computationally, we fixed the spatial domain [−15, 15], imposed
discrete, homogeneous Neumann boundary conditions, and set α = 0.328, ∆x = 0.1 and
∆t = 0.001.

Clearly, G is a continuous function on the set D, which satisfies G(1, 1) = 0. Moreover, it
is an easy exercise of vector calculus to show that ∂G

∂y is negative in the interior of D, and

that ∂G
∂x is likewise negative whenever the following inequality is satisfied:

∆t <
1− α

2p
. (2.24)

As a consequence, the function G is nonnegative in D if the inequality (2.24) holds.

Proposition 5. Let k ∈ {1, . . . ,M − 1}, and assume that uk and uk−1 are vectors in
R
N+1 satisfying −1 ≤ uk ≤ 1 and −1 ≤ uk−1 ≤ 1. Then, the vector uk+1 also satisfies

−1 ≤ uk+1 ≤ 1 if the inequality (2.24) holds.

Proof. Beforehand, notice that the condition (2.21) holds whenever (2.24) is satisfied, so
that the matrix A

uk associated to the finite-difference scheme (2.6), is an M -matrix. Let
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wk+1 = e − uk+1, where e is the (N + 1)-dimensional vector whose components are all
equal to 1. Substituting this representation of uk+1 in (2.16), we obtain the identity

A
ukwk+1 = Ae−Buk − Cuk−1. (2.25)

Let b be the right-hand side of this expression. Clearly, the first and the last component
of b are equal to zero. On the other hand, if n = 1, . . . , N − 2, then the (n + 1)th
component of b is given by G(ukn, u

k−1
n ), where G is the function defined in (2.23). Since

(2.24) holds, then b is a vector with nonnegative entries, whence it follows that wk+1 ≥ 0
or, equivalently, that uk+1 ≤ 1. It only remains to prove now that uk+1 ≥ −1.

By the hypotheses, −1 ≤ −uk ≤ 1 and −1 ≤ −uk−1 ≤ 1. Lemma 3 implies that
A

vkvk+1 = Bvk + Cvk−1, where each vj = −uj , for j = k − 1, k, k + 1. By the first part
of this proof, vk+1 ≤ 1 or, equivalently, uk+1 ≥ −1, as desired.

Corollary 6. Let k ∈ {1, . . . ,M − 1}, and assume that uk and uk−1 are vectors in R
N+1

satisfying 0 ≤ uk ≤ 1 and 0 ≤ uk−1 ≤ 1. The vector uk+1 satisfies 0 ≤ uk+1 ≤ 1 whenever
the inequality (2.24) is satisfied.

Proof. Proposition 5 assures that −1 ≤ uk+1 ≤ 1. That uk+1 ≥ 0 follows from the fact
that, under our assumptions, the right-hand side of (2.16) is a vector with non-negative
entries, and that A is an M -matrix.

In the context of kinematic waves, the solutions of (2.3) must be non-negative for the
sake of physical meaningfulness. If our model is applied in the context of fluid mechanics,
the condition of non-negativity on the solutions of (2.3) is of physical relevance in those
cases when the flow velocity of the fluid in the pipe is likewise non-negative, that is, when
the fluid moves in the same direction.

We must remark here that the inequality (2.24) is, indeed, a sufficient condition in or-
der to guarantee the preservation of the boundedness of our method. We have conducted
numerical experiments in order to determine the smallest value of ∆t for which the bound-
edness is no longer preserved. In those simulations, our results (which are presented in
the next section) establish the existence of a region wider than that prescribed by (2.24),
confirming thus the validity of our analytical apparatus.

Finally, it is interesting to notice that the constraint (2.24) is relatively flexible. In
fact, the dependency of the maximum value of ∆t for which the boundedness of solutions
of (2.1) is preserved, as given by (2.24) in terms of the parameters α and p, is a simple rule
which guarantees the existence of sufficiently small values of ∆t satisfying the condition.
Moreover, the fact that the step-size ∆x does not appear in that inequality, gives some
indication of the robustness of our analytical results.

2.4 Simulations

2.4.1 Examples

In this stage of our work, we present some simulations in order to evidence the fact that
our method approximates well the particular solutions (2.4) and (2.5) of the model (2.3),
and that the boundedness of the corresponding approximations is kept when the constraint
(2.24) is satisfied.

Example 7. Consider the partial differential equation (2.3) with p equal to 1, and fix
initial data around t = 0 given by the particular solution u+1 in (2.4) at that instant of
time, with C1 = 30, C2 = 20 and C3 = 10. Computationally, we fix the values α = 0.328,
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Figure 2.4: Graphs of the exact solution and the corresponding approximate solution
versus the spatial variable x of a medium governed by (2.3) with p = 1, at four different
times, namely, (a) t = 0.08, (b) t = 0.8, (c) t = 8 and (d) t = 80. The initial data were
given by the function u+2 in (2.5) around the time t = 0, with the coefficients C1 = 30,
C2 = 20 and C3 = 0. Computationally, we fixed the spatial domain [−200, 50], imposed
discrete, homogeneous Neumann boundary conditions, and set α = 0.328, ∆x = 0.1 and
∆t = 0.001.

∆x = 0.1 and ∆t = 0.001, fix the spatial domain [−15, 15] to perform simulations, and
impose discrete, homogeneous Neumann boundary conditions. Under these conventions,
we approximate the solution of the given initial-value problem at four different times,
namely, t = 0.08, 0.8, 8 and 80. The exact solution and the approximations computed
through (2.6) are presented in Fig. 2.2. The results evidence not only a good agreement
between the numerical and theoretical values, but also that our finite-difference scheme is
capable of preserving the boundedness of the solutions of the problem when the condition
(2.24) is satisfied. qed

Example 8. We repeat the problem presented in the previous example with the same val-
ues of the model and computational parameters, changing the initial conditions for those
given by the function u+2 in (2.5) around the time t = 0, using the constants C1 = 30,
C2 = 20 and C3 = 10. Under these conventions, Fig. 2.3 compares the exact solutions
of our initial-value problem and the corresponding approximations given by our method
at four different times, namely, t = 0.08, 0.8, 8 and 80. Again, we see that our method
approximates well the solutions to the problem under consideration, and that the approx-
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Figure 2.5: Graphs of minimum value of ∆t for which the finite-difference scheme does
not preserve the boundedness of the approximations versus the value of the parameter α,
for a system governed by (2.3) with initial data provided by the particular solution u+1
around t = 0, p = 1, C1 = 30, C2 = 20, and two different values of C3: 10 (dashed) and
0 (dotted). Two different values of ∆x were used, namely, (a) 0.1 and (b) 0.05. In either
case, a time period equal to 30 was used. The theoretical bound (2.24) is depicted in both
graphs (solid).

imations remain bounded in the interval [−1, 1].

Example 9. Finally, we repeat the simulations of the Example 8 with C3 = 0, over the
spatial domain [−200, 50]. In this case, it is known that the exact solutions are bounded in
the interval [0, 1], and not in [−1, 1]. The comparison between the computational results
and the exact solutions are shown in Fig. 2.4. Again, the same conclusions as before are
drawn for this case, too.

2.4.2 Boundedness condition

In this stage, we wish to show numerically that the condition (2.24) is, indeed, a sufficient
condition to preserve the boundedness of the approximations given by (2.6). With this
purpose in mind, we consider the equation (2.3) with p = 1, initial conditions prescribed
by the function u+1 in (2.4) with parameters C1 = 30, C2 = 20, and two different values of
C3, namely, 0 and 10. Likewise, we choose the computational parameter ∆x to be equal
to 0.1, fix a time interval [0, 30], and select the spatial domains [−20, 20].

Using simple iterative procedures and letting α range in [0, 1], we approximate numeri-
cally the smallest value of ∆t for which the condition of boundedness is no longer preserved
by the method. The results of our simulations are presented as Fig. 2.5(a), where the solid
line corresponds to the analytical bound of ∆t given by (2.24), and the dashed and the
dotted lines represent the experimental bounds calculated through computer simulations,
for C3 = 10 and C3 = 0, respectively. We conclude that the analytical bound is within
the numerical bounds calculated by means of the finite-difference scheme (2.6).

Finally, Fig. 2.5(b) presents the results of the same experiments reported in Fig.
2.5(a), now with ∆x = 0.05. Again, the theoretical bound that assures the boundedness-
preservation of our method lies within the bounds computed by means of our method.
We have performed more simulations for different values of the model and computer pa-
rameters; the results (not shown here in view of their redundancy) establish the same
conclusions in every case.
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Chapter 3

The FitzHugh-Nagumo equation

In this work, we present a finite-difference scheme that preserves the non-
negativity and the boundedness of some solutions of a FitzHugh-Nagumo equa-
tion. The method is explicit, and it approximates the solutions of the nonlin-
ear, parabolic partial differential equation under study with a consistency of
order O(∆t + (∆x)2) in the Dirichlet regime investigated. We give sufficient
conditions in terms of the computational and the model parameters, in order
to guarantee the non-negativity and the boundedness of the approximations.
We also provide analyses of consistency, linear stability and convergence of
the method. Our simulations establish that the properties of non-negativity
and boundedness are actually preserved by the scheme when the proposed con-
straints are satisfied. Finally, a comparison against some second-order accurate
methods reveals that our technique is easier to implement computationally, and
it is better at preserving the properties of non-negativity and boundedness of
the solutions of the FitzHugh-Nagumo equation under study.

3.1 Introduction

The conditions of non-negativity and boundedness of the solutions of some mathematical
models are constraints which arise mostly from the physical context. For instance, in
mathematical biology, it is interesting to understand the evolution of certain populations in
which the growth is subjected to limited availability of resources [27]. In thermodynamics,
the problem of describing the propagation of forest fires is a question of pragmatic relevance
[61]. In chemistry, there exist many practical situations in which the temporal evolution
of the concentration of a chemical or biological component in a medium is the topic of
investigation, such as in the analysis of some chemical, kinetic systems [86] or in the
mathematical modeling of the growth of bacterial films [22].

In the context of population dynamics with limited nutrients, the variable of interest is
usually the quotient of the actual population at certain time, with respect to the maximum
population size of the medium. In other words, in this scenario, the variable of interest is
the population density, which is a function of time, bounded from below and from above
by 0 and 1, respectively. In the case of the spread of forest fires, the variable under
study is the temporal evolution of the temperature at each particular point in the forest,
and the scale in which the measurements are handled are usually Kelvin: An absolute
scale. Finally, in the case of the measurement of concentrations of chemical or biological
components in a medium, the variable under investigation is a percentage which assumes
real values between 0 and 100, only.

The problems described in the previous paragraph share many characteristics in com-
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mon. First of all, meaningful solutions satisfy one or both of the properties of non-
negativity and boundedness, which are conditions that are important in many other math-
ematical models governing the dynamics of realistic, physical situations [60, 36, 30, 29,
31, 6]. Secondly, the models describing these phenomena are relatively complicated and
there is no exact solution for every possible problem associated to them, whence the need
of employing reliable computational techniques to approximate the solutions is an ob-
vious corollary. Finally, most of the numerical techniques available for these and other
problems [70, 86, 62, 79, 16, 91, 13, 73], though powerful in their degrees of accuracy,
do not guarantee the preservation of the properties of non-negativity and boundedness of
solutions.

Another interesting example of a partial differential equation for which the existence of
non-negative and bounded solutions is a well-known fact, is the FitzHugh-Nagumo model
presented in [78]. This equation is a diffusive equation with a nonlinear reaction term,
and it represents a particular case of the Burgers-Huxley equation [88], which is given in
a general form by the advection-diffusion equation with nonlinear reaction

∂u

∂t
+ αuδ

∂u

∂x
=
∂2u

∂x2
+ βu(1− uδ)(uδ − a). (3.1)

In our study, α is equal to zero, while β and δ are both equal to 1, and a is a real number
in the interval [0, 12 ]. As we will see, the model considered in this work has a solution in
the form of a traveling wave front, which is bounded from below and from above by 0 and
1, respectively.

As the specialized literature indicates, some variations of this model appear in many
physically relevant situations; however, no explicit form of the solution is known for every
possible scenario, whence the need for developing reliable numerical methods to approxi-
mate solutions of this model in general, and non-negative and bounded solutions in partic-
ular, is an important motivation of investigation in the field of scientific computing. In fact,
in the present work, we propose a finite-difference scheme to approximate non-negative and
bounded solutions of the FitzHugh-Nagumo equation treated in [78]. As we will show be-
low, the method presented here is consistent with the problem under study, with an order
of consistency of O(∆t+ (∆x)2) when Dirichlet boundary data are considered; moreover,
the computational simulations support our claim that our method performs well when ap-
proximating non-negative and bounded solutions of the FitzHugh-Nagumo equation under
investigation. Additionally, our numerical technique is linearly stable under some flexible
constraints of the computational parameters, whence Lax’s equivalence theorem immedi-
ately yields the convergence of the method in the linear regime. Furthermore, our method
is easier to implement computationally than Crank-Nicholson procedures.

In Section 3.2 of this work, we present the nonlinear, partial differential equation under
investigation, together with a particular solution that we will employ in order to verify
the performance of our numerical method. Section 3.3 introduces the computational tech-
nique to approximate solutions of the model under study; here we prove that the method
preserves the non-negativity and the boundedness of solutions of the model under some
relatively flexible constraints on the computational and the model parameters. Moreover,
a brief study of consistency is presented here, along with a Neumann analysis of linear
stability and convergence. In Section 3.4, we show some simulations in order to assess the
convergence of the method, and the properties of preservation of the non-negativity and
the boundedness of the approximations. We devote some time to compare the performance
of our technique against some known standard methods available in the literature. As ex-
pected, we show that our method is able to preserve the non-negative and the bounded
character of solutions of the FitzHugh-Nagumo equation under consideration, when the
standard techniques may not. Section 3.5 is the section where we discuss our results.
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3.2 Preliminaries

3.2.1 Mathematical model

Let u be a function of the spatial variable x and the temporal variable t, where x ∈ R and
t > 0. Assume that a is a real number in the interval [0, 12 ], and let κ and m be positive,
real numbers. In this work, we approximate non-negative and bounded solutions of the
partial differential equation

∂u

∂t
= κ

∂2u

∂x2
+m2uf(u), (3.2)

where
f(u) = (1− u)(u− a). (3.3)

This model is called the FitzHugh-Nagumo equation or, for short, simply the Nagumo
equation, and it is one of the simplest reaction-diffusion equations with nonlinear reaction.
Evidently, it differs from the Fisher-KPP equation in the reaction term: In the Fisher-
KPP model, f(u) = 1 − u. Moreover, as we mentioned in the introductory section, (3.2)
is a particular case of the Burgers-Huxley equation given by (3.1).

Before closing this section of our study, we must point out that appropriate initial
and boundary conditions must be imposed upon (3.2) in order to be able to numerically
approximate solutions to this model. As we will mention in Section 3.3, we will consider
non-negative Dirichlet conditions bounded from above by 1. At the same time, we will
consider non-negative and bounded profiles satisfying (3.2) at any instant.

3.2.2 Particular solutions

For the rest of this manuscript, we tacitly let κ and m be both equal to 1 in (3.2). This
assumption is fully justified by an elementary non-dimensional analysis of the equation
(3.2). Under this convention, the FitzHugh-Nagumo equation presented in this work
admits a solution in the form of a traveling wave front, namely, the function

u(x, t) =
A exp(z1) + aB exp(z2)

A exp(z1) +B exp(z2) + C
, (3.4)

where

z1 = ± 1√
2
x+

(

1

2
− a

)

t, (3.5)

z2 = ± 1√
2
ax+ a

(

1

2
a− 1

)

t, (3.6)

and A, B and C are arbitrary constants [78].

3.3 Numerical method

3.3.1 Finite-difference scheme

LetM and N be positive integers. In order to approximate solutions of (3.2) over the real
line, we restrict our attention to a bounded spatial domain [as, bs], and impose appropriate
boundary conditions. In order to approximate the solution of an initial-value problem
associated to the FitzHugh-Nagumo problem under study over a temporal interval [0, T ],
we fix regular partitions as = x0 < x1 < . . . < xN = bs and 0 = t0 < t1 < . . . < tM = T
of [as, bs] and [0, T ], respectively, with norms ∆x = (bs − as)/N and ∆t = T/M , in each
case.
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Figure 3.1: Forward-difference stencil for the approximation to the partial differential
equation (3.2) at time tk, using the finite-difference scheme (3.9). The black circles repre-
sent known approximations to the actual solutions at times tk−1 and tk, and the crosses
denote the unknown approximations at time tk+1.

For every n = 0, 1, . . . , N and every k = 0, 1, . . . ,M , we denote by ukn the approxi-
mation provided by our method to the exact value of u(xn, tk). Moreover, we introduce
the following nomenclature in order to approximate, respectively, the first-order partial
derivative of u with respect to t in (3.2), and the second-order partial derivative of u with
respect to x (that is, the diffusion term), at the point (xn, tk):

δt,αu
k
n = (1− α)

uk+1
n − ukn

∆t
+ α

uk+1
n − uk−1

n

2∆t
, (3.7)

δ(2)x ukn =
ukn+1 − 2ukn + ukn−1

(∆x)2
. (3.8)

Evidently, (3.7) is a weighted approximation of ∂u/∂t at (xn, tk), in the form of a linear
combination of a first-order and a second-order estimations of this term. Meanwhile, (3.8)
is the standard, second-order approximation to ∂2u/∂t2 at (xn, tk).

With these conventions at hand, we will approximate solutions of (3.2) in the spatial
domain [as, bs] over the temporal interval [0, T ], through the finite-difference scheme

δt,αu
k
n = δ(2)x uk+1

n + uk+1
n f(ukn) (3.9)

(recall that both κ and m are equal to 1 in this study). It is readily checked that the
forward-difference stencil of our method is the one shown in Fig. 3.1, which is similar to
that reported in [59]. This assertion follows immediately from the fact that the finite-
difference scheme (3.9) may be conveniently rewritten as

k1u
k+1
n−1 + k2u

k+1
n + k1u

k+1
n+1 = k3u

k
n + k4u

k−1
n , (3.10)

where

R =
∆t

(∆x)2
(3.11)

is the Fourier number of the finite difference scheme (3.9), and the coefficients k1, k2, k3
and k4 are, in general, functions that depend on ukn, whose expressions are provided in
Table 3.1.
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Table 3.1: Expressions of the coefficients in (3.10).

k1 k2 k3 k4

−R 1− α

2
+ 2R− f(ukn)∆t 1− α

α

2

Before closing this section, it is important to notice that the numerical method (3.9) is
not a self-starting technique as it is, for instance, a Crank-Nicholson procedure. So, in order
to start the iterative process given by (3.9), one needs to know the approximations at times
t0 and t1. In our simulations, we will employ the particular solutions presented in Section
3.2.2; these exact solutions at the times t0 and t1 will provide the initial approximations
needed by the recursive method. More concretely, for every n = 0, 1, . . . , N and k = 0, 1,
we will let ukn = u(xn, tk), where u is the function given by (3.4), for previously fixed
constants A, B and C. If no exact solution is available, an initial profile together with an
initial velocity of the solution around the time t = 0 are required.

3.3.2 Matrix representation

The recursive process summarized by the finite-difference scheme (3.9) assumes that the
approximations at times t0 and t1 are known. In addition, appropriate boundary conditions
at the ends of the spatial interval [as, bs] need to be employed. In this work, we will impose
constraints of the form

u(as, t) = a0(t) and u(bs, t) = a1(t), (3.12)

satisfied for every t ≥ 0. Here, a0 and a1 are non-negative, real functions which are
less than or equal to 1. In our simulations, the functions a0 and a1 will be the actual
solutions of the problem under investigation, evaluated at each of the endpoints of the
spatial interval [as, bs].

Let Mn be the vector space of all matrices over R of size n×n, for each positive integer
n. Clearly, the numerical method (3.9) can be presented in matrix form as

Auk+1 = bk, (3.13)

for k ∈ {1, . . . ,M − 1}. Here, uk is the (N + 1)-dimensional vector (uk0, u
k
1, . . . , u

k
N ), for

every k ∈ {0, 1, . . . ,M}. Moreover, for every k ∈ {1, . . . ,M}, we let

bk = Buk + Cuk−1 + dk, (3.14)

where B and C are the diagonal matrices of MN+1 given by

B =















0 0 · · · 0 0
0 k3 · · · 0 0
...

...
. . .

...
...

0 0 · · · k3 0
0 0 · · · 0 0















and C =















0 0 · · · 0 0
0 k4 · · · 0 0
...

...
. . .

...
...

0 0 · · · k4 0
0 0 · · · 0 0















. (3.15)

Finally, the matrix A is a member of MN+1, and the vector dk is an (N +1)-dimensional
vector; their expressions depend on the type of boundary data imposed upon the FitzHugh-
Nagumo equation under investigation. If the problem has Dirichlet boundary conditions
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of the form (3.12), we employ discrete Dirichlet constraints in the form of the expressions
uk0 = a0(tk) and ukN = a1(tk), for every k ∈ {0, 1, . . . ,M}. These conditions clearly
translate into the following definitions of A and dk:

A =



















1 0 0 0 · · · 0 0 0
k1 k2 k1 0 · · · 0 0 0
0 k1 k2 k1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · k1 k2 k1
0 0 0 0 · · · 0 0 1



















, dk =



















a0(tk+1)
0
0
...
0

a1(tk+1)



















. (3.16)

3.3.3 Numerical properties

Non-negativity

Recall that the parameters κ and m of (3.2) are equal to 1, and we assume that a is a real
number in the interval [0, 12 ]. A squared matrix is an M -matrix if it is strictly diagonally
dominant, its off-diagonal entries are non-positive, and its diagonal entries are positive.
Every M -matrix is nonsingular, and its inverse has non-negative entries [33].

Lemma 10. The matrix A in (3.16) is anM -matrix if α belongs to (0, 1) and the inequality

∆t <

(

2

1− a

)2
(

1− α

2

)

(3.17)

is satisfied.

Proof. The matrix A has non-positive, off-diagonal entries. Now, if (3.17) is satisfied, then

∆tf(ukn) + 2R ≤ ∆t

(

1− a

2

)2

+ 2R < 1− α

2
+ 2R. (3.18)

Subtracting ∆tf(ukn) in each link of this chain of inequalities, we obtain that |k1|+ |k1| <
|k2|, which means that A is strictly diagonally dominant with positive entries in the diag-
onal. We conclude that A is an M -matrix.

It is worth noticing that a simpler condition to guarantee that the matrix A in Lemma
10 be strictly diagonally dominant, is readily at hand. The fact that f(u) ≤ 1

4 for every
u ∈ [0, 1] and every a ∈ [0, 12 ], gives us the non-negativity constraint

∆t < 4
(

1− α

2

)

. (3.19)

Recall that a0 and a1 are non-negative functions of time which are less than or equal
to 1. These facts will be employed in the following propositions.

Proposition 11. Let k ∈ {1, . . . ,M − 1}, and assume that uk and uk−1 are vectors with
non-negative entries. If α belongs to the set (0, 1) and the inequality (3.17) is satisfied,
then the vector uk+1 in (3.13) has non-negative entries.

Proof. It follows from the previous lemma and the facts that M -matrices are non-singular
matrices for which their inverses have non-negative entries, and that the right-hand side
of (3.13) is a vector with non-negative entries.
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Boundedness

We need the following result in order to establish conditions to guarantee the boundedness
of our finite-difference scheme.

Lemma 12. Let D = {(x, y) ∈ R
2 : x, y ≤ 1}, and let G : D → R be the function given

by G(x, y) = 1− α
2 −∆tf(x)− (1− α)x− α

2 y. If 0 < α < 1 and the inequality

∆t(1− a) < 1− α (3.20)

is satisfied, then ∂G
∂x (x, y) and ∂G

∂y (x, y) are negative, for every (x, y) ∈ G. Moreover,
G(1, 1) = 0.

Proof. The proof is an elementary application of vector calculus.

Corollary 13. Under the assumptions and the nomenclature of Lemma 12, the function
G is positive in the interior of D.

Proof. The conclusion is a consequence of the previous result and the continuity of G on
the plane R

2.

We say that an n-dimensional, real vector u is non-negative if all of its components are
non-negative; we represent this fact through the notation u ≥ 0. The vector u is bounded
from above by 1 if all of its components are bounded from above by 1, and we denote this
by u ≤ 1. Evidently, if e represents the n-dimensional vector whose components are all
equal to 1, then u ≤ 1 if and only if e − u ≥ 0. These conventions and remarks will be
observed in the next result.
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Proposition 14. Suppose that α belongs to (0, 1), and let k ∈ {1, . . . ,M − 1}. Suppose
that uk and uk−1 are vectors bounded from above by 1. The vector uk+1 is likewise bounded
from above by 1 if

∆t < min

{

4− 2α

(1− a)2
,
1− α

1− a

}

. (3.21)

Proof. Let wk+1 = e− uk+1. Then (3.13) can be rewritten in terms of wk+1 as

Awk+1 = Ae−Buk − Cuk−1 − dk+1, (3.22)

where A is an M -matrix by virtue of the fact that the choice of ∆t satisfies the conditions
of Lemma 10. The vector in the right-hand side of (3.22) has non-negative first and last
components. Now, if n ∈ {1, . . . , N − 1}, then the expression of the (n+ 1)th component
of the right-hand side of (3.22) is given by G(ukn, u

k−1
n ), where G is the function defined in

Lemma 12. The fact that the constraint (3.20) is satisfied, implies that the right-hand side
of (3.22) is a non-negative vector. It follows thatwk+1 is also non-negative or, equivalently,
that uk+1 ≤ 1.

Corollary 15. Suppose that α belongs to (0, 1), and let k ∈ {1, . . . ,M − 1}. Assume
that uk and uk−1 are non-negative vectors bounded from above by 1. The vector uk+1 is
likewise non-negative and bounded from above by 1 whenever (3.20) is satisfied.

Proof. This result follows from the fact that the first bound for ∆t in (3.21) is always
greater than or equal to the second. This relation between the upper bounds for ∆t can
easily be established through simple algebraic manipulations, and it is depicted in Fig.
3.2.

It is interesting to notice that the non-negativity and the boundedness constraints
summarized in Proposition 14 do not depend on the value of the parameter ∆x. This fact
and Corollary 15 are our main evidences in favor of the flexibility of the finite-difference
scheme (3.9), in order to guarantee the non-negative and the bounded characters of the
approximate solutions.

Consistency

The method studied in this work approximates solutions to (3.2) with a consistency of the
order of O(∆t + (∆x)2) when Dirichlet conditions are imposed on the boundaries. This
statement is evidenced by the following Taylor series approximations:

uk+1
n − ukn

∆t
≈ ∂u

∂t
(xn, tk+1)−

∆t

2

∂2u

∂t2
(xn, tk+1), (3.23)

uk+1
n − uk−1

n

2∆t
≈ ∂u

∂t
(xn, tk+1)−∆t

∂2u

∂t2
(xn, tk+1), (3.24)

δ(2)x uk+1
n ≈ ∂2u

∂x2
(xn, tk+1) +

(∆x)2

12

∂4u

∂x4
(xn, tk+1). (3.25)

As a consequence, u(xn, tk+1) is approximated by uk+1
n with the stated order of consistency.

Stability and convergence

In this section, we establish the properties of linear stability and convergence of the finite-
difference scheme (3.9). We state the main result of the section right away.

Proposition 16. A sufficient condition for the finite-difference scheme (3.9) with reaction
function f identically equal to 0 to be stable, is that 0 < α < 1.
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Proof. Let ukn = cke
inθ, for every n ∈ {0, 1, . . . , N} and every k ∈ {0, 1, . . . ,M}. Substi-

tuting in (3.10) and simplifying, we obtain the identity

(2k1 cos θ + k2)ck+1 − k3ck − k4ck−1 = 0. (3.26)

The roots of the characteristic equation associated to (3.26) are given by

r± =
k3 ±

√

k23 + 4k4(2k1 cos θ + k2)

2(2k1 cos θ + k2)
=

1− α±
√

1 + α(8R sin2 θ
2)

1− α+ 1 + 8R sin2 θ
2

. (3.27)

The inequality |r±| ≤ r+ is satisfied by virtue of the fact that α < 1. Moreover, it is clear
that r+ ≤ 1, whence von Neumann stability follows.

Corollary 17. If 0 < α < 1 then the approximations given by the method (3.9) converge
to the exact solutions of (3.2), whenever f is identically equal to zero.

Proof. The result follows from Proposition 16 and Lax’s equivalence theorem.

Before closing this section of our investigation, it is important to notice that the
linear stability and convergence conditions summarized in Proposition 16 and Corollary
17, respectively, are in agreement with the non-negativity and boundedness constraints
provided by Corollary 15. Also, we wish to mention that the numerical implementation
of the finite-difference scheme (3.9) requires Thomas’ technique for solving tridiagonal
systems of linear equations [15].

3.4 Simulations

The purpose of this section is to show that the finite-difference scheme (3.9) approxi-
mates well the solutions of (3.2). In particular, we want to verify numerically that the
method preserves the properties of non-negativity and boundedness of some solutions of
the FitzHugh-Nagumo model under investigation, and that it converges to the solution.
Throughout, the parameters κ and m in (3.2) will be equal to 1.

3.4.1 Preserved properties

We wish to verify computationally that our method preserves the properties of non-
negativity and boundedness of solutions of (3.2). So, consider the partial differential
equation of interest defined on the real line, with nonlinear reaction term (3.3) and a
equal to 0.125. The data at the initial time t = 0 is given by the expression of the travel-
ing wave solution (3.4) at that time, with constants A, B and C all equal to 1, with initial
velocity being actually the velocity of the traveling wave (3.4) at t = 0. Computationally,
we restrict our attention to the closed and bounded, spatial domain [−80, 80], and impose
Dirichlet boundary data given by the exact solution at the endpoints of this interval.

Example 18. Let α = 0.543, and let ∆x be equal to 0.1. We let ∆t be equal to 0.001,
so that the non-negativity and the boundedness conditions of Proposition 14 are satisfied.
Fig. 3.3 presents a comparison of the exact solution to the initial-boundary-value problem
under study, and the corresponding approximate solution provided by our method, at four
different times, namely, t = 0.008, 0.08, 0.8 and 8. The graphs evidence a good agreement
between the theoretical and the numerical results, even for relatively longer periods of time,
as Fig. 3.4 shows.
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Figure 3.3: Graphs of the approximate and exact solutions of the partial differential
equation (3.2) with reaction term (3.3) at several times, namely, (a) t = 0.008, (b) t = 0.08,
(c) t = 0.8 and (d) t = 8. The initial data are the profile and the velocity associated to
the particular solution (3.4) around the time t = 0, with A = B = C = 1. The model
parameters κ = m = 1 and a = 0.45 were fixed, along with the discrete steps ∆x = 0.1 and
∆t = 0.001. Computationally, we restricted our attention to the spatial domain [−80, 80],
and imposed discrete, Dirichlet boundary conditions.

We must state that we have performed more simulations in order to verify that the
finite-difference scheme (3.9) preserves the non-negativity and the boundedness of the
solutions of (3.2), for values of the parameters satisfying the constraints in Proposition
14. The results (not included here for obvious reasons) show that the sufficient conditions
of that proposition yield non-negative and bounded approximations to the non-negative
and bounded solutions of the model under study.

3.4.2 Convergence

For the sake of numerical comparison, we associate the usual norms ‖·‖1, ‖·‖2 and ‖·‖∞ to
the real vector space Rn, for every positive integer n. For every such norm ‖ · ‖∗ and every
pair of vectors x and y of Rn, we define the relative error committed when approximating
y by x, by means of the expression

ρ∗(x,y) =
‖x− y‖∗
‖y‖∗

. (3.28)
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Figure 3.4: Graphs of the approximate and exact solutions of the partial differential
equation (3.2) with reaction term (3.3) at several times, namely, (a) t = 10, (b) t = 20,
(c) t = 40 and (d) t = 80. The initial data are the profile and the velocity associated to
the particular solution (3.4) around the time t = 0, with A = B = C = 1. The model
parameters κ = m = 1 and a = 0.45 were fixed, along with the discrete steps ∆x = 0.1 and
∆t = 0.001. Computationally, we restricted our attention to the spatial domain [−80, 80],
and imposed discrete, Dirichlet boundary conditions.

Evidently, this equation may not be numerically applicable when the denominator is close
or equal to zero, in which case an absolute error formula of the form ρ∗(x,y) = ‖x− y‖∗
may be more useful.

Example 19. Consider now the problem presented in Example 18, with the same model
and computational parameters. Under these circumstances, Fig. 3.5 presents the temporal
behavior of the relative error when approximating the exact solution of the problem by
means of (3.9), using the three standard norms of Rn.

Example 20. Once more, consider the initial-boundary-value problem studied in the pre-
vious section with the same values of the model parameters, over a time period of length
50. Several values of the computational parameters ∆t and ∆x were selected and, for each
such pair of values and each of the usual norms in the previous paragraph, we computed
the relative error of the final approximation at the time of interest with respect to the exact
solution. The numerical results are presented in Table 3.2, and they agree with the fact
that the linearized version of the method is convergent.
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Figure 3.5: Temporal dynamics of the relative error (3.28) committed when approximating
the exact solution of (3.2) through the finite-difference scheme (3.9). The reaction factor
assumes the form (3.3), and the initial data are the profile and the velocity associated
to the particular solution (3.4) around the time t = 0, with A = B = C = 1. The
model parameters κ = m = 1 and a = 0.45 were fixed, along with the discrete steps
∆x = 0.1 and ∆t = 0.001. Computationally, we restricted our attention to the spatial
domain [−80, 80], and imposed Dirichlet boundary conditions. Three different norms were
employed to compute the relative error, namely, the ‖ · ‖1-norm (solid), the ‖ · ‖2-norm
(dash-dotted), and the ‖ · ‖∞-norm (dotted).

3.4.3 Comparisons

In this section of our work, we compare the performance of method (3.9) against some
well-known, computational techniques of higher order of consistency. In particular, we
are interested in comparing the properties of preservation of the non-negativity and the
boundedness of the solutions of (3.2), against a nonlinear Crank-Nicholson procedure and a
standard, three-time level, numerical technique. Both methods have a consistency of order
O((∆t)2 + (∆x)2) in the linear regime. The first of them (that is, the Crank-Nicholson
method) is given by

uk+1
n − ukn

∆t
=

1

2

(

δ(2)x uk+1
n + δ(2)x ukn

)

+
1

2

(

uk+1
n f(uk+1

n ) + uknf(u
k
n)
)

. (3.29)

The second method considered for comparison purposes is the following standard, three-
step technique:

uk+1
n − uk−1

n

2∆t
= δ(2)x ukn + uknf(u

k
n). (3.30)

Example 21. Consider the problem (3.2) with κ and m both equal to 1, spatially defined
on the interval [−100, 100], with a equal to 0.5. We employ as initial profile the partic-
ular solution presented in Section 3.2.2, with A, B and C all equal to 1. As Dirichlet
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Figure 3.6: Graphs of the variable min{ukn : n = 0, 1, . . . , N} versus tk, where u
k
n represent

the approximate solution of the partial differential equation (3.2), with κ = m = 1 and
a = 0.5, over the spatial interval [−100, 100], using the method (3.9) (solid), method (3.29)
(dash-dotted), and method (3.30) (dotted). The initial conditions are given by (3.4) with
A = B = C = 1, and the Dirichlet boundary conditions are given by the exact solution
at the endpoints of the interval. Computationally, the parameters α = 0.543, ∆x = 2 and
∆t = 0.4 were employed.

boundary conditions, we use the exact solution at the endpoints of the spatial interval, and
we approximate the solutions on a period of time of length equal to 80. Computationally,
we use a parameter α equal to 0.543, and step sizes ∆x = 2 and ∆t = 0.4, so that the
Fourier number R, as given by (3.11), is equal 0.1; in this way, the non-negativity and
boundedness constraints summarized in Propositions 11 and 14 are satisfied. We employ
the finite-difference scheme (3.9), as well as the methods (3.29) and (3.30), to approximate
solutions of the initial-boundary-value problem. The results are presented in Fig. 3.6 as
a time-dependent graph of the minimum value of the approximate solution obtained with
each of the methods. In other words, Fig. 3.6 presents the dependence of the variable
min{ukn : n = 0, 1, . . . , N} on tk. The results show that the Crank-Nicholson method and
the standard technique (namely, (3.29) and (3.30)) may not be able to preserve the non-
negativity of the solutions, even for relatively small, Fourier numbers R. On the other
hand, scheme (3.9) is able to preserve the non-negative character of solutions.
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Table 3.2: Relative errors of the numerical approxima-
tion at time 50 obtained using (3.9), with respect to the
exact solutiona of the model (3.2)b, for different values
of the parameters ∆x and ∆tb, and the three standard
norms of Rn.

∆x = 0.04
∆t

Norm 1× 10−3 5× 10−4 2.5× 10−4

‖ · ‖1 1.2283× 10−5 4.2456× 10−6 8.9076× 10−7

‖ · ‖2 3.3658× 10−5 1.0730× 10−5 1.9469× 10−6

‖ · ‖∞ 1.3767× 10−4 4.1846× 10−5 1.0084× 10−5

∆x = 0.02
∆t

Norm 5× 10−4 2.5× 10−4 1× 10−4

‖ · ‖1 7.2513× 10−6 3.2317× 10−6 8.1991× 10−7

‖ · ‖2 1.9949× 10−5 8.4534× 10−6 1.6687× 10−6

‖ · ‖∞ 8.3043× 10−5 3.4491× 10−5 6.0764× 10−6

aThe exact solution is given by (3.4), with A = B =
C = 1.
bThe model parameters κ = m = 1, a = 0.125 were
employed.
cThroughout, α = 0.543.

3.5 Discussion

It is important to notice that the method presented in this work is consistent of order
O(∆t + (∆x)2) when Dirichlet conditions are imposed on the boundaries of the spatial
domain. If discrete homogeneous Neumann boundary conditions of the form

ukN − ukN−1 = uk1 − uk0 = 0 (3.31)

are imposed at every discrete time-step, then it is possible to check that the non-negativity
and the boundedness conditions derived in the present work are still valid for this case,
however, the method becomes a first-order technique in both space and time. In order to
possess a numerical technique consistent of second order in space when homogeneous Neu-
mann conditions are imposed, a slight modification of the method must be implemented on
the boundaries: For such case, one may employ the following second-order approximations
of the partial derivatives with respect to x at every time tk:

3uk0 − 4uk1 + uk2 = 3ukN − 4ukN−1 + ukN−2 = 0. (3.32)

In this case, the method is consistent of order O(∆t + (∆x)2); however, the matrix A
associated to the method is neither tridiagonal nor diagonally positive and, hence, the
results presented in this work are not valid.

Of course, our method presents advantages and disadvantages with respect to other
methods available in the standard literature. In terms of order of consistency, our method
has a low accuracy when compared against methods like Crank-Nicholson. On the other
hand, our results have shown that methods with higher order may be incapable of preserv-
ing the properties of non-negativity and boundedness of solutions of the FitzHugh-Nagumo
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equation under investigation. From this point of view, the finite-difference scheme (3.9)
has the advantage of possessing sufficient conditions on the computational parameters that
guarantee that the approximations will be non-negative and bounded, a characteristic that,
for instance, the Crank-Nicholson method may not possess.

On the other hand, the Crank-Nicholson procedure employed to approximate solutions
of (3.2) is a two-time level method while, as depicted in Fig. 3.1, our technique is a
three-time level procedure. However, the computational implementation of the Crank-
Nicholson method requires an implementation of Newton’s method together with Thomas’
algorithm to solve tridiagonal systems of equations, while the implementation of (3.9)
only demands the use of Thomas’ method at each time level. From that point of view, our
numerical technique is evidently more economic in terms of computational implementation
and computer time.

Finally, it is important to notice that the condition for the matrix A —as given by
(3.16)— to be an M -matrix depends on the discretization of the temporal derivative of u.
Recall that Lemma 10 establishes conditions under which A is anM -matrix, and that such
conditions involve the computational parameter α. The inclusion of such parameter in the
discretization of the partial derivative of u with respect to t represents an advantage on
the one hand, in view that it provides some flexibility to guarantee that the matrix A is an
M -matrix and, ultimately, it gives flexibility in order to assure that the method preserves
the non-negative character of solutions (see Proposition 11). Moreover, it is worth noticing
that the simpler condition (3.19) for the preservation of the non-negativity of solution of
(3.2) may be further simplified if α is equal to 1. In such case, the method (3.9) becomes
a consistent method of second order in time, and the non-negativity constraint assumes
the simpler form ∆t < 2.
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Chapter 4

A generalized Burgers-Huxley

equation

In this article, we propose a non-standard, finite-difference scheme to ap-
proximate the solutions of a generalization of the Burgers-Huxley equation
from fluid dynamics. Our numerical method preserves the skew-symmetry of
the partial differential equation under study and, under some analytical con-
straints of the model constants and the computational parameters involved,
it is capable of preserving the boundedness and the positivity of the solu-
tions. In the linear regime, the scheme is consistent of first order in time (due
partially to the inclusion of a tuning parameter in the approximation of a tem-
poral derivative), and of second order in space. We compare the results of our
computational technique against the exact solutions of some particular initial-
boundary-value problems. Our simulations indicate that the method presented
in this work approximates well the theoretical solutions and, moreover, that
the method preserves the boundedness of solutions within the analytical con-
straints derived here. In the problem of approximating solitary-wave solutions
of the model under consideration, we present numerical evidence on the exis-
tence of an optimum value of the tuning parameter of our technique, for which
a minimum relative error is achieved. Finally, we linearly perturb a steady-
state solution of the partial differential equation under investigation, and show
that our simulations still converge to the same constant solution, establishing
thus robustness of our method in this sense.

4.1 Introduction

In many particular situations, the numerical investigation of physical systems involves
the simultaneous study of multiple domains of interest. For instance, a computational
investigation of a medium where the energy is conserved throughout time requires the
design of numerical methods to approximate not only the solutions of the problem, but
also the local and the total energy of the system, in such way that the discrete energy of
the medium be constant at all times. The idea behind this practice arises from two reasons
at least: From a numerical perspective, the use of a numerical method that preserves the
properties of a system in several scenarios is a positive sign of the validity of the technique
and its implementation; from a physical point of view, the analysis of the dynamics of
several physical characteristics may actually give more insight into the problem under
investigation (as is the case, for example, in the analysis of the process of supratransmission
in nonlinear media [55]). This avenue of computational research has proved to be fruitful,
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indeed. In fact, many numerical techniques to approximate nonlinear wave equations have
been designed specifically with this sole purpose in mind [35].

Nowadays, there are many numerical methods available in the specialized literature
which guarantee the preservation of physical properties that are inherent to the exact so-
lutions of the problems under investigation. For instance, some computational techniques
have been designed to approximate consistently the solutions of dissipative media [34],
while other methods have been developed with the property of mass conservation in mind
[19]. The first problem is clearly a generalization of the avenue of research mentioned
above, in which the property of conservation of the energy of a system is crucial to the
design of appropriate computational techniques with physical relevance, while the second
is an extension of the same departing problem to the conservation of mass in a system.
As an imminent consequence, one may take this last direction of research further and
design numerical techniques to approximate solutions of media with variable mass, with
the time-dependent rate of change of the mass of the system as the motivating property.

On the other hand, several methods have been designed with the aim of preserving some
mathematical characteristic of the solutions of the governing equation, like the properties of
positivity, boundedness, symmetry or monotonicity. In the particular case of the properties
of positivity and boundedness, the problems where these conditions play a central role
are diverse in their physical nature. Thus, the condition of positivity is crucial in the
investigation of the population dynamics of certain viruses in epidemiology [5], or in the
study of the propagation of forest fires when the variable of interest is the temperature
measured in an absolute scale [61]. In turn, the condition of boundedness assumes an
important part in the study of the dynamics of populations with limited resources (such
is the case for models in which a carrying capacity is considered), or in the investigation
of the evolution of the concentration of a certain component in a chemical substance [86].

The problem of designing finite-difference schemes that preserve one or more of the
properties of positivity, boundedness and symmetry of physical problems, has been at-
tacked successfully in some particular cases by employing the family of non-standard
methods popularized by R. Mickens [63]. This class of numerical techniques has allowed
many computational methods to approximate solutions of epidemic models [5, 4], of the
Lotka-Volterra system [65], of the linear wave equation with constant damping [68, 69],
of bioremediation problems [17], of predator-prey models [71], of the nonlinear heat equa-
tion in a thin finite rod [41], among other problems of physical relevance. Motivated by
this background, in the present work, we design a non-standard, finite-difference scheme
that preserves the positivity, the boundedness and the symmetry of the solutions of a
generalized Burgers-Huxley equation, under suitable, flexible conditions on the model and
the computational parameters involved. We employ here the concept of M -matrices to
establish the properties of the method. Our simulations evince not only a good agreement
between the exact solutions and their numerical approximations, but also the method
preserves in practice the properties of positivity and boundedness of the solutions.

Section 4.2 of this manuscript introduces the mathematical model under investigation
in this work, namely, a nonlinear, parabolic partial differential equation that generalizes
the Burgers-Huxley equation from fluid dynamics. At this stage, we provide some particu-
lar solutions of the differential equation under consideration, in the form of traveling-wave
solutions. Additionally, we notice the skew-symmetry of the generalized Burgers-Huxley
equation when the power in the nonlinear reaction term is an even, positive integer number.
In Section 2.3, we present a finite-difference scheme to approximate solutions of our math-
ematical model. Then, we rewrite our method in matrix form for the sake of convenience,
and establish that our technique is conditionally positivity- and boundedness-preserving
and, moreover, that it preserves the skew-symmetry of the generalized Burgers-Huxley
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equation. Most of the proofs of this section rely on the notion and the properties of the
M -matrices from linear algebra. Section 4.4, in turn, presents some numerical results and
contrasts them against the exact solutions presented previously, in order to assess the
validity of the method. As a consequence, we notice that the numerical simulations are in
good agreement with the expected results and, moreover, we observe that the properties
of positivity and boundedness are preserved when the conditions derived in Section 4.3
hold.

4.2 Preliminaries

4.2.1 Mathematical model

Let α be a non-negative real number, let β, κ and δ be positive numbers with δ ≥ 1, and
let γ be a real number in (0, 1). Suppose that I is a (bounded or unbounded) interval
in the set of real numbers. Throughout, u will be a function that depends on the spatial
variable x ∈ I and the temporal variable t ≥ 0, which satisfies the advection-diffusion
equation with nonlinear reaction term

∂u

∂t
+ αuδ

∂u

∂x
− κ

∂2u

∂x2
− βuf(u) = 0, (4.1)

for every x ∈ I and every t ≥ 0, where

f(u) = (1− uδ)(uδ − γ). (4.2)

In the present manuscript, this model is called the generalized Burgers-Huxley equation,
and it is a quantitative paradigm which describes the interaction between reaction mech-
anisms, convection effects and diffusion transport. We immediately identify here the con-
stant κ as the coefficient of diffusivity, while α is the advection coefficient and β is the
coefficient of reaction. The function (4.2) is the factor of (nonlinear) reaction, and it will
be fixed throughout this work, unless stated otherwise.

It is worthwhile noticing that our mathematical model is actually a generalization of
several important partial differential equations from mathematical physics. For instance,
the partial differential equation (2.1) is the classical heat equation if α and β are equal to
zero. If the advection coefficient is equal to zero, then our model becomes a generalization
of the FitzHugh-Nagumo equation [28, 74, 85], which is a model employed in the study of
the transmission of electric impulses in nervous systems. On the other hand, if α is equal to
zero and the function f assumes the general form f(u) = 1−uδ, then the resulting equation
is a generalized Fisher-KPP model [1], an equation that was investigated simultaneously
and independently by R. A. Fisher [27], and A. Kolmogorov, I. Petrovski and N. Piscounov
[47], in the context of population dynamics. In the frame of the Fisher-KPP equation, the
case when delta equals 2 is of particular interest in the investigation of fluid dynamics, the
arising model being identified as the Newell-Whitehead-Segel equation [75, 83]. Finally,
the partial differential equation (4.1) is a generalized Burgers-Fisher equation [93] if f is
the reaction function of the generalized Fisher-KPP equation.

As we mentioned above, we will assume that κ and β are positive real numbers. It
is pragmatically important to notice that the partial differential equation (4.1) may be
conveniently simplified for its study. In fact, if we let ξ = x

√

β/κ and τ = βt, then the
model (4.1) can be written in terms of the new independent variables as

L(u) = 0, (4.3)
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where

L(u) = ∂u

∂t
+ αuδ

∂u

∂x
− ∂2u

∂x2
− uf(u), (4.4)

for every x ∈ I and every t ≥ 0. Here, the new coefficient α and the variables x and t have
replaced the constant α/

√
βκ and the variables ξ and τ , respectively. It is important to

point out that this simplified model will be our equation of interest in Section 4.4, which
will be the proper scenario to perform some numerical simulations in order to assess the
validity of the method presented in this manuscript.

The proof of the following result is straight-forward. The statement is valid for arbi-
trary, even functions f .

Proposition 22. If f : R → R is an even function, then L(−u) = −L(u).

As a consequence of this result, if δ is an even positive integer, then the function u is
a solution of (4.3) if and only if −u is likewise a solution. This property of the operator
L is referred to as the property of skew-symmetry [90]. One of the aims of this work is to
design a finite-difference scheme that preserves the skew-symmetry of the problem under
investigation.

4.2.2 Particular solutions

Throughout this section and for the rest of this work, we will let κ be equal to 1. Moreover,
for computational purposes, we may think of β as equal to 1, too, as it will be the case in
Section 4.4.

Particular solution 1. The generalized Burgers-Huxley equation under investigation has
a particular solution in the interval I = [a, b], which satisfies the set of initial-boundary
conditions























u(x, 0) =
(γ

2
+
γ

2
tanh(a1x)

)1/δ
, for every x ∈ I,

u(a, t) =
(γ

2
+
γ

2
tanh(a1(a− a2t))

)1/δ
, for every t ≥ 0,

u(b, t) =
(γ

2
+
γ

2
tanh(a1(b− a2t))

)1/δ
, for every t ≥ 0,

(4.5)

where

a1 =
−αδ + δ

√

α2 + 4β(1 + δ)

4(1 + δ)
γ, (4.6)

a2 =
γα

1 + δ
− (1 + δ − γ)(−α+

√

α2 + 4β(1 + δ))

2(1 + δ)
. (4.7)

Such particular solution is given by the expression

u(x, t) =
(γ

2
+
γ

2
tanh(a1(x− a2t))

)1/δ
, (4.8)

for every x ∈ I and every t ≥ 0 (see [39]). Evidently, if we consider the entire set of
real numbers as the interval I, then the function (4.8) is a traveling-wave solution of
the parabolic partial differential equation (4.1). These remarks will be important in the
investigation of the performance of the method presented in Section 4.3.

Particular solution 2. Let us consider once again the partial differential equation (4.1),
with non-negative parameter α, a positive value of β, γ being a real number in the interval
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(0, 1), and both κ and δ equal to 1. In this case, assume first that the spatial domain I is
the entire real line. Then, the following function is a traveling-wave solution of the equation
(4.1) which connects the two steady-state solutions u = 0 and u = 1, independently of the
value of γ:

u(x, t) =
1

2
− 1

2
tanh

[

β

r − α
(x− vt)

]

, (4.9)

where the constant r and the wave velocity v are given by

r =
√

α2 + 8β, (4.10)

v =
(α− r)(2γ − 1) + 2α

4
. (4.11)

These solutions are the result of employing symbolic computations and some relevant non-
linear transformations [50, 24, 92]. Evidently, the formula (4.9) is the particular solution
in the interval I = [a, b] of the associated initial-boundary-value problem































u(x, 0) =
1

2
− 1

2
tanh

(

βx

r − α

)

, for every x ∈ I,

u(a, t) =
1

2
− 1

2
tanh

[

β

r − α
(a− vt)

]

, for every t ≥ 0,

u(b, t) =
1

2
− 1

2
tanh

[

β

r − α
(b− vt)

]

, for every t ≥ 0.

(4.12)

4.3 Numerical method

In the present section, we introduce a numerical method to approximate the solutions
of (4.1). The presentation is sufficiently general to account for families of functions f
which properly include the nonlinear reaction factor (4.2). Evidently, the problem on the
existence of solutions for such families is a task outside the scope of the present work.

4.3.1 Finite-difference scheme

For the rest of this work, we will let M and N be positive integers, we will let a and
b be real numbers such that a < b, and let T be a positive real number. In order to
approximate the solutions of the partial differential equation (4.3) in the spatial interval
I = [a, b] over the time period T , we fix uniform partitions a = x0 < x1 < . . . < xN = b
and 0 = t0 < t1 < . . . < tM = T of [a, b] and [0, T ], respectively, each of them having norm
equal to ∆x = (b− a)/N and ∆t = T/M .

For every n = 0, 1, . . . , N and every k = 0, 1, . . . ,M , let ukn be an approximation of the
exact value of the function u at (xn, tk). With these conventions, we define the following
discrete, linear operators, for every n = 1, . . . , N − 1 and every k = 1, . . . ,M − 1:

δtu
k
n =

uk+1
n − ukn

∆t
, (4.13)

δ
(1)
t ukn =

uk+1
n − uk−1

n

2∆t
, (4.14)

δ(1)x ukn =
ukn+1 − ukn−1

2∆x
, (4.15)

δ(2)x ukn =
ukn+1 − 2ukn + ukn−1

(∆x)2
. (4.16)
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Figure 4.1: Forward-difference stencil for the approximation to the partial differential
equation (4.3) at time tk, using the finite-difference scheme (4.19). The black circles
represent known approximations to the actual solutions at the times tk−1 and tk, and the
crosses denote the unknown approximations at the time tk+1.

Notice that (4.13) and (4.14) provide consistent approximations of the exact value of ∂u
∂t

at (xn, tk), of order O(∆t) and O((∆t)2), respectively. In turn, the expressions (4.15) and

(4.16) are consistent approximations of ∂u
∂x(xn, tk) and ∂2u

∂x2 (xn, tk), respectively, both of
order O((∆x)2). Meanwhile, for every real number λ in the set (0, 1), the linear operator

δt,λu
k
n = λδtu

k
n + (1− λ)δ

(1)
t ukn (4.17)

is evidently the weighted approximation of ∂u
∂t (xn, tk), formed by the linear combination

of (4.13) and (4.14). Moreover, it is an easy task to establish that (4.17) is actually a
consistent, first-order approximation in time, of the exact value of ∂u

∂t at (xn, tk+1).
For the sake of convenience, we define the computational parameter

R =
∆t

(∆x)2
. (4.18)

Under these circumstances, the finite-difference scheme employed to approximate the exact
solutions of the simplified model (4.3) at the point xn and the time tk+1, is given by the
discrete equation

δt,λu
k
n + α(ukn)

δδ(1)x uk+1
n − δ(2)x uk+1

n − uk+1
n f(ukn) = 0, (4.19)

for every n ∈ {1, . . . , N − 1} and every k ∈ {1, . . . ,M − 1}. This method is clearly
a non-standard, finite-difference technique that, in the linear regime, approximates the
solutions of (4.3) with a consistency of orderO(∆t+(∆x)2). Moreover, some easy algebraic
manipulations establish the following equivalent expression of the scheme (4.19), where
the coefficients are those given in Table 4.1:

k1u
k+1
n+1 + k2u

k+1
n + k3u

k+1
n−1 = k4u

k
n + k5u

k−1
n . (4.20)

In this expression, the coefficients k4 and k5 are constants, while k1, k2 and k3 are functions
of ukn, for every n ∈ {1, . . . , N − 1}. This dependency of k1, k2 and k3 on ukn, however,
is obviated for the sake of simplicity. As a corollary, the forward-difference stencil of the
method (4.19) is the one depicted in Figure 4.1.
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k1 k2 k3 k4 k5

α(ukn)
δ∆t

2∆x
−R 1− λ

2
+ 2R−∆tf(ukn) −α(u

k
n)

δ∆t

2∆x
−R 1− λ

λ

2

Table 4.1: Expressions of the coefficients in the explicit presentation of the finite-difference
scheme (4.19), as given by Equation (4.20).

4.3.2 Matrix representation

For every k = 0, 1, . . . ,M , let uk = (uk0, u
k
1, . . . , u

k
N ). The formula (4.20) readily induces a

matrix representation of the finite-difference scheme (4.19) if we impose suitable, discrete
boundary conditions on a bounded and closed interval I of R. In our investigation, we
will impose the discrete, Dirichlet boundary data

uk0 = φ(tk), ukN = ψ(tk), (4.21)

for every k = 0, 1, . . . , N , where φ and ψ are suitable, real functions defined on the
non-negative, real axis. Additionally, we suppose that φ and ψ satisfy the properties
φ(t), ψ(t) ∈ (0, s1/δ), for every t ≥ 0, where s is a positive real number such that s ≤ 1.
Under these hypotheses, the numerical method (4.19) may be represented in vector form
through

L(uk+1,uk,uk−1) = 0, (4.22)

where the function L : RN+1 × R
N+1 × R

N+1 → R
N+1 is prescribed by the rule

L(uk+1,uk,uk−1) = Auk+1 −Buk − Cuk−1 − bk. (4.23)

Here, 0 is the zero vector of dimension N+1, A is the real matrix of size (N+1)× (N+1)
given by

A =



















1 0 0 0 · · · 0 0 0
k1 k2 k3 0 · · · 0 0 0
0 k1 k2 k3 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · k1 k2 k3
0 0 0 0 · · · 0 0 1



















, (4.24)

which is a function of the vector uk in view of the fact that k1, k2 and k3 are. In turn,
the matrices B and C also have a size equal to (N + 1)× (N + 1) and are defined by

B =























0 0 0 · · · 0 0 0
0 k4 0 · · · 0 0 0
0 0 k4 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · k4 0 0
0 0 0 · · · 0 k4 0
0 0 0 · · · 0 0 0























, C =























0 0 0 · · · 0 0 0
0 k5 0 · · · 0 0 0
0 0 k5 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · k5 0 0
0 0 0 · · · 0 k5 0
0 0 0 · · · 0 0 0























.

(4.25)
Additionally, bk is the (N + 1)-dimensional, real vector defined by

bk = (φ(tk), 0 . . . , 0, ψ(tk))
t. (4.26)

Our next proposition is valid for a general class of functions f , which includes (4.2)
when δ is an even, positive integer.
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Proposition 23. If f : R → R is an even function, then the identity L(−uk+1,−uk,−uk−1) =
−L(uk+1,uk,uk−1) is satisfied for every uk+1,uk,uk−1 ∈ R

N+1.

As a consequence of this result and Proposition 22, we conclude that the finite-
difference scheme (4.19) preserves the skew-symmetry of the model (4.3) under inves-
tigation, whenever δ is an even, positive integer number (we follow here the nomenclature
found in [90]).

4.3.3 Numerical properties

In what follows, we will say that a (not necessarily square) matrix A is positive if every
entry of A is a positive real number; such fact will be denoted by means of A > 0. On
the other hand, if s is any real number, we will say that A is bounded from above by s
if every entry of A is less than s, a fact that will be represented by A < s. Obviously,
the n-dimensional, real vector v satisfies v < s if and only if se − v > 0, where e is the
n-dimensional vector all of whose components are equal to 1.

A square matrix A is a Z-matrix if all its off-diagonal entries are less than or equal to
zero. We say that A is an M -matrix if the following three properties are satisfied:

(i) A is a Z-matrix,

(ii) all the diagonal entries of A are positive, and

(iii) there exists a diagonal matrix D with positive diagonal elements, such that AD is
strictly diagonally dominant.

Lemma 24 (Fujimoto and Ranade [33]). Every M -matrix is non-singular, and its inverse
is positive.

Let f : [0, 1] → R be the function defined by the expression (4.2), where δ and γ are
real numbers satisfying δ ≥ 1 and γ ∈ (0, 1). It is an easy exercise of real analysis to verify
that this function satisfies −γ ≤ f(x) ≤ (1−γ)2/4, for every x ∈ [0, 1], that it is increasing
in the interval (0, ((γ + 1)/2)1/δ) and decreasing in (((γ + 1)/2)1/δ, 1), that the maximum
and minimum values are attained at 0 and ((γ +1)/2)1/δ, respectively, and that the roots
of the function occur at γ1/δ and 1.

Lemma 25. Let uk be a positive vector of RN+1 satisfying uk < s1/δ, for some positive
number s ≤ 1, let α be a non-negative number, let λ belong to (0, 1), and let f : [0, s1/δ] → R

be bounded from above by the positive number K. Then the matrix A of (4.24) is an M -
matrix if the following conditions are satisfied:

(a) αs∆x ≤ 2,

(b) K∆t < 1− λ/2.

Proof. On the one hand, the positivity condition on uk guarantees that k3 is a non-
positive function, while the assumption on the upper boundedness of the same vector
and the inequality (a) assure the same conclusion for the coefficient k1, whence it follows
that A has non-positive, off-diagonal entries. On the other hand, inequality (a) gives
|k1|+ |k3| = 2R. Using the hypothesis (b), we obtain the chain of inequalities

|k1|+ |k3| < 2R+ 1− λ

2
−K∆t ≤ k2. (4.27)

This means that the matrix A is strictly diagonally dominant, and that its diagonal entries
are positive. We conclude that A is an M -matrix.
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Figure 4.2: Graphs of the exact solution (continuous line) and the approximations (cir-
cles) computed through the numerical method (4.19) versus x, of the partial differential
equation (4.3) subject to the initial-boundary conditions (4.5) on the interval [−20, 140],
with parameters α = 0.01, γ = 0.5 and δ = 2. The computational parameters ∆x = 0.1,
∆t = 0.001 and λ = 0.9 were employed, and four times were considered, namely, (a)
t = 0.08, (b) t = 0.8, (c) t = 8 and (d) t = 80. The dotted line is the constant γ1/δ.

Let γ be a real number in (0, 1), and let δ ≥ 1. It is worth noticing that Lemma 25 is
valid in particular for the function f introduced in (4.2), for every positive, real number
s ≤ 1.

Proposition 26 (Positivity). Let uk and uk−1 be positive vectors of RN+1 with uk < s1/δ,
where s is a positive number with s ≤ 1. Let f : [0, s1/δ] → R be bounded from above by
the positive number K. Suppose that α is a non-negative real number, and that λ belongs
to (0, 1). Then the vector uk+1 obtained by means of (4.22) is positive if the inequalities
(a) and (b) of Lemma 25 hold.

Proof. After Lemmas 24 and 25, the proof is immediate: The matrix A in (4.24) has a
positive inverse, and the (N +1)-dimensional vector Buk +Cuk +bk of (4.22) is positive,
whence the result follows.

Let δ be a real number with δ ≥ 1, let s be a positive, real number such that s ≤ 1, let
λ belong in (0, 1), and assume that the function f : [0, s1/δ] → R is differentiable in the
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Figure 4.3: Graphs of the exact solution (continuous line) and the approximations (cir-
cles) computed through the numerical method (4.19) versus x, of the partial differential
equation (4.3) subject to the initial-boundary conditions (4.5) on the interval [−20, 140],
with parameters α = 1, γ = 0.85 and δ = 2. The computational parameters ∆x = 0.1,
∆t = 0.001 and λ = 0.9 were employed, and four times were considered, namely, (a)
t = 0.08, (b) t = 0.8, (c) t = 8 and (d) t = 80. The dotted line is the constant γ1/δ.

interior of its domain. Then the function G : [0, s1/δ]× [0, s1/δ] → R given by

G(x, y) = s1/δ
[

1− λ

2
− f(x)∆t

]

− (1− λ)x− λ

2
y, (4.28)

is differentiable in the interior of its domain. Moreover, the first-order partial derivatives
of G are provided by

∂G

∂x
(x, y) = −s1/δf ′(x)∆t− (1− λ), (4.29)

∂G

∂y
(x, y) = −λ

2
. (4.30)

Evidently, the function (4.30) is always negative, and in order for (4.29) to be likewise
negative in (0, s1/δ)× (0, s1/δ), we require that the inequality s1/δf ′(x)∆t+ 1− λ > 0 be
satisfied for every x ∈ (0, s1/δ). Moreover, if G(s1/δ, s1/δ) ≥ 0, then G will be positive in
the interior of its domain. This last inequality holds if and only if f(s1/δ) ≤ 0.

The function G and its properties are essential tools in the proof of the following result.
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Figure 4.4: Graphs of the exact solution (continuous line) and the approximations (circles)
computed through the numerical method (4.19) versus x, of the partial differential equa-
tion (4.3) subject to the initial-boundary conditions (4.12) on the interval [−60, 20], with
parameters α = 0.005, γ = 0.85 and δ = 1. The computational parameters ∆x = 0.1,
∆t = 0.001 and λ = 0.5 were employed, and four times were considered, namely, (a)
t = 0.08, (b) t = 0.8, (c) t = 8 and (d) t = 80.

Proposition 27 (Boundedness). Suppose that α is a non-negative number, and that λ
belongs to (0, 1). Let uk and uk−1 be positive vectors of RN+1 which are bounded from
above by s1/δ, for some positive number s ≤ 1, and let f : [0, s1/δ] → R be bounded
from above by K > 0. If (a) and (b) in Lemma 25 are satisfied and if, additionally, the
inequalities

(c) s1/δf ′(x)∆t+ 1− λ > 0,

(d) f(s1/δ) ≤ 0,

hold, then the vector uk+1 obtained through (4.22) is a positive vector which is bounded
from above by s1/δ.

Proof. Proposition 26 and the hypotheses (a) and (b) of Lemma 25 guarantee that uk+1 is
positive. In order to verify the boundedness condition, let wk+1 = s1/δe−uk+1. A simple
substitution in (4.22) gives the identity

Awk+1 = As1/δe−Buk − Cuk−1 − bk. (4.31)
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∆x = 1

∆t
Time 0.1 0.01 0.001 0.0001

2.5 1.7894× 10−3 1.9409× 10−4 3.6169× 10−4 3.8037× 10−4

5 2.5870× 10−3 3.6822× 10−4 5.7714× 10−4 6.0146× 10−4

10 2.9225× 10−3 1.4146× 10−3 1.4548× 10−3 1.4615× 10−3

20 1.1326× 10−2 5.3108× 10−3 4.6949× 10−3 4.6337× 10−3

40 4.2899× 10−2 1.7318× 10−2 1.4650× 10−2 1.4401× 10−2

80 1.9397× 10−1 7.4834× 10−2 6.3295× 10−2 7.1182× 10−2

∆x = 0.5

∆t
Time 0.1 0.01 0.001 0.0001

2.5 1.7619× 10−3 1.8348× 10−4 3.7242× 10−4 3.9214× 10−4

5 2.5117× 10−3 3.9200× 10−4 6.2890× 10−4 6.5471× 10−4

10 2.6978× 10−3 1.0673× 10−3 1.1448× 10−3 1.1557× 10−3

20 9.2589× 10−3 3.0891× 10−3 2.4825× 10−3 2.4237× 10−3

40 3.4839× 10−2 8.8806× 10−3 6.1919× 10−3 6.0123× 10−3

80 1.7476× 10−1 3.4782× 10−2 2.1314× 10−2 9.1006× 10−1

∆x = 0.1

∆t
Time 0.1 0.01 0.001 0.0001

2.5 1.7551× 10−3 1.9422× 10−4 3.8304× 10−4 4.0275× 10−4

5 2.4898× 10−3 4.1062× 10−4 6.5193× 10−4 6.7796× 10−4

10 2.6327× 10−3 9.6300× 10−4 1.0576× 10−3 1.0703× 10−3

20 8.5959× 10−3 2.3720× 10−3 1.7811× 10−3 1.7256× 10−3

40 3.2233× 10−2 6.1413× 10−3 3.4550× 10−3 3.2040× 10−3

80 9.4971× 10−1 9.1541× 10−1 9.8005× 10−3 1.6896× 10−2

Table 4.2: Relative errors committed when approximating the exact solution of (4.3) sub-
ject to the initial-boundary conditions (4.5) on the interval [−20, 140], with parameters
α = 0.01, γ = 0.5 and δ = 2, by means of the finite-difference scheme (4.19). Computa-
tionally, λ = 0.9, and several values of ∆x and ∆t were employed. Six different times were
considered for comparison purposes, namely, t = 2.5, 5, 10, 20, 40 and 80.

The first and the last components of the vector in the right-hand side of (4.31) are the
numbers s1/δ−φ(tk) and s1/δ−φ(tk), respectively, which are positive. On the other hand,
for every n = 1, . . . , N−2, the (n+1)th component of the right-hand side of (4.31) has the
form G(ukn, u

k−1
n ), where both ukn and uk−1

n belong to (0, s1/δ), and G is given by (4.28).
The hypotheses (c) and (d), together with the discussion which precedes this proposition,
imply that G(ukn, u

k−1
n ) is positive. Summarizing, the right-hand side of (4.31) is a positive

vector, and the matrix A is anM -matrix by Lemma 25. We conclude that the vector wk+1

is positive or, equivalently, that uk+1 < s1/δ.

It is interesting to notice that the function G may be negative in [0, s1/δ]× [0, s1/δ] if
f assumes the expression (4.2) and γ < s < 1. However, if s is equal to 1 or if s ≤ γ then
G is again positive in the interior of [0, s1/δ] × [0, s1/δ]. As a consequence, we have the
following result.
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Figure 4.5: Graph of maximum relative error versus the computational parameter λ, ob-
tained when approximating through (4.19) the exact solution of the partial differential
equation (4.1) subject to the initial-boundary conditions (4.5) on the interval [−20, 140],
over a temporal period of length 80, with parameters α = 0.01, γ = 0.5, and δ = 2. Com-
putationally, we employed ∆t = 2, and four different values of ∆x, namely, 5 (continuous),
2.5 (dashed), 1 (dash-dotted) and 0.5 (dotted).

Corollary 28. Suppose that α is a non-negative number, and that γ and λ both belong to
(0, 1). Let uk and uk−1 be positive vectors of RN+1 which are bounded from above by s1/δ,
for some positive number s satisfying s ≤ γ or s = 1, and let f be given by (4.2). Then
uk+1 obtained through (4.22) is a positive vector which is bounded from above by s1/δ if

(a) αs∆x ≤ 2,

(b) (1− γ)2∆t < 2(2− λ),

(c) sδ∆t(2s− γ − 1) < 1− λ.

Observe that (a) in Corollary 28 is trivially satisfied when the advection coefficient is
equal to zero; otherwise, it is easy to choose ∆x small enough in order for such constraint
to hold. On the other hand, since γ and λ are positive numbers which are less than 1,
then (1− γ)2 < 1− γ < 2 < 2(2−λ), so that (b) holds by taking ∆t < 1. Finally, part (c)
is trivially satisfied if 2s ≤ 1 + γ (as it happens when s ≤ γ), in which case, the number
in the parenthesis of (c) is non-positive; otherwise (as in the case when s is equal to 1),
this condition is reached by taking ∆t sufficiently small.

It is useful to mention that the simulations in the next section were obtained by means
of an implementation of Thomas’ technique for tridiagonal systems [15]. Additionally, it
must be mentioned that a slight modification of our method can be easily done in order
to account for homogeneous Neumann boundary conditions. In fact, one only needs to set
bk equal to zero, and do the following changes in the matrix A = (ai,j) of (4.24): Redefine
a1,2 = aN+1,N = −1.

4.4 Numerical results

Throughout this section, the function f will be given by (4.2).
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Figure 4.6: Time-dependent graph of the maximum value of the approximate solution of
a system described by (4.1) over the spatial interval I = [0, 100], with function f given by
(4.2) and parameter values α = β = κ = δ = 1, γ = 0.5, ∆x = 1 and λ = 0.6. Discrete,
homogeneous Neumann conditions were imposed on the right endpoint of [0, 100], while
the left endpoint was linearly changed from 0 to ε during a period of time of length
10; afterwards, we impose discrete, homogeneous Neumann conditions. The system was
initially given a constant profile u = 0, and several values of ∆t were employed, namely,
(a) 0.5, (b) 1, (c) 2.5 and (d) 5. In each case, several values of ε were also used.
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Example 29. Let us consider the partial differential equation (4.3) with δ equal to 2, γ
equal to 0.5, and an advection coefficient α equal to 0.01. Consider the initial-boundary
data provided by (4.5) on the spatial domain I = [−20, 140], in which case, the exact
solution is given by (4.8). In order to approximate the solutions of this initial-boundary-
value problem over the time period 80, we fix a uniform partition of the interval I, with
norm ∆x equal to 0.1, and a uniform partition of the temporal interval [0, 80] with norm
equal to 0.001. Computationally, the parameter λ will be equal to 0.9. Under these
circumstances, Figure 4.2 presents a comparison between the actual solution of the initial-
boundary-value problem under investigation against the approximations obtained by the
numerical method (4.19), for four different times, namely, t = 0.08, 0.8, 8 and 80. We
immediately notice that the results evidence a good agreement between the simulations
and the exact solutions at the four times considered. Moreover, the approximate solutions
are always bounded between 0 and γ1/δ. This last remark is in agreement with the fact
that the boundedness conditions of Corollary 28 are satisfied. More precisely, we have
compared the exact solutions and their corresponding approximations at different times,
using several values of ∆x and ∆t, and employing the relative differences between the
numerical and the theoretical solutions through the standard ‖ · ‖2-norm in R

N+1. The
results are summarized in Table 4.2, and they show that the approximations tend to
improve as the computational parameters ∆x and ∆t become smaller.

Example 30. Consider the problem presented in the previous example, with the same
model and computational parameters. In this case, however, we will let α be equal to 1,
and let γ be equal to 0.85. The results of the simulations in this example are shown in
Figure 4.3. Once again, the numerical approximations seem to be in good agreement with
the exact solutions, even in this situation in which the value of α is relatively larger than
the value used in the previous example.

Example 31. Consider again the partial differential equation (4.3) with advection coef-
ficient equal to 0.005, δ equal to 1, and γ equal to 0.85. We impose the initial-boundary
conditions (4.12) on the spatial interval I = [−60, 20]; computationally, we choose ∆x
and ∆t equal to 0.1 and 0.001, respectively, fix a time period of 80, and let λ be equal
to 0.5. Figure 4.4 presents the exact solution of the problem as given by (4.9) and the
corresponding approximations given by (4.19) versus x ∈ I, at four different times: 0.08,
0.8, 8 and 80. The theoretical and the numerical results are seen to be in good agreement
and, moreover, the simulations are bounded in the interval (0, 1). Evidently, the model
and the computational parameters satisfy again the boundedness conditions of Corollary
28.

Next, we analyze the role of λ in the approximation of one of the traveling-wave
solutions considered above.

Example 32. Consider the problem studied in Example 29, with ∆t equal to 2. We
consider four decreasing values of ∆x for which the boundedness conditions of Corollary
28 are satisfied (namely, 5, 2.5, 1 and 0.5), and compute the maximum relative error
under the ‖ · ‖∞-norm of RN+1, over a temporal period of length 80, committed when
we approximate the exact solution of the problem under investigation through our finite-
difference method. In this example, the value of λ is varied in the interval (0, 1). The
results are presented in Figure 4.5, and they show the fact that the maximum relative
error attains a minimum value for λ around the value 0.5. In fact, one can readily notice
that, as the value of ∆x is decreased within the region that guarantees the boundedness of
solutions, the minimum value of the maximum relative errors is reached for a critical value
of λ close to 0.6. This is in perfect agreement with the fact that the graphs of the solutions
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to the problem under investigation show a sharp wave front, in which case, an appropriate
linear combination of the approximations of orders 1 and 2 of the partial derivative of u
with respect to time is recommended.

We now carry out a study similar to that presented in [2], in which the behavior of the
method around a bifurcation point is computationally investigated.

Example 33. We investigate now the effect of linearly perturbing the steady-state solution
u = 0 of the partial differential equation (4.1) over the spatial interval I = [0, 100]; here,
we set the parameters α, β, κ and δ all equal to 1, and let γ = 0.5. Computationally, we
let ∆x and λ be equal to 1 and 0.6, respectively. To that effect, we fix discrete, initial
conditions of the form u0n = u1n = 0, for every n ∈ {1, . . . , N − 1}, and impose discrete,
homogeneous Neumann boundary conditions on the right end of the spatial interval. On
the left endpoint of I, we linearly change the value of uk0 from 0 to ε over the time
period [0, 10], where ε is a positive, real number which is less than γ1/δ; afterwards, we
impose discrete, homogeneous Neumann boundary conditions, too. Next, we determine
computationally the value of the steady-state solution, letting the algorithm run for a
period of time of length equal to 100. The results are displayed in Figure 4.6 as time-
dependent graphs of the maximum value of the approximations over I, for several values
of ∆t and ε. In all cases, the results show that the solutions tend to the steady-state
solution u = 0 as t increases. These graphical observations have been verified numerically
by letting the algorithm run for periods of time of length 10000, and the results show that
the solutions tend to the constant solution u = 0, indeed.
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Chapter 5

A time-delayed

advection-diffusion-reaction

equation

In this work, we consider a one-dimensional, time-delayed, advective version
of the well-known Fisher-Kolmogorov-Petrovsky-Piscounov equation from pop-
ulation dynamics, which extends several models from mathematical physics,
including the classical wave equation, the nonlinear Klein-Gordon equation,
a FitzHugh-Nagumo equation from electrodynamics, and the Burgers-Huxley
equation and the Newell-Whitehead-Segel equation from fluid mechanics. We
propose a skew symmetry-preserving, finite-difference scheme to approximate
the solutions of the model under investigation, and establish conditions on
the model coefficients and the numerical parameters under which the method
provides positive or bounded approximations for initial data which are like-
wise positive or bounded, respectively. The derivation of the conditions under
which the positivity and the boundedness of the approximations is guaranteed,
is based on the properties of the inverses ofM -matrices; in fact, the conditions
obtained here assure that the iterative method is described in vector form
through the multiplication by a matrix of this type. We provide simulations in
order to show that the technique is indeed conditionally positivity-preserving
and boundedness-preserving.

5.1 Introduction

The class of problems in which variables measured in absolute scales appear is relatively
large, indeed. For instance, some thermodynamical problems may require that the variable
of interest be the dynamics of a temperature measured in Kelvin. In population dynamics,
the amount of individuals in a discrete colony is a characteristic that must take on non-
negative, integer values at any time; even in the continuous case scenario, the population
density of a colony of bacteria is also a non-negative, real variable. In the investigation of
thin-film and biofilm growth on rigid surfaces, the behavior of the film above any point on
the surface is described by the time-evolution of its height, which can never be a negative
number. Finally, in the investigation of some crack failures (for instance, in the study of
cracks in airplane wings), the rate of change of the length of the cracks with respect to
time is non-negative, that is, the length of the cracks is a non-decreasing function of time.

All of the above examples illustrate the physical importance of the condition of posi-
tivity. In fact, positivity is a characteristic of the solutions of many mathematical models
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in the physical sciences, be it in the investigation of the population dynamics of certain
viruses in epidemiology [5, 54], in the study of the propagation of forest fires when the
variable of interest is the temperature measured in an absolute scale [61], in the investiga-
tion of the evolution of the concentration of a certain component in a chemical substance
[86], in the study of biofilm growth on rigid surfaces [22, 21], or in the prediction of the
crack failure of some materials [77, 51].

On the other hand, the condition of boundedness is also important in many models. For
example, the dynamics of the concentration of a chemical component is a percentage [86],
that is, a real function bounded between 0 and 1. Other examples where the variable of
interest is a bounded function of time are the growth of microbial biofilms on a rectangular
prism which is entirely closed [21, 10], the temporal evolution of the temperature in some
thermomechanical models describing the phase transitions in terms of the entropy and
order structure-balance laws [8], the cell density in some mathematical models governing
the adhesion in cell aggregation in cancer invasion [84] and, in a more general setting,
traveling wave solutions connecting asymptotically two constant solutions of a model [78].
Evidently, positivity and boundedness are conditions that go side by side in importance,
in some of these instances.

The problem of designing finite-difference schemes that preserve one or more of the
properties of positivity, boundedness and symmetry of physical models has been attacked
successfully in some particular cases. Many computational methods have been proposed
to approximate solutions of epidemic models [5, 4], of the Lotka-Volterra system [63, 65],
of the linear wave equation with constant damping [68, 69], of bioremediation problems
in aquifers [17], of predator-prey models [71], of the nonlinear heat equation in a thin,
finite rod [41], of some mathematical models for the influenza disease [40], among other
problems of physical relevance. In fact, many of these methods have been applied to the
computational investigation of physical phenomena, from the epidemiological transmission
of diseases [5], to the propagation of mechanical waves in nonlinear media [55, 52] and in
nonlinear lattices [81, 53], where nonlinear processes such as the phenomena of supratrans-
mission and infratransmission are studied through numerical integrators which preserve
not only the positive character of the energy of the systems involved, but also the local
energy density, the total energy of the systems, and the dissipation of the energy. Needless
to mention that many methods have been designed with the property of the conservation
of energy in mind [35, 34].

In the present work, we propose an implicit, finite-difference method to approximate
solutions of a hyperbolic partial differential equation with nonlinear advection and nonlin-
ear reaction, which generalizes many known models of mathematical physics, including the
classical Fisher-Kolmogorov-Petrovsky-Piscounov equation [27, 47], a FitzHugh-Nagumo
equation [78], the Newell-Whitehead-Segel equation [75, 83], the Burgers-Huxley equation
[92], and the damped wave equation, just to mention some of them. Under certain condi-
tions on the model constants and the computational parameters, positive and/or bounded
initial approximations evolve into positive and/or bounded, new approximations. In these
terms, our finite-difference scheme is conditionally positive and conditionally bounded;
moreover, our method preserves the skew symmetry of the solutions of the equation stud-
ied in this work. We must state beforehand that the computational implementation of our
technique yields good results when they are compared against known, exact solutions of
some particular models.

In Section 5.2, we introduce the model under investigation in this work, namely, a
hyperbolic version of a generalization of the Burgers-Huxley equation from fluid mechanics.
We provide a non-dimensional analysis of the equation under study for simplification
purposes, and present some particular solutions of this equation for validation purposes.
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Section 5.3 is devoted to present the finite-difference scheme employed to approximate
solutions of the problem under investigation. We restate here our numerical method in
vector form; with this formulation in hand, we show in Section 5.4 that our technique
is able to preserve the properties of positivity and boundedness of solutions under some
constraints of the model and the computational parameters. Moreover, we show that the
method is capable of preserving the skew symmetry of the equation that motivates our
study. In this point, the concept of M -matrices and their properties will be a cornerstone.
In Section 5.5, we present some computational evidence that the method introduced in
the present manuscript yields good approximations to some of the exact solutions of our
equation. To that effect, we will consider several particular models where some analytical
solutions are available.

5.2 Preliminaries

5.2.1 Mathematical model

Let R+ represent the set of all non-negative, real numbers. Let I be a nonempty, closed
interval of real numbers which is possibly unbounded, and let u be a real function of the
ordered pair (x, t), where (x, t) denotes an arbitrary element of I ×R

+. Let α, β κ, τ and
m be non-negative, real numbers, let γ belong in [−1, 1], and assume that the real number
δ satisfies δ ≥ 1

2 . Throughout this work, we consider the hyperbolic partial differential
equation with nonlinear advection term

τ
∂2u

∂t2
+ β

∂u

∂t
+ αuδ

∂u

∂x
− κ

∂2u

∂x2
−mug(u) = 0, (x, t) ∈ I × R

+, (5.1)

where the reaction factor assumes the nonlinear form

g(u) = (1− uδ)(uδ − γ). (5.2)

On physical grounds, one immediately identifies the parameter τ as the time of relax-
ation or the lag constant. The parameter β is recognized as the damping coefficient, α is
the coefficient of advection, κ the diffusivity constant, and m is the constant of nonlinear-
ity or the coefficient of reaction. The nonlinear factor (5.2) is evidently a generalization
of the logistic law, which has been expressed in this manner in order to generalize several
parabolic and hyperbolic partial differential equations from mathematical physics. For
instance, in the parabolic scenario (more precisely, when τ is equal to zero), this model is
the classical Fisher-Kolmogorov-Petrovsky-Piscounov equation from population dynamics
[27, 47] if α equals zero, δ is equal to 1

2 , and γ is equal to −1; our equation is the FitzHugh-
Nagumo equation which appears in the study of the propagation of electric pulses in the
nervous system [78] when α is equal to zero, δ is equal to 1, and γ belongs in (0, 12); more-
over, equation (5.1) becomes the Newell-Whitehead-Segel equation from fluid mechanics
[75, 83] if α is equal to zero and γ is equal to −1.

For the sake of simplification, let us assume that m is a positive constant, and let a
and b be positive, real numbers. Define the new variables ξ = 1

ax and ζ = 1
b t. If we

consider u as a function of the ordered pair (ξ, ζ), then the partial differential equation
(5.1) becomes

τ

mb2
∂2u

∂ζ2
+

β

mb

∂u

∂ζ
+

α

ma
uδ
∂u

∂ξ
− κ

ma2
∂2u

∂ξ2
− ug(u) = 0. (5.3)

Suppose now that β and κ are positive numbers, too. We may suitably define the constants
a and b, to demonstrate that it is sufficient to study (5.1) when all of the coefficients β, κ
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and m are equal to 1. Therefore, for most of what remains of the present document, we
investigate the simplified equation

τ
∂2u

∂t2
+
∂u

∂t
+ αuδ

∂u

∂x
− ∂2u

∂x2
− ug(u) = 0. (5.4)

For our next result, we let L(u) represent the left-hand side of (5.4), for every function
u which is twice differentiable over the set I × R

+.

Proposition 34. Let u : I × R
+ → R be a function which is twice differentiable. Then

the identity L(−u) = −L(u) is satisfied if either δ is a positive, even number, or if δ is a
positive integer, α is equal to zero and γ is equal to −1.

Proof. The proof is straightforward.

Suppose that δ is a positive, even integer or, alternatively, that δ is a positive integer,
α equals zero and γ is equal to −1. As a consequence of Proposition 34, the function u is a
solution of (5.4) if and only if −u is also a solution of (5.4). We refer to this characteristic
of our model as the property of skew symmetry.

5.2.2 Particular solutions

In order to verify the validity of the method that we will introduce in Section 5.3, we
will compare our simulations against known, analytical solutions. The present section is
devoted to quote some particular solutions. Three specific, damped models are employed
for validation purposes: The advectionless Newell-Whitehead-Segel equation, an advective
Burgers-Huxley equation, and an advectionless Klein-Gordon equation.

A Newell-Whitehead-Segel equation An important, parabolic partial differential
equation in this work is the generalization of the Newell-Whitehead-Segel equation from
fluid mechanics [75, 83], derived from (5.4) by letting both τ and α be equal to zero, and
setting γ equal to −1 in (5.2), where δ is any positive integer. The classical form of our
equation appears when δ is equal to 1, and it has a family of exact solutions given by the
formula

u±(x, t) = ±
[

2C1 exp(
√
2x) + C2 exp(

1√
2
x− 3

2 t)

C1 exp(
√
2x) + C2 exp(

1√
2
x− 3

2 t) + C3

− 1

]

, (x, t) ∈ R× R
+, (5.5)

where C1, C2 and C3 are, in general, arbitrary, real constants [78], and non-negative, real
numbers for this particular investigation. It is readily checked that |u±(x, t)| < 1, for every
x ∈ R and every t ≥ 0. Moreover, the function u± represents a traveling wave solution
satisfying 0 < u±(x, t) < 1 when C3 is equal to zero.

A Burgers-Huxley equation A generalized form of the classical Burgers-Huxley equa-
tion results from (5.4) if τ is equal to zero, δ is a positive, integer number, and the reaction
function takes on the form (5.2) with γ ∈ (0, 1). This equation possesses also exact solu-
tions that we will employ in our simulations for comparison purposes. One such solution
of this model is given by the formula

u(x, t) =
(γ

2
+
γ

2
tanh(a1(x− a2t))

)1/δ
, (x, t) ∈ R× R

+, (5.6)

where the constants a1 and a2 are defined by

a1 =
−αδ + δ

√

α2 + 4(1 + δ)

4(1 + δ)
γ, a2 =

γα

1 + δ
− (1 + δ − γ)(−α+

√

α2 + 4(1 + δ))

2(1 + δ)
. (5.7)
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Figure 5.1: Forward-difference stencil for the approximation to the partial differential
equation (5.4) at the time tk, using the finite-difference scheme (5.15). The black circles
represent known approximations to the exact solutions at the times tk−1 and tk, and the
crosses denote the unknown approximations at the time tk+1.

Evidently, the function (5.6) is a traveling wave solution of the generalized Burgers-Huxley
equation introduced here, which connects asymptotically the constant solutions u = 0 and
u = γ1/δ. If δ is equal to 1 and γ belongs in (0, 1), then the expression

u(x, t) =
1

2
− 1

2
tanh

[

1

r − α
(x− vt)

]

, (x, t) ∈ R× R
+, (5.8)

also represents a traveling wave solution of our model which connects the two steady state
solutions u = 0 and u = 1, independently of the value of γ. In this case, the constant r
and the wave velocity v are given by

r =
√

α2 + 8, v =
(α− r)(2γ − 1) + 2α

4
. (5.9)

These solutions are the result of employing symbolic computations along with some non-
linear transformations [50, 24, 92].

A Klein-Gordon equation Finally, in our comparisons, we will employ a hyperbolic
version of (5.1), in the form of a nonlinear, damped Klein-Gordon equation. The Klein-
Gordon model used in the present work is the advectionless expression derived from (5.1)
by letting γ be −1, and letting δ, κ, τ and m be all equal to 1. Such equation has traveling
wave solutions of the form

u±(x, t) = ±
{

1 + C0 exp

[

√

9 + 2β2

2β

(

x− 3
√

9 + 2β2
t

)]}−1

, (x, t) ∈ R×R
+, (5.10)

where C0 is an arbitrary, positive number [26].

5.3 Numerical method

5.3.1 Finite-difference scheme

Let N andM be positive integers, and let T be a positive, real number. For computational
purposes, we restrict our attention to closed and bounded, spatial intervals I of the form
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[a, b], and fix a regular partition a = x0 < x1 < . . . < xN = b consists of N subintervals.
We wish to approximate the solutions of (5.4) over a period of time of length T , so we
select a regular partition of the temporal interval [0, T ], consisting of M subintervals, say
0 = t0 < t1 < . . . < tM = T . For convenience, we let ∆x and ∆t be the norms of the
spatial and the temporal partitions, respectively, that is, we let ∆x = (b − a)/N and
∆t = T/M . Moreover, we let ukn represent an approximation of the exact value of the
function u at (xn, tk).

Let λ be an arbitrary, real number. For the sake of convenience, we introduce the
following standard, discrete, linear operators:

δt,λu
k
n = (1− λ)

uk+1
n − ukn

∆t
+ λ

uk+1
n − uk−1

n

2∆t
, (5.11)

δ
(2)
t ukn =

uk+1
n − 2ukn + uk−1

n

(∆t)2
, (5.12)

δ(1)x ukn =
ukn+1 − ukn−1

2∆x
, (5.13)

δ(2)x ukn =
ukn+1 − 2ukn + ukn−1

(∆x)2
. (5.14)

Remark 35. Several quick observations may be given in this point. First of all, one can
notice that the symbol “δ” has been employed to denote the power of the nonlinear factors
in the advection and the reaction terms of (5.1) and (5.4), and also in the notations of
the linear operators (5.11), (5.12), (5.13) and (5.14). The use of this symbol will not turn
ambiguous, in view that the linear operators require sub-indexes in order to accurately refer
to them. On the other hand, a look at the definitions of those four operators leads us to
some immediate remarks:

• The operator (5.11) is a linear and weighed combination of a first-order approxima-
tion to the partial derivative of u with respect to t at (xn, tk), and a second-order
approximation to the same value. The weighed approximation (5.11) is consistent of
the second order when λ is equal to 1.

• The functional (5.12) yields a consistent approximation of the second order in time,

to the exact value of ∂2u
∂t2

at the point (xn, tk).

• Finally, it is readily checked that (5.13) and (5.14) approximate the exact values at

the point (xn, tk) of
∂u
∂x and ∂2u

∂x2 , respectively, with a consistency of the second order
in x.

With this nomenclature at hand, the finite-difference method employed to approximate
solutions of the partial differential equation (5.4) over the spatial interval I through a
temporal period of length T , is given by the system of equations

τδ
(2)
t ukn + δt,λu

k
n + α(ukn)

δδ(1)x uk+1
n − δ(2)x uk+1

n − uk+1
n g(ukn) = 0, (5.15)

where n = 1, . . . , N − 1, and k = 1, . . . ,M − 1. Some algebraic manipulations of these
equations may convince us that the forward-difference stencil of our method is the one
presented in Figure 5.1. In fact, one can alternatively express the finite-difference scheme
(5.15) through the set of identities

k1u
k+1
n+1 + k2u

k+1
n + k3u

k+1
n−1 = k4u

k
n + k5u

k−1
n , (5.16)
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k1 k2 k3 k4 k5

α∆t

2∆x
(ukn)

δ −R 1− λ

2
+

τ

∆t
+ 2R−∆tg(ukn) −α∆t

2∆x
(ukn)

δ −R 1− λ+
2τ

∆t

λ

2
− τ

∆t

Table 5.1: Expressions of the coefficients in the implicit presentation (5.16) of the finite-
difference method (5.15). The computational constant R is given in (5.17), and the non-
linear reaction factor g is provided by (5.2).

valid for every n = 1, . . . , N − 1 and every k = 1, . . . ,M − 1. The functions k1, k2 and k3
of ukn, as well as the constants k4 and k5, are provided in Table 5.1 for the Fourier number

R =
∆t

(∆x)2
. (5.17)

5.3.2 Matrix representation

The finite-difference method presented in the previous stage requires boundary conditions
to be imposed on the interval I. In this work, we will focus our attention mainly to the
approximation of traveling wave solutions in relatively long, spatial intervals. In view
of this, we will present the development for a set of homogeneous, Neumann boundary
conditions, that is, boundary constraints of the form

∂u

∂x
(a, t) =

∂u

∂x
(b, t) = 0, t ≥ 0, (5.18)

the development for different boundary data being similarly treated. The constraints (5.18)
will be translated to the discrete scenario as the following set of conditions, satisfied for
every k = 0, 1, . . . ,M :

uk1 − uk0 = ukN−1 − ukN = 0. (5.19)

The numerical method (5.15) can be expressed now more conveniently in vector form.
For every k = 0, 1, . . . ,M , let uk be the (N + 1)-dimensional vector (uk0, u

k
1, . . . , u

k
N ). For

each such integer k, we let A = A
uk be the square matrix of size (N+1)×(N+1) provided

by the formula

A =



















1 −1 0 0 · · · 0 0 0
k1 k2 k3 0 · · · 0 0 0
0 k1 k2 k3 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . k1 k2 k3
0 0 0 0 . . . 0 −1 1



















. (5.20)

For each n = 1, . . . , N − 1, the constants k1, k2 and k3 of the (n+1)th row of this matrix
are the functions of ukn given in Table 5.1; however, these dependencies have been obviated
for the sake of simplicity. Finally, for every real number c, we define the diagonal matrix
of size (N + 1)× (N + 1)

Bc =























0 0 0 · · · 0 0 0
0 c 0 · · · 0 0 0
0 0 c · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · c 0 0
0 0 0 · · · 0 c 0
0 0 0 · · · 0 0 0























. (5.21)
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Let 0 be the zero vector in R
N+1. With this notation at hand, the numerical method

(5.15) may be expressed as the following vector identity, valid for every k = 1, . . . ,M − 1:

Auk+1 −Bk4u
k −Bk5u

k−1 = 0. (5.22)

5.4 Preserved properties

Throughout this section, we follow the nomenclature employed in Sections 5.2 and 5.3.
The present stage of our investigation is devoted to establish the symmetry-preserving
property of our technique, as well as conditions under which positive or bounded, initial
profiles evolve under (5.15) into positive or bounded approximations, respectively.

5.4.1 Symmetry

Notice first of all that the left-hand side of (5.22) is a function of the ordered triple
Uk = (uk+1,uk,uk−1), for every k in {1, . . . ,M − 1}. For the sake of convenience, we
define −Uk as the ordered triple (−uk+1,−uk,−uk−1), and let L(Uk) be the left-hand
side of (5.22).

The following result establishes the symmetry properties of the numerical method
introduced in this work.

Proposition 36. For every k in {2, . . . ,M − 1}, the identity L(−Uk) = −L(Uk) holds if
either δ is any positive, even number, or if δ is a positive integer, α is equal to zero and
γ equals −1.

Proof. The matrix A in (5.22) satisfies the identity A−uk = A
uk under our hypotheses,

whence the conclusion follows.

Under the hypotheses of this result, the ordered triple Uk satisfies the identity (5.22) if
and only if −Uk does. In view of this remark, Proposition 36 shows that our computational
technique preserves the skew symmetry of the solutions of the equation under investigation.

5.4.2 Boundedness

We say that a square, real matrix is a Z-matrix if all its off-diagonal elements are non-
positive. An M -matrix is a Z-matrix A for which the following conditions are satisfied:

(i) All the diagonal entries of A are positive, and

(ii) There exists a positive, diagonal matrix D such that AD is strictly diagonally dom-
inant (evidently, this property is trivially satisfied if the matrix A itself is strictly
diagonally dominant).

Remark 37. There exist many characterizations of M -matrices, but the definition given
above is good for our purposes. In fact, one of the properties of this type of matrices is
that they are contained in the class of inverse-positive matrices, which is the collection of
non-singular matrices for which all the entries of their inverses are positive, real numbers.

Let J represent a bounded, open interval. We say that a matrix (or a vector) of any
size is bounded in J if all of its entries belong in J . A matrix (or vector) is positive if all
of its entries are positive, real numbers. Let s be a real number, and let x be a vector in
R
n. We employ the notation x < s (respectively, x > s) to signify that every component

of x is less than s (respectively, greater than s). Clearly, the inequality x < s holds if and
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only if se−x > 0 is satisfied for the n-dimensional, real vector e all of whose components
are equal to 1.

For the sake of generality, we consider two possible scenarios in our search for general
conditions under which the properties of positivity and boundedness are preserved, namely,
the case of Newell-Whitehead-Segel-type equations, and the case of Burgers-Huxley-type
equations.

Newell-Whitehead-Segel equations

Throughout, we assume that γ is equal to −1, and that δ is a positive, integer number
in the case of a generalized Newell-Whitehead-Segel equation, or that δ is equal to 1

2 in
the case of a Fisher-Kolmogorov-Petrovsky-Piscounov-type equation. In other words, we
suppose that the reaction factor takes on the form g(u) = 1 − u2δ. Clearly, the function
g restricted to the domain [−1, 1] is non-negative, and it is bounded from above by the
number c0 = 1 if δ is a positive integer, and by c0 = 2 if δ is equal to 1

2 .

Lemma 38. Let δ be a positive, real number which is either an integer or 1
2 , let λ be in

(0, 2), and let τ be a non-negative, real number. Suppose that the vector uk is bounded in
(−1, 1), for some k ∈ {1, . . . ,M − 1}. If the inequalities

(a) α∆x < 2 and

(b) c0∆t < 1− λ/2 + τ/∆t

are satisfied, then the matrix A of (5.22) is an M -matrix.

Proof. The off-diagonal elements of A are non-positive by assumption (a). The paragraph
preceding this lemma states that g(ukn) ≤ c0. This observation and the condition (b)
imply that, for every n = 1, . . . , N − 1, the diagonal element of A in the (n + 1)th row
satisfies k2 > |k1|+ |k2| = 2R. The positivity of the diagonal elements of A and the strictly
diagonal dominance of this matrix follow at once.

Let δ be a positive, real number which is either an integer or 1
2 , and let τ be a non-

negative, real number. Define the function F : [−1, 1] × [−1, 1] → R by the rule of
correspondence

F (x, y) = 1− λ

2
+

τ

∆t
−∆t(1− x2δ)−

(

1− λ+
2τ

∆t

)

x−
(

λ

2
− τ

∆t

)

y. (5.23)

It is readily checked that F (1, 1) = 0, and that F is differentiable in the interior of its
domain. Moreover, the first-order partial derivatives of F are given by

∂F

∂x
(x, y) = 2δ∆tx2δ−1 − 1 + λ− 2τ

∆t
, (5.24)

∂F

∂y
(x, y) =

τ

∆t
− λ

2
. (5.25)

Clearly, the partial derivative of F with respect to y is negative if 2τ/∆t < λ. On
the other hand, the partial derivative of F with respect to x is bounded from above in
(−1, 1) × (−1, 1) by the number 2δ∆t − 1 + λ − 2τ/∆t. Consequently, (5.24) and (5.25)
are negative if the condition (c) of the following result holds.

Proposition 39 (Boundedness). Let δ be a positive integer, and that either δ is even
or that α is equal to zero. Let λ be in (0, 2), and let τ be a non-negative, real number.
Suppose that uk and uk−1 are bounded in (−1, 1), for some k ∈ {1, . . . ,M − 1}, and that
(b) of Lemma 38 holds. The vector uk+1 is bounded in (−1, 1) if
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(c) 2τ/∆t < λ < 1 + 2τ/∆t− 2δ∆t.

Proof. The matrix A is an M -matrix by Lemma 38, so that its inverse is positive. In-
troduce the vector wk+1 = e − uk+1 and substitute it in (5.22) to obtain the equation
Awk+1 = b, where b = Ae − Bk4u

k − Bk5u
k−1. The first and the last components of b

are equal to zero, while for every n ∈ {1, . . . , N − 1}, the (n + 1)th component of b is
given by F (ukn, u

k−1
n ), where F is provided by (5.23). Hypothesis (c) and the discussion

preceding this result establish that b is a non-negative vector whose only zero components
are the first and the last. It follows that the vector wk+1 is positive or, equivalently, that
uk+1 < 1. On the other hand, let vj = −uj , for every j = k − 1, k, k + 1. Proposition 36

implies that A
vkvk+1 = Bk4v

k +Bk5v
k−1, and the first part of this result shows that

vk+1 < 1 or, equivalently, that uk+1 > −1.

Corollary 40 (Positivity). Let δ be a positive integer, and that either δ is even or that α
is equal to zero. Let λ be in (0, 2), and let τ be a non-negative, real number. Suppose that
uk and uk−1 are bounded in (0, 1), for some k ∈ {1, . . . ,M − 1}. If (b) of Lemma 38 and
(c) of Proposition 39 hold, then uk+1 is bounded in (0, 1).

Proof. Proposition 39 assures that −1 < uk+1 < 1. The constraint (c) of Proposition 39
implies that Bk4u

k +Bk5u
k−1 is a vector all of whose components are positive except for

the first and the last ones, which are zero. The conclusion is reached by virtue that A is
an M -matrix.

Burgers-Huxley equations

Let δ be a real number such that δ ≥ 1, and let γ be a real number in the interval [−1, 1].
Under these conditions, it is easy to show that the function defined by (5.2) satisfies
g(u) ≤ 1

4(1− γ)2, for every u ∈ [0, 1].

Lemma 41. Let s be a real number such that 0 < s ≤ 1, let δ be a real number such that
δ ≥ 1, let γ be a real number in [−1, 1], let λ be in (0, 2), let τ be a non-negative, real
number, and assume that uk is bounded in (0, s1/δ), for some k ∈ {1, . . . ,M − 1}. The
matrix A in (5.22) is an M -matrix if the following inequalities are satisfied:

(a) αs∆x < 2 and

(b) 1
4(1− γ)2∆t < 1− λ/2 + τ/∆t.

Proof. The positivity of uk guarantees that the entry k3 in the (n+1)th row of the matrix
A is a negative, real number, for every n ∈ {1, . . . , N − 1}. Moreover, the assumption
that (ukn)

δ < s and the hypothesis (a) yield that k1 is likewise negative. The condition (b)
and the observation preceding this result give that g(ukn)∆t < 1 − λ/2 + τ/∆t + 2R or,
equivalently, that k2 is positive. Finally, notice that the inequality |k1| + |k3| = 2R < k2
holds for every n, which shows that A is strictly diagonally dominant.

Proposition 42 (Positivity). Let s be a real number such that 0 < s ≤ 1, let δ be a
real number such that δ ≥ 1, let γ belong in [−1, 1], let λ be in (0, 2), let τ be a non-
negative, real number, and suppose that uk−1 and uk are bounded in (0, s1/δ), for some
k ∈ {1, . . . ,M − 1}. If the inequalities (a) and (b) of Lemma 41 hold and the constraint

(c) 2τ/∆t < λ < 1 + 2τ/∆t

is satisfied, then uk+1 is a positive vector.
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Figure 5.2: Exact and numerical solutions of the model (5.4) with reaction factor (5.2) at
four different times, namely t = 5, 10, 20 and 40, for an initial profile and initial velocity
provided by the equation (5.5) around t = 0, with C1 = 30, C2 = 20 and C3 = 0. The
following model and computational parameters were employed: τ = α = 0, γ = −1, δ = 1,
∆t = 1× 10−4, ∆x = 1, λ = 0.2, over the spatial domain [−100, 100].

Proof. The matrix A is an M -matrix by Lemma 41, so that its inverse exists and it is
a positive matrix. Moreover, the vector Bk4u

k + Bk5u
k−1 is non-negative, its only zero

entries being its first and its last components. We conclude that uk+1 is a vector with
positive entries.

Let δ be a real number such that δ ≥ 1, and let τ be a non-negative real number. Let
γ and s be real numbers in (0, 1) with s ≤ γ, and let G : [0, s1/δ] × [0, s1/δ] → R be the
function given by

G(x, y) = s1/δ
[

1− λ

2
+

τ

∆t
−∆t(1− xδ)(xδ − γ)

]

−
(

1− λ+
2τ

∆t

)

x−
(

λ

2
− τ

∆t

)

y.

(5.26)
The function G is differentiable in the interior of its domain, and it satisfies G(s1/δ, s1/δ) ≥
0. Moreover, the partial derivatives of G with respect to x and y are

∂G

∂x
= s1/δδxδ−1∆t

[

2xδ − (γ + 1)
]

−
(

1− λ+
2τ

∆t

)

, (5.27)

∂G

∂y
=

τ

∆t
− λ

2
. (5.28)
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∆t

Time 1× 10−1 1× 10−2 1× 10−3 1× 10−4

2.5 1.2089× 10−2 1.0405× 10−3 3.4436× 10−4 3.8019× 10−4

5 2.7878× 10−2 3.3056× 10−3 1.1006× 10−3 9.0416× 10−4

10 6.1194× 10−2 9.5000× 10−3 4.7132× 10−3 4.2406× 10−3

20 1.1860× 10−1 2.2285× 10−2 1.2862× 10−2 1.1926× 10−2

40 1.8965× 10−1 4.3900× 10−2 2.7042× 10−2 2.5356× 10−2

Table 5.2: Relative errors committed when approximating numerically the exact solution
of (5.4) with reaction factor (5.2) at several times, for an initial profile and initial velocity
provided by the equation (5.5) around t = 0, with C1 = 30, C2 = 20 and C3 = 0. The
following model and computational parameters were employed: τ = α = 0, γ = −1, δ = 1,
∆x = 1, λ = 0.2, over the spatial domain [−100, 100]. Several values of ∆t have been
chosen.

Evidently, the partial derivative of G with respect to y is negative in (0, s1/δ) × (0, s1/δ)
if and only if λ > 2τ/∆t. On the other hand, every x which belongs in (0, s1/δ) satisfies
xδ < s ≤ γ < 1, so that a sufficient condition for (5.27) to be negative in the interior of
the domain of G is that the inequality sδ∆t[2s − (γ + 1)] < 1 − λ + 2τ/∆t be satisfied.
Under these circumstances, the function G is positive in the interior of its domain.

It is interesting to notice that (5.26) may be negative in (0, s1/δ)×(0, s1/δ) if γ < s < 1.
However, G is again positive when s is equal to 1, if the conditions derived in the previous
paragraph are satisfied.

Proposition 43 (Boundedness). Let s be a real number such that 0 < s ≤ 1, which
satisfies either s ≤ γ or s = 1. Let δ be a real number such that δ ≥ 1, let γ and λ both
belong in (0, 1), let τ be a non-negative, real number, and assume that uk−1 and uk are
bounded in (0, s1/δ), for some k ∈ {1, . . . ,M − 1}. Suppose that (a) and (b) of Lemma
41, and (c) of Proposition 42 are satisfied. The vector uk+1 is bounded in (0, s1/δ) if the
following inequality holds:

(d) sδ∆t[2s− (γ + 1)] < 1− λ+ 2τ/∆t.

Proof. The vector uk+1 is positive by Proposition 42. Now, let wk+1 = s1/δe− uk+1 and
substitute it in (5.22) to obtain Awk+1 = b, where b is equal to As1/δe−Bk4u

k−Bk5u
k−1.

The first and the last components of b are equal to zero; meanwhile, for every n ∈
{1, . . . , N − 1}, its (n + 1)th component assumes the form G(ukn, u

k−1
n ), where both ukn

and uk−1
n belong in (0, s1/δ), and G is the function in (5.26). The hypothesis (c) and the

discussion in the previous paragraph yield that b is a vector all of whose components,
except for the first and the last ones, are positive. Consequently, the vector wk+1 is
positive or, equivalently, uk+1 < s1/δ.

5.5 Numerical simulations

In this section, we present some simulations in order to check the performance of our
numerical method when it is used to approximate positive and bounded solutions of (5.4).
For comparison purposes, our simulations will employ the known, exact solutions presented
in Section 5.2.2. We will restrict our attention to relatively wide, bounded domains, and
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Figure 5.3: Exact and numerical solutions of the model (5.4) with reaction factor (5.2) at
four different times, namely t = 10, 20, 40 and 80, for an initial profile and initial velocity
provided by the equation (5.5) around t = 0, with C1 = 30, C2 = 20 and C3 = 10. The
following model and computational parameters were employed: τ = α = 0, γ = −1, δ = 1,
∆t = 1× 10−4, ∆x = 1, λ = 0.2, over the spatial domain [−50, 50].

we will impose homogeneous Neumann boundary conditions on the endpoints of the spatial
interval. From a computational perspective, it is important to point out that if u represents
the exact solution of interest, then the first two approximations at the times t0 and t1 will
be given by ukn = u(xn, tk), for every n = 0, 1, . . . , N and k = 0, 1. Also, it is important
to mention that all of our simulations were carried out through an implementation of
Thomas’ algorithm to solve the tridiagonal system (5.22).

5.5.1 Newell-Whitehead-Segel equations

In the present stage, we consider the model (5.4) when both τ and α are equal to zero, and
parameter γ equal to −1. For more accurate comparisons, we let ‖ · ‖∞ denote the infinite
norm in R

n, defined by ‖x‖∞ = sup{|xi| : i = 1, . . . , n}, whenever x = (x1, . . . , xn).
In these terms, the relative error committed when approximating a vector y ∈ R

n by a
nonzero vector x, is given by

ρ(x,y) =
‖x− y‖∞
‖y‖∞

. (5.29)
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Figure 5.4: Exact and numerical solutions of the model (5.4) with reaction factor (5.2) at
four different times, namely t = 5, 12.5, 25 and 50, for an initial profile and initial velocity
provided by the equation (5.6) around t = 0. The following model and computational
parameters were employed: τ = 0, α = 0.05, γ = 0.38, δ = 1.75, ∆t = 1× 10−4, ∆x = 1,
λ = 0.2, over the spatial domain [−100, 100]. The dotted, horizontal line represents the
constant γ1/δ.

Example 44 (Boundedness in (0, 1)). Consider the partial differential equation (5.4) with
parameters τ and α both equal to zero, with a reaction factor (5.2) in which γ is equal to
−1 and δ is equal to 1. More precisely, we consider a Newell-Whitehead-Segel model over
the spatial domain [−100, 100], and we employ the particular solution (5.5) with C1, C2

and C3 equal to 30, 20 and 0, respectively. Computationally, we choose step sizes ∆t and
∆x equal to 1× 10−4 and 1, respectively, with λ equal to 0.2. Under these circumstances,
Figure 5.2 shows the graphs of the exact solution and the approximation obtained through
the finite-difference scheme (5.15) at four different times, namely, 5, 10, 20 and 40. The
results evidence a good agreement between the analytical and the numerical solutions.
Moreover, the numerical solutions, as the exact ones, remain bounded between 0 and 1
at all times; this is in perfect agreement with the fact that the computational and model
parameters satisfy the conditions of Corollary 40. For convenience, we have included Table
5.2, in which we have computed the relative errors committed when approximating the
exact solutions of our problem through the finite-difference scheme (5.15), fixing ∆x at 1
and decreasing the value of ∆t. The results immediately suggest the convergence of our
method.
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Figure 5.5: Exact and numerical solutions of the model (5.4) with reaction factor (5.2) at
four different times, namely t = 25, 50, 100 and 200, for an initial profile and initial velocity
provided by the equation (5.8) around t = 0. The following model and computational
parameters were employed: τ = 0, α = γ = 0.5, δ = 1, ∆t = 1 × 10−4, ∆x = 1, λ = 0.2,
over the spatial domain [−100, 100].

Example 45 (Boundedness in (−1, 1)). Consider exactly the same model studied in Ex-
ample 44 over the spatial domain [−50, 50], with initial conditions provided by the exact
solution (5.5) with C1, C2 and C3 equal to 30, 20 and 10, respectively. Computationally,
we let ∆t, ∆x and λ take on the same values as in the previous example, and consider four
different times, namely, 10, 20, 40 and 80. The results of our simulations are presented in
Figure 5.3 and, as in Example 44, there exists a good agreement between the numerical
and the analytical solutions of the problem under consideration. Moreover, the property
of boundedness of the exact solutions is preserved by the computational approximations,
in view that the conditions of the Proposition 39 are satisfied.

5.5.2 Burgers-Huxley equations

In the present section, we consider equations of the form (5.4) with τ equal to zero, and
γ in (0, 1).

Example 46 (Boundedness in (0, γ1/δ)). Consider the model (5.4) with τ equal to 0.
For comparison purposes, we use the exact solution (5.6) with parameters α, γ and δ
equal to 0.05, 0.38 and 1.75, respectively, so that the analytical solutions are bounded
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Figure 5.6: Exact and numerical solutions of the model (5.4) with reaction factor (5.2) at
four different times, namely t = 5, 12.5, 25 and 50, for an initial profile and initial velocity
provided by the equation (5.10) with C0 = 1 around t = 0. The following model and
computational parameters were employed: τ = 0.008, α = 0, γ = −1, δ = 1, ∆t = 0.01,
∆x = 1, λ = 1, over the spatial domain [−50, 150].

between 0 and γ1/δ. Computationally, the parameters ∆t, ∆x and λ are equal to 1×10−4,
1 and 0.2, respectively, and we use the spatial domain [−100, 100]. The exact solutions
and the numerical approximations obtained through (5.15) for the times t = 5, 12.5, 25
and 50 are shown in Figure 5.4. The graphs evidently show a good agreement between
the analytical simulations and the computational estimations. Moreover, the solutions
remain bounded within the interval (0, γ1/δ). This is in agreement with the fact that the
model and computational parameters satisfy the boundedness conditions summarized in
Proposition 43.

Example 47 (Boundedness in (0, 1)). Consider the partial differential equation (5.4)
with τ equal to zero, and parameters α, γ and δ equal to 0.5, 0.5 and 1, respectively.
In this example, we compare the performance of the numerical method (5.15) against
the exact solution provided by (5.8), over the spatial domain [−100, 100] at four different
times, namely, 25, 50, 100 and 200. The computational parameters are the same as those
employed in Example 46. The results are presented in Figure 5.5 where, once again, a
good agreement is found between the theoretical and the numerical results. Moreover,
one immediately notices that the numerical approximations remain bounded within the
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interval (0, 1), a result which is in perfect agreement with the fact that the model and
numerical parameters comply with the conditions of Proposition 43.

5.5.3 Klein-Gordon equation

In this stage, we consider the hyperbolic version of the partial differential equation (5.4)
introduced in Section 5.2.2.

Example 48 (Boundedness in (0, 1)). We consider now the advectionless form of the
partial differential equation (5.4), assuming that τ is a positive constant and that m is
equal to 1. We consider a reaction factor (5.2) with γ equal to −1 and δ equal to 1.
The resulting model is a nonlinear, damped Klein-Gordon model which, by virtue of the
change of variable ζ = t/

√
τ , can be rewritten as

∂2u

∂ζ2
+

1√
τ

∂u

∂ζ
− ∂2u

∂x2
− u(1− u2) = 0. (5.30)

The solution of our original problem is given by (5.10) as a function of the pair (x, ζ), for
a damping coefficient equal to 1/

√
τ . For simulation purposes, we choose the parameter

τ equal to 0.008, and we let ∆x and λ be both equal to 1. We have obtained numerical
results for values of ∆t satisfying the conditions of Corollary 40, and we have obtained
good approximations to the exact solution of the problem under consideration, which
remain bounded within (0, 1) at all times. In fact, we have also considered values of ∆t
which just violate property (c) of Proposition 39, and we have found that the numerical
results still remain bounded, as Figure 5.6 witnesses. The graphs correspond to the times
5, 12.5, 25 and 50, for values of ∆t, ∆x and λ equal to 0.01, 1 and 1, respectively. The
spatial domain employed is [−50, 150], and the value of the constant C0 in the particular
solution (5.10) is 1.
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Conclusions

Closing remarks

In this work, we have investigated numerically the design of numerical methods to ap-
proximate solutions of nonlinear models of mathematical physics and biology. Motivated
by the fact that the models of interest possess traveling-waver solutions which are un-
known in exact form, we provided a semilinear approach to the problem of approximating
consistently the solutions of the considered models, all of which are nonlinear partial dif-
ferential equations with linear diffusion, and nonlinear reaction and advection. For such
partial differential equations, the existence of traveling fronts which are bounded is a well-
known fact. Among these models, we made emphasis on the investigation of the following
equations and some of their generalizations:

• the classical Fisher-KPP equation

• the Newell-Whitehead-Segel equation,

• the FitzHugh-Nagumo equation,

• the Burgers-Huxley equation, and

• the Burgers-Fisher.

It is important to mention that the traveling-wave solutions considered as bounded
profiles (in many cases, non-negative solutions, also), which connect asymptotically two
constant solutions of the models investigated. The solutions are monotone in both space
and time, and satisfy pertinent symmetry properties. The methods proposed in this work
are capable of preserving the boundedness of initial approximations, the non-negativity of
the computational solutions, and the skew-symmetry preservation, also. The methods are
consistent of second order in space and first order in time.

The methods proposed in this work can be expressed in vector form through the multi-
plication of a matrix which, under suitable conditions, turns out to be an M -matrix, that
is, a strictly diagonally dominant, square, real matrix whose diagonal entries are positive
numbers, and whose off-diagonally components are non-positive. As we know,M -matrices
are non-singular matrices with the property that all the entries of their inverses are pos-
itive, real numbers. This feature of M -matrices guarantees that positive, initial profiles
will evolve discretely into positive, new approximations. Moreover, the boundedness of the
approximations may be guaranteed via the preservation of the positive character of solu-
tions. Needless to mention that pertinent existence-and-uniqueness results readily follow
after these remarks.

From a computational perspective, the methods were implemented in Matlab and,
when available, the numerical results were compared against known, exact solutions. The
results evince an excellent agreement between the analytical and computational solutions.
Moreover, the comparisons show that the methods are indeed second-order approximations
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in space nd first-order approximations in time to the exact solutions. Also, the simulations
show that the properties of positivity and boundedness are preserved throughout the
iterations, even in cases when the analytical conditions for the preservation of positivity
and boundedness are broken. These observations suggest that the method is very robust
with respect to the preservation of these properties, and further investigation on the matter
is motivated by the numerical results.

Perspectives

It is important to mention that, in recent efforts, we have undertaken a nonlinear approach
to the problem of approximating traveling-wave solutions of some of the models previously
considered. The results (not shown here) evince that the nonlinear approach presents many
advantages with respect to the semilinear perspective investigated in this work. Indeed, the
properties of positivity, boundedness and skew-symmetry are preserved as in the semilinear
case. However, two additional advantages are noticed in this new perspective:

• Firstly, the methods may me conditionally monotone. As consequence, the methods
may preserve the temporal and spatial monotonicity of solutions, which are highly
desirable characteristics in the approximation of the traveling-wave solutions consid-
ered in this work.

• Secondly, the computational implementation requires of Newton’s method to solve
nonlinear systems of equations. As a consequence, the implementations of the non-
linear methods result in faster techniques which approximate the solutions with a
higher degree of accuracy.

Thus, the epilogue of this work opens a new perspective of work: To investigate nonlinear
discretizations of the models studied in the present manuscript. The task looks promising,
but lies outside the aims of the present work.

Another interesting problem to be tackled in the future is the extension of our results
to different methodologies within the area of numerical analysis. Thus, one may inquire
about the feasibility of extending this work to the realm of the finite-element methods.
From our point of view, the problem is interesting and nontrivial. Indeed, most of the
finite-element methods reported in the literature have a high degree of accuracy; however,
the possibility of preserving mathematical features of the solutions using this methodology
has not been sufficiently exploited. Of course, we hope to investigate this problem in the
future.
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[56] J. E. Maćıas-Dı́az, A. Puri, A boundedness-preserving finite-difference scheme for a
damped nonlinear wave equation, Appl. Numer. Math. 60 (2010) 934–948.
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