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Resumen

En esta tesis se presentó la generalización del teorema de Bumby para categorías de Grothendieck,
ademas cabe destacar que dicha generalización también es valida para los casos de módulos puros
inyectivos así como para módulos RD-inyectivos.
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Abstract

In this thesis, we present a generalization of Bumby’s theorem for Grothendieck categories, and
also is important to mention that this generalization is also valid for pure-injective modules and
RD- injective modules.
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Chapter 1

Introduction

1.1 Background

In this thesis, we consider a fixed (though arbitrary) ring R with an identity element 1, which
satisfies 1 6= 0 for the sake of non-triviality. In this work, the notation hom(A,B) will represent the
set of all morphisms from an object A to an object B within some specific category. Throughout
this section, however, the objects and morphisms considered will all belong to the category of left
R-modules.

The motivation and point of departure of this work is the following result, which is an algebraic
extension of the famous Cantor-Bernstein-Schröder’s theorem on the cardinality of sets [7].

Theorem 1.1.1 (Bumby). Two injective modules are isomorphic if they are isomorphic to sub-
modules of each other.

The next results are straightforward consequences of Theorem 1.1.1. We refer to [1] for the
proofs of Bumby’s theorem and its corollaries.

Corollary 1.1.2 (Bumby). Two modules which are isomorphic to submodules of each other have
isomorphic injective hulls.

A module is quasi-injective if it is a fully invariant submodule of every injective module.
Alternatively, the module M is quasi-injective if every homomorphism of any submodule N of
M into M extends to an endomorphism of M . Injective modules are clearly quasi-injective,
and every module is contained as a submodule in a smallest quasi-injective module (called its
quasi-injective hull) which is unique up to canonical isomorphism [12].

Corollary 1.1.3 (Bumby). Two modules which are isomorphic to submodules of each other have
isomorphic quasi-injective hulls.

The following discussion will be crucial in order to state the problem under investigation. A
submodule N of the R-module M is relatively divisible if the solubility in M of equations of
the form rx = a ∈ N , with r ∈ R, implies their solubility in N . We say that the submodule N
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of the R-module M is pure if for each pair of positive integers m and n, any finite system of
equations of the form

m∑
j=1

rijxj = ai ∈ N (i = 1, . . . , n),

with rij ∈ R, is soluble in N if it is soluble in M . An RD-morphism (respectively, a pure-
morphism) is any monomorphism from a module A to a module B under which the image of A
is a relatively divisible (respectively, pure) submodule of B.

Purity implies relative divisibility, and both conditions coincide for modules over Prüfer do-
mains [14], that is, integral domains in which finitely generated ideals are projective. In fact,
Prüfer domains are the only integral domains for which relative divisibility and purity are equiva-
lent [2]. As it is the case with the property of projectivity [8], the condition of injectivity is crucial
in some studies on the structure of modules and it possesses various generalizations [3, 4, 10].
Two of such generalizations are quoted next.

A module Q is RD-injective (respectively, pure-injective) if for each RD-morphism (re-
spectively, pure-morphism) α ∈ hom(A,B) and each φ ∈ hom(A,Q) there exists ψ ∈ hom(B,Q)
making the following diagram commute:

0 // A
α //

φ
��

B

ψ��
Q

(1.1)

Injectivity implies RD-injectivity which, in turn, implies pure-injectivity. It is worth mentioning
that these conditions share many properties. For instance, they are closed with respect to the
construction of direct products and with respect to the formation of direct summands [9]. The
existence of minimal injective modules which contain a given module as an ‘essential’ submodule
(injective hulls), is also a property that is common to all the conditions on injectivity mentioned
above [5, 6]. Moreover, the following versions of Bumby’s criterion for RD-injective and pure-
injective modules are easy to prove.

Theorem 1.1.4. Two RD-injective (respectively, pure-injective) modules are isomorphic if they
are isomorphic to relatively divisible (respectively pure) submodules of each other.

The next proposition is an extension of Corollaries 1.1.2 and 1.1.3. Its validity is readily
established as a consequence of the last theorem.

Corollary 1.1.5. Two modules which are isomorphic to relatively divisible (respectively, pure)
submodules of each other have isomorphic RD-injective (respectively, pure-injective) hulls.

1.2 Aims and scope

In view of these remarks, many questions arise in the investigation of conditions under which two
modules are isomorphic whenever they are isomorphic to submodules of each other. For instance,
is there a general criterion for the isomorphism of modules which extends Bumby’s theorem and

5



which contemplates the cases of RD-injective and pure-injective modules as particular scenarios?
In the present work, we establish an affirmative answer to this question, and derive in the way
several results that generalize well-known properties shared by all the conditions on injectivity
quoted so far.

This work is sectioned as follows. Chapter 2 provides a brief introduction on module theory.
We introduce therein various constructions on modules, including factor modules, submodules and
the useful isomorphism theorems. Introduces the crucial notion of injective objects with respect
to a family of morphisms. Our definition is a generalized form of the categorical definition of
injectivity presented in [11], and it has been motivated by [13]. Some properties on generalized
injective objects and injective hulls are established in Chapter 4. The main result is presented
in Chapter 4 along with several immediate corollaries, including Bumby’s theorem, as well as a
generalized forms of the corollaries. This work closes with a section of concluding remarks and
perspectives of future investigation.
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Chapter 2

Modules

It’s important to establish that in all this work R is a ring, it may or may not have an identity
element. Clarified that point, we can introduce the next concept: A left R- module is an abelian
group M endowed with a left action (r, x)→ rx of R on M , and the structure is such that satisfy
the next properties:

1. r(sx) = (rs)x

2. (r + s)x = rx+ sx, r(x+ y) = rx+ ry for all r, s ∈ R and x, y ∈M .

If R has an identity element, then a left R-module M is unital when

3. 1x = x for all x ∈M

Analogously, we can define the right R- module, it is an abelian group M endowed with a right
action (x, r)→ xr of R on M , and the structure is such that satisfy the next properties:

1. (xr)s = x(rs)

2. x(r + s) = xr + xs, (x+ y)r = xr + yr for all r, s ∈ R and x, y ∈M .

If R has an identity element, then a right R-module M is unital when

3. 1x = x for all x ∈M

It’s easy to see that if R is commutative, then every left R-module is a right R-module, and
conversely.

Moreover, if R isn’t commutative it is clear that for every property of left R-modules there
exists an analogy property of right R-modules, that’s the reason why we will omit the word "left"
or "right" when we talk about R-modules, in addition, in the beginning we mention that R is any
ring, then we can omit it too, thus from here we will call them only modules and in all the proofs
we will work with left modules because for right modules is analogous.

Another important structure that we need to introduce is a submodule, this is a subset of the
module which inherited a module structure, this is: A submodule of a module M is an additive
subgroup A of M such that x ∈ A implies rx ∈ A for all r ∈ R. With this concept we can
formulate the next proposition:
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Proposition 2.0.1. Let M be a module. Every intersection of submodules of M is a submodule
of M . The union of a nonempty directed family of submodules of M is a submodule of M .

Proof. Let M be a module. Let {Aα}α∈I a family of submodules.
For the first part, we know that ∀α ∈ I Aα is a subgroup of M , and every intersection of

subgroups is a subgroup. Then ∩α∈IAα is a subgroup. Let x ∈ ∩α∈IAα and r ∈ R. Furthermore
we have that x ∈ Aα ∀α ∈ I but, Aα is a submodul. Then rx ∈ Aα ∀α ∈ I. Thus rx ∈ ∩α∈IAα.
In conclusion ∩α∈IAα is a submodule.

For the second part, we know that ∀α ∈ I Aα is a subgroup of M, and the union of this family
is a subgroup of M , then ∪α∈IAα is a subgroup. Let x ∈ ∪α∈IAα then exists α ∈ I such that
x ∈ Aα thus as Aα is a submodule rx ∈ Aα ∀r ∈ R, then rx ∈ ∪α∈IAα. In conclusion ∪α∈IAα is
a submodule.

The last proposition indicates that there is for every subset A of a module M a smallest
submodule of M that contains A, which is called the submodule of M generated by A. And
also the sum of a family (Ai)i∈I of submodules is defined:∑

i∈I Ai = {
∑
i∈I ai | ai ∈ Ai for all i, and ai = 0 for almost all i}

It’s easy to see that
∑
i∈I Ai is the submodule generated by the union ∪i∈IAi.

Now we can define module homomorphisms, let A and B be left modules with the same
ring R. A homomorphism ϕ : A → B of left modules is a mapping ϕ : A → B such that
ϕ(x+ y) = ϕ(x) +ϕ(y) and ϕ(rx) = rϕ(x), for all x, y ∈ A and r ∈ R. Analogous, we can define
homomorphisms of right modules.

It’s important to define some particular kind of homomorphisms: An endomorphism of a
module A is a module homomorphism of A onto A, If a module homomorphism is injective is called
monomorphism of modules, a module homomorphism which is surjetive is called epimorphism
of modules, an isomorphism of modules is a bijective homomorphism of modules, thus the inverse
bijection is also an isomorphism.

We will see some properties for homomorphism of modules in the following propositions, but
also it is important to clarify that in all the proofs we will suppose a left R-module, but the proof
of right R-module is analogous.

Proposition 2.0.2. The identity mapping on any module M is a module homomorphism.

Proof. Let M a module and 1M the identity module. Let x, y ∈M and r ∈ R.

1M (x+ y) = x+ y = 1M (x) + 1M (y)

1M (rx) = rx = r1M (x)

In conclusion, 1M is a homomorphism.

Proposition 2.0.3. Module homomorphisms composition is a homomorphism.
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Proof. Let A,B and C modules, also ϕ : A → B and ψ : B → C be homomorphism of modules.
Let x, y ∈ A and r ∈ R.

(ψ ◦ ϕ)(x+ y) = ψ(ϕ(x+ y)) = ψ(ϕ(x) + ϕ(y)) = ψ(ϕ(x)) + ψ(ϕ(y))

= (ψ ◦ ϕ)(x) + (ψ ◦ ϕ)(y)

(ψ ◦ ϕ)(rx) = ψ(ϕ(rx)) = ψ(rϕ(x)) = rψ(ϕ(x)) = r(ψ ◦ ϕ)(x)

Then ψ ◦ ϕ is an homomorphisms.

It’s important to clarify that homomorphisms can be added pointwise, let ϕ,ψ : A → B

homomorphisms of left modules, we define ϕ+ ψ : A→ B by (ϕ+ ψ)(x) = ϕ(x) + ψ(x) ∀x ∈ A,
and also it is a homomorphism of left modules. For right modules we have an analogous definition.

For the next proposition it‘s important to mention the following notation:

Proposition 2.0.4. Let ϕ : A → B be a module homomorphism. If C is a submodule of A,
then ϕ(C) = {ϕ(x)|x ∈ C} is a submodule of B. If D is a submodule of B then ϕ−1(D) = {x ∈
A|ϕ(x) ∈ D} is a submodule of A.

Proof. Let ϕ : A→ B be module homomorphism and let C be a submodule of A. Then we know
that ϕ(C) is a subgrup. So let r ∈ R and x ∈ ϕ(C). Thus exits c ∈ C such that x = ϕ(c).
Then rx = rϕ(c) = ϕ(rc) but C is a submodule, furthermore rc ∈ C that implies rx ∈ ϕ(C), in
conclusion ϕ(C).

Let D a submodule of B, we know that ϕ−1(D) is a subgroup, then let r ∈ R and x ∈ ϕ−1(D)
then ϕ(x) ∈ D, but D submodule that implies rϕ(x) = ϕ(rx) ∈ D thus rx ∈ ϕ−1(D).

In the last proposition, ϕ(C) is called the direct image and ϕ−1(D) is called the preimage
or inverse image but is important to clarify that the use of the notation ϕ−1(D) not imply that
ϕ has an inverse function.

Let ϕ : A → B be a module homomorphism, we can define the image or range of ϕ is
Im(ϕ) = {ϕ(x)|x ∈ A} = ϕ(A), and also the kernel of ϕ is Ker(ϕ) = {x ∈ A|ϕ(x) = 0} =
ϕ−1(0).

Now, let L,M,N be a modules, an epimorphism ϕ : M → N is said to be split if there exists
an homomorphism α : N → M with ϕ ◦ α = 1N , in this case α is called a splitting map for ϕ.
Analogously, a monomorphism α : L → M is said to be split if there exists an homomorphism
ϕ : M → L such that ϕ ◦ α = 1L. In this case ϕ is called a splitting map for α.

Let {Mi}i∈I a family of modules, the direct product of the modules {Mi}i∈I is denoted
Πi∈IMi, is the Cartesian product of Mi like sets, with operations defined componentwise.

And also, the external direct sum of the modules {Mi}i∈I is denoted by
⊕

i∈IMi, it is the
submodule of the direct product which consists of the elements (mi) for which are zero for all
but a finite number of i ∈ I.

It’s immediate that the direct product and the external direct sum of modules are also modules.
In particular, a finite external direct sum is the same as finite direct product. If the set I is infinite,
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in general the direct product and the external direct sum are different, and also they can’t be
isomorphic.

Let M a module, and {Mi}i∈I a family of submodules of M , M is the internal direct sum
of the submodules {Mi}i∈I , denoted by M =

⊕
i∈IMi, if every element of M can be expressed

uniquely like a sum of elements of Mi. In this case, we say that each Mi is a direct summand of
M , and it’s denoted by Mi|M .

It’s clear that every module has as direct summand itself and the zero submodule.

Proposition 2.0.5. Let M, N be a modules.

a) Let ϕ : M → N and α : N → M be homomorphisms such that ϕ ◦ α = 1N , then M =
Ker(ϕ)⊕ Im(α)

b) A monomorphism α : N →M splits if and only if Im(α) is a direct summand of M .

c) An epimorphism ϕ : M → N split if and only if Ker(ϕ) is a direct summand of M .

Proof.

a) Assume that ϕ : M → N and α : N → M are homomorphisms with ϕ ◦ α = 1N . If m ∈
Ker(ϕ)∩ Im(α), then there exist x ∈ N with α(x) = m and so x = (ϕ ◦α)(x) = ϕ(m) = 0, then
m = 0 because m = α(0) = 0. Thus Ker(ϕ) ∩ Im(α) = {0}.

Given any m ∈M , consider the element m− (α ◦ ϕ)(m). We haver (α ◦ ϕ)(m) ∈ Im(α) and
m− (α ◦ ϕ)(m) ∈ Ker(ϕ) since ϕ(m− (α ◦ ϕ)(m)) = ϕ(m)− (ϕ ◦ α)(ϕ(m)) = 0. Thus

m = (m− (α ◦ ϕ)(m)) + ((α ◦ ϕ)(m)) ∈ Ker(ϕ) + Im(α)

It follows that M = Ker(ϕ)⊕ Im(α).

b) Assume that α : N → M is a monomorphism. If α has a splitting map ϕ : M → N such that
ϕ ◦ α = 1N , then M = Im(α)⊕Ker(ϕ) by part a).

Conversely, assume that α is a monomorphism and Im(α) is a direct summand ofM , in other
words M = Im(α)⊕M2. Then each m ∈M is uniquely represented as α(x) + y for some x ∈ N
and some y ∈M2. Since α is one to one, the element x is uniquely determined bym. To show this,
suppose that α(x1) + y1 = α(x2) + y2. Since Im(α)∩M2 = {0}, this implies that α(x1) = α(x2),
and so x1 = x2 since α is one to one. Thus we have a well-defined function ϕ : M → N given by
ϕ(m) = x, for all m ∈ M . Since ϕ is well defined, it follows easily that ϕ is an homomorphism,
and it’s clear that ϕ ◦ α = 1N

c) Assume that ϕ : M → N is an epimorphism that has a splitting map α : N → M with
ϕ ◦ α = 1N . Applying part a) gives M = Ker(ϕ)⊕ Im(α).

Conversely, assume thatM = Ker(ϕ)⊕M2 for some submoduleM2 ⊆M . Define γ : M2 → N

by letting γ(x) = ϕ(x), for all x ∈ M2. Then γ is an onto mapping, since if y ∈ N then there
exists m ∈M with ϕ(m) = y, where m = m1 +m2 for some m1 ∈ Ker(ϕ) and m2 ∈M2, ans so
y = ϕ(m) = ϕ(m2) = γ(m2). Furthermore, γ is one to one, since Ker(γ) = Ker(ϕ) ∩M2 = {0}.
It is clear that γ is an homomorphism, and if we let α = γ−1, then ϕ ◦ α = 1N
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Proposition 2.0.6. Let M a module and let A be a submodule of M . The quotient group M/A

is module, in which r(x + A) = rx + A for all r ∈ R and x ∈ M . If M is unital, then M/A is
unital. The projection x 7→ x+A is a homomorphism of modules, whose kernel is A.

Proof. LetM be module and let A be a submodule, thenM is an abelian group and A a subgroup
of M , A is normal because every subgroup of an abelian group is normal, thus there is M/A the
quotient group, in which cosets of A are added as subsets. Then ∀x, y ∈M

(x+A) + (y +A) = {a+ b | a ∈ x+A and b ∈ y +A}

= {a+ b | a = x+ z1, b = y + z2 with z1, z2 ∈ A}

= {x+ y + z1 + z2 | x, y ∈M, z1, z2 ∈ A}

= {x+ y + z | x, y ∈M, z ∈ A}

= (x+ y) +A.

Let r ∈ R and x ∈M , then:

r(x+A) = r{x+ a | a ∈ A}

= {r(x+ a) | a ∈ A}

= {rx+ ra | a ∈ A}

= {rx+ b | b ∈ A}

= rx+A.

Then both are well define. Now we will check the properties 1 and 2 of the definition:
Let r, s ∈ R and x, y ∈M/A

r(s(x+A)) = r(sx+A)

= r(sx) +A

= (rs)x+A

= (rs)(x+A).

(r + s)(x+A) = (r + s)x+A

= (rx+ sx) +A

= (rx+A) + (sx+A)

= r(x+A) + s(x+A).

r((x+A) + (y +A)) = r((x+ y) +A)

= r(x+ y) +A

= (rx+ ry) +A
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= (rx+A) + (ry +A)

= r(x+A) + r(y +A).

Then M/A is a module. And also, if M is an unital module then 1 ∈ R

1(x+A) = 1x+A

= x+A.

then M/A is also unital.
Now, consider the projection π(x) = x+A, it has the next properties:

π(x+ y) = (x+ y) +A = (x+A) + (y +A) = π(x) + π(y).

π(rx) = rx+A = r(x+A) = r(π(x)) = rπ(x).

then the projection is a homomorphism.
Clearly, [0] ∈ M/A is [0] = A, and remember that A is a submodule, then x + A = A for all

x ∈ A. Then π(x) = x+A = A = [0] if and only if x ∈ A, in conclusion, Ker(π) = A

As we have seen in the last proposition, if M is a module and A a submodule of it, then the
module of all cosets of A is the quotient M/A of M by A.

An important property of the quotients module is that submodules of a quotients module
M/A are quotients of submodules of M .

Proposition 2.0.7. Each submodule of quotient module M/A has the form C/A for some sub-
module C, with A ≤ C ≤M .

Proof. Let a submodule K ≤M/A then every k ∈ K can be written like k = x+A with x ∈M ,
then Let P = {x ∈M | x+A = K}, we will prove that P is a submodule of M .

Let k1, k2 ∈ K, then ∃x1, x2 ∈ P such that k1 = x1 + A and k2 = x2 + A we have that
k1 + k2 ∈ K then

k1 + k2 = (x1 +A) + (x2 +A) = (x1 + x2) +A ∈ K.

Then x1 +x2 ∈ P , P is closed, also the associativity and commutativity follows ofM is an abelian
group.

Since K is a submodule of M , the identity element is in K, that is, [0] = 0 + A ∈ K that
implies that 0 ∈ P . And also we have that for all k1 ∈ K there are k2 ∈ K such that k1 +k2 = [0]
but ∃x1, x2 ∈ P such that k1 = x1 +A and k2 = x2 +A and we have

x1 +A+ x2 +A = 0 +A

⇔ (x1 + x2) +A = 0 +A,

that means that for every x1 there exists x2 such that x1 + x2 is in the same equivalence class
than 0, then x2 is the inverse of x1. In conclusion P is a subgroup and also by the construction,
clearly K = P/A.
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Theorem 2.0.8 (Factorization Theorem). Let A a module and B ≤ A, if ϕ : A → C is a
module homomorphism whose kernel contains B, then ϕ can be factorized uniquely through the
canonical projection π : A → A/B such that ϕ = ψ ◦ π for some unique module homomorphism
ψ : A/B → C, that means, the next diagram commutes

A
π //

ϕ
!!

A/B

ψ
��
C

Proof. We will use the formal definition of a mapping ψ : A/B → C as a set of ordered pairs,

ψ = {(x+B,ϕ(x)|x ∈ A}

We will check that is well define, by definition of A/B for every element in A/B we can find an
element in C such that the pair are in the function ψ, Moreover if we have a1, a2 ∈ A/B and
a1 = a2 that means that they are in the same equivalence class, then there is a representative
element a ∈ A such that a1 = a2 = a + B that implies ψ(a1) = ϕ(a) = ψ(a2), thus ψ is well
define and clearly ψ ◦ π = ϕ.

Now, let a, b ∈ A/B then there are x, y ∈ A such that a = x + B and b = y + B and α ∈ R
consider

ψ(x+B + y +B) = ψ(x+ y +B)

= ϕ(x+ y)

= ϕ(x) + ϕ(y)

= ψ(x+B) + ψ(y +B).

ψ(α(x+B)) = ψ(αx+B)

= ϕ(αx)

= αϕ(x)

= αψ(x+B).

then ψ is a homomorphism of modules.
Now, to show that ψ is unique consider χ : A/B → C be a homomorphism such that χ◦π = ϕ

then χ(x + B) = χ(π(x)) = ϕ(x) = ψ(π(x)) = ψ(x + B) for all x + B ∈ A/B, in conclusion
χ = ψ.

The next theorem is a useful stronger version of the factorization theorem.

Theorem 2.0.9 (Factorization Theorem). If ϕ : A → B and ρ : A → C are module homomor-
phism, ρ surjective and Ker(ρ) ⊆ Ker(ϕ), then ϕ factors uniquely through ρ, that means, the
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next diagram commutes
A

ρ //

ϕ

��

C

ψ~~

// 0

B

Proof. Assume that Ker(ρ) ⊆ Ker(ϕ) and let x′, y′ ∈ C, since ρ is surjective there are x, y ∈ A
such that ρ(x) = x′ and ρ(y) = y′, now if x′ = y′, then

ρ(x− y) = ρ(x)− ρ(y) = x′ − y′ = 0.

whence x − y ∈ Ker(ρ) ⊆ Ker(ϕ) and so ϕ(x) = ϕ(y). In other words there is a function
ψ : C → B such that ψ(ρ(x)) = ϕ(x) for all x ∈ A. Is easy to check that ψ is a homomorphism,
let x′, y′ ∈ C then there are x, y ∈ A such that ρ(x) = x′ and ρ(y) = y′ and α ∈ R consider

ψ(x′ + y′) = ψ(ρ(x) + ρ(y))

= ψ(ρ(x+ y))

= ϕ(x+ y)

= ϕ(x) + ϕ(y)

= ψ(ρ(x)) + ψ(ρ(y))

= ψ(x′) + ψ(y′).

ψ(αx′) = ψ(αρ(x))

= ψ(ρ(αx))

= ϕ(αx)

= αϕ(x)

= αψ(ρ(x))

= αψ(x′).

then ψ is a module homomorphism. Now to show that ψ is unique, consider χ : C → B be a
homomorphism such that χ ◦ ρ = ϕ, let x′ ∈ C then there is x ∈ A such that ρ(x) = x′ then
χ(x′) = χ(ρ(x)) = ϕ(x) = ψ(ρ(x)) = ψ(x′), in conclusion χ = ψ.

Theorem 2.0.10 (Homomorphism Theorem). If ϕ : A→ B is a homomorphism of modules then

A/Ker(ϕ) ∼= Im(ϕ)

In fact, there is an isomorphism θ : A/Ker(ϕ) → Im(ϕ) unique such that ϕ = ι ◦ θ ◦ π, where
ι : Im(ϕ)→ B is the inclusion homomorphism and π : A→ A/Ker(ϕ) is the canonical projection,

14



that means the next diagram commutes

A
ρ //

π
��

B

A/Ker(ϕ)
θ
// Im(ϕ)

ι

OO

Proof. Let ϕ : A → B a homomorphism of modules then let θ : A/Ker(ϕ) → Im(ϕ) given by
x = x+Ker(ϕ) 7→ ϕ(x). We will check that is well defined. Let x, y ∈ A/Ker(ϕ) then if x = y

that means that x and y are in the same equivalence class, then there is a representative element
x ∈ A such that x = y = x+Ker(ϕ) then θ(x) = ϕ(x) = θ(y), then θ is well define, and since ϕ
is a homomorphism, then so is θ.

Now we will check that θ is an isomorphism. Let x, y ∈ A/Ker(ϕ) then there are x, y ∈ A
such that x = x+Ker(ϕ) and y = y+Ker(ϕ), furthermore θ(x) = θ(y) then θ(x)−θ(y) = 0 that
implies ϕ(x)− ϕ(y) = 0 more ϕ(x− y) = 0 then x− y ∈ Ker(ϕ) then x+Ker(ϕ) = y +Ker(ϕ)
finally x = y, then θ is injective.

Let y ∈ Im(ϕ) then there is x ∈ A such that ϕ(x) = y moreover x = x+Ker(ϕ) ∈ A/Ker(ϕ)
and clearly θ(x) = ϕ(x) = y, then θ is surjective. We have already seen that θ is an isomorphism.

Let ι : Im(ϕ) → B the inclusion homomorphism and π : A → A/Ker(ϕ) the canonical
projection, let a ∈ A then

ι(θ(π(a))) = ι(θ(a+Ker(ϕ))) = ι(ϕ(a)) = ϕ(a).

Then for every a ∈ A we have ϕ = ι ◦ θ ◦ π.
Now to show that θ is unique, consider χ : A/Ker(ϕ) → Im(ϕ) be a isomorphism such that

ϕ = ι ◦ χ ◦ π, and let a ∈ A then

ι(χ(π(a))) = ϕ(a) = ι(θ(π(a))).

that implies
ι(χ(a+Ker(ϕ))) = ι(θ(a+Ker(ϕ))).

and also
χ(a+Ker(ϕ)) = θ(a+Ker(ϕ)).

In conclusion, χ = θ.

Theorem 2.0.11 (First Isomorphism Theorem). If A is a module and B ⊇ C are submodules of
A then

A/B ∼= (A/C)/(B/C)

In fact, there is a unique isomorphism θ : A/B → (A/C)/(B/C) such that θ ◦ ρ = τ ◦ π, where
π : A → A/C, ρ : A → A/B, and τ : A/C → (A/C)/(B/C) are the canonical projections, that
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means the next diagram commutes

A
π //

ρ

��

A/C

τ

��
A/B

θ
// (A/C)/(B/C)

Proof. Consider ϕ : A/C → A/B defined by a + C 7→ a + B, we will check that is well define.
By the definiton of A/B, for every element a ∈ A/C we can find an element b ∈ A/B such that
ϕ(a) = b. Let a, b ∈ A/C then if a = b that means that a and b are in the same equivalence
class, then there is a representative element x ∈ A such that a = b = x + C then we have
ϕ(a) = x+B = ϕ(b), in conclusion ϕ is well define, and clearly is a homomorphism of modules.

Clearly is surjective, let a ∈ A/B then there is a ∈ A such that a = a+B then there is a+C

such that ϕ(a+ C) = a+B.
Now we will check that Ker(ϕ) = B/C, let a + C ∈ Ker(ϕ) then ϕ(a + C) = a + B = B

that means a ∈ B therefore a + C ∈ B/C. On the other hand, let b + C ∈ B/C consider
ϕ(b+ C) = b+B = B then b+ C ∈ Ker(ϕ).

By the Homomorphism Theorem we obtain

(A/C)(B/C) ∼= A/B

in fact, there is a unique isomorphism θ : A/B → (A/C)/(B/C) and the diagram commutes.

For the following theorem, we need to define the sum of submodules, if A and B are
submodules of a module, then the sum of them is define by

A+B = {a+ b | a ∈ A and b ∈ B}

Theorem 2.0.12 (Second Isomorphism Theorem). If A and B are submodules of a module, then

(A+B)/B ∼= A/(A ∩B)

in fact, there is an isomorphism θ : A/(A∩B)→ (A+B)/B unique such that θ ◦ρ = π ◦ ι, where
π : A+B → (A+B)/B and ρ : A→ A/(A∩B) are the canonical projections and ι : A→ A+B

is the inclusion homomorphism, that means the next diagram commutes

A
ρ //

ι

��

A/(A ∩B)

θ
��

A+B π
// (A+B)/B

Proof. Consider ϕ : A+B → A/(A ∩B) defined by c = a+ b 7→ a+ (A ∩B), we will check that
is well define. By the definiton of A + B, for every element a ∈ A + B we can find an element
b ∈ A/(A ∩ B) such that ϕ(a) = b. Let c, d ∈ A + B then if c = d that means that there are
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a ∈ A and b ∈ B such that c = d = a + b then we have ϕ(c) = ϕ(a + b) = ϕ(d), in conclusion ϕ
is well define, and clearly is a homomorphism of modules.

Clearly is surjective, let c ∈ A/(A ∩ B) then there is a ∈ A such that c = a + (A ∩ B) then
there is a+ 0 ∈ A+B such that ϕ(a+ 0) = a+ (A ∩B).

Now we will check that Ker(ϕ) = B, let a+ b ∈ Ker(ϕ) then ϕ(a+ b) = a+ (A∩B) = A∩B
that means a ∈ A ∩ B then a ∈ B therefore a + b ∈ B. On the other hand, let b ∈ B consider
0 + b ∈ A+B then ϕ(0 + b) = 0 + (A ∩B) = A ∩B then b ∈ Ker(ϕ).

By the Homomorphism Theorem we obtain

(A+B)/B ∼= A/(A ∩B)

in fact, there is a unique isomorphism θ : A/(A∩B)→ (A+B)/B and the diagram commutes.

2.1 Universal Properties

Theorem 2.1.1 (Universal Property of Direct Product). Let {Mi}i∈I a family of modules. De-
note the direct product of the family by P . For each j ∈ I, the function πj : P → Mj given by
Mj((mi)) = mj is a homomorphism of modules and it’s called projection to Mj.

If X is other module with a family of homomorphisms of modules Pj : X → Mj, then there
exists a unique homomorphism of modules P : X → P such that πj ◦ P = Pj for all j ∈ I.

Proof. Consider the function πj : P → Mj for some j ∈ I and α ∈ R. Clearly it is a homomor-
phism because

πj(xi + yi) = πj((x+ y)i) = (x+ y)j = xj + yj = πj(xi) + πj(yi).

πj(αxi) = πj((αx)i) = (αx)j = α(x)j = απj(xi).

Now, consider X a module and a family of homomorphisms Pj : X →Mj , consider the function
P (x) = (Pi(x)), this function is an homomorphism because each component so is, and also
πj ◦ P = Pj for every j ∈ I.

Consider Q : X → P such that πj ◦ Q = Pj for every j ∈ I. Let x ∈ X, and (πj ◦ P )(x) =
(πj ◦Q)(x) for every j ∈ I that implies (P (x))j = (Q(x))j for every j ∈ I then P (x) = Q(x) for
every x ∈ X, finally P ≡ Q, in conclusion P is unique.

Theorem 2.1.2 (Universal Property of External Direct Sum). Let {Mi}i∈I a family of modules.
Denote the external direct sum of the family by S. For each j ∈ I, the function λj : Mj → S

given by λj(m) = (mi) with mi = 0 for i 6= j and mj = m, is a homomorphism of modules, and
it’s called inclusion of Mj. If X is other module with a family of homomorphisms of modules
lj : Mj → X, then there exists a unique homomorphism of modules q : S → X such that q◦λj = lj

for every j ∈ I.
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Proof. Let j ∈ I, and x, y ∈Mj , and also α ∈ R then

λj(x+ y) = (0, 0, . . . , x+ y, . . .)

= (0, 0, . . . , x, . . .) + (0, 0, . . . , y, . . .)

= λj(x) + λj(y).

λj(αx) = (0, 0, . . . , λx, . . .)

= α(0, 0, . . . , x, . . .)

= α(λj(x)).

Now, consider X a module and a family of homomorphisms li : Mi → X, consider the
function q(xi) =

∑
i∈Ω li(xi) with Ω = {i ∈ I | xi 6= 0}, is a homomorphism since is a finite sum

of homomorphisms and also q ◦ λj = lj for every j ∈ I.
Consider ϕ ◦ λj = lj for every j ∈ I then for every mj ∈Mj ϕ(λj(mj)) = q(λj(mj)).
Let m ∈ S then m =

∑
i∈Ω λi(mi) then

ϕ(m) = ϕ(
∑
i∈Ω

λi(mi))

=
∑
i∈Ω

ϕ(λi(mi))

=
∑
i∈Ω

q(λi(mi))

= q(
∑
i∈Ω

λi(mi))

= q(m).

For every m ∈M , in conclusion q is unique.
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Chapter 3

Injective Modules

In this moment we can introduce the next concept: Let a finite or infinite sequence

· · ·Mi
ϕi //Mi+1

ϕi+1//Mi+2 · · ·

of a module homomorphisms is called exact at position i ∈ {2, . . . , n, . . .} if Im(ϕi−1) =
Ker(ϕi). It is called exact if it is exact at every position.

In particular, if the source or target of the map is the zero module, so that the map is
necessarily the zero homomorphism. And also, If a sequence 0→ M1 → M2 → M3 → 0 is exact
is called a short exact sequence.

Proposition 3.0.1. We note some particular kinds of exact sequences:

a) 0→ A
ϕ−→ B is exact if and only if ϕ is injective.

b) A
ϕ−→ B → 0 is exact if and only if ϕ is surjective.

c) 0→ A
ϕ−→ B → 0 is exact if and only if ϕ is an isomorphism

Proof. a) We have by definition Im(0) = Ker(ϕ), but Im(0) = {0}, that implies ϕ es injective.

b) We have that Im(ϕ) = Ker(0), but Ker(0) = B, that implies Im(ϕ) = B, in others words
ϕ is surjective.

c) Follows by the two last.

It’s important to mention that exact sequences 0 → A → B → C are some times called left
exact, analogously exact sequences A→ B → C → 0 are some times called right exact.

A short exact sequence 0 → N → M → P → 0 is called splitting when there is an isomor-
phism θ : M → N ⊕ P such that the next diagram commutes

0 // N
ϕ //

1N

��

M
α //

θ
��

P //

1P

��

0

0 // N // N ⊕ P // P // 0
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Proposition 3.0.2. Let M,N,L be modules, the following properties of a short exact sequence

0 //M
ϕ // N

α // L // 0

are equivalent:

a) The sequence splits.

b) There exists a homomorphism β : N →M such that β ◦ ϕ = 1M

c) There exists a homomorphism ψ : L→ N such that α ◦ ψ = 1L

Proof. We proceed in the following progression a)⇔ b) and b)⇔ c).

a)⇒ b) Suppose that the sequence splits, let θ : N → M ⊕ L be the guaranteed isomorphism.
Define a map β by β = πM ◦θ where πM is the natural inclusion, then we have the following
diagram.

0 //M
ϕ //

OO

1M

��

N
α //

θ
��

L //
OO

1L

��

0

0 //M
ιM //M ⊕ L πL //

πM

cc

L // 0

where everything is commutative. Since β is the composition of two homomorphisms, it’s
a homomorphism and also β ◦ ϕ = πM ◦ θ ◦ ϕ = πm|circιM ◦ 1M = 1M . The conclusion
follows.

b)⇒ c) Suppose there is a homomorphism β : N → M such that β ◦ ϕ = 1M . Define ψ : L → N

as follows. Since α is an epimorphism there exist , for each l ∈ L some n ∈ N such that
α(n) = l, define ψ(l) = n − ϕ(β(n)).To see that this is well-defined, in the sense that if
α(n′) = α(n) then n−ϕ(β(n)) = n′−ϕ(β(n′)) and also n−n′ ∈ Ker(α) and so by exactness
n − n′ ∈ Im(ϕ) and since β ◦ ϕ = 1M this tells us that ϕ ◦ β ◦ ϕ = ϕ and so evidently
ϕ(β(n− n′)) = n− n′ and so

n− ϕ(β(n))− (n′ − ϕ(β(n′))) = n− n′ − ϕ(β(n− n′)) = 0.

This is a homomorphism since if l = α(n) and k = α(n′) then rl = α(rn) and so rl + k =
α(rn+ n′) and so

ψ(rl + k) = rn+ n′ − ϕ(β(rn− n′))

= r(n− ϕ(β(n))) + (n′ − ϕ(β(n′)))

= rψ(l) + ψ(k).

And clearly α ◦ ψ = 1L.

c)⇒ b) Suppose ψ : L→ N with α ◦ ψ = 1L. Let n ∈ N be arbitrary, note that

α(n− ψ(α(n))) = α(n)− α(ψ(α(n))) = α(n)− α(n) = 0.
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So that n − ψ(α(n)) ∈ Ker(α) by exactness n − ψ(α(n)) ∈ Im(ϕ), and since ϕ is a
monomorphism this implies that there exists a unique m ∈ M with ϕ(m) = n − ψ(α(n)),
so define β(n) = m. To see that this is a homomorphism we note that ϕ(m) = n −
ψ(α(n)) and ϕ(m′) = n′ − ψ(α(n′)) then rϕ(m) + ϕ(m′) = rn− n′ − ψ(α(rn+ n′)) and so
rϕ(m) + ϕ(m′) = ϕ(rm + m′). Lastly, we need to prove that β ◦ ϕ = 1M , or equivalently
ϕ(m) = f(m)− ψ(α(ϕ(m))) but since Im(ϕ) = Ker(α) this is clear.

b)⇒ a) To do this we define θ : N → M ⊕ L by n 7→ (β(n), α(n)). This is a homomorphism since
each coordinate map is a homomorphism. To see that θ is a monomorphism we note that
θ(n) = θ(n′) implies β(n) = β(n′) and α(n) = α(n′). From the second of these equalities we
gather that n−n′ ∈ Ker(α) and since the sequence is exact this implies that n−n′ ∈ Im(ϕ)
and so as previously noted ϕ(β(n − n′)) = n − n′, but ϕ(β(n − n′)) = ϕ(β(n) − β(n′)) =
ϕ(0) = 0 and so n = n′. To see that θ is surjective we let (m, l) ∈ M ⊕ L be arbitrary.
Since α is surjective we know that there exists n ∈ N such that α(n) = l and since β
is surjective (since it has a right inverse) we may find n′ ∈ N with β(n′) = m. So, set
x = n+ ϕ(β(n′ − n)). Note then that

β(x) = β(n) + β(ϕ(β(n′ − n))) = β(n) + β(n′)− β(n) = β(n′) = m

and
α(x) = α(n) + α(ϕ(β(n′ − n))) = α(n) = l

Since the sequence is exact. Thus, θ(x) = (β(x), α(x)) = (m,n). Since (m,n) was arbitrary
the surjectivity follows. It only remains to show that the relevant diagram commutes. This
amounts to showing that θ◦ϕ = ιM ◦1M and 1L◦α = πL◦θ. But it is clear since, for example
θ(ϕ(m)) = (β(ϕ(m)), α(ϕ(m))) = (m, 0) = ι(m) and πL(θ(n)) = πL(β(n), α(n)) = α(n).
Combining all this gives the desired conclusion.

Let f : M → L and g : M → N be module homomorphisms:

M
f //

g

��

L

N

Then the pushout of these maps is a module F together with homomorphisms α : L → F

and β : N → F such that α ◦ f = β ◦ g

M
f //

g

��

L

α
��

N
β
// F
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And such that the following mapping property holds: Suppose that G is a module and that
α′ : L → G and β′ : N → G are homomorphism with α′ ◦ f = β′ ◦ g, then there is a unique
module homomorphism ϕ : F → G with ϕ ◦ α = α′ and ϕ ◦ β = β′.

M
f //

g

��

L

α
��

α′

��

N
β
//

β′
++

F
ϕ

��
G

If f, g are the 0 maps, then the commutativity condition are trivial, and so the mapping
property above is exactly that of the coproduct, or direct sum, of L and N . We will use the
direct sum to prove the existence of the pushout of any diagram.

Proposition 3.0.3. Let f : M → L and g : M → N be module homomorphisms. If we set
T = {(f(m),−g(m)) ∈ L⊕N : m ∈M}, then (L⊕N)/T , together with the maps α(l) = (l, 0)+T
and β(n) = (0, n) + T is the pushout of f and g.

Proof. With the detinition of α and β, we have α ◦ f = β ◦ g since (f(x), 0) ≡ (0, g(x))modT . We
then have to verify the mapping property. Set F = (L ⊕ N)/T , and suppose there is a module
G and maps α′ : L → G and β′ : N → G with α′ ◦ f = β ◦ g. To define ϕ : F → G, we have
the canonical map α′ ⊕ β′ : L ⊕ N → G, given by (l, n) 7→ α′(l) + β′(n), that arises from the
mapping property of a coproduct. This map sends (f(m),−g(m)) to α′(f(m)) − β′(g(m)) = 0
since α′ ◦ f = β′ ◦ g. Therefore, α′ ⊕ β′ factors through T to give a map ϕ : F → G, defined
by ϕ((l, n) + T ) = α′(l) + β′(n).It is easy to see that α′ = ϕ ◦ α and β′ = ϕ ◦ β. Moreover, the
definition of ϕ is forced upon us by the requirement that α′ = ϕ ◦ α and β′ = ϕ ◦ β. Thus, F,
together with α and β, is a pushout of f, g.

Proposition 3.0.4. Suppose we have a commutative diagram

0 //M
i //

β
��

P
σ //

α
��

A //

1A

��

0

0 // B
j
// X τ

// A // 0

Then X is the pushout of B and P with respect to i and β.

Proof. We first note that X = α(P )+ j(B). To prove this, let x ∈ X. Then τ(x) = σ(p) for some
p ∈ P . Therefore, x− σ(p) ∈ Ker(τ) = im(j), so x− α(p) = j(b) for some b ∈ B.

Thus, x = α(p) + j(b), as desired. We have j ◦ β = α ◦ i by the assumption that the diagram
is commutative. To verify the mapping property, suppose G is a module with homomorphisms
α′ : P → G and j′ : B → G such that α′ ◦ i = j′ ◦ β. We define ϕ : X → G by ϕ(α(p) + j(b)) =
α′(p)+j′(b). If we show that ϕ is well defined, then we get ϕ◦α = α′ and ϕ◦ = j′ by alternatively
setting b = 0 and p = 0 in the definition of ϕ. Furthermore, 1φ is another map from X to G with
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φ ◦ α = α′ and φ ◦ β = β′, then

φ(α(p) + j(b)) = ϕ(α(p)) + ϕ(j(b)) = α′(p) + j′(b) = ϕ(α(p) + j(b))

showing that φ = ϕ. Also, it is clear that ϕ will be a homomorphism once we know that its
well defined. To see that ϕ is well defined, it is enough to show that if α(p) + j(b) = 0, then
α′(p) + j′(b) = 0. So, suppose that α(p) + j(p) = 0. Applying τ gives 0 = τ(α(p)) = σ(p).

Thus, p = i(m) for some m ∈M . Therefore, 0 = α(i(m)) + j(b) = j(β(m)) + j(b). Since j is
injective, β(m) + b = 0, or b = −β(m). This yields

α′(p) + j′(b) = α′(i(m)) + j′(−β(m)) = (α′ ◦ i− j′ ◦ β)(m) = 0

as α′ ◦ i = j′ ◦ β. this shows that ϕ is well defined, and finishes the proof.

We say that a module J is injective when every homomorphism into J can be factored or
extended through every monomorphism: if ϕ : M → J and µ : M → N are module homomor-
phisms, and µ is injective, then ϕ = ψ ◦ µ for some homomorphism ψ : N → J .

J

0 //M µ
//

ϕ

OO

N

ψ
``

Worth mentioning that this factorization is not necessarily unique, because ψ does’t have to be
unique.

Proposition 3.0.5. If J is an injective module and if A is a direct summand of J , then A is
injective

Proof. We can assume A ⊆ J and that there is an homomorphism π : J → A that is the identity
on A. Let W ⊆ V be modules and let θ : W → A be given. Then θ : W → J and , since J is
injective, θ extends to θ∗ : V → J . Finally, π ◦ θ∗ : V → A extends the map θ : W → A.

Proposition 3.0.6. For a module J the following condition are equivalent:

a) J is injective.

b) Every monomorphism J →M splits

c) Every short exact sequence 0 // J // B // C // 0 splits.

d) J is a direct summand of every module M ⊇ J .

Proof.a)⇒ b) Let J injective and µ : J → M a monomorphism, consider 1J , it can be extended
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through µ for some ψ : M → J , then we have the next diagram:

J

0 // J µ
//

1J

OO

M

ψ
``

In conclusion, ψ ◦ µ = 1J , in other words µ splits.

b)⇒ a) Let ϕ : M → N be a monomorphism and let β : M → J be a homomorphism. Then we
have the pushout defined by

M ′ := N ⊕ J
{(ϕ(m),−β(m)) : m ∈M} .

We have natural maps from N and J to M ′, call them ι1 respectively ι2. First notice that
by construction of M ′ it follows that ι1 ◦ ϕ = ι2 ◦ β. We claim that ι2 is injective, indeed
if (0, i) = (f(m), g(m)) for some m ∈ M , it follows that m = 0 and hence i = 0 (since
ϕ is monomorphism). By our assumption we obtain a splitting map ψ : M ′ → J , that is
ψ ◦ ι2 = 1I . We have the following diagram:

0 //M
ϕ //

β
��

N

ι1
��

J
ι2 **

M ′

ψ

ii

We obtain a map λ := ψ ◦ ι1 : N → J . We just calculate:

λ ◦ ϕ = ψ ◦ ι1 ◦ ϕ = ψ ◦ ι2 ◦ β = β

In conclusion, β can be factored through every monomorphism. In other words, J is injec-
tive.

a)⇒ c) Suppose that J is injective and also that we have the next exact sequence 0 // J
ϕ // B // C

β // 0 .
Note that we have the following diagram

J

0 // J
ϕ //

1J

OO

B

So there exists an homomorphism ρ : B → J such that 1J = ρ ◦ ϕ. Thus, by the splitting
lemma, we may conclude that our sequence splits.

c)⇒ a) Conversely, suppose that every exact sequence 0 // J // B // C // 0 of mod-
ules splits. Let β : A → B be a monomorphism between modules, and let ϕ : A → J

be an homomorphism. Then there is the pushout with D = (J ⊕ B)/W where W =

24



{(ϕ(a),−β(a))|a ∈ A}; this is shown by the following diagram:

0 // A
β //

ϕ

��

B

ϕ′

��
J

β′
// D

Then ϕ′ and β′ are homomorphism, given by ϕ′(b) = (0, b) + W and β′(j) = (j, 0) + W .
Note that for every a ∈ A, (ϕ(a),−β(a)) ∈W , so

β′(ϕ(a)) = (ϕ(a), 0) +W = (0, β(a)) +W = ϕ′(β(a)).

Thus, β′ ◦ ϕ = ϕ′ ◦ β. We will now show that β′ is one to one. Let x ∈ Ker(β′). Then
(x, 0) + W = β′(x) = (0, 0) + W . Thus (x, 0) ∈ W , meaning that there exists a ∈ A

such that ϕ(a) = x and −β(a) = 0. Since a ∈ Ker(β) and β is one to one, a = 0, so
0 = ϕ(0) = ϕ(a) = x. Then, x = 0 and β′ is a monomorphism. So we can extend β′ to

an exact sequence 0 // J
β′
// D

φ // C // 0 for some module C. By assumption,
there exist an homomorphism κ : D → M such that a κ ◦ β′ = 1M . Define µ : B → J by
µ = κ ◦ϕ′, so µ is an homomorphism. Note that for every a ∈ A, µ ◦ϕ(a) = κ ◦ϕ′ ◦ β(a) =
κ ◦ β′ ◦ ϕ(a) = 1J ◦ ϕ(a) = ϕ(a), showing that µ ◦ β = ϕ. Hence, J is injective.

a)⇒ d) Assume J is injective and J is a submodule of a moduleM , then we have an exact sequence
0 // J //M //M/J // 0 which, in view of c) splits. Then M ∼= J ⊕M/J , in
conclusion J is a direct summand of M.

d)⇒ a) Let ϕ : M → N be a monomorphism and let β : M → J be a homomorphism, then as
above we have the pushout

0 //M
ϕ //

β
��

N

ι1
��

0 // J
ι2 //M ′

By our assumption M ′ = J ⊕ J ′. Consider the canonical projection πJ : J ⊕ J ′ → J , by
construction we have πJ ◦ ι2 = 1J , define θ = πJ ◦ ι1, then we have the following diagram:

0 //M
ϕ //

β
��

N

ι1
��

θ

}}
J

ι2 **
M ′

πJ

ii

Finally consider θ ◦ ϕ = πJ ◦ ι1 ◦ ϕ = πJ ◦ ι2 ◦ β = 1J ◦ β = β.

In conclusion, β can be factored through every monomorphism. In other words, J is injec-
tive.
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Proposition 3.0.7. Every direct summand of an injective module is injective.

Proof. Let J = A⊕B a injective module, let ϕ : M → N be a monomorphism and also α : M → A

be a homomorphism. Consider the natural map ιA : A → A ⊕ B and the canonical projection
πA : A⊕B → A, its clear that πA ◦ ιA. Since J is injective, there is a homomorphism β : N → J

such that ιA ◦ α = β ◦ ϕ. Define θ = πA ◦ β and consider

θ ◦ ϕ = πA ◦ β ◦ ϕ = πA ◦ ιA ◦ α = α

We can summarize the last proof in the next diagram:

0 //M
ϕ //

α
��

N
θ

yy
β

��

A

ιA
��

J = A⊕B

πA

VV

In conclusion, α can be factored through every monomorphism. In other words, A is injective.

Proposition 3.0.8. Every direct product of modules is injective if and only if every factor is
injective.

Proof. Let Ji∈I a family of modules. Suppose
∏
i∈I Ji is injective, consider the next commutative

diagram where A and B are modules:

∏
i∈I Ji

0 // A
β

//

ϕ

OO

B

λ
cc

Since
∏
i∈I Ji is a direct product we have the next diagram

∏
i∈I Ji

πi

��

B
λoo

li{{
Ji

Then li = πi ◦ λ, and using the above diagrams we obtain

Ji

0 // A
β
//

πi◦ϕ
OO

B

li
__

Since πi ◦ ϕ = πi ◦ λ ◦ β = li ◦ β. In conclusion, Ji is injective, for every i ∈ I.
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Now suppose that for every i ∈ I, Ji is injective. Then for A and B modules we have the next
diagram:

Ji

0 // A
β
//

γ

OO

B

ϕi

__

where we have ϕi◦β = γ. Also, since
∏
i∈I Ji is the direct product of Ji then we have the following

diagrams commutes:
B

ϕi //

ϕ

��

Ji

∏
i∈I Ji

πi

;;

Ji
ψi //

ιi
��

B

∏
i∈I Ji

ψ

;;

Because ψ ◦ ιi = ψi and πi ◦ ϕ = ϕi. Now consider the following diagram:

0 // A
β //

γ

��

B

ϕ

��

ϕi

��
Ji

ιi --ψi

CC

∏
i∈I Ji

ψ

VV

πi

jj

Since ιi ◦ πi = 1∏
i∈I

Ji
then ιi ◦ ϕi = ιi ◦ πi ◦ ϕ = ϕ. Finally, we have ιi ◦ γ = ιi ◦ ϕi ◦ β = ϕ ◦ β,

in conclusion the last diagram commutes, in other words
∏
i∈I Ji is injective.

By the last proposition we can conclude that every finite external direct sum of modules is
injective if and only if every module is injective, but this property does not extend to infinite
external direct sums.

Theorem 3.0.9 (Baer’s Criterion). An R-module M is injective if and only if every homomor-
phism I →M , where I is an ideal of R, can be extended to a homomorphism R→M .

Proof. Suppose thatM is an injective R-module. Let ϕ : I →M be a homomorphism, where I is
a left ideal of R. Note that I and R are both R-modules, where the inclusion mapping ι : I → R

is a monomorphism. Since M is injective, there exists an homomorphism α : R → M such that
ϕ = α ◦ ι. Thus, α(a) = α ◦ ι(a) = ϕ(a) for every a ∈ I.

Now, consider the following diagram:

0 // N
f //

g

��

N ′

M
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We need to find a map h : N ′ →M . Consider the set of pairs (N ′′, h) such that N ⊆ N ′′ ⊂ N ′,
h : N ′′ →M with the property that h|N = g. This set is non-empty, since it contains (N, g). We
order this set by the relations that (N1, h1) ≤ (N2, h2) if N1 ⊂ N2 and h2|N1 = h1. A non-empty
chain (Si, hi) has an upper bound, namely the ’union’ defined as (S, h) where S = ∪Si and for
s ∈ Si define h(x) = hi(x). Zorn’s lemma now give a maximal element (N ′′, h), we claim that
N ′′ = N ′ and hence h will be an extension of g. Suppose that N ′′ 6= N ′ and let x ∈ N ′ \N ′′. Let
I = {r ∈ R : rx ∈ N ′′} ⊂ R, then I is an ideal of R.

Consider the following diagram:

0 // I //

i 7→h(ix)
��

R

M

For i ∈ I we have that ix ∈ N ′′ and hence h(ix) is defined and this obviously is linear. By
the assumption of the theorem, we obtain a map ϕ : R → M such that the following diagram
commutes:

0 // I //

i 7→h(ix)
��

R
ϕ

~~
M

As x = 1 · x, it seems natural to define the following map:

ϕ′ :Rx+N ′ →M

rn+ n′′ 7→ rϕ(1) + h(n′′)

for r ∈ R and n′′ ∈ N . We check that this maps is well-defined. For this suppose that rx = n

there r ∈ R and n ∈ N ′′. But this follows since rϕ(1) = ϕ(r) = h(rx) = h(n). Hence (Rx+N ′′, ϕ)
is a proper extension of (N ′′, h) contradicting the maximality of (N ′′, h). Hence N ′′ = N ′ and we
are done.

Every abelian group can be considered in a natural sense as a Z-module, it is important to
remember that group A is called divisible if and only if for every element z ∈ Z if z 6= 0 then
Az = A. Also it is important to remember that every epimorphic image of a divisible group
is divisible and consequently every factor group of a divisible group is divisible, and also every
abelian group can be mapped monomorphically into a divisible group.

Proposition 3.0.10. If ϕ : MZ → LZ is a monomorphism and if MZ is divisible, then ϕ splits

Proof. By the last property of divisible groups, Im(ϕ) is divisible, so that without loss of gener-
ality we can consider MZ to be a submodule of LZ and ϕ = ι to be the inclusion mapping. Let
then T := {U |U 7→ L

∧
M ∩ U = 0}.

Since we have U = 0 ∈ T , T 6= φ; since further the union of every totally ordered subset
of T (under inclusion) is again an element of T , there is by reason of Zorn’s Lemma a maximal
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element in T , which is again to be denoted by U. As a result we then have M +U = M ⊕U 7→ L,
and it is to be shown that L = M ⊕ U .

For an arbitrary l ∈ L we consider the ideal z0Z consisting if the z ∈ Z with lz ∈M +U . Let
lz0 = m + u. Since M is divisible there is a m0 with m0z0 = m then (l −m0)z0 = u. Evidently
z0Z is then also the ideal of the z ∈ Z with (l −m0)z ∈M + U .

We claim thatM ∩ (U +(l−m0)Z) = 0. Assume m1 = u1 +(l−m0)z1 ∈M ∩ (U +(l−m0)Z).
Then (l −m0)z1 = m1 − u1 ∈M + U and so z1 = z0t, t ∈ Z. Then (l −m0)z0t = ut = m1 − u1.
Then 0 = m1− (u1 +ut) finally m1 = 0. From the maximality of U it follows that (l−m0)Z 7→ U

then l −m0 ∈ U thus l ∈M + U . Thus we have in fact, L = M ⊕ U .

For R = Z there is characterization and this has also considerable significance for the case of
an arbitrary ring R, it is in fact used to show the existence of injective extensions.

Theorem 3.0.11. A Z-module (an abelian group) is injective if and only if it is divisible.

Proof. Let MZ be divisible, then D is injective. Now let QZ be injective. Let qo ∈ Q, 0 6= z0 ∈ Z;
if we consider the homomorphisms

z0Z
ι //

ϕ

��

Z

κ
~~

Q

where ι is the inclusion mapping and ϕ is defined by ϕ(z0) := q0, then there is a κ with ϕ = κ ◦ ι,
since Q is injective. Thus we have κ(1)z0 = κ(1z0) = κ(z0) = (κ ◦ ι)(z0) = ϕ(z0) = q0. Since
q0 ∈ Q was arbitrary, it follows therefore that Qz0 = Q, i.e. Q is divisible.

Proposition 3.0.12. If M is divisible (injective) Z-module then HomZ(R,M) is injective as a
R-module.

Proof. Let α : A → B be an R-monomorphism and let ϕ : A → HomZ(R,M) be an R-
homomorphism. Let σ be the Z-homomorphism defined by σ : HomZ(R,M) → M , f 7→ f(1)
then we consider the diagram

A
α //

ϕ

��

B

κ

xx

τ

��

HomZ(R,M)
σ

��
M

If we regard α and ϕ only as Z-homomorphisms, then there is, since M is Z-injective, a Z-
homomorphism τ : B → M with α ◦ ϕ = τ ◦ α. Now let τ : B → HomZ(R,M) be defined by
κ(b)(r) = τ(br), b ∈ B, r ∈ R.

Then for fixed b ∈ B, obviously κ(b) ∈ HomZ(R,M) and we have

κ(br1)(r) = τ(br1r) = κ(b)(r1r) = (κ(b)r1)(r),
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i.e κ(br1) = κ(b)r1, thus κ is an R-homomorphism. Therefore we have

κ ◦ α(a)(r) = τ(α(a)r) = τ(α(ar)) = τ ◦ α(ar) = σ ◦ ϕ(ar)

= ϕ(ar)(1) = (ϕ(a)r)(1) = ϕ(a)(1)

and consequently κ ◦ α = ϕ

Proposition 3.0.13. For every module there is a monomorphism into an injective module.

Proof. Let M a module. Then there is a Z-monomorphism µ : M → D into a divisible abelian
group. Thus HomZ(R,D)R is injective as an R-module. If we define ρ : M → HomZ(R,D) by
ρ(m)(r) = µ(mr), m ∈ M , r ∈ R, then ρ is evidently an R-homomorphism and, since µ is a
monomorphism, even a monomorphism.

Lemma 3.0.14. Let ρ : MR → NR be a monomorphism. Then there is a module N ′ with
M → N ′ and an isomorphism τ : N ′ → N that ρ = τ ◦ ι, where ι is the inclusion mapping of M
in N ′.

Proof. Let D be a set of the same cardinality as the complement N \ ρ(M) if ρ(M) in N with
D ∩M = φ and let β : D → N \ ρ(M) be an injective mapping. Then define a set N ′ = M ∪D
and let τ : N ′ → N be the bijective mapping defined by

τ(m) = ρ(m) m ∈M
τ(d) = β(d) d ∈ D.

In order to make N ′ into a module containing MR and to make τ into a module homomor-
phism, we put:

x+ y = τ−1(τ(x) + τ(y)) x, y ∈ N ′

xr = τ−1(τ(x)r) r ∈ R.

As it is immediately seen, all assertions are then satisfied.

Theorem 3.0.15. Every module is a submodule of an injective module.

This theorem follows from the last lemma, since HomZ(R,D)R and the isomorphic module
N ′ are both injective.

3.1 Injective Hull

Now considerM a module, and let S a submodule ofM , we say that S is essential when S∩T 6= 0
for every submodule T 6= 0 of M . And also a monomorphism α : A → B is called essential if
Im(α) is an essential submodule of B.

Proposition 3.1.1. If A ⊆ B are modules of C, then A is essential in C if and only if A is
essential B and B is essential in C
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Proof. Suppose A is essential in C. Thus for every submodule D ⊆ C we have A ∩D 6= 0. But
remember that A ⊆ B. Then we obtain B ∩ D 6= 0, in other words B is essential in C. Let a
subobject E ⊆ B, then we have that E ⊆ C thus A ∩ E 6= 0 in conclusion A is essential in C.

On the other hand, suppose A is essential in B and B is essential in C. Let D ⊆ C. Since B
is essential, we have B∩D 6= 0. But B∩D ⊆ B and also A is essential in B, thus A∩ (B∩C) 6= 0
but we need to remember that A ⊆ B that implies that A ∩B = A. In conclusion A ∩D 6= 0, in
other words A is essential in C.

Proposition 3.1.2. If α : A→ B and β : B → C are monomorphisms, then β ◦ α is essential if
and only if both α and β are essential.

Proof. Clearly Im(β ◦ α) ⊆ Im(β) are subobjects of C. Suppose that β ◦ α is essential, thus
Im(β ◦α) is essential in C, by the last proposition we have Im(β) is essential in C in other words
β is a essential monomorphism, and also Im(β ◦ α) is essential in Im(β). Let N ⊆ B then we
know that β(N) ⊆ Im(β) thus Im(β ◦α)∩β(N) 6= 0 then there is m 6= 0 such that m ∈ Im(β ◦α)
and m ∈ β(N), then there is x ∈ A such that m = (β ◦ α)(x) and also there is y ∈ N such that
m = β(y) then since β is a monomorphism then 0 6= (β ◦ α)(x) = β(y) implies β(x) = y 6= 0 in
conclusion 0 6= y ∈ Im(α) ∩N , in other words α is essential.

Now, suppose α and β are essential, let E ⊆ Im(β) then there is F ⊆ B such that β(F ) = E

but Im(α) ∩ F 6= 0 thus there exists m 6= 0 such that 0 6= β(m) ∈ Im(β ◦ α) and 0 6= β(m) ∈
β(F ) = E, in other words Im(β ◦ α) is essential in Im(β). In conclusion we have Im(β ◦ α) is
essential in Im(β) and Im(β) is essential in D by 3.1.1 Im(β ◦ α) is essential in C, thus β ◦ α is
a essential monomorphism.

Proposition 3.1.3. If µ is an essential monomorphism, and ϕ◦µ is injective, then ϕ is injective.

Proof. Since ϕ◦µ is injective, thenKer(ϕ)∩Im(µ) = 0, and also µ is an essential monomorphism,
hence Ker(ϕ) = 0.

Consider the module A, an essential extension of A is defined as a module B such that
A is an essential submodule of B, more general, a module B with an essential monomorphism
A→ B.

Proposition 3.1.4. If α : M → J is a monomorphism and J is an injective object, then for
every essential monomorphism β : M → N there exists a monomorphism γ : N → J such that
γ ◦ β = α.

Proof. Since J is injective, there is a γ : N → J such that γ ◦β = α. Since α is a monomorphism
we have 0 = Ker(α) = Ker(γ ◦β) = Ker(γ)∩Im(β), but β is essential, that implies Ker(γ) = 0.
In conclusion γ is a monomorphism.

Proposition 3.1.5. An module J is injective if and only if every essential monomorphism α :
J → C is an isomorphism.
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Proof. Suppose J is injective, and α : J → C a essential monomorphism, thus α splits, in
conclusion α must be onto.

Now suppose every essential monomophism is an isomorphism. Let M ⊇ J , by Zorn’s lemma
there is a subobject K ⊆ M maximal such that J ∩ K = 0. Let the canonical projection
β : M → M/K and consider µ : J → M/K given by µ(x) = β(x) for every x ∈ J . Let
0 6= S ⊆M/K then there is L ⊆M such that S = L/K.

We have two cases, the first one, suppose J ∩ L = 0 that implies L ⊆ K and also L/K ⊆ K

then L/K ∩ J/K ⊆ K ∩ Im(µ) 6= 0 in conclusion µ is an essential monomorphism. On the other
hand, suppose J ∩ L 6= 0 then there is m 6= 0 such that m ∈ J ∩ L thus m+K ∈ J/K ∩ L/K =
Im(µ) ∩ L/K, in conclusion µ is an essential monomorphism.

Since µ is essential monomorphism, then is an isomorphism, henceM = J+K, since J∩K = 0
thus M = J ⊕K, in other words J is injective.

Proposition 3.1.6. Let µ : M → N and ν : M → J be monomorphisms. If µ is essential and J
is injective, then ν = κ ◦ µ for some monomorphisms κ : N → J .

Proof. Since J is injective, there exists a homomorphism κ : N → J such that ν = κ ◦ µ, which
is injective by 3.1.3.

By the last proposition, every essential extension of a module M is, up to isomorphism,
contained in every injective extension of M .

Theorem 3.1.7. Every module M is an essential submodule of an injective module, which is
unique up to isomorphism.

Proof. M is a submodule of an injective submodule K. Let S be the set of all submodules
M ⊆ S ⊆ K of K in which M is essential. If (Si)i∈I is a chain in S, then S = ∪i∈ISi ∈ S: if
N 6= 0 is a submodule of S, then Si ∩N 6= 0 for some i, and then M ∩N = M ∩Si ∩N 6= 0 since
M is essential in Si; thus M is essential in S. By Zorn’s lemma, S has a maximal element J . If
J has a proper essential extension, then by the last proposition J would have a proper essential
extension J $ J ′ ⊆ K and would not be maximal; therefore J is injective by 3.1.5.

Now, assume that M is essential in two injective modules J and J ′. The inclusion monomor-
phisms µ : M → J and ν : M → J ′ are essential. By the last proposition there is a monomor-
phisms θ : J → J ′ such that ν = θ ◦ µ. Then θ is essential, by the proposition 3.1.2, and is an
isomorphisms by 3.1.5.

The last theorem generates the main definition of this section, that is, the injective hull
of a module M is the injective module unique up to isomorphism, in which M is an essential
submodule. The injective hull of injective envelope of M is denoted by E(M).

The injective hull ofM can be characterized in several ways, E(M) is injective and an essential
extension ofM , it is a maximal essential extension ofM . E(M) is, up to isomorphism, the largest
essential extension of M and also E(M) is a minimal injective extension of M .

Lemma 3.1.8. If Mi → M ′i (i = 1, . . . n) are essential monomorphisms then M1 ⊕ · · · ⊕Mn →
M ′1 ⊕M ′n is essential
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Proof. By induction, we only proof for n = 2, we show that each of the two monomorphisms
M1⊕M2 →M ′1⊕M2 →M ′1⊕M ′2 is essential. For the first one consider π : M ′1⊗M2 →M ′1 denote
the canonical projection and suppose β : B →M ′1⊕M2 is an arbitrary non-zero monomorphism.
Then we have two cases, either π ◦ β = 0, then Im(β) ⊆M2 and hence Im(β) ∩ (M1 ⊕M2) 6= 0
or π ◦ β 6= 0 in which case Im(π ◦ β) ∩M1 6= 0 by M1 → M ′1 is a essential monomorphism, and
hence Im(β)∩ (M1⊕M2) 6= 0. In any case this shows that M1⊕M2 is essential in M ′1⊕M2, that
implies M1 ⊕M2 → M ′1 ⊕M2 is an essential monomorphism. For the second one is analogous
with π : M ′1 ⊗M ′2 →M ′2 and β : B →M ′1 ⊕M ′2.

The following proposition is a consequence of the last lemma:

Proposition 3.1.9. The monomorphism M1⊕· · ·Mn → E(M1)⊕· · ·E(Mn) induces an isomor-
phism

E(M1 ⊕ · · ·Mn) ∼= E(M1)⊕ · · ·E(Mn)
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Chapter 4

Category of Modules

4.1 RD-Injective Modules

A submoduleM of an module N is called relatively divisible (RD-submodule) if rM = M∩rN
for each r ∈ R.

As the inclusion rM ≤M ∩ rN holds for all submodules M of N, relative divisibility amouts
to the reverse inclusion, i.e. Let M and N be modules such that M ≤ N . We say that M is
relatively divisible in N if for each r ∈ R and each a ∈M , solubility of the equation rx = a in
N implies its solubility in M .

An exact sequence of modules

0 //M // N // P // 0 (4.1)

is RD-exact if M is a relatively divisible submodule of N .
An module M is said to be RD-inyective if it has the injective property relative to all RD-

exact sequences. That is, For every monomorphism: α : A −→ B where Im(α) is relatively
divisible in B and for every map φ : A −→ M there is a homomorphism ψ : B −→ M such that
φ = ψ ◦ α.

Proposition 4.1.1. The module Q is RD-injective if and only if it is a direct summand of every
module that contains it as a relatively divisible submodule.

Proof. Let Q be a RD-injective and consider the RD-exact sequence

0→ Q→ N → N/Q→ 0

Then this sequence splits, in other words N ∼= Q⊕N/Q.
Let ϕ : M → N be a monomorphism where Im(ϕ) is relatively divisible in N and let β : M →
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Q be a homomorphism, then like in the last chapter

0 //M
ϕ //

β
��

N

ι1
��

0 // Q
ι2 //M ′

By our assumption M ′ = Q ⊕ J ′, consider the canonical projection πQ : Q ⊕ J ′ → Q, by
construction we have πQ ◦ ι2 = 1Q, define θ = πQ ◦ ι1, then we have the following diagram:

0 //M
ϕ //

β
��

N

ι1
��

θ

}}
Q

ι2 **
M ′

πJ

ii

Finally consider θ ◦ ϕ = πQ ◦ ι1 ◦ ϕ = πQ ◦ ι2 ◦ β = 1Q ◦ β = β

In conclusion, β can be factored through every monomorphism, in other words Q is RD-
injective.

Clearly, the class of injective modules over R is a full subcategory of the category of RD-
injective R-modules. The class of RD-injective modules have properties similar to that of injective
modules.

Proposition 4.1.2. A direct product of modules is RD-injective if and only if each factor is
likewise RD-injective .

Proof. Let Qi∈I a family of modules. Suppose
∏
i∈I Qi is RD-inyective, consider the next com-

mutative diagram where A and B are modules and Im(β) is relatively divisible in B:

∏
i∈I Qi

0 // A
β

//

ϕ

OO

B

λ
cc

Since
∏
i∈I Qi is a direct product we have the next diagram

∏
i∈I Qi

πi

��

B
λoo

li{{
Qi

then li = πi ◦ λ, and using the above diagrams we obtain

Qi

0 // A
β
//

πi◦ϕ
OO

B

li
``
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Since πi ◦ ϕ = πi ◦ λ ◦ β = li ◦ β. In conclusion, Qi is RD-injective, for every i ∈ I.
Now suppose that for every i ∈ I, Qi is RD-injective, then consider A and B modules and
β : A→ B with Im(β) is relatively divisible in B, then we have the next diagram:

Qi

0 // A
β
//

γ

OO

B

ϕi

``

where we have ϕi◦β = γ. Also, like
∏
i∈I Qi is the direct product of Qi then we have the following

diagrams commutes:
B

ϕi //

ϕ

��

Qi

∏
i∈I Qi

πi

;;

Qi
ψi //

ιi
��

B

∏
i∈I Qi

ψ

;;

Because ψ ◦ ιi = ψi and πi ◦ ϕ = ϕi. Now consider the following diagram:

0 // A
β //

γ

��

B

ϕ

��

ϕi

��
Qi

ιi --ψi

BB

∏
i∈I Qi

ψ

VV

πi

jj

Since ιi ◦ πi = 1∏
i∈I

Qi
then ιi ◦ ϕi = ιi ◦ πi ◦ ϕ = ϕ. Finally, we have ιi ◦ γ = ιi ◦ ϕi ◦ β = ϕ ◦ β.

In conclusion the last diagram commutes, in other words
∏
i∈I Qi is RD-injective.

It can be shown, as in the case of injective modules that every module is a relatively divisible
submodule of an RD-injective module.

Let M be a relatively divisible submodule of the RD-injective module Q. Then there exists
a minimal RD-injective submodule of Q which contains M as a relatively divisible submodule.
Moreover, any two minimal RD-injective modules which contain M as a relatively divisible sub-
module are isomorphic over M . Such module (which, as we said, is unique up to isomorphism
over M) is called the RD-injective hull of M .

4.2 Pure Injective Modules

Let M and N be modules such that M ≤ N . we say that M is pure in N if for every m,n ∈ Z+,
each system of equations

m∑
j=1

rijxj = ai ∈M (i = 1, . . . , n)
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with coefficients rij ∈ R is soluble in M whenever it is soluble in N .
Clearly purity implies relative divisibility.
An exact sequence of modules

0 //M // N // P // 0 (4.2)

is pure-exact if M is pure submodule of N .
An module M is called pure-inyective if it has the injective property relative to all pure-

exact sequences. That is, For every monomorphism: α : A −→ B where Im(α) is pure in B

and for every map φ : A −→ M there is a homomorphism ψ : B −→ M such that φ = ψ ◦ α.
Equivalently, we say that the module Q is pure-injective if it is a direct summand of every
module that contains it as a pure submodule.

Clearly, the class of injective modules over R is a full subcategory of the category of RD-
injective R-modules which, in turn, is a full subcategory of the category of pure-injective R-
modules. The classes of RD-injective and pure-injective modules have properties similar to that
of injective modules.

Proposition 4.2.1. The module P is pure-injective if and only if it is a direct summand of every
module that contains it as a relatively pure-submodule.

Proof. Let P be a pure-injective and consider the pure-exact sequence

0→ P → N → N/Q→ 0

Then this sequence splits, in other words N ∼= P ⊕N/P .
Let ϕ : M → N be a monomorphism where Im(ϕ) is pure in N and let β : M → P be a

homomorphism, then like in the last chapter

0 //M
ϕ //

β
��

N

ι1
��

0 // P
ι2 //M ′

By our assumption M ′ = P ⊕ J ′, consider the canonical projection πP : P ⊕ J ′ → P , by
construction we have πP ◦ ι2 = 1P , define θ = πP ◦ ι1, then we have the following diagram:

0 //M
ϕ //

β
��

N

ι1
��

θ

}}
P

ι2 **
M ′

πJ

ii

Finally consider θ ◦ ϕ = πP ◦ ι1 ◦ ϕ = πP ◦ ι2 ◦ β = 1P ◦ β = β

In conclusion, β can be factored through every monomorphism, in other words P is pure-
injective.
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Proposition 4.2.2. A direct product of modules is pure-injective if and only if each factor is
likewise pure-injective.

Proof. Let Pi∈I a family of modules. Suppose
∏
i∈I Pi is pure-inyective, consider the next com-

mutative diagram where A and B are modules and Im(β) is pure in B:

∏
i∈I Pi

0 // A
β

//

ϕ

OO

B

λ
cc

Since
∏
i∈I Pi is a direct product we have the next diagram

∏
i∈I Pi

πi

��

B
λoo

li{{
Pi

then li = πi ◦ λ, and using the above diagrams we obtain

Pi

0 // A
β
//

πi◦ϕ
OO

B

li
``

Since πi ◦ ϕ = πi ◦ λ ◦ β = li ◦ β. In conclusion, Pi is pure-injective, for every i ∈ I.
Now suppose that for every i ∈ I, Pi is pure-injective, then consider A and B modules and
β : A→ B with Im(β) is pure in B, then we have the next diagram:

Pi

0 // A
β
//

γ

OO

B

ϕi

``

where we have ϕi ◦β = γ. Also, like
∏
i∈I Pi is the direct product of Pi then we have the following

diagrams commutes:
B

ϕi //

ϕ

��

Pi

∏
i∈I Pi

πi

;;

Pi
ψi //

ιi
��

B

∏
i∈I Pi

ψ

;;
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Because ψ ◦ ιi = ψi and πi ◦ ϕ = ϕi. Now consider the following diagram:

0 // A
β //

γ

��

B

ϕ

��

ϕi

��
Pi

ιi --ψi

CC

∏
i∈I Pi

ψ

VV

πi

jj

Since ιi ◦ πi = 1∏
i∈I

Pi
then ιi ◦ ϕi = ιi ◦ πi ◦ ϕ = ϕ. Finally, we have ιi ◦ γ = ιi ◦ ϕi ◦ β = ϕ ◦ β.

In conclusion the last diagram commutes, in other words
∏
i∈I Pi is pure-injective.

It can be shown, as in the case RD-injective modules that every module is a pure submodule
of an pure-injective module.

LetM be a pure submodule of the pure-injective module Q. Then there exists a minimal pure-
injective submodule of Q which contains M as a pure submodule. Moreover, any two minimal
pure-injective modules which contain M as a relatively divisible submodule are isomorphic over
M . Such module (which, as we said, is unique up to isomorphism over M) is called the pure-
injective hull of M .

4.3 Category

A category C consist of the following data:

1. A class of objects Ob(C), usually denoted by just C.

2. For each A,B ∈ C, a set of morphisms HomC(A,B). An element f ∈ HomC(A,B) is called

a morphism between A and B, and will sometimes be denoted by f : A→ B of A f // B .

3. An associative composition rule for morphisms f : A→ B and g : B → C, i.e. this is a map

HomC(A,B)×HomC(B,C)→ HomC(A,C)

denoted by (f, g) 7→ f ◦ g.

4. For each object A ∈ C a distinguished identity morphism 1A, which acts as a two-sided
identity for composition of morphisms, i.e. for all f ∈ HomC(A,B), one has f ◦ 1A = f ,
and for all g ∈ HomC(B,A) one has 1A ◦ g = g.

It’s very important to mention some examples of categories:

• The category of sets. In other words, objects of this category are sets; if X and Y are sets,
then Hom(X,Y ) is the set of all maps form X and Y ; and composition of morphisms in
the category is the usual compositions of maps.

• The category of groups. The morphisms being group homomorphisms.

• The category of abelian groups. The morphisms being group homomorphisms.
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• The category of modules. The morphisms being module homomorphisms.

• The category of vector space. The morphisms being linear maps.

• The category of rings. The morphisms being maps.

• The category of commutative rings. The morphisms being maps.

• The category of topological spaces. The morphisms being continuous maps.

An abelian category is a category in which morphisms have structure of abelian group. A
morphism f : X → Y is called a monomorphism if f ◦ g1 = f ◦ g2 implies g1 = g2 for all
morphisms g1, g2 : Z → X. It is also called a mono or a monic. Dually to monomorphisms,
a morphism f : X → Y is called an epimorphism if g1 ◦ f = g2 ◦ f implies g1 = g2 for all
morphisms g1, g2 : Y → Z. It is also called an epi or an epic. A morphism f : X → Y is called
an isomorphism if there exists a morphism g : Y → X such that f ◦ g = 1Y and g ◦ f = 1X .

Let C and J be categories (J for index category). The diagonal functor ∆ : C → CJ sends
each object c to the constant functor ∆c (the functor which has the value c at each object
i ∈ J and the value 1C at each arrow of J. If f : c → c′ is an arrow of C, ∆f is the natural
transformation ∆f : ∆c → ∆c′ which has the same value f at each object i of J. Each functor
F : J→ C is an object of CJ. A universal arrow 〈r, u〉 from F to ∆ is called a colimit or direct
limit diagram for the functor F . It is consists of an object r of C, usually written r = Lim−−→F
or r = ColimF , together with a natural transformation u : F → ∆r which is universal among
natural transformations τ : F → ∆c.

Given categories C, J, and the diagonal functor ∆ : C→ CJ, a limit or inverse limit for a
functor F : J→ C is a universal arrow 〈r, v〉 from ∆ to F . It consists of an object r of C, usually
written r = Lim←−−F or LimF and called the limit object of the functor F , together with a natural
transformation v : ∆r → F which is universal among natural transformations τ : ∆c → F , for
objects c of C

A category C is called complete if for every category J and functor F : J → C then
Lim←−−F exists. Analogous, a category C is called cocomplete if for every category J and functor
F : J→ C then Lim−−→F exists.

4.4 Grothendieck Category

In 1957 was published the article “Sur quelques points d’algÃ¨bre homologique” by Alexander
Grothendieck, now often referred to as the TÃ´hoku paper, in which it was introduced the concept
of Grothendieck Category, it is a certain kind of cocomplete abelian category C which satisfies
the next condition for any object C ∈ C(∑

I

Ci

)
∩B =

∑
I

(Ci ∩B) (AB5)
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where B is a subobject of C, and (Ci)I is a directed family of subobjects of C, the last condition is
called ”AB5" condition in the article of Grothendieck, is important to mention that for cocomplete
abelian categories the last condition is equivalent to direct limits are exact in the category.

Let C a object of a Grothendieck category C. A subobject B of C is called essential if
B ∩C ′ 6= 0 for every non zero C ′ ⊂ C. And also a monomorphism α : B → C is called essential
if Im(α) is an essential subobject of C.

Lemma 4.4.1. If A ⊆ B subobjects of C, then A is essential in C if and only if A is essential
in B and B is essential in C

Proof. Suppose A is essential in C thus for every subobject D ⊆ C we have A ∩ D 6= 0 but
remember that A ⊆ B then we obtain let B ∩D 6= 0, in other words B is essential in C. Let a
subobject E ⊆ B, then we have that E ⊆ C thus A ∩ E 6= 0. In other words A is essential in B.

On the other hand, suppose A is essential in B and B is essential in C, let D ⊆ C, since B is
essential, we have B ∩D 6= 0 but B ∩D ⊆ B and also A is essential in B, thus A ∩ (B ∩D) 6= 0
but we need to remember that A ⊆ B that implies that A ∩B = A. In conclusion A ∩D 6= 0 in
other words A is essential in C.

Lemma 4.4.2. If α : B → C and β : C → D are monomorphisms, then β ◦ α is essential if and
only if both α and β are essential.

Proof. Clearly Im(β ◦ α) ⊆ Im(β) are subobjects of D. Suppose that β ◦ α is essential, thus
Im(β ◦ α) is essential in D, by the Lemma 1 we have Im(β) is essential in D in other words β is
a essential monomorphism, and also Im(β ◦ α) is essential in Im(β).
Let N ⊆ C then we know that β(N) ⊆ Im(β) thus Im(β ◦ α) ∩ β(N) 6= 0 then there is m 6= 0
such that m ∈ Im(β ◦ α) and m ∈ β(N), then there is x ∈ B such that m = (β ◦ α)(x) and also
there is y ∈ N such that m = β(y) then since β is a monomorphism then 0 6= (β ◦ α)(x) = β(y)
implies α(x) = y 6= 0. In conclusion 0 6= y ∈ Im(α) ∩N , in other words α is essential.
Now, suppose α and β are essential, let E ⊆ Im(β) then there is F ⊆ C such that β(F ) = E but
Im(α)∩F 6= 0 thus there existsm 6= 0 such that 0 6= β(m) ∈ Im(β◦α) and 0 6= β(m) ∈ β(F ) = E,
in other words Im(β ◦ α) is essential in Im(β).
In conclusion we have Im(β ◦ α) is essential in Im(β) and Im(β) is essential in D by Lemma
4.4.1 Im(β ◦ α) is essential in D, thus β ◦ α is a essential monomorphism.

Lemma 4.4.3. If α : C → E is a monomorphism and E is an injective object, then for every
essential monomorphism β : C → C ′ there exists a monomorphism γ : C ′ → E such that γ◦β = α.

Proof. Since E is injective, there is a γ : C ′ → E such that γ ◦β = α. Since α is a monomorphism
we have 0 = Ker(α) = Ker(γ ◦β) = Ker(γ)∩Im(β), but β is essential, that implies Ker(γ) = 0.
In conclusion γ is a monomorphism.

Let C be a object of C, an injective envelope of C is an essential monomorphism C → E,
where E is an injective object and we will denote E(C).

In the next proposition we have that the injective envelope is unique up to isomorphism.
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Proposition 4.4.4. If α : C → E and α′ : C → E′ are injective envelopes of C. Then there is
an isomorphism γ : E → E′ such that γ ◦ α = α′.

Proof. By Lemma 4.4.3 there is a monomorphism γ : E → E′ such that γ ◦ α = α′, since α′ is
a essential monomorphism then γ is a essential monomorphism, since E is injective γ splits thus
E′ = Im(γ) ⊕M for some subobject M , and also Im(γ ◦ α) = Im(α′) ⊆ Im(γ). Suppose that
M 6= 0, since Im(α′)∩M 6= 0 then Im(γ)∩M 6= 0 that impliesM = 0. In conclusion Im(γ) = E′

in other words γ is onto.

Proposition 4.4.5. An object E is injective if and only if every essential monomorphism α :
E → C is an isomorphism.

Proof. Suppose E is injective, and α : E → C an essential monomorphism, thus α splits, in
conclusion α must be onto. Now suppose every essential monomophism is an isomorphism. Let
M ⊇ E, by Zorn’s lemma there is a subobject K ⊆ M maximal such that E ∩K = 0. Let the
canonical projection β : M → M/K and consider µ : E → M/K given by µ(x) = β(x) for every
x ∈ E. Let 0 6= S ⊆M/K then there is L ⊆M such that S = L/K.
We have two cases, the first one, suppose E ∩ L = 0 that implies L ⊆ K and also L/K ⊆ K

then L/K ∩E/K ⊆ K ∩ Im(µ) 6= 0 in conclusion µ is an essential monomorphism. On the other
hand, suppose E ∩L 6= 0 then there is m 6= 0 such that m ∈ E ∩L thus m+K ∈ E/K ∩L/K =
Im(µ) ∩ L/K, in conclusion µ is an essential monomorphism.
Since µ is essential monomorphism, then it is an isomorphism, henceM = E+K, since E∩K = 0
thus M = E ⊕K, in other words E is injective.

Proposition 4.4.6. If C is a subobject of some injective object E then C has an injective enve-
lope.

Proof. Suppose C is a subobject of an injective object E, since the category C is cocomplete we
can choose a maximal essential extension C ′ of C within E, with ε : C → C ′. Then for every
essential monomorphism β : C ′ → C ′′ there exists a monomorphism γ : C ′ → E by Lemma 4.4.3.

An also by Lemma 4.4.2, β◦ε is a essential monomorphism and also an isomorphism, since the
maximality of C ′. Then C ′ is injective by the Proposition 4.4.5 and so it’s an injective envelope
of C.

4.5 Generalization of Bumby’s Theorem

Theorem 4.5.1. Let C be a Grothendieck category. If A ⊇ B ∈ Ob(C), both injective and if
there is a monomorphism ϕ : A→ B then A ∼= B.

Proof. Let A ⊇ B ∈ C then we can find a subobject C such that A = C ⊕B. Now

A = C ⊕B ⊇ C ⊕ ϕ(A)

= C ⊕ ϕ(C ⊕B)

= C ⊕ ϕ(C)⊕ ϕ(B)
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⊆ C ⊕ ϕ(C)⊕ ϕ(ϕ(A))

⊆ C ⊕ ϕ(C)⊕ ϕ(ϕ(C))⊕ . . .

Call it P = C ⊕ ϕ(C) ⊕ ϕ(ϕ(C)) ⊕ . . . and we have A ⊇ P and also P ∩ B = ϕ(P ), because
P ∩ B = ϕ(C) ⊕ ϕ(ϕ(C)) ⊕ . . ., and P ∩ B ⊆ B by Proposition 4.4.6, P ∩ B has an injective
envelope, denoted by E(P ∩B) ⊆ B and also E(P ∩B) is injective then we can find a subobject
K such that B = E(P ∩ E)⊕K.

And remember A = C ⊕ B = C ⊕ (E(P ∩ B) ⊕ K) = (C ⊕ E(P ∩ B)) ⊕ K that implies
C ⊕ E(P ∩B) is injective:

0 // P //

ϕ

��

C ⊕ E(P ∩B)

ϕvv
E(P ∩B)

with the diagram we define ϕ, by Proposition 5 ϕ is an isomorphism. Finally ϕ ⊕ 1K : (C ⊕
E(P ∩E))⊕K → E(P ∩E)⊕K is also an isomorphism but ϕ⊕ 1K : A→ B then is the required
isomorphism.

Theorem 4.5.2. Let C be a Grothendieck category. If A and B are objects of C which are
isomorphic to subobjects of each others, their injective envelopes are are isomorphic.

Proof. Let E(A),E(B) be the injective envelopes of A,B, respectively. Then if ϕ : A → B is a
monomorphism so much be any map ϕ̄ : E(A)→ E(B) which extends it (the injectivity of E(B)
guarantees the existence of maps ϕ̄).

0 // A //

ϕ

��

E(A)

ϕ

��

B

��
E(B)

Likewise if we have ψ : B → A, a monomorphism, we obtain a monomorphism ψ̄ : E(B)→ E(A)
extending it. Now apply the last theorem with E(A), ψ̄(E(B)), ψ̄ ◦ ϕ̄ on the roles of A, B, ϕ,
respectively. Now that we know that E(A) ∼= E(B).

Finally, it iw worth to point out that the last theorems are also valid for pure-injectivity and
RD-injectivity of modules. The proofs for those cases are similar to the proofs of our last results.
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Conclusions

In this work, we extended the Cantor-Bernstein-Schröder theorem to a generalized form of in-
jectivity in Grothendieck categories. Our main result generalizes Bumby’s criterion of injectiv-
ity to this type of categories. As particular cases, we extended some criteria under which two
RD-injective (respectively, pure-injective) modules are isomorphic when they are isomorphic to
submodules of each other. These and other corollaries are in agreement with propositions previ-
ously reported in the literature. Several results that extend some known properties of injective
modules and hulls to arbitrary categories are derived in the way.

After the conclusion of this work, various avenues of research still remain open. Indeed, many
of the definitions and results presented in this thesis are valid not only for Grothendieck, but for
categories in general. In fact, all the concepts, lemmas and propositions in injective objects hold
for arbitrary categories. Thus, a natural direction of further investigation would be to elucidate
categorical conditions on a class of morphisms for which Bumby’s criterion of isomorphism holds.
In other words, given a category C and the class of monic morphisms therein, one wishes to
determine conditions under which two injective objects are isomorphic when they are subobjects
of each other. To the best of the author’s knowledge, the problem is still open.
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