

CENTRO DE CIENCIAS BASICAS

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACION

TESIS

APROXIMACION DE LA AUTOMATIZACION DE LA SINTESIS DE

MODELOS CARACTERIZADOS EN LINEAS DE PRODUCTO

PRESENTA

Catalina Calderón García

PARA OBTENER EL GRADO DE MAESTRIA EN CIENCIAS CON

OPCION A LA COMPUTACION

TUTOR

Dr. Ángel Eduardo Muñoz Zavala

COMITÉ TUTORAL

Dr. Francisco Javier Álvarez Rodríguez

Dra. Eunice Esther Ponce de León Sentí

Aguascalientes, Ags., a 13 de mayo de 2015

AGRADECIMIENTOS / ACKNOWLEDGEMENTS

I want to say thanks to my tutors who encourage me to start this research work

which was a dream for a long time. Thanks for your patience and support during the

difficult moments.

A special recognition goes to the CONACYT for the support provided to fund this

research work. Thanks to Mexican community who by paying taxes supports the labor of

CONACYT in our country. Hoping that, this research will encourage others to create new

ways of thinking on Software Engineering to propel technology and jobs in México.

Finally, thanks to my family, what can I say? All of you are the best of my life.

Thanks for your unconditional support ever. I love you guys.

DEDICATORIAS / DEDICATORIES

To my father who was my first teacher, and to, his dream to be a researcher…

To my mum and her dream to turn me into an educated woman…

To my family…

Para mí familia…

1

INDICE GENERAL / TABLE OF CONTENTS

INDICE DE TABLAS / TABLE LIST 2

INDICE DE FIGURAS / TABLE OF FIGURES 3

ABBREVIATIONS 4

RESUMÉN 5

ABSTRACT 6

Chapter 1. Introduction 7

1.1 Contribution and scope of this research work .. 7

1.2 Motivation and Context ... 9

1.3 Organization of this thesis ... 10

Chapter 2. Background 11

2.1 The SEI framework for Software Product Line .. 11

2.2 Mobile User Interfaces Families ... 16

2.3 Automated treatment of feature models .. 18

2.4 Evolutionary Computation .. 19

2.5 Software Automation and SPLE ... 30

Chapter 4. Study case: Configuration of a SPL for user interfaces at mobile devices domain

 34

4.1 The study case ... 34

4.2 The MAPDS prototype ... 36

Chapter 5. Results and Evaluation 58

5.1 Evaluation ... 58

CONCLUSIONS 64

GLOSARY 65

REFERENCES 66

ANNEXS 70

2

INDICE DE TABLAS / TABLE LIST

Table 1. Car Configurations .. 16

Table 2. Feature set for Lyker scale question ... 36

Table 3. Set of Android elements most common used to build MUIs extracted from

Android Community [7] ... 40

Table 4. Results from experiment 1 ... 59

Table 5. Results from experiment 2 .. 60

3

INDICE DE FIGURAS / TABLE OF FIGURES

Figure 1. Reuse History: From Ad-Hoc to Systematic [5] ... 12

Figure 2. The three essential activities for software product line [5] 13

Figure 3. A simple feature diagram [6] ... 15

Figure 4. A minimal mobile user interface in Android. ... 16

Figure 5. A basic MUI and its feature diagram .. 18

Figure 6. Shows the CGA workflow .. 22

Figure 7. Encoding of a feature model, approach introduced by ETHOM [1] 24

Figure 8. Chromosome called SurveyComponent1 .. 25

Figure 9. Encoding representation of natural number into a binary array 27

Figure 10. Example of one-point crossover introduced by ETHOM [1] 28

Figure 11. Relations (or- and alternative) with a single child repairing [1] 29

Figure 12. Cross-tree constraints between features with parental relationship repairing [1]

 .. 29

Figure 13. Contradictory or redundant cross-tree constraints repairing [1] 29

Figure 16. XML code and its MUI ... 37

Figure 17. The class interaction on MAPDS tool ... 38

Figure 18. MAPDS mobile user interface. ... 39

Figure 19. Relation between the ETHOM chromosome and the MUI code based on XML 41

Figure 14. Feature model of SuervyComponent1 ... 45

Figure 15. MUI feature model proposed on this research work and its translation to

ETHOM [1] chromosome ... 46

Figure 20. A FM Individual and its derived products ... 56

Figure 21. Sample of MUIs with similar fitness and different XML code. 63

4

ABBREVIATIONS

ADT – Android Development Tools

AC - Automation Concept.

AI - Artificial Intelligence.

AIT - Artificial Intelligence Techniques.

EA - Evolutionary Algorithm.

Framework 5.0 - Framework for Software Product Line Practice, Version 5.0.

MAPDS - Mobile Android Product Derivation Software

SE - Software Engineering.

SPL – Software Product Line.

SPLE - Software Product Line Engineering.

5

RESUMÉN

 El desarrollo de software se enfrenta al avance de la producción en masa derivada

del crecimiento de las sociedades de conocimiento que demandan productos tecnológicos

de mayor calidad y menor costo. De este modo, el paradigma de la Línea de Producto

(SPL) se está convirtiendo en el campo de batalla para los desarrolladores de hoy y el

futuro, dado su enfoque de desarrollo basado en la reutilización de un campo específico de

dominio.

 Teniendo en cuenta que la producción en masa se apoya en la estandarización y

automatización de procesos de fabricación pensar en el desarrollo de software en escenarios

automatizados bajo estas condiciones requiere un esfuerzo obligado y no ha sido

suficientemente explorado hasta ahora.

 En este sentido, este trabajo de investigación contribuye a aproximar el concepto de

automatización en Líneas de Producto de Software mediante la creación de una línea de

Producto de Software (SPL) para interfaces de usuario móviles en el contexto de la

utilización de técnicas de inteligencia artificial (AIT) como un estándar de automatización.

Probándolo mediante un caso de estudio que utiliza la síntesis automatizada de modelos de

característica basada en algoritmos evolutivos para lograrlo.

6

ABSTRACT

 The software development is facing the advancement of mass production produced

by growing of knowledge societies who demand technological commodities of higher

quality and lower cost. Under this scenario, the paradigm of Software Product Line (SPL)

is becoming the battleground for developers today and future due its reuse development

approach based on a domain specific field that reduces the time and effort required to

produce software products.

 Lessons learned from other industries teach us, the mass production is effectively

supported in the standardization and automation of manufacturing methods, so that, the

thought of automated scenarios of software development is an effort required and not

enough explored so far.

This research work contributes to approximate the concept of automation in the

Software Product Line Engineering by creating a mechanism for automatic derivation of

Mobile User Interfaces (MUI) under the context of adding Artificial Intelligence

Techniques (AIT).

 Although, the automated software development can be done by ad-hoc mechanisms,

we do believe that by using AIT, the growth of automated-tools for software development

may see itself benefited by the expansion of a scientific formal area that has provided

successful automated approaches for many knowledge areas.

7

Chapter 1. Introduction

 This chapter introduces to the reader a brief description about the main topic

addressed in this research work about using Artificial Intelligence Techniques (AIT) for

automation purposes on Software Product Line (SPL), the use of automated tools supported

at Artificial Intelligence Techniques to approximate an automation concept on this key

paradigm and how the motivation behind this research and the scope are successfully

addressed at the end of the document.

1.1 Contribution and scope of this research work

 This thesis promotes the use of AIT for automatic product derivation in Software

Product Line (SPL). The model proposed is taking advantages of the automatic synthesis of

feature models based on Evolutionary Computation (EC) [1] to achieve automatic product

derivation of mobile user interfaces for applications in mobile computing.

 The Software Product Line (SPL) is a paradigm for developing software systems

based on components. A Software Product Line (SPL) differs from others software

development paradigms as is sustained by [2] on the fundamental distinction of

“development for reuse” and “development with reuse”.

 At the SPL approach, requirements are obtained from a target domain and not from

a specific problem, what introduced a novel approach where development is focusing to

create assets. Samples of assets are software components, documentation, and others goods

that can be part of a software product configuration as interchangeable modules.

The SPL approach basically introduces a change of strategy for building software

from the strategic business meeting and the ad-hoc contract to developing based on a

business domain with re-use purposes [2]. The business domain will lead the development

efforts, so that, the assets created can be reused in many different products that satisfy

requirements in same business domain. [2].

8

Problem Statement

 Research in the AIT application to Software Engineering (SE) has grown

enormously in the last two decades to produce a large number of projects and publications.

However, most of the work carried out in this area is mainly targeted to the research

community, what is producing a gap between research and practice that depicts an open

problem [3].

Under this premise, our work adds to further exploration, where both disciplines,

artificial intelligence and software engineering can synergize in order to contribute to close

this gap. By taking advantages of the automatic synthesis of feature models based on EC

[1] this research work introduces an approach for automatic product derivation in a real

scenario. A study case based on automatic derivation of mobile user interfaces in mobile

devices with Android operating system that serves to prove in terms of SPL practice,

automatic product derivation and the efficiency of automation based on AIT in real practice

also, in order to tackle these open problems:

1 -. Provide an approximation to close the gap between research and practice of AIT

applied to Software Engineering. [3]

2 - Providing an implementation for ETHOM [1] algorithm designed for optimizing

computationally hard feature models using evolutionary algorithms.

3 – A contribution for the approximation of a formal Automation Concept (AC) in

SPL which is based on the application of AIT.

 The proof of concept and deliverable of this research work is a software prototype

that implements an Evolutionary Algorithm (EA) to synthesize a software family of Mobile

User Interfaces (MUIs). As other software development approaches, SPL can be assisted

by AIT for automation purposes, so that, this work will be a reference for further

applications of SPL in real life.

The scope of this dissertation

 The scope of this work is to provide a prototype for automatic product derivation for

9

producing user interfaces for applications in mobile devices with Android operating system.

In the SPL landscape, this research work will deliver an approach and a software

tool for automatic product derivation, from the natural speaking requirements, where the

interfaces are bounded to those user requirements needed to depict a Lyker-scalate screen

for survey mobile applications.

 The automation concept addressed here is one that emphasizes the adoption of AIT

as automatic mechanism over ad-hoc approaches. Future work, it should be lead to

automate other parts of the software development process in SPL using AIT.

1.2 Motivation and Context

 A lot of research in terms of provisioning to the SE with automatic mechanisms

based on AIT can be found on literature, some of them ad-hoc approximations. However in

terms of automation, AIT has been proved to be a very efficient approach in a big bunch of

disciplines. In more than three decades AIT has been growing in a very constructive way

and seeing itself benefited from the contribution of many scientific communities

worldwide.

So the belief that by providing AIT mechanisms to the automatic mechanisms in

SPL, beyond that these have also proven to be highly effectives for optimization and

automation, ensures that, today and in the future, there is a structured methodological

framework that supports automatic mechanisms, in contrast to the ad-hoc automation

approaches. It is one of the reasons that encourage this work.

 A lack of AIT targeted to specific developing frameworks or paradigms also depicts

an open research field on software development engineering, due to the most of the work

published in this field are mainly targeted to the research community. The research work is

driven by the specific AIT used rather than the supported software engineering frameworks

[3]. In this way, more effective research on this field should be leaded to a specific

software development framework [3], so that, these endeavors might be part of software

engineering specific practices, and hence, to be adopted in real life scenarios.

 Under this context, the present research work is addressing this issue by

10

contributing to the formal approximation of an automation concept on one of the most

challenging software development paradigms, the Software Product Line.

 The expectations behind of automating the software process development is to

reduce time to market and improve the quality of the final software product, what is crucial,

given the last software systems are highly complex compared to their ancestors. These

systems deal with a lot of complexity that includes and it is not limited to fancy user

interfaces, remote services, security concerns and more complex infrastructures [2].

1.3 Organization of this thesis

Chapter 2. Provides an overview of the main subject addressed on this research work in

order to facilitate the comprehension to the reader.

Chapter 3. The related research work is surveyed in this chapter.

Chapter 4. Deploys the prototype and/or proof of concept proposed by our work.

Chapter 6. Discusses the results gathered through the study case during the test cycle in

order to confirm the correctness of this model.

Chapter 7. Conclusions and Future Work from our perspective is claimed here.

11

Chapter 2. Background

 This chapter provides a review of the main topics addressed on this research work

about Software Product Line and Automatic Product Derivation using Evolutionary

Computation. In order to understand how the ETHOM [1] algorithm was customized for

creating the prototype in the mobile domain introduced by this research which emphasizes

the use of automatic tools assisted by Artificial Intelligence.

2.1 The SEI framework for Software Product Line

 The idea behind a software product line is to exploit the communalities and tackle

variability of a set of products related on a domain field to obtain a standard set of products,

called software family [2]. Under this context, the domain is exploited until derive a set of

software products or systems that share common features.

 In the 1970s the concept of “product families” in which the SPL is supported was

introduced by Parnas [4] to tackle variability in non-functional characteristics.

However until 1990 and after a set of experiments supported mostly by European

governments the concept was fully accepted, leading the paradigm of software development

up to systematic approach [2]. Figure 1 below shows the history of the developing

paradigms until now days.

12

Figure 1. Reuse History: From Ad-Hoc to Systematic [5]

 The Framework for Software Product Line practice is a property of the Software

Engineering Institute of Carnegie Mellon University and it was introduced in the 1990s,

after more than one decade, it has extended its large and respected knowledge base, thanks

to the biggest practitioners community on SPLE, until deriving five refined versions of its

respected framework which is supported by thousands of success cases for many different

industries. A complete documentation of the framework, tools and industry cases can be

found on its website.

 http://www.sei.cmu.edu/productlines/tools/framework/

 According to SEI community a right practice of SPL involves the synergy of three

essential activities that are shaping on the Configuration Management (CM) of the

Software Product Line depicted in figure 2.

http://www.sei.cmu.edu/productlines/tools/framework/

13

Figure 2. The three essential activities for software product line [5]

The SPL practice consists in the mining of pre-existing assets (core asset

development essential activity), by using these assets (product development) and under an

organizational strategy (management essential activity) the software systems can be

deployed. Samples of assets are software components, related documents and/or other sort

of configurable sub-products that can add value to the final software system [5].

The core asset development activity refers the processes of creating and/or re-using

assets and production constraints along with the product constraints to establish a

production strategy, resulting of this, is to define the production capability of the software

product line (SPL) which is composed by the core asset base and the production plan [5].

Thus, a new product endeavor requires of a new requirements analysis that leads

with gathering the specific product features and product constraints. These constraints

affect the design of the core assets during, for example, the architecture definition and the

component development [5]. To alleviate the task of manage product requirements and

constraints, some techniques are suggested by the framework, one of them is the FODA

method below described.

FODA method

 Every software product can be described in terms of their features. The FODA

14

method introduced by SEI community [6] describes a methodology to depict software

systems in terms of these features where features are defined as "prominent or distinctive

user-visible aspects, quality, or characteristics of a software system [6]". In terms of

modularity, features also can be thought as components of a product, which provide a

specific functionality and have a well-defined purpose. By this way, a family of related

software products can be depicted by the features (components) of the set, constraints and

dependences between them into a feature model [6]. Then the feature model contains all the

configurable products that the software product line can produce.

 Domain analysis and Feature modeling are two techniques that complement each

other. They are part of the FODA method. Feature modeling proposes the exploration of

communalities of a number of software products that co-exists in a well delimited domain

to form a software family. A new software product can be added into the family by the

exploration of its intrinsic communalities and the alignment of its variability to the context

domain of the family in question [6].

 FODA also introduced the graphical representation of a feature model known as

feature diagram. The goal of feature diagrams is to provide a useful tool to analyzing and

designing feature models. The basic notation of a feature diagram depicts relations between

parents and children, as follows. [6]

Basic feature diagram notation

 Basic models are known for being able to represent the following relationships

among features:

 - Mandatory. This relation exists when a child feature must be included in all

products where the parent feature is shown [6].

 - Optional. The child feature can or cannot be included in products which its parent

feature appears in [6].

 - Alternative. Only one feature of this set can bet selected to be part of the product

[6].

- Or-Relation. One or more features from a set can be inserted in the products in

http://en.wikipedia.org/wiki/Software_system

15

which its parent feature is appearing [6].

 A basic feature model can also depict constraints between features like this below.

 - Requires. The inclusion of one feature implies the inclusion of another different

feature. The difference from mandatory relations and this remains in that, does not exist a

parental relation and sometimes the features in question are at the same level in the feature

tree [6].

 - Excludes. A feature excludes another one. It means, feature A and feature B cannot

exist in the same product [6].

 A simple sample of a feature model provided by FODA is depicted on figure 3, it

describes a car in terms of its components and shows the relation between them in order to

illustrate the basic notation of feature models.

Figure 3. A simple feature diagram [6]

 From the feature diagram on figure 3, four different cars configurations can be

obtained on Table 1. The feature diagram is a tool widely adopted in the product

configuration field in general due its feasibility for depiction of product families.

16

Table 1. Car Configurations

ITM Car 1 Car 2 Car 3 Car 4

1 Automatic

Transmission

Automatic

Transmission

Manual

Transmission

Manual Transmission

2 HorsePower HorsePower HorsePower HorsePower

3 Air Conditioning Air

Conditioning

2.2 Mobile User Interfaces Families

 Now think about the user interfaces domain for applications in mobile devices

applications. Into this domain, a lot of features like color, fonts, images, display layouts,

and other functionalities on screen come into play for creating a Mobile User Interface

(MUI).

 Thousands and thousands of features, their dependencies and constraints work to

create rich MUIs for millions of users worldwide. So that, the modeling of a software

family of MUIs is a real challenge that starts by defining the boundaries for delimiting

without sacrificing to functionality.

 A minimal MUI can be built by picking at least four features from the set of features

of the domain: one lay-out to organize the elements on screen, a user command bar, a text

label and a background color, this mini-screen is showed on figure 4 below.

Figure 4. A minimal mobile user interface in Android.

 Android provides two different approaches for developing user interfaces for mobile

devices: Java code and the language descriptor XML.

The XML coding approach provides a way to develop mobile user interfaces by

17

focusing only in the elements on the screen leaving the functionality of them for specific

java classes. Each XML label depicts a graphic widget in the user screen, the properties

associated to each XML label are used to configure the visible and not visible features of

each widget, for example, <textview> element has a property named color and the

<checkbox> element in the line of code below will depict a checkbox button.

By using XML and the combination of elements on screen the design of a MUI is

separated from most specific code for focusing only on design. The interfaces created under

this specification, are isolated in a piece of XML code in a XML file, which make them re-

usable for other Android applications. In this way the mobile user interface can be

consumed as an isolated component.

From this standpoint, a mobile user interface (MUI) is a component which belongs

to one or many Android applications. In same way, a MUI is comprised of many sub-

components, the XML labels or elements in it. Therefore, the XML elements are features of

the MUI and they can be described into a feature model that depicts the MUI, as it is

showed on figure 5 and its feature diagram representation.

 Following this path, the domain of the mobile user interfaces, in terms of this

research, was bound by the elements of XML in ANEX A which is the set of elements

suggested by Android to build mobile user interfaces [7] . So that, feature models in this

domain can be depicted using the elements of android XML, the constraints and

dependences found in the Android Community website [7] . Figure 5 shows a sample of a

small family of MUIs for a survey interface.

18

Figure 5. A basic MUI and its feature diagram

2.3 Automated treatment of feature models

 Software systems and product configuration in general are more complex every day,

19

due the number of features in products is growing [8]. So the task to create and edit feature

models to depict product families and the analysis of variability to introduce new products

into the family is a rough task for domain designers [8]. However to deal with the problem,

computer–aided extraction mechanisms have been introduced by researches to alleviate the

task and reduce the amount of time it takes to domain designers [1]. These mechanisms

have shaped a formal research area known as automated treatment of feature models [9].

 By producing nodes and building relations between them randomly, is possible to

create features models which are later treated to make them syntactically correct [1].

Propositional logic (PL), description logic, constraint programming, graph transformations,

metaparadigm approaches and other not classified techniques have been used to model the

problem to create automatically feature models (FM) [9].

 In 2012 evolutionary computation was introduced as a solution to create high-

complex feature models to test performance in software analysis tools, the approach was

introduced by ETHOM [1] a novel algorithm based on Evolutionary Computation (EC).

This research takes advantages of this approach to create automatic derivation of mobile

user interfaces for Android applications.

2.4 Evolutionary Computation

The Artificial Intelligence comprised a set of computational mechanisms that are

trying to re-create the natural process of how the live beings learn and surviving in nature.

By the imitation of the nature processes, Artificial intelligence is providing with a kind of

syntactic intelligence to the computer algorithms and reasoning. Artificial intelligence is a

combination of mathematics, computing and engineering to build “intelligent” entities that

is successfully contributing to solve a multidisciplinary set of problems [10].

The artificial intelligence is an empiric science that is growing mainly due to it is

providing solutions in affordable computational times to complex problems in comparison

to some mathematical approaches. A sample of this is Evolutionary computation (EC),

which proposed a computer-based model to solve combinatorial optimization problems by

using computational models that emulate biology evolutionary processes, such as natural

20

selection, survival of the fittest and reproduction as the fundamental components of such

computational systems [11].

EC was inspired from the power of natural evolution of the diverse species in nature

studied by Darwin, Lamarck and Mendel. Darwin proposed the "natural selection of the

fittest" [12] while Mendel proposed "corpuscular theory of heredity" [13] and Lamarck

proposed "Inheritance of acquired characteristics" [14]. By the work of these authors, the

phenomenon of natural evolution can be described by the chances that an individual has to

survive and multiplying in a particular environment. The most capable individuals will

have more chances for reproduction and therefore to inherit genetic material to their

offspring, in this way generations are improved, it means evolved [15].

Offspring, reproduced from two parents contain genetic material of both. The

individuals who inherit the bad characteristics are weak and lose the battle to survive

leaving the best adapted individuals to survive, analogous, best solutions, those which are

nearest to the optimal will survive in terms of EC [15].

The idea of automated solving problem using natural selection can be tracked to the

40´s with the introduction of the Touring machine in 1948 [16]. Touring proposed "genetic

or evolutionary search". In 60´s Bremermam performed experiments to optimize using

evolution and recombination and then two different schools emerged: evolutionary

programming and genetic algorithm, both in USA. At the same time Evolution strategies

were proposed in Germany. But till 90´s, the schools were viewed as different approaches

of the same subject which was re-named Evolutionary computation [10].

The first formal evolutionary algorithm named Canonical Genetic Algorithm (CGA)

was proposed by Holland [17] who based on the work of Fraser and Brememerman in 60´s

extended the genetic algorithm in combinatorial problem solving.

A genetic algorithm simulates genetic systems in order to model genetic evolution;

here the characteristics of individuals are expressed using genotypes. The algorithm

introduced by Holland implements the basic steps of an EA: A bit-string representation for

the chromosome, proportional selection to select parents, one-point crossover to produce

offspring and uniform mutation. These concepts will be introduced ahead in this chapter.

21

Evolutive Algorithm

 The Evolutive algorithm (EA) is a general computational algorithm to solve

optimization problems based on the empiric method proposed by Evolutionary

Computation [15].

A well-known sample of optimization problem is the “Travelling Salesman” [18],

which refers a problem of minimization. The goal is to find the shortest route that makes

possible to a Salesman for visiting the more cities. The problem has been treated as a

combinatorial problem, however, once the number of cities grows the computational times

increase dramatically to set this problem as an NP-hard. From perspective of EC, good

solutions has been found in affordable times by using evolutionary strategies like genetic

algorithms.

The optimization problems are such where it is needed finding the maximum or

minimum solution for an objective function in a solution space by doing local search [15].

So that the solution to a problem is depicted in terms of finding the most suitable solution

for an objective function. This function is a 𝑓 ∶ 𝑆 → 𝑅 where S depicts a subset of real

numbers and the goal is to find a x0 such that f(x0) <= f(x) for all x in S, in case of

“minimization” or, such that (x0) >= f(x) for all x in S for maximization objectives.

General speaking, EA can be structured in six parts [15]: encoding, fitness

function, initialization, selection, reproduction and stop condition. The first two are

pre-set conditions which describe the computational structure to depict the candidate

solutions and how to measure its fitness regards to an optimal solution. The four parts

remaining are the logical structure of the algorithm and will be executed for same. For

purposes of this research work we have included mutation and restriction techniques as

suggested practices to add variation and avoid convergence. Figure 6 shows the operational

workflow of an EA.

22

Figure 6. Shows the CGA workflow

This research work treats the programming of a mobile user interface as a

combinatorial optimization problem where the goal is to design and code the most suitable

user interface that meets user & aesthetic requirements, by using the minimum number of

code lines. As we know this is a complex and rough task which starts by designing a set of

candidate mobile user interfaces which will be evaluated by the effort required by a

programmer for coding and testing. At the end, those interfaces with the minimum

parameter will be picked.

START

Produce an initial

population from scratch

Evaluate every individual

from the initial population

Encoding of individual

Parents selection

Is it reached the

Stop condition

reached?

CrossOver Mutation

Decoding

Fitness evaluation

for the new individual

END

D

23

Initial Population

 The initial population is a set of candidate solutions to an optimization problem,

created randomly from scratch. The initial population for the mobile user interfaces

scenario above is set by a number of mobile user interfaces that meet user requirements and

programming language restrictions.

Encoding a chromosome

 Each solution in the initial population is known as the individual and the data

structure that describes the individual is called chromosome [15]. Arrays of data and tree-

like structures are the most used to depict chromosomes [11]. The most basic chromosome

form is the bit-string structure that represents the binary form of a natural number [11].

This approach is gathered from the genetic encode of an AND of an individual which

depicts a solution in terms of a computational data structure, that facilitates to an EA for

applying operations over the individual like cross-over and mutation, this is described

ahead [15].

 The ETHOM [1] algorithm proposed the representation of a chromosome for a

feature model by using two arrays of data. The first one that keeps the FM tree structure

and a second one for describing relations of exclusion and/or inclusion. In figure 7 the

ETHOM chromosome is depicted.

24

Figure 7. Encoding of a feature model, approach introduced by ETHOM [1]

For purposes of this research work, each feature in the ETHOM chromosome is

linked to a specific functionality in the screen of the mobile user interface, such that, the

ETHOM chromosome can provide support for modelling features models of MUIs

families.

Fitness Function

In order to find best solutions (chromosomes) for an optimization problem, the

individuals need to be evaluated to select those that are nearest to the optimal. Given EA is

an empiric approach, non-deterministic methods are not available to find suitable solutions,

so that, the only way is by measuring the quality of the candidate solutions and to compare

[15].

Under this approach, metrics are gotten by the fitness function which measures

strength of an individual to survive in a specific environment [11]. So, a fitness function is

an objective function which is particularly useful to qualify how good the solution

represented by a chromosome is, by grading the chromosome representation to a scalar

25

value.

 The fitness function evaluates a candidate solution from a pool of possible solutions

produced in a random basis or by evolutionary operators in a particular problem. The

function returns the fitness of an individual [15]. ETHOM [1] proposed the fitness function

in terms of the number of backtracks it takes for a software tool to traverse the feature tree,

in order to find those feature models with the lees number of backtracks. The approach is

discarded for this research work due it is not applicable.

The fitness function introduced by this research work is one that is capable to find

the feature models to derive the mobile user interfaces with the least number of code lines

that meet user requirements and programming constraints. This function is widely

discussed on Chapter 4. In figure 4 below, it can be seen the mapping of MUI in the

ETHOM chromosome.

Figure 8. Chromosome called SurveyComponent1

Selection and crossover operators

 Selection operators are techniques to choose best fit individuals in order to

emphasize better solutions for reproduction and avoiding that the best individuals dominate

26

the landscape [11]. Once the fittest individuals are selected, these are subject of a

reproduction process determined by the type of the crossover operators [11].

 ETHOM [1] algorithm incorporates two crossover operators: rank-based selection

and tournament selection. Both techniques were successfully implemented to brew new

features models solutions for optimization. The approach was implemented in the prototype

that validates this research work.

 The rank-based selection method starts aligning the individuals in decreasing order

by using its fitness values, then a probability of selection is calculated using formula,

individuals are picked using the selections probability in roulette spin. In this way

individuals selected are independent of the absolute fitness values, the advantage is that the

best ones will not dominate the selection process and it will avoid divergence [11].

 In tournament selection a set of individuals is randomly picked from the population,

then individuals are compared in order to find the best one of this group, the process is

called tournament [11]. A tournament round is performed by each parent, a crossover for

two parents will need tournament selection to be done twice [11].

To illustrate the crossover process, the figure 7 shows an initial population of

random natural numbers, the chromosome to depict each natural number is using its binary

representation in an array, this bit-string structure is the most basic form of a chromosome

[11].

In the figure also we have applied two operators: crossover and mutation. For

crossover, the bit-string structures are combined by selecting the first two bits of parent A

and the last one of parent B for breeding a new individual. The fitness function is defined in

terms of the scalar value of f(x) = x. If a minimal is searched, minor values are the best

fitness ones, by the other hand if maximal is the optimization goal maximum values will be

selected as the best fitness.

27

Figure 9. Encoding representation of natural number into a binary array

 The sort of crossover defines how the parents are combined for breeding a new

offspring. There are three types of crossovers categorized by the number of individuals that

participate in the reproduction: asexual, when only one parent participates, sexual, two

parents produce one or two more individuals and multi-recombination where more than two

parents breed one or more offspring [11].

 For combination, parents break into pieces, the new individual contains some parts

of each parent. The point where the parents break is known as crossover point. These are

the types of crossover points:

 One-point crossover. Establishes a common point of crossover for both parents

[11].

 Two-point crossover. Allows break down the data array structures in more than two

points [11].

 "Cut and splice". Allows uncommon breaking points for both arrays [11].

 Uniform Crossover and Half Uniform Crossover. The arrays are divided into

multiples pieces in uncommon points and mixes [11].

 Sexual reproduction on one-point crossover was implemented on the prototype of

this research work as ETHOM algorithm does. In figure 9 is illustrated the process, the

chromosome that depicts the feature model according to ETHOM [1] is comprised by two

arrays, a random crossover point in each array must not be greater than the maximum size

28

array, then the left part of parent A and the right part of parent B are mix on the new

individual.

Figure 10. Example of one-point crossover introduced by ETHOM [1]

Mutation

 The goal of mutation is to introduce new genetic material into the population,

thereby increasing genetic diversity. It can be done by random changes on the genes of a

chromosome [11]. The mutation operators are ad-hoc mechanisms regarding to the

particular problem.

ETHOM [1] proposed four mutation operators, below:

 Operator 1 changes randomly the type of a relationship between parent and

child [1].

 Operator 2 changes randomly the number of children of a feature in the tree [1].

 Operator 3 changes the type of a cross-tree constraint in the CTC array [1].

 Operator 4 changes randomly (with equal probability) the origin or destination

feature of a constraint in the CTC array [1].

Constraints and infeasible individuals

 In EC, the automatic generation of solutions by random methods, crossover or

mutation can lead sometimes to produce infeasible individuals in a constrained solution

space. The techniques to tackle infeasible individuals those who are violated at least one

constraint, are three different approaches: rejection of the infeasible individuals, individual

29

repairing by solving the unconstrained problem using information of the feasible solution

space, and discourage to the search mechanism to look for solutions on the unfeasible space

like penalty functions and pareto ranking, it last use concepts from multi-objective

optimization [11].

 The repairing approach of the FM from ETHOM [1] was used for the proposed

prototype by this research work. This approach avoids semantically redundant feature

models. The mechanisms of repairing are below.

 a).- Relationships (or- and alternative) with a single child feature are changed by optional

relationships [1].

Figure 11. Relations (or- and alternative) with a single child repairing [1]

b).- Cross-tree constraints between features with parental relationship are removed [1].

Figure 12. Cross-tree constraints between features with parental relationship repairing [1]

c).- Contradictory or redundant cross-tree constraints changed by implications [1].

Figure 13. Contradictory or redundant cross-tree constraints repairing [1]

 Every MUI also must meet a set of requirements stated by a customer or end user.

These requirements were thought as constraints for the chromosome. A pool of solutions

30

represents all possible combinations of MUIs that meet the user requirements, and to treat

this problem, an ad-hoc mechanism in prototype section in Chapter 4 was added to the

repairing techniques exposed here.

Survival and stop condition

 Finally, offspring should consider a replacement policy and stop condition in order

to avoid an infinite growing of the population. One approach is that the offspring may

replace the worst parent as long as its fitness is better compared to the one which is

replacing. This approach has been adopted by this work.

2.5 Software Automation and SPLE

The automation concept that this dissertation supports on SPL, it can be defined as

the replacement of human hand by a software tool which is aided by intelligence artificial

mechanisms and it can be tracked back to the research work of [19] at the 80´s. . The

software tool in question is a robot in terms of manufacturing

The approach of automation in Framework 5.0 is focused in the automatic product

derivation. According to SEI “Automated derivation of products requires an explicit tool

chain that begins with domain concepts and ends with executable code”... [5]

In this context, automatic product derivation proposes a way to create software

product automatically from requirements. However, natural language speaking

requirements cannot be exploited under this approach, requirements needs to be processed

into a model that can be fully read by automated tools.

The different paths followed to addressed this task have been categorized by SEI [5]

in terms of how well-defined is the semantic y the type of modeling language that is

specific for creating the model in question. The five main approaches are specification-

based, intelligent build, domain-specific languages (DSLs) and product generation, meta-

modeling and frame technology”. These approaches are not at the same level of abstraction,

and they are not mutually exclusive. [5]

31

 Chapter 3. Related Work

This chapter reviews the research work on the main fields addressed in this

dissertation. Cites the efforts for automating the software engineering process using AIT,

its applicability on SPLE as well on the mobile domain. Also, the verification of the

correctness of automated synthesis of feature models on mobile domain is surveyed here.

The efforts to improve the software engineering process started at the 1960’s with

the adoption of machine learning to create formal specification from informal requirements

in natural language [3]. Later at the 80's a formal concept of software automation based on

AIT is introduced in [19] and supported by the intensive work to automate the whole

process of software developing. However this is not leaded to a specific software

developing framework leaving these efforts to the research community only.

Three broad areas of AIT have most impacted the software engineering process:

searching and optimization, fuzzy and probabilistic methods for reasoning under

uncertainty and, machine learning which includes classification and prediction [20].

In software engineering, the efforts can be classified in three branches.

Probabilistic Software Engineering which refers to the treatment of noisy and

incomplete information using fuzzy and probabilistic methods, some samples are Bayesian

probabilistic reasoning to model software reliability and the stochastic nature of human

behavior.

Classification, Learning and Prediction for Software Engineering which refers to the

increasing interest in modeling and predicting software costs as part of project planning,

traditional machine learning techniques such as artificial neural networks, cased based

reasoning and rule induction have been used for software project prediction.

Search Based Software Engineering, in this classification, the software engineering

problems are treated as optimization problems that can be solved with computational

search, some applications are led to requirements and design, maintenance, and testing [20].

In the SPL field the efforts for automating are focused on the automatic product

derivation [5] which have driven the automated analysis of feature models to become a

32

well-established research area that have attracted more attention in the last two decades [9]

given the feature model is one of the most used approaches to model variability and

communality in SPL. The automated analysis of feature models from AIT perspective has

been treated for ETHOM [1] a novel algorithm based on EC which has proved being more

effective to process and analyzing hard-computationally feature models on an affordable

machine cost.

This evolutionary algorithm demonstrates to be more efficient that random search in

finding input combinations for maximizing or minimizing execution times to synthesize

features models with functional and non-functional features. The goal of ETHOM [1] is to

provide an automatic mechanism that produces hard-computationally feature models for

testing purposes. So in this way, the feature models produced by ETHOM [1] have been

proved to be more effectives for finding processing errors on FM analysis tools compared

to those features models created randomly.

Given the novel of this work its applicability is scarce in literature, however, other

application of ETHOM was found on reverse engineering, this work proposed by the

ETHOM authors is based on the statement that a “SPL does not needs to be created from

scratch”, the features of pre-existing products can be feed to the ETHOM algorithm in

order to create a new SPL. This is particularly useful due to the labor of starting a new SPL

can be error prone [21].

The efforts for automating in SPL based on artificial intelligence are mainly

targeted to the proper selection of features from the stakeholders concerns and the

functional/non-functional requirements selection, techniques like Hierarchical Task

Network (HTN) [22], fuzzy logic [23], Analytical Hierarchy Process (AHP) and Fuzzy

Cognitive Maps (FCM) [24], genetic algorithms [25] were used.

Another efforts for automation in SPL show successful ad-hoc mechanisms in the

labor of automatic support for product derivation of software for electronic devices [26],

model-driven techniques for automatic product derivation on mobile software [27] that

takes advantages of the conditional compilation and aspect-oriented programming, and

automated testing [8].

33

Also, some prototypes and tools to support automation on SPL without AIT can be

found on [28] that uses rational rose to derive products from UML multi-model views. In

[29] a prototype for automatic analysis of the security requirements and [11] where

automatic derivation is treated using a repository approach [30].

The adoption of AIT techniques in SPL is scarce, but a trend for synergizing,

product configuration and SPL, promises benefits in the long run to the automation on SPL

assisted by AIT due to product configuration is another well-defined research area with

more than 30 years of application in many different industrial domains and of course a long

history on the successful application of AIT for automation purposes [8].

 The automatic product derivation based on SPL which is the subject of this research

work for specific mobile android applications is non-existent in literature, but frameworks

with automatic code generation and tools for automated android software development with

no SPL support can be found, from XML to java codes by eclipse plug-ins [31].

Trends that adopt AIT in mobile domain only can be traced to contextual adaptive

user interfaces [32] that implement machine learning.

 As we demonstrated at this literature review, the state of the art in SPL support and

automatic product derivation for mobile software are scarce in literature, approaches based

on AIT were not found. Only ETHOM [1] provides a mechanism for automatic product

derivation in SPL that implements AIT but it have not been tried on mobile software

domain, which is the reason to integrate it into our proof of concept.

34

Chapter 4. Study case: Configuration of a SPL for user interfaces at

mobile devices domain

 This chapter introduces the study case and the prototype created to support the

theoretical basis sustained by this research work. It explains the functionality and

construction of the prototype and its applicability in the automatic derivation of mobile user

interfaces for survey applications.

4.1 The study case

 According to the World Bank in 2012, there were about six billion mobile

subscriptions in use worldwide, about three quarters of the world's people now have access

to a mobile phone. In some developing countries, more people have access to a mobile

phone than a bank account, electricity or even clean water. Mobile communications now

provide great opportunities to advance human development, from basic access to

information and education health to make cash payments to encourage participation of

citizens in democratic processes, etc [33]. Along with the technological mobile base

growth, the increasing of functionality of Smart phone devices in recent years have given

rise to an explosion in developing applications for this sector. This trend obliges to the

researches on software automation to innovate in this field.

 The prototype introduced in next sections is a proof of concept to support the

automation concept in SPL assisted by AIT. It performs automatic product derivation

through domain analysis proposed by FODA method and claimed as a good practice in

Framework 5.0 in order to achieve an approximation between practicing of SPL discipline

in real life and AIT. The prototype proposes a method to derive software products for

electronic devices by exploding the Android platform. This prototype turns around of an

evolutionary algorithm developed in java, which by means of automatic synthesis of feature

models introduced by ETHOM [1] produces feature models which are exploited by the

tools to the get the product configurations.

The case of study that supports the user requirements which shape the mobile user

35

interfaces derived under this approach, it is based on the domain of applications for Mobile

Data Collection or Mobile Surveys which is a growing trend of data collection where a

survey form, application or collection tool is on a mobile device such as a Smartphone or a

Tablet and by using an online platform data gathered can be retrieved and processed [34].

This data collection trend is growing due low costs and short times needed for applying a

survey compared to traditional methods [34].

Apart from the high mobile phone penetration, mobile devices and their applications

offer innovative paths to collect data regardless of time and location of the inquired [35],

further advantages expected are quicker response times and the possibility to reach

previously hard-toreach target groups [36]. Another advantage of using a mobile device for

data collection is to gather information more discreetly if needed papers. For example, an

observation survey could be performed on a smart phone or tablet instead of a clipboard or

stack of survey papers [35] [36].

The first online commercial surveys platforms that provides mobile capabilities and

total customer business integration through SOA are appearing into market in order to

deliver on-line survey services, under this context, our contribution is to provide mobile

user interfaces which can be reused as components inside of On-line Survey Data

Collection Platforms.

 By other hand, in order to demonstrate the applicability of the model and the tool

introduced by this work, every mobile user interface must meet a set of requirements stated

by a customer or end user. These requirements were thought as constraints for the

chromosome. A pool of solutions represents all possible combinations of mobile user

interfaces that meet the user's requirements which are obtained through the selection of the

requirements set provided on table 2 below. This feature set is extracted from those

suggested by Android Community [31] and it depicts the basic set of features requested to

create mobile user interfaces, the set also compounds our feature domain as it is explained

ahead, so that, a user screen for a Lyker-scale basic question [37] over a mobile device can

be shaped into the set of features of Android.

36

Table 2. Feature set for Lyker scale question

 From model above, many mobile user interfaces will be automatic derivatives using

this approach from XML Android tags and the natural speaking requirements on table 4.

Initially MUIs for questions with multiple choice of three and five grades will be produced.

 In the next paragraphs the Mobile Android Product Derivation Software (MAPDS)

tool is explained to prove the correctness of the model introduced.

4.2 The MAPDS prototype

 The MAPDS prototype is an object-oriented software tool developed on Java SE 7,

as a standalone application it can be run on any Windows 7 desktop machine. MAPDS

takes a subset of XML labels into the set of Android labels as an input parameter and turns

them into XML mobile user interfaces that can be run in any Android device like figure 16.

Feature UI Component Description SurveyComponent1

A. Instructions a

B. Question Statement a

C. Grade Scale a

D. Set of 5 grades a

E. Set of 3 grades

F. Question number

G. Button Bar

H. Comments text box

I. Disclaimer Legend

J. Background Image

37

Figure 14. XML code and its MUI

 Any MUI created by MAPDS can be re-used in more complex Android mobile

applications due to the XML support provided by Android which allows to the screen

functionality to be encapsulated.

 A run cycle of MAPDS provides a set of mobile user interfaces that are constrained

by a set of user requirements which were described in the study case section above table 2.

 The tool is comprised by four classes: MainFrame, ATM, FeatureModel and

Configurator. They interact each other to provide with an interface to the final user which

allows selecting the configuration parameters of the evolutionary algorithm to perform the

synthesis of feature models and the set of their derived products.

 The ATM class deploys the evolutionary algorithm engineering to select the best

feature models individuals. FeatureModel class is the feature model template to instantiate

the FM individuals (objects) that will comprise the FM population. Mainframe class

deploys the mobile user interface to interact with, it instantiates the ATM class to start the

automatic process development. The figure below shows how these classes interact, each

class has a well-defined goal and function explained ahead.

38

Figure 15. The class interaction on MAPDS tool

 The mobile user interface of MAPDS provides the selection of input values for the

evolutionary algorithm embedded, the user can choose from seven parameters to choose

and create combinations.

 Selection strategy parameter defines how the individuals will be selected for cross-

over. At this stage only the one-point strategy is available to pick from the screen.

 Mutation probability will define the percentage of individuals to be mutated from

the initial population in terms of an EA.

 Size initial population parameter sets the size of the population.

 #Executions fitness function set the stop condition for this EA.

 Infeasible individuals parameter defines whether the infeasible individuals will

replaced or repaired and finally Features parameter will establish the size of the features

models.

 Screen in figure 18 shows the configuration display to interact with. Once the

parameters are selected, by clicking “Make Calculations” button, the MUIs are produced

into the application directory and ready to be re-used in an Android application by adding

the file into the /res directory in the Android *.apk project.

39

Figure 16. MAPDS mobile user interface.

 Currently the prototype derives mobile user interfaces in XML code. Programming

mobile user interfaces for mobile devices using Android can be coded through Java and

XML languages, our prototype builds mobile user interfaces in XML, given the modularity

of XML tags to represent on-screen functionality, a label in terms of this research

represents a unit of functionality and looks like a building block, these blocks are the assets

of our product line and it use them to configure software products (mobile user interfaces

for mobile devices), such that a mobile user interface is a combination of XML tags that are

there because of a required configuration.

 The tool then takes the set of XML tags provided by Android Community [7] for

building mobile user interfaces in table 2 and the properties, as the set of features which

features models will be interpreted with.

40

Table 3. Set of Android elements most common used to build MUIs extracted from

Android Community [7]

The ATM class

 The instantiation of ATM class starts the initial population, which is stored in

initialPopulation variable into the class. The initialPopulation variable is an array of FM

class objects which are created by means of the instantiation of several feature model

objects.

41

Figure 17. Relation between the ETHOM chromosome and the MUI code based on XML

 The initial population is created by instantiating a number of FMs which are created

randomly. The number of FM objects in the initial population is an input parameter of the

mobile user interface MAPDS tool. It sizes the initialPopulation array, which will be fill by

the initialPopulation() method in ATM class.

FM Class and the FM individuals

 Each FM object is an individual created using the algorithm for the random

generation of feature models proposed by [38], which describes a transversal-tree of nodes,

where each node represents a feature on the feature model. Originally, the nodes are

comprised by the child number and relation type of this node regards to its father, but for

effects of this research it was added a number to identify the Android feature depicted by

the node.

 In the random approach to create feature models [38] built-in by ETHOM [1] to

create the initial population, a node is randomly selected from the set of nodes and this is

assigned a random number of children and a random relation with its father. All the actions

to create the tree-like structure of a FM object are deployed on the FM class constructor,

42

the code in FM is inserted below to illustrate the process.

/**** FM constructor ****/

public FeatureModel (int ft) {

 nodes = ft; --> decribes nodes from initial Size Population variable

 FMMatrix = new int[ft][3]; --> Creates FMmatrix storing the node tree

 /**** Creates a temp set of nodes which can choose from ****/

 int perassign = nodes -2;

 int[] tempNodeSet = new int[nodes]; //Fills temp node Set

 for (int i=0; i<perassign; i++)

 tempNodeSet[i] = i + 1;

 /******* Fills FMMatrix with n nodes *******/

 /***Constraint 1 - First feature is mandatory***/

 FMMatrix[0][relation] = 1;

 FMMatrix[0][children] = xRandom(nodes-1);

 int totalchildren = FMMatrix[0][children];

 for (int i=1; i<nodes-2; i++) {

 int xset=0,xnode=0;

 boolean invalidNode = true;

 xset = xRandom(perassign); //Select random position

 xnode = tempNodeSet[xset]; //Select node from feaure set

 perassign--; //Decrease total of nodes to assign

 tempNodeSet[xset] = tempNodeSet[perassign];

 //Copy last node to xset pos to reduce the set

 FMMatrix[xnode][relation] = xRandom(4);

 if (totalchildren > xnode)

 FMMatrix[xnode][children] = xRandom(((nodes-2)-totalchildren)+1);

 //Assign progenie

 else

 FMMatrix[xnode][children] = xRandom(((nodes-2) - xnode) +1);

43

 totalchildren = totalchildren + FMMatrix[xnode][children];

 } // end for statement

 /***Constraint 2 - Last feature is mandatory ***/

 FMMatrix[nodes-1][relation] = 1;

 FMMatrix[nodes-1][children] = 0;

 /******* Ended Fill out FMMatrix ********/

 if (nodes > 2)

 fillOutCTCMatrix(); //Fill Out CTC Matrix

 setFitness();

} // End FM class constructor

 In MAPDS FeatureModel class, the FMMatrix array stores the feature model tree

[1] and the CTCMatrix [1] array stores the feature model constraints for this tree. So that,

the chromosome is comprised by these two integer arrays.

================================

=

* Chromosome No. 0

================================

=

C T C Matrix

* R,56,21 | E,28,26 *

Feature Model Matrix

0,26,Mandatory,-1

1,0,Mandatory,0

2,0,Or,0

3,0,Optional,0

4,0,Or,0

5,0,Or,0

6,0,Mandatory,0

7,0,Alternative,0

8,0,Or,0

9,0,Mandatory,0

10,0,Or,0

11,0,Optional,0

12,0,Optional,0

13,0,Optional,0

14,0,Mandatory,0

15,0,Or,0

16,0,Mandatory,0

17,0,Optional,0

18,8,Mandatory,0

44

19,0,Or,18

20,0,Optional,18

21,0,Or,18

22,0,Alternative,18

23,0,Mandatory,18

24,0,Or,18

25,0,Or,18

26,0,Optional,18

27,18,Or,0

28,0,Alternative,27

29,0,Alternative,27

30,0,Optional,27

31,0,Optional,27

32,0,Optional,27

33,0,Alternative,27

34,0,Mandatory,27

35,1,Mandatory,27

36,0,Alternative,35

37,0,Optional,27

38,0,Or,27

39,0,Alternative,27

40,0,Alternative,27

41,0,Mandatory,27

42,0,Or,27

43,2,Mandatory,27

44,0,Optional,43

45,0,Alternative,43

46,0,Mandatory,27

47,0,Mandatory,27

48,0,Or,27

49,0,Mandatory,0

50,0,Mandatory,0

51,0,Alternative,0

52,0,Optional,0

53,0,Or,0

54,0,Optional,0

55,0,Optional,0

56,0,Mandatory,-1

 In this sample, the FM has been converted in a chromosome which is created based

on 56 features on table 3 where CTCMatrix [1] contains two constraints: nodes 56 and 21

are mutually required and nodes 28 and 26 are mutually excluded for this particular sample.

 The number of children in the node is calculated by extracting a random number

between the children sum and the maximum branching. In same way, the relation in the

node is assigned using a random number from 0 to three where values are depicted as,

0="Optional", 1="Mandatory", 2="Alternative" and 3="Or". The position in the array

represents the feature number [1].

45

The MUI chromosome

 Given the space of solutions to our problem is found into the mobile user interfaces

set, the individual or chromosome is represented by a piece of XML code that runs as a

mobile user interface in an android user device. Even though a MUI can be represented in

terms of java code, the decision to use XML is due, XML simplifies the coding of mobile

user interfaces in Android and provides modularity by using descriptors for java code

pieces. By bounding XML elements to visual features in screen a feature model for a MUIs

family can be depicted. See figure 14 below.

Figure 18. Feature model of SuervyComponent1

 The chromosome prototype of ETHOM [1] to depict feature diagrams is used in this

research work to represent feature models of MUI, due it is the first approach found in

literature to depict feature models in terms of EC and it accomplish with the automation

concept proposed in this work for a SPL in terms of SEI [5].

 The translation of Android MUIs written on XML code to FM chromosomes starts

by pointed out every XML label into a feature of the MUI. The chromosome is comprised

by an array that depicts the transversal feature tree and a second one that stores the

46

constraints relations of the feature model, in figure 15 both are deployed for reference, the

ETHOM chromosome was introduced on Chapter 2.

 The existence or not of a label exposes a feature on the MUI over the android screen

these approach helps easily link features with code components. The FM chromosome

according to ETHOM [1] can be depicted using two arrays, one for describing the

transversal tree and the other one for the CTC constraints.

 As illustrated on figure 15, each node in the tree array contains the number of

children and type of relation of this node related to its parent. The four types of relations are

described using Ma = mandatory, Op=optional, Alt=alternate, Or=or-relationship, the CTC

array uses “E” for exclusion and “R” for requires.

 According to ETHOM [1] authors, “generic encodings for evolutionary algorithms

were ruled out since these were either not adequate to represent tree structures (i.e. binary

encoding) or were not able to produce solutions of a fixed size (e.g. tree encoding), a key

requirement in our approach... [1]”

Figure 19. MUI feature model proposed on this research work and its translation to

ETHOM [1] chromosome

The fitness function on MAPDS

47

 ETHOM proposed measuring the fitness of a FM chromosome by counting

the number of backtracks required for an analysis tool to cross the transversal-tree, the

approach was discarded here.

In terms of this research, the goal is to look for the most fitted derived product

regardless the FM in question, to do this, it is needed optimizing the quality of the products

produced. The FM only needs to be created according to FODA.

 In consequence, this work proposes evaluating the fitness function of a FM

chromosome by counting the number of XML elements and attributes in the MUIs. So that,

the optimization goal is the less number of elements and attributes of the MUI XML code

and therefore the less number of code lines required for coding a MUI.

The fitness function proposed to measure will be,

𝑓(𝑥, 𝑦) = ∑ 𝑥 + ∑ 𝑦

where f is the fitness function, “x” is the number of Android elements depicted by the XML

tags [5] listed on table 4 and “y” is the weight of every Android properties of each element

that can be listed on [7].

 In order to illustrate the idea, the sample code below is showing how the fitness is

evaluated by counting relevant elements which are underlined.

By making calculations with the fitness function, the scalar gotten of the MUI

sample code is 94 Fitness sample is below.

𝑓(𝑥, 𝑦) = 16 (𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) + 78 (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠) = 94

The sample XML code is below,

SAMPLE CODE

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
xmlns:Android="http://schemas.Android.com

/apk/res/Android"

xmlns:tools="http://schemas.Android.com/to

ols"

 Android:layout_width="match_parent"

 Android:layout_height="match_parent"

 Android:alpha="1.0"

 Android:orientation="vertical" >

48

<!-- Comments Line Sample -->

 <TextView

 Android:id="@+id/textView1"

 Android:layout_width="fill_parent"

 Android:layout_height="0dp"

 Android:layout_weight="1.0"

 Android:gravity="left"

 Android:text="@string/instructions"

 Android:textColor="@color/black" />

 <TextView

 Android:id="@+id/textView2"

 Android:layout_width="fill_parent"

 Android:layout_height="0dp"

 Android:layout_weight="1.0"

Android:text="@string/quest_description" />

 <TableLayout

 Android:layout_width="match_parent"

 Android:layout_height="0dp"

 Android:layout_weight="1.0"

 Android:background="#ffffff"

 Android:shrinkColumns="*"

 Android:stretchColumns="*" >

 <TableRow

 Android:layout_width="fill_parent"

Android:layout_height="wrap_content"

 Android:gravity="center_horizontal"

>

 <TextView

 Android:id="@+id/textView4"

Android:layout_width="wrap_content"

Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:text="@string/scale1" />

 <TextView

 Android:id="@+id/textView5"

Android:layout_width="wrap_content"

Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:text="@string/scale2" />

 <TextView

 Android:id="@+id/textView6"

Android:layout_width="wrap_content"

Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:text="@string/scale3" />

 <TextView

 Android:id="@+id/textView7"

Android:layout_width="wrap_content"

Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:text="@string/scale4" />

 <TextView

 Android:id="@+id/textView8"

Android:layout_width="wrap_content"

Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:text="@string/scale5" />

 </TableRow>

 <RadioGroup

 Android:layout_width="fill_parent"

Android:layout_height="wrap_content"

 Android:orientation="horizontal" >

49

 <RadioButton

 Android:id="@+id/radioButton1"

Android:layout_width="wrap_content"

Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:gravity="center" />

 <RadioButton

 Android:id="@+id/radioButton2"

Android:layout_width="wrap_content"

Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:gravity="center" />

 <RadioButton

 Android:id="@+id/radioButton3"

Android:layout_width="wrap_content"

Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:gravity="center" />

 <RadioButton

 Android:id="@+id/radioButton4"

Android:layout_width="wrap_content"

Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:gravity="center" />

 <RadioButton

 Android:id="@+id/radioButton5"

Android:layout_width="wrap_content"

Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:gravity="center" />

 </RadioGroup>

 </TableLayout>

</LinearLayout>

The optimization goal of the fitness function

 Best solutions are those MUIs that meet the user requirements with the less number

of XML elements and attributes, so the optimization goal of this problem will tend to

minimize.

𝑚𝑖𝑛𝑓(𝑥, 𝑦) = ∑ 𝑥 + ∑ 𝑦

 A second version of the sample code above that meets the same user requirements

but with a lower fitness will provide same functionality to the end user. Based on that, a

sample second version of the five grade scale mobile user interface is showing below

together with its fitness function to validate this optimization approach, in this new one the

fitness is 60.

50

𝑓(𝑥, 𝑦) = 50 (𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) + 10 (𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠) = 60

Below code is the second version of sample code above of the MUI produced.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:Android="http://schemas.Android.com/apk/res/Android"

 xmlns:tools="http://schemas.Android.com/tools"

 Android:layout_width="match_parent"

 Android:layout_height="match_parent"

 Android:alpha="1.0"

 Android:orientation="vertical" >

<!-- Comments Line Sample -->

 <TextView

 Android:id="@+id/textView1"

 Android:layout_width="fill_parent"

 Android:layout_height="0dp"

 Android:layout_weight="1.0"

 Android:gravity="left"

 Android:text="@string/instructions"

 Android:textColor="@color/black" />

 <TextView

 Android:id="@+id/textView2"

 Android:layout_width="fill_parent"

 Android:layout_height="0dp"

 Android:layout_weight="1.0"

 Android:text="@string/quest_description" />

 <RadioGroup

 Android:layout_width="299dp"

 Android:layout_height="wrap_content"

 Android:orientation="vertical" >

 <RadioButton

 Android:id="@+id/radioButton1"

 Android:layout_width="wrap_content"

 Android:layout_height="wrap_content"

 Android:checked="false"

51

 Android:text="@string/scale1" />

 <RadioButton

 Android:id="@+id/radioButton2"

 Android:layout_width="wrap_content"

 Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:gravity="center"

 Android:text="@string/scale2" />

 <RadioButton

 Android:id="@+id/radioButton3"

 Android:layout_width="wrap_content"

 Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:gravity="center"

 Android:text="@string/scale3" />

 <RadioButton

 Android:id="@+id/radioButton4"

 Android:layout_width="wrap_content"

 Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:gravity="center"

 Android:text="@string/scale4" />

 <RadioButton

 Android:id="@+id/radioButton5"

 Android:layout_width="wrap_content"

 Android:layout_height="wrap_content"

 Android:layout_weight="1"

 Android:gravity="center"

 Android:text="@string/scale5" />

 </RadioGroup>

</LinearLayout>

 Each FM object has a property called fitness which stores the fitness scalar value,

this is implemented on FeatureModel class.

 As a short overview, the fitness of a FM in terms of this work is defined by the

product with the minor number of elements and properties that accomplish all the user

52

requirements, then the optimization objective will be to have FMs that depict families of

MUIs with less XML code.

The selection operators

 Two selection techniques are used in this work to choose the best fit individuals for

reproduction purposes, both have proved to be efficient in literature [1], Rank-Based and

Tournament Selection strategies. MAPDS tool implemented sexual reproduction which

selects two parents for reproduction.

 The Selection() method on ATM class depicts their implementation, the java code is

below.

 public FeatureModel Selection(int op) {

 switch (op) {

/************* rank-based roulettewheel *******************/

 case 1: {

 int i = 1;

 double sum=0.0,summy=0.0;

 for (int j=0; j<=sizePopulation; j++)

 sum = sum + population[j].getFitness();

 summy = population[i].getFitness() / sum;

 double ro = Math.random();

 while (summy < ro) {

 i++;

 summy = summy + population[i].getFitness() / sum;

 } //end while

 return population[i];

 } //end case 1

/*********** Tournament selection based ********************/

 case 2: {

 FeatureModel best, next;

 best = population[(int) Math.random() * sizePopulation];

 for(int i=0;i<=10;i++) {

 next = population[(int) Math.random() * sizePopulation];

53

 if (best.getFitness() < next.getFitness())

 best = next;

 }

 return best;

 } //end case 2

 } // end switch

 return null;

 } //end Selection method

 As illustrated before, rank-based selection uses the rank ordering of fitness values to

determine the probability of selection. Therefore, the selection process is separated of the

actual fitness values, with the advantage that the best individual will not dominate in the

selection process [11].

 By other hand, tournament selection compares the performance of the selected

individuals picked randomly and the best one from this group is returned by the operator.

For crossover with two parents, the selection method is executed twice, once for the

selection of each parent [15].

Croosover

 The crossOver() method in class ATM implements sexual reproduction. Once the

parents are selected one point of crossover is chosen, so that, the point of crossover is

common for both parents. Code below shows how the arrays are combined using the left

part of parent A and the right part of parent B, this approach was introduced by ETHOM

[1] for crossing features models chromosomes, the approach was adopted by MAPDS as a

starting point. Code below illustrates the implementation on MAPDS.

public void crossOver (int op) {

 FeatureModel offSpring;

 /** Select Individual for CrossOver **/

 FeatureModel parentA = Selection(1);

 FeatureModel parentB = Selection(1);

54

 offSpring = parentA;

 /********* CroosOver Point *****/

 int crossOverPoint = (int) (Math.random() * (features -1));

 /********* CroosOver ****************/

 for(int i=crossOverPoint;i<features;i++) {

 offSpring.setChildren(i,parentB.getChildren(i));

 offSpring.setRelation(i,parentB.getChildren(i));

 }

 offSpring.printFeatureModel(60);

} // end crossover function

Mutation

 The main goal of the mutation is to introduce new genetic material into the

population [15]. Mutation is implemented on MAPDS using two of the four customized

operators introduced by ETHOM [1], only operators 1 and 2 that mutate the FM

transversal- tree array were incorporated in MAPDS. Constraints are not mutated. The

mutation operators were implemented on Mutation() method in ATM class. Below code

shows the implementation.

public void Mutation (FeatureModel FM) {

 switch((int) (Math.random() * 3)) {

 // set a new relation

 case 1: {

intactualRelation=FM.getRelation((int)Math.random()* features),newRelation=0;

 while(actualRelation == newRelation) {

 newRelation = (int) (Math.random() * 3);

 }

 FM.setRelation(actualRelation,(int) Math.random() * features);

 } //end case 1

 // It changes randomly the children number

 case 2: {

 int pos = (int) (Math.random() * features);

55

FM.setChildren((int) Math.random() * features,(int) Math.random() * features); } //

end case 2

 // It change CTC type.

 case 3: FM.changeCTCType(); --> Change

 case 4: FM.changeCTCPoint();

 } // end switch

} // end mutation method

/// Cases 3 & 4

public void changeCTCType() {

 if (CTCMatrix[1][0] == 0)

 CTCMatrix[1][0] = 1;

 else

 CTCMatrix[1][0] = 0;

}

public void changeCTCPoint() {

 int newPoint = (int) (Math.random() * nodes);

 while (CTCMatrix[1][1] == newPoint) {

 newPoint = (int) (Math.random() * nodes);

 }

 CTCMatrix[1][1] = newPoint;

}

Infeasible individuals

 The repairing approach proposed by ETHOM [1] was implemented on MAPDS in

order to provide support for the correctness of FMs that depict families of MUIs. Then

individuals are repaired to turn them on feasible individuals, it means to avoid a

chromosome to be semantically redundant.

 Briefly Operator 1 replaces relationships (or- and alternative) with a single child by

optional relationships. Operator 2 changes randomly the number of children of a node.

Operator 3 changes the type of constraint in CTC array. Operator 4 changes randomly the

source and destiny nodes on CTC array. Chapter 2 gives a full introduction to these

operators.

56

Survival

 Finally, the offspring considers a replacement policy by which individuals can be

inserted into the population. The approach is replacing the worst parent with the breeding,

if this one has a better fitness.

Configurator Class

 The Configurator class is in charge of automatic derivation of products by using an

ad -hoc approach. The FM chromosome represents a set of feature combinations (product

configurations) based in the existence or not of a component, in consequence, a product can

be represented by a binary array and therefore an FM is a family of binary arrays, figure 20

illustrates this concept.

Figure 20. A FM Individual and its derived products

So, a universe of possible products is found on the binary table comprised by the n

combination of products. For sample on figure 20, 126 possible products will be gotten

from this FM individual. For automatic product derivation, Configurator() class will test

each product in the pool of possible products (the binary table) to determine those

combinations that belongs to the family in question. This cycle is repeated for each FM

produced. Once the real products are found this class checks the resultant combination

complies the requirements needed to build the XML code and once this is done it prints the

XML file (MUI).

57

 In this chapter, it was introduced a method for automatic product derivation of

mobile user interfaces on XML language descriptor. A software prototype that implements

the methods used for automatic derivation based on evolutionary computation. In the next

chapter, results gathered from the tool are showing to demonstrate the validity of the model

proposed.

58

Chapter 5. Results and Evaluation

 This chapter presents the methodology used to evaluate the approach proposed for

automatic produce derivation in the context of this research and its analysis of results.

5.1 Evaluation

 The research methodology is based on a quantitative approach by automatically

producing solutions that improve the number of lines in XML programs. The solutions

produced by the MAPDS tool are totally usable and were successfully compiled using the

adt-bundle-windows-x86_64-20130522 [31] provided by the Android community in their

portal. It was evaluated the optimization objective according to the fitness function

proposed.

 The efficiency of this research was measure by the quality of the solutions provided

in terms of usability. Each solution responded to those requirements described in the study

case section in chapter 3. The MAPDS tool and the solutions produced by the experiments

were added as a complement of this document on electronic files.

 All runs were performed on a computer laptop Toshiba brand with 6GB RAM and

Intel Core i3 processor to 1.90 Ghz.

Next paragraphs describe the two rounds of experiments to create these solutions,

basically, the experiments try to prove if the solutions improved the fitness, and therefore,

they minimized the number of code lines required.

Experiment 1 – Verification of the correctness of the MUI at the initial

populations.

 The goal of this experiment is validating the generation of mobile user interfaces

that can be successfully compiled on ADT through MAPDS tool in order to validate the

automatic derivation method that was implemented in the Configurator() class. Thus, the

experiment consists of running the initial population and validating the XML products

59

produced by compiling the XML codes in ADT.

 In this experiment, it is tested the XML files obtained from all of the FMs in the

initial population, in order to determine the number of well-formed products that can be

produced randomly, and finding the best fitness at this stage of the process for later check

into the second experiment if the fitness is improved after using crossover and mutation

techniques.

Method -Experiment 1

 The method is to run five tests and find the biggest number of products produced

and the best fitness. The table 5 shows the results gathered from the run of test which are

discussed ahead.

Table 4. Results from experiment 1

Exe

cuti

on#

Parameters Results

Results
Initial

populati

on

Featur

es

Best

Fitness

5-

grade

3-grade Android

tags from

table 4

1 4,000 20 0 0 0 57

None MUI was produced

 16,000 30 0 0 0 10 None MUI was produced

2 300 10 0 0 0 5 None MUI was

processed

3 300 20 47 9 266 2 275 products (MUIs)

4 300 30 0 0 0 20 Lack of memory

5 300 50 0 0 0 5 Lack of memory

 From this experiment 275 MUIS were produced using a randomly approach, the

best fitness gotten is 8. It can be seen of the total of the Android tags suggested on table 4

could not be processed with the actual computing resources. So the experiment is effective

only using two tags <TextView> and <RadioButton>.

60

Experiment 2 – Verification of the correctness of the MUI after mutation

and crossover.
 Products gathered from experiment 1 are the result of random combinations

techniques, for this reason in experiment 2, it is validated the optimization approach using

mutation and crossover parameters in MAPDS tool. The expected result is to get a lower

fitness and a bigger number of products.

Method -Experiment 2

 Five executions of the process are tested using the same number of products from

experiment 1 and parameters in table below.

Table 5. Results from experiment 2

IT

M

Selection

strategy

Mutation

probabilit

y

Executions

Number

 Infeasible individuals Fitness Products

1 Roulete-

wheel

0.005 2000 Repairing 42 312

2 Roulete-

wheel

0.0075 5000 Replacing 42 175

3 Tournamnent 0.005 2000 Repairing 42 423

4 Tournamnent 0.0075 5000 Replacing 42 231

 From experiment 2, it can be deducted that fitness is not improved due this is the

smallest fitness which can be obtained for code in the products of our study case for 3-

grade and 5-grade scale, it means 3 text view labels and 3 or 5 radio buttons.

5.2 Analysis of Results

 A MUI gathered from experiment 2 is showed below to illustrate the approach.

However the number of products increase due the EA parameters which is a good result,

this will result in a bigger number of option for the final user.

61

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent" >

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_marginTop="84dp"

 android:gravity="left"

 android:text="@string/Text X"

 android:textColor="@color/black" />

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_marginTop="60dp"

 android:gravity="left"

 android:text="@string/Text X"

 android:textColor="@color/black" />

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:layout_marginTop="31dp"

 android:gravity="left"

 android:text="@string/Text X"

 android:textColor="@color/black" />

 <RadioButton

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginLeft="44dp"

 android:layout_marginTop="156dp"

 android:checked="false"

 android:text="@string/scale X" />

 <RadioButton

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

62

 android:layout_marginLeft="25dp"

 android:layout_marginTop="62dp"

 android:checked="false"

 android:text="@string/scale X" />

 <RadioButton

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginLeft="37dp"

 android:checked="false"

 android:text="@string/scale X" />

</RelativeLayout>

 After a second look into the results from experiment 2, it was found that more than

one product has a similar fitness despite of being different between them, a sample is

shown if figure 21 below. From this result, it can be found the problem is deriving to a

multimodal optimization due this is not a unique optimization goal. A sample of that are

two MUIs that are different only in the color of text.

63

Figure 21. Sample of MUIs with similar fitness and different XML code.

 As a result of these experiments, the correctness and accuracy of this model can be

proved by measuring the total of products that can be re-used and that were obtained from

production of a specific domain field exposed at the study case section. These requirements

accomplished those needed to build a MUI for a survey question.

64

CONCLUSIONS

 This dissertation proposed an automation concept in terms of AIT for SPL to model

the problem it was proposed a study case which is based on the domain of the online survey

applications to outline the requirements of a Production Line Software under this context.

 Evolutionary computation was used for automatic product derivation purposes using

as reference the ETHOM algorithm in the context of automatic generation of feature

models. However, fitness function on ETHOM measures the feature model not of the

derived products, for this reason a new fitness function was introduced by this work to

measure the quality of the products derived. As a result of this, a total of 475 products from

scratch were successfully produced by using our prototype, many of them with same fitness

which derives the problem to a multimodal optimization field as a future work.

 The objective to prove AIT in the context of automation in SPL was successfully

reached and the objective to provide with applications to the ETHOM algorithm as well.

We claim as future work, additional analysis to build these innovative mobile collection

data interfaces through practicing of software production lines. More characteristics of

mobile user interface can be generated by the MAPDS tool through this approach. The

visualization of survey data view is generally adequate to produce MUI re-usable by using

XML code. On this basis, and taking into consideration the basic user requirements, we

proposed an automatic method to do it.

65

GLOSARY

Automation concept

Refers to a general approach of automation in software product line that will provide a

paradigm.

Automatic derivation of mobile user interfaces

Refers to the process of coding user interfaces for applications running in Android platform

with artificial intelligence mechanisms.

Mobile Android Product Derivation Software (MAPDS)

Software tool for automatic derivation of mobile user interfaces that implements

evolutionary computation.

Mobile device

Refers to an electronic device like a smartphone or tablet.

Mobile user interface

A software user interface in XML code which is reusable at applications running in

Android operating system.

Mobile domain

In terms of this research, mobile domain refers to the landscape of all those requirements to

build applications running in Android operating system.

66

REFERENCES

[1] S. Segura, J. Parejo, H. M. Robert, D. Benavides y A. Ruiz-Cortés, «ETHOM: An

Evolutionary Algorithm for Optimized Feature Models Generation (v. 1.3),» Applied

Software Engineering Research Group & Universidad de Sevilla, Sevilla, 2013.

[2] K. Schmid, E. Rommes y F. J. Van DerLinden, Software Production Lines in Action,

New York: Springer, 2007.

[3] H. Ammar, W. Abdelmoez y M. Salah Hamdi, «Software Engineering Using Artificial

Intelligence Techniques: Current State and Open Problems.,» de International

Conference on Communications and Information Technology (ICCIT-2012), Tunisia,

2012.

[4] D. Parnas, "On the design and development of program families," IEEE transactions

on software engineering, Vols. SE-2, no. 1, pp. 1-9, 1976.

[5] Software Community, «Framework for Software Product Line Practice, Version 5.0,»

2014. [En línea]. Available:

http://www.sei.cmu.edu/productlines/frame_report/index.html. [Último acceso: 21

May 2014].

[6] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak y A. S. Peterson, «Feature-Oriented

Domain Analysis (FODA) Feasibility Study,» Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, 1990.

[7] Android Community, "The android open source project site," Android Community,

2014. [Online]. Available: http://developer.android.com/guide/topics/ui/index.html.

[Accessed 2014].

[8] D. Benavides, A. Felfering, J. A. Galindo y F. Reifrank, «Automated Analysis in

Feature Modelling and Product Configuration,» Springer-Verlag, Berlin Heidelberg,

67

2013.

[9] D. Benavides, S. Segura y A. Ruiz-Cortéz, «Automated analysis of featuremodels 20

years later: A literature review,» Information Systems, vol. 1, p. 615–636, 2010.

[10] S. Russel y P. Norving, Artificial Intelligence A Modern Approach, 3rd ed., New

Jersey: 2009, 2010.

[11] A. P. Engelbrecht, Computational Intelligence: An Introduction, 2nd ed., Indianapolis,

IN 46256: John Wiley & Sons, 2007, pp. 127-142.

[12] C. Darwin , On The Origin of Species try Mrans of Natural Selection, London: John

Murray, 1859.

[13] G. Mendel, «Experiments on Plant Hybridization,» de Natural History Society of

Brünn, Brünn, Czech Republic, 1866.

[14] J. B. Lamarck, Philosophie zoologique, Paris, Francia: Oxford University, 1809.

[15] A. E. Eiben y J. E. Smith, Introduction to Evolutionary Computating, Germany:

Springer-Verlaga Berlin Heidelberg, 2003.

[16] A. Touring, Intelligent machinery, London: Oxford University Press on behalf of the

Mind Association, 1959.

[17] J. H. Holland, Adaptation in Natural and Artificial Systems, Michigan: University of

Michigan Press, 1975.

[18] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan y D. B. Shmoys, The Traveling

Salesman, The university of michigan: John Wiley and Sons, 1985.

[19] X. Jiafu, «Software Automation: from "Silly" to "Intelligent",» de International

conference on tools with AI, Arlington, VA, 1992.

[20] M. Harman, «The Role of Artificial Intelligence in Software Engineering,» de

Realizing Artificial Intelligence Synergies in Software Engineering (RAISE), 2012

First International Workshop on, Zurich, Switzerland, 2012.

[21] R. E. Lopez-Herrejon, J. A. Galindo, D. Benavides, S. Segura y A. Egyed, «Reverse

engineering feature models with evolutionary algorithms: an exploratory study,» de

68

4th International Symposium, SSBSE, Riva del Garda, Italy, 2012.

[22] S. Soltani, M. Asadi, M. Hatala, D. Gasevic y E. Bagheri, «Automated Planning for

Feature Model Configuration based on Stakeholders’ Business Concerns,» de ASE

2011, Lawrence, KS, USA, 2011.

[23] S. Runyu, G. Jianmei y W. Yinglin, «A Preliminary Experimental Study on Optimal

Feature Selection for Product Derivation Using Knapsack Approximation,» IEEE,

Shanghai 200240, China, 2010.

[24] S. Soltani, M. Asadi, M. Hatala, Gasëvic y E. Bagheri, «Toward automated feature

model configuration with optimizing non-functional requirements,» Elsevier, Toronto,

Canada, 2013.

[25] W. Zhang, H. Zhao y Z. Jin , «Mining binary constraints in the construction of feature

models,» de 20th IEEE International Requirements Engineering Conference (RE),

Chicago IL, USA, 2012.

[26] E. Rosa, R. F. De Lucerna, V. C. Cordeiro y J. E. Chaves, «Dynamic and Automated

Product Derivation for Consumer Electronics Software Applications,» de Springer-

Verlag, Berlin Heidelberg, 2013.

[27] E. Cirilo, U. Kulesza, M. Torres y C. Lucena, «Experience with Automatic Product

Derivation of Mobile Applications Using Model-Driven Techniques,» de The

Handbook of Research on Mobile Software Engineering: Design, Implementation, and

Emergent Applications, Canada, IRMA, 2012, p. 11.

[28] H. Gomaa y M. E. Shin, «Automated Software Product Line Engineering and Product

Derivation,» de 40th Hawaii International Conference on System Sciences, Hawaii

USA, 2007.

[29] D. Mellado, J. Rodriguez, E. Fernández-Medina y M. Piattini, «Automated Support for

Security Requirements Engineering in Software,» de Availability, Reliability and

Security, 2009. ARES '09., Fukuoka Japan, 2009.

[30] S. Miranda , H. Mariano, U. Kulesza y T. Batista, «Automating Software Product Line

69

Development: A Repository-Based,» de Software Engineering and Advanced

Applications (SEAA), 2010 36th EUROMICRO Conference on, Lille, France, IEEE.

[31] Android Community, «ADT Plugin,» Android Community, 2014. [En línea].

Available: http://developer.android.com/tools/sdk/eclipse-adt.html. [Último acceso:

2014].

[32] R. Jain, J. Bose y T. Arif, «Contextual Adaptive User Interface For Android Devices,»

de IEEE India Conference (INDICON), India, 2013.

[33] World Bank, Information and Communications for Development, Washington D.C:

The World Bank, 2012.

[34] J. Bethlehem y S. Biffignandi , Handbook of Web Surveys, New York, USA: John

Wiley & Sons, Inc., 2011.

[35] SurveyAnyplace, «SurveyAnyplace,» SurveyAnyplace, [En línea]. Available:

https://surveyanyplace.com/why-mobile-surveys/. [Último acceso: March 2015].

[36] C. Burger, R. Valentin, J. Grafeneder, B. Woisetschläger, D. Vidovic y A. Hergovich,

«Reaching the Mobile Respondent : Determinants of High-Level Mobile Phone Use

Among a High-Coverage Group,» Social Science Computer Review, nº 2009, 2010.

[37] R. Johns, LIKERT ITEMS AND SCALES, University of Strathclyde, Glasgow,

United Kingdom: SURVEY QUESTION BANK, 2010.

[38] T. Thüm, D. Batory y C. Kästner, «Reasoning about edits to feature models,» de

International Conference on Software Engineering, Vancouver Ca, 2009.

[39] C. Prins, «A simple and effective evolutionary algorithm for the vehicle routing

problem,» COMPUTERS AND OPERATIONS RESEARCH, vol. 21, p. 2004, 1986.

[40] C. Burger, V. Riemer, B. Grafeneder, D. Woisetschläger, D. Vidovic y A. Hergovich,

«Reaching the Mobile Respondent: Determinants of High-Level Mobile Phone Use

Among a High-Coverage Group,» 2010.

[41] J. Fawcett, L. Quin y D. Ayers, Beginning XML, Indianapolis, IN 46256: John Wiley

& Sons, 2012, pp. 3-23.

70

ANNEXS

ANEX A: Article Desarrollo de software basado en el paradigma de líneas de

producción: caso de estudio software de fidelidad para PyMEs.

ANEX B: Article Service Oriented Architecture Proposal for a Mobile Survey

Platform.

ANEX C: Article Arquitectura basada en patrones de diseño para la

producción textual colaborativa

ANNEX A

Article

Desarrollo de Software basado en el paradigma de Líneas de Produción: Caso de Estudio

Software de Fidelidad para PyMEs

 CONISOFT 2013

ANNEX B

Article

Service Oriented Architecture Proposal for a Mobile Survey Platform

 CONISOFT 2013

ANNEX C

Article

Arquitectura basada en patrones de diseño para la producción textual colaborativa

CCITA Cancún 2014

