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Resumen 
Aguascalientes, ubicado en una región semiárida de México, enfrenta una crisis 

hídrica constante debido a la escasez de lluvias, la sobreexplotación de acuíferos y 

la contaminación del agua. La agricultura, siendo una de sus principales actividades 

económicas, se ve especialmente afectada por estas condiciones. Ante este 

panorama, los cultivos protegidos representan una alternativa más eficiente en el 

uso de suelo y agua. 

Esta tesis presenta el desarrollo y validación experimental en laboratorio de un 

sistema de riego inteligente basado en tecnologías de Internet de las Cosas (IoT) y 

aprendizaje automático (machine learning). El sistema utiliza sensores conectados 

a una Raspberry Pi para recolectar datos ambientales en tiempo real (como 

humedad del suelo, temperatura y luz), los cuales son enviados vía MQTT a una 

aplicación web que actúa como sistema central de monitoreo y control. A partir del 

análisis de estos datos mediante un modelo de machine learning, el sistema 

demuestra su capacidad para tomar decisiones automáticas simuladas orientadas 

a optimizar el riego. 

El objetivo principal es contribuir al uso eficiente del agua en cultivos protegidos, 

alineándose con los objetivos de sostenibilidad del estado de Aguascalientes y de 

México a nivel nacional. La investigación busca no solo ofrecer una solución técnica 

viable, sino también aportar al desarrollo de sistemas agrícolas resilientes y 

sostenibles ante los desafíos del cambio climático y el crecimiento urbano. 

 

 

Palabras clave: riego inteligente, internet de las cosas, aprendizaje automático, 

agricultura de precisión, cultivos protegidos, sostenibilidad hídrica 
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Abstract 
Aguascalientes, located in a semi-arid region of Mexico, faces a constant water crisis 

due to low rainfall, overexploitation of aquifers, and water pollution. Agriculture, being 

one of its main economic activities, is particularly affected by these conditions. In this 

context, protected crops represent a more efficient alternative for land and water 

use. 

This thesis presents the development and laboratory validation of an intelligent 

irrigation system based on Internet of Things (IoT) and machine learning 

technologies. The system uses sensors connected to a Raspberry Pi to collect real-

time environmental data (such as soil moisture, temperature, and light), which are 

transmitted via MQTT to a web application that serves as the central monitoring and 

control system. Through the analysis of these data using a machine learning model, 

the system demonstrates its ability to perform simulated automated decision-making 

aimed at optimizing irrigation. 

The main objective is to contribute to the efficient use of water in protected crops, in 

alignment with the sustainability goals of the state of Aguascalientes and of Mexico 

at the national level. The research seeks not only to offer a viable technical solution 

but also to contribute to the development of resilient and sustainable agricultural 

systems in the face of climate change and urban growth challenges. 

 

 

Keywords: smart irrigation, internet of things, machine learning, precision 

agriculture, protected crops, water sustainability 
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1. Introducción 

1.1. Contexto 
Aguascalientes, un estado situado en el centro de México, se encuentra en una 

región caracterizada por su clima semiárido, lo que representa un reto significativo 

para la gestión de recursos hídricos y la agricultura. La escasez de agua se ha 

convertido en una problemática crónica para el estado, exacerbada por factores 

como largos períodos de sequía, precipitaciones insuficientes y un aumento en la 

demanda de agua provocado por el crecimiento de la población y la expansión 

urbana [1]. Esta situación se agrava aún más debido a la sobreexplotación de los 

acuíferos y la contaminación del agua, poniendo en riesgo el suministro de agua 

potable y la sostenibilidad de las actividades agrícolas, vitales para la economía 

local [1]. 

La agricultura juega un papel crucial en el sustento económico y social de 

Aguascalientes. Frente a las adversidades climáticas y los limitados recursos 

hídricos, los agricultores han buscado alternativas para continuar produciendo de 

manera eficiente. Los cultivos protegidos, tales como los que se desarrollan en 

invernaderos y otras estructuras similares, surgen como una solución innovadora 

frente a estas adversidades. Estos sistemas permiten un control más preciso del 

ambiente de cultivo, lo que se traduce en rendimientos más altos y un uso más 

eficiente del agua y del espacio, elementos críticos en un contexto de escasez 

hídrica y presión sobre las tierras agrícolas. 

En respuesta a estos desafíos, el desarrollo e implementación de tecnologías 

avanzadas, como los sistemas de riego inteligente basados en la tecnología de 

Internet de las Cosas (IoT), representan una vía prometedora para mejorar la 

gestión del agua en la agricultura [2]. Mediante la utilización de sensores y 

dispositivos conectados, estos sistemas pueden monitorear en tiempo real variables 

clave como la humedad del suelo, la temperatura y la luminosidad, permitiendo 

ajustes precisos y automáticos en el riego. Este enfoque no solo busca optimizar el 

uso del agua, sino también alinear las prácticas agrícolas con estrategias de 
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desarrollo sostenible, contribuyendo a los esfuerzos locales y nacionales para 

enfrentar la escasez hídrica y fomentar una agricultura resiliente al cambio climático 

[3], [4]. 

Esta investigación se inscribe en un momento crítico para Aguascalientes, buscando 

aportar soluciones concretas a los retos de gestión del agua que enfrenta el estado, 

al tiempo que se alinea con los objetivos de desarrollo sostenible y de mitigación de 

los efectos del crecimiento urbano [3], [4]. Al hacerlo, no solo aborda una necesidad 

inmediata, sino que también se proyecta hacia la construcción de un futuro más 

sostenible y próspero para la agricultura en Aguascalientes. 

 

1.2. Problema de Investigación 
En Aguascalientes, México, la escasez de agua y las condiciones climáticas 

adversas imponen desafíos significativos al sector agrícola, un componente vital de 

la economía local. La limitada disponibilidad de agua y los métodos de riego 

tradicionales, que a menudo resultan ineficientes, ponen en riesgo la sostenibilidad 

a largo plazo de la agricultura en la región. Estos métodos no solo contribuyen a la 

sobreexplotación de los acuíferos [1], sino que también aumentan la vulnerabilidad 

de los cultivos ante condiciones climáticas extremas, afectando la productividad 

agrícola y la seguridad alimentaria. Además, la contaminación del agua agrava la 

situación, limitando aún más los recursos hídricos disponibles para uso agrícola [1]. 

Frente a este escenario, emerge la necesidad imperiosa de explorar y adoptar 

soluciones tecnológicas innovadoras que permitan una gestión más eficiente del 

agua. La tecnología de IoT presenta una oportunidad prometedora para revolucionar 

los sistemas de riego mediante el monitoreo y control en tiempo real del uso del 

agua, adaptándose precisamente a las necesidades de los cultivos [5]. Sin embargo, 

a pesar del potencial evidente de esta tecnología para mejorar la eficiencia en el 

uso del agua, su implementación en la agricultura de Aguascalientes aún es 

incipiente y enfrenta varios obstáculos, desde la falta de conocimiento y recursos, 

hasta la resistencia al cambio por parte de los agricultores. 
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Este estudio se propone abordar esta brecha mediante el desarrollo y validación 

experimental de un sistema de riego inteligente que optimice el uso del agua y que, 

a futuro, pueda implementarse de manera accesible y práctica para los agricultores. 

A través de este enfoque, se busca contribuir a la transformación de la agricultura 

en Aguascalientes hacia prácticas más sostenibles y resilientes, alineando la 

innovación tecnológica con los objetivos de desarrollo sostenible del estado y la 

nación. 

Por lo tanto, el problema central de esta investigación se articula en torno a cómo la 

tecnología de IoT puede ser aprovechada para desarrollar un sistema de riego 

inteligente que responda a las condiciones específicas de Aguascalientes, 

mejorando la gestión del agua en la agricultura y contribuyendo a la sostenibilidad 

y eficiencia del sector ante los retos impuestos por la escasez hídrica y el cambio 

climático. 

 

1.3. Formulación de Objetivos 

1.3.1. Objetivo General 
Desarrollar y validar experimentalmente un sistema de riego inteligente basado en 

IoT que permita optimizar el consumo de agua en cultivos protegidos en 

Aguascalientes, México, mediante la recolección y análisis de datos ambientales, la 

predicción del nivel de humedad del suelo y el control automatizado del riego. 

1.3.2. Objetivos Específicos 
1. Integrar tecnología de IoT en el sistema de riego para monitorear 

variables críticas del entorno. 
Incorporar sensores y dispositivos IoT para monitorear variables críticas 

como la humedad del suelo, temperatura del aire y del suelo, niveles de luz, 

y concentraciones de CO2. Estos datos serán fundamentales para probar 

ajustes automáticos simulados de los ciclos de riego y optimizar el uso del 

agua. 
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2. Diseñar y desarrollar una aplicación web que facilite la validación y 
manejo de un sistema de riego inteligente. 
Esta herramienta permitirá el acceso a información en tiempo real y el control 

preciso del riego, basado en datos específicos de los sensores. 

 
3. Incorporar un modelo predictivo de machine learning que sugiera el 

momento óptimo para activar el riego. 
Este modelo analizará los datos históricos para anticipar caídas en la 

humedad del suelo y así optimizar el uso del agua. 

 
4. Validar el sistema en un entorno de pruebas controlado. 

Se simularán las condiciones operativas del sistema para evaluar su 

desempeño, identificar posibles errores y ajustar su funcionamiento antes de 

una implementación real. 

 
5. Documentar detalladamente el proceso de diseño, desarrollo y 

validación del sistema. 
La documentación incluirá diagramas, flujos de trabajo, código fuente 

relevante, resultados de simulaciones y análisis de viabilidad para futuras 

implementaciones en campo. 

1.4. Justificación 
La realización de este proyecto se justifica desde varias perspectivas, destacando 

su relevancia, valor científico y practicidad para abordar los desafíos críticos de 

gestión del agua en Aguascalientes, México. Estos elementos subrayan la 

importancia de desarrollar y evaluar experimentalmente un sistema de riego 

inteligente basado en IoT para los cultivos protegidos en la región. 
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1.4.1. Pertinencia 
La escasez de agua es un desafío persistente en Aguascalientes, exacerbado por 

condiciones climáticas extremas como largos periodos de sequía y precipitaciones 

insuficientes [1]. La agricultura, siendo una de las principales actividades 

económicas del estado, se ve particularmente afectada por estas condiciones 

adversas. El desarrollo y validación de un sistema de riego inteligente orientado a 

optimizar el uso del agua representa una solución crucial y oportuna. Este proyecto 

no solo aborda un problema ambiental y económico significativo, sino que también 

se alinea con los objetivos estratégicos del Plan de Desarrollo del Estado 2022-2027 

de Aguascalientes [3] y el Plan Nacional de Desarrollo 2025-2030 de México [4], lo 

que resalta su relevancia a nivel local y nacional. 

1.4.2. Valor Científico 
La validación experimental de un sistema de riego inteligente contribuye al avance 

del campo de la agricultura de precisión, un área de investigación que explora cómo 

las tecnologías avanzadas pueden mejorar la eficiencia y sostenibilidad de la 

agricultura [2]. Al recopilar y analizar datos en tiempo real sobre variables críticas 

como la humedad del suelo, la temperatura y la luz solar, este proyecto genera 

información valiosa sobre la optimización del uso del agua en la agricultura. Este 

conocimiento no solo tiene el potencial de mejorar las prácticas de riego en 

Aguascalientes sino también de proporcionar un modelo replicable para otras 

regiones con desafíos hídricos similares. 

1.4.3. Valor Práctico 
Desde una perspectiva práctica, el sistema propuesto busca servir como una 

referencia tecnológica aplicable a las condiciones de la agricultura en 

Aguascalientes. Al promover una gestión más eficiente del agua, pretende ofrecer 

una herramienta capaz de reducir el consumo hídrico, aumentar la productividad de 

los cultivos y fortalecer la sostenibilidad de las prácticas agrícolas. La aplicación 

web desarrollada como parte del proyecto se concibe como una plataforma que 

facilitará el monitoreo y control del riego de manera centralizada y accesible, 
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permitiendo que los agricultores puedan adaptar el sistema a diferentes escenarios 

productivos [5]. Este enfoque plantea una alternativa práctica y escalable que puede 

contribuir al fortalecimiento de la sostenibilidad agrícola y a la modernización del 

manejo del agua en la región. A largo plazo, se espera que los resultados del 

proyecto sienten las bases para futuras implementaciones en campo, promoviendo 

la adopción de tecnologías IoT en la agricultura y alineándose con los objetivos 

regionales y nacionales de conservación del agua y mitigación del cambio climático. 

En conjunto, la justificación de este proyecto radica en su capacidad para enfrentar 

de manera efectiva una problemática ambiental crítica, contribuir al avance científico 

en la agricultura de precisión [2], y ofrecer una base tecnológica sólida para futuras 

aplicaciones prácticas en la agricultura de Aguascalientes. Este enfoque integral 

asegura que el proyecto tenga un impacto significativo tanto en el ámbito académico 

como en el práctico, promoviendo el uso eficiente de los recursos hídricos en la 

agricultura y apoyando los objetivos de desarrollo sostenible de la región. 

 

1.5. Alcance y Limitaciones 

1.5.1. Alcance 
El presente estudio tiene como propósito el desarrollo y validación funcional de un 

prototipo de sistema de riego inteligente basado en IoT, enfocado en su aplicación 

futura en cultivos protegidos en la región de Aguascalientes, México. El objetivo 

principal consiste en contribuir a la optimización del uso del agua en procesos 

agrícolas mediante la recolección, procesamiento y análisis de datos ambientales y 

de humedad del suelo en tiempo real, así como la simulación del control 

automatizado del riego en función de dicha información. 

El sistema desarrollado contempla una arquitectura distribuida y modular que 

incluye los siguientes elementos: 

 Un conjunto de sensores físicos conectados a una Raspberry Pi, que actúa 
como nodo de adquisición de datos y registra variables como humedad del 
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suelo, humedad relativa ambiental, temperatura del suelo, temperatura del 

aire, niveles de luz y concentración de CO2. 

 

 El uso del protocolo MQTT (Message Queuing Telemetry Transport) para la 

transmisión eficiente de los datos sensados hacia un bróker HiveMQ, 

permitiendo la comunicación entre el hardware y el sistema central. 

 

 Un backend desarrollado en Django con Django REST Framework (DRF), 

que recibe y procesa los datos provenientes del bróker MQTT. Este backend 

almacena la información en una base de datos especializada para series 

temporales (TimescaleDB) y habilita la visualización y control del sistema 

mediante el uso de WebSockets y una API RESTful. 

 

 Un frontend desarrollado en Vue.js con el framework de diseño Vuetify, que 

permite la interacción con el sistema en un entorno de validación, incluyendo 

la visualización gráfica de datos históricos y en tiempo real, así como el 

control manual o automatizado simulado del riego. 

 

 La integración de un modelo de aprendizaje automático (machine learning) 

que tiene como finalidad realizar predicciones sobre los niveles futuros de 

humedad del suelo y sugerir automáticamente el momento óptimo para 

activar el riego. 

 

 Un sistema de control remoto para el encendido de una bomba de agua, 

simulado mediante la misma red MQTT desde el backend hacia la Raspberry 

Pi. 

El diseño del sistema se plantea con capacidad de escalabilidad, de manera que 

pueda adaptarse a diferentes tipos de cultivos protegidos y extenderse para 

monitorear nuevas variables, controlar múltiples nodos o integrarse con plataformas 

agrícolas existentes. Asimismo, se prioriza la modularidad del software para facilitar 
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futuras actualizaciones, mejoras en la precisión del modelo predictivo y ajustes 

según condiciones geográficas específicas. 

1.5.2. Limitaciones 
A pesar del alcance técnico del sistema y la solidez de su arquitectura, el desarrollo 

del proyecto presenta ciertas limitaciones que condicionan su validación en un 

entorno agrícola operativo. Estas limitaciones son principalmente de tipo logístico, 

temporal y económico, y se detallan a continuación: 

1. Ausencia de validación en campo real: Por cuestiones de tiempo y 

recursos, no se contempla en esta etapa la instalación del sistema en un 

cultivo protegido operativo. En consecuencia, todas las pruebas funcionales 

se prevén en entornos controlados, sin exposición directa a las variaciones 

de un ambiente agrícola real. 

 

2. Uso de datos sintéticos para el modelo predictivo: Debido a la falta de 

bases de datos locales con series temporales de humedad del suelo, el 

modelo de machine learning se entrena con información generada 

artificialmente. Esto limita su capacidad de generalización en escenarios 

reales, por lo que se proyecta su reentrenamiento con datos obtenidos de 

futuras pruebas en campo. 

 
3. Restricciones en el hardware disponible: El prototipo se diseña con una 

configuración mínima de sensores y componentes electrónicos, lo cual 

restringe la evaluación de aspectos como durabilidad, resistencia ambiental 

o tolerancia a fallos, que deberán comprobarse en etapas posteriores. 

 

4. Imposibilidad de medir el impacto real en el ahorro de agua: Dado que 

no se dispone aún de datos empíricos provenientes de un entorno agrícola 

real, el impacto ambiental y económico se estima de forma teórica o mediante 

comparaciones con antecedentes documentados. 
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Estas limitaciones delimitan el alcance del trabajo al nivel de prototipo funcional 

validado en condiciones controladas, sin comprometer la validez técnica ni la 

viabilidad del sistema. Se proyecta que, en futuras etapas, el sistema pueda 

instalarse y probarse en un entorno real de cultivo, permitiendo validar plenamente 

su efectividad, confiabilidad y contribución al uso sostenible del recurso hídrico en 

la agricultura protegida. 
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2. Marco Teórico 
El desarrollo y aplicación de sistemas de riego inteligentes basados en IoT 

representa un avance significativo en la optimización del uso del agua y la mejora 

de la productividad agrícola en condiciones de escasez hídrica. Este capítulo 

establece el marco teórico necesario para comprender los fundamentos y las 

implicaciones de la adopción de tecnologías IoT en la agricultura, particularmente 

en el contexto de cultivos protegidos en Aguascalientes, México. A través de una 

revisión exhaustiva de la literatura, se abordan los conceptos clave relacionados 

con la gestión sostenible del agua, el crecimiento urbano y su interacción con la 

agricultura moderna, con énfasis en las soluciones tecnológicas que buscan hacer 

frente a estos desafíos. 

El capítulo se estructura a partir de una descripción de los principios básicos del IoT 

y su relevancia en el desarrollo de sistemas de riego automatizados y adaptativos, 

capaces de responder de manera eficiente a las necesidades hídricas específicas 

de los cultivos. Luego, se analiza la gestión sostenible del agua como un 

componente esencial de la agricultura en regiones semiáridas, identificando 

prácticas y tecnologías que contribuyen a su conservación y uso eficiente. Además, 

se examina el impacto del crecimiento urbano en la disponibilidad de recursos 

hídricos y la función de los sistemas inteligentes de riego como medida de 

mitigación, promoviendo una agricultura más sostenible y resiliente. 

El análisis incorpora estudios de caso y trabajos previos relevantes que demuestran 

la aplicación de tecnologías IoT en la agricultura, ofreciendo una visión general de 

los avances tecnológicos y de sus beneficios potenciales. Este marco teórico 

proporciona el sustento conceptual de la presente investigación y establece una 

base sólida para el desarrollo de soluciones inteligentes en la gestión del agua 

dentro de la agricultura de precisión. 

En síntesis, se destaca la importancia de la integración de tecnologías avanzadas 

en la agricultura como estrategia para enfrentar los retos actuales y futuros 

asociados a la gestión del agua y la sostenibilidad agrícola. 
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2.1. Sistemas de Riego 
El riego constituye una de las prácticas agrícolas más relevantes para garantizar la 

disponibilidad de agua en las etapas críticas del desarrollo de los cultivos. Los 

sistemas de riego se definen como el conjunto de infraestructuras, dispositivos y 

procedimientos diseñados para distribuir agua de manera controlada sobre una 

superficie cultivada, con el propósito de satisfacer las necesidades hídricas de las 

plantas y mantener su equilibrio fisiológico [6]. 

En esencia, un sistema de riego busca compensar la deficiencia de precipitación o 

irregularidad en la disponibilidad del agua, asegurando una producción agrícola 

constante y sostenible. 

A lo largo de la historia, los sistemas de riego han evolucionado desde métodos 

tradicionales basados en el flujo por gravedad hasta soluciones modernas 

controladas electrónicamente. En términos generales, se reconocen tres tipos 

principales de sistemas: 

1. Riego por superficie: se basa en la distribución del agua mediante canales o 

surcos, aprovechando la gravedad. Aunque es un método simple y de bajo 

costo, presenta una eficiencia relativamente baja debido a las pérdidas por 

escurrimiento y evaporación [7]. 

 

2. Riego por aspersión: utiliza presión hidráulica para proyectar el agua en 

forma de lluvia artificial sobre los cultivos. Este sistema permite una 

distribución más uniforme, pero requiere un mayor consumo energético y 

mantenimiento de los emisores. 

 

3. Riego por goteo o microaspersión: suministra el agua directamente a la zona 

radicular de las plantas mediante emisores localizados. Se considera uno de 

los métodos más eficientes, con eficiencias de aplicación que pueden 

superar el 90 %, reduciendo el desperdicio de agua y fertilizantes [8]. 
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En las últimas décadas, la integración de tecnologías digitales, sensores y sistemas 

de automatización ha impulsado el desarrollo de sistemas de riego inteligentes, 

capaces de ajustar el caudal, la frecuencia y la duración del riego según las 

condiciones reales del cultivo y del entorno [9]. Estos sistemas utilizan información 

proveniente de sensores de humedad del suelo, temperatura, radiación solar y 

condiciones atmosféricas, para tomar decisiones automáticas que optimicen el uso 

del recurso hídrico. 

Particularmente en regiones semiáridas como Aguascalientes, donde la 

disponibilidad de agua es limitada, los sistemas de riego inteligentes representan 

una alternativa tecnológica para aumentar la eficiencia del riego, reducir el consumo 

hídrico y mejorar la sostenibilidad agrícola [10]. Su adopción contribuye al 

cumplimiento de los Objetivos de Desarrollo Sostenible (ODS), especialmente en lo 

relativo a la gestión responsable del agua y la producción agrícola sostenible. 

 

2.2. Internet de las Cosas (IoT) 
El Internet de las Cosas (IoT, por sus siglas en inglés Internet of Things) se refiere 

a una red de dispositivos físicos interconectados que recopilan, procesan y 

transmiten datos a través de internet, permitiendo la automatización y el control 

remoto de procesos. Según la definición de la International Telecommunication 

Union [11], la IoT es “una infraestructura global que conecta objetos físicos y 

virtuales mediante capacidades de identificación, captura de datos, procesamiento 

y comunicación, facilitando la interacción entre ellos y con el entorno”. 

La IoT combina tecnologías de sensorización, comunicaciones inalámbricas, 

computación en la nube y análisis de datos para generar ecosistemas inteligentes 

capaces de operar de manera autónoma o semiautónoma. En el contexto agrícola, 

esto se traduce en sistemas capaces de monitorear variables ambientales y de 

cultivo en tiempo real, generando información que puede ser utilizada para optimizar 

la producción, reducir pérdidas y mejorar la sostenibilidad de los recursos naturales 

[12]. 
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Los dispositivos IoT agrícolas incluyen sensores de humedad, temperatura, pH, 

radiación solar o concentración de gases; controladores como microprocesadores 

o microcontroladores (por ejemplo, Raspberry Pi, Arduino o ESP32); y plataformas 

digitales que centralizan los datos en la nube. La integración de estos elementos 

permite construir un sistema ciberfísico en el que los datos capturados en el entorno 

se transforman en información útil para la toma de decisiones. 

En los sistemas de riego inteligente, el IoT desempeña un papel esencial al 

sincronizar el flujo de información entre los sensores de campo, el servidor y los 

actuadores, posibilitando la automatización del riego según condiciones 

ambientales o predicciones generadas mediante modelos de aprendizaje 

automático [13]. Además, la comunicación basada en protocolos ligeros como 

MQTT (Message Queuing Telemetry Transport) o CoAP (Constrained Application 

Protocol) permite el intercambio eficiente de datos entre dispositivos con bajo 

consumo energético, aspecto clave en entornos agrícolas remotos [14]. 

En conjunto, el IoT en la agricultura representa una de las aplicaciones más 

prometedoras dentro de la llamada Agricultura 4.0, al integrar conectividad, 

inteligencia artificial y computación distribuida para lograr una gestión más precisa, 

sostenible y resiliente de los recursos agrícolas. 

 

2.3. Fundamentos de IoT aplicados a la agricultura 
IoT ha transformado diversos sectores industriales mediante su capacidad para 

conectar dispositivos a internet, permitiendo la recopilación y el análisis de datos en 

tiempo real para mejorar la toma de decisiones y la eficiencia operativa. En la 

agricultura, su aplicación ofrece oportunidades de innovación significativas, 

especialmente en el ámbito del riego inteligente y la gestión de recursos hídricos. 

Este apartado describe los fundamentos de IoT aplicados a la agricultura, 

analizando cómo esta tecnología contribuye a la optimización del uso del agua y al 

aumento de la productividad de los cultivos. 
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2.3.1. Conectividad y Monitoreo en Tiempo Real 
IoT se basa en sensores y dispositivos conectados que recopilan datos sobre 

condiciones ambientales clave, como la humedad del suelo, la temperatura, la 

luminosidad y otros factores determinantes para el crecimiento de los cultivos. Estos 

datos se transmiten a plataformas centralizadas donde pueden ser monitoreados y 

analizados en tiempo real, proporcionando a los agricultores información precisa 

para decidir cuándo y cuánto regar, reduciendo el desperdicio de agua y 

garantizando un manejo más racional de los recursos hídricos [15]. 

2.3.2. Automatización del Riego 
Uno de los beneficios más destacados de IoT en la agricultura es la posibilidad de 

automatizar el riego mediante el uso de algoritmos y modelos predictivos. Los 

sistemas inteligentes ajustan los horarios y volúmenes de riego en función de los 

datos recolectados por los sensores, lo que incrementa la eficiencia del uso del agua 

y reduce la carga de trabajo manual, optimizando la gestión del tiempo y los 

recursos [16]. 

2.3.3. Agricultura de Precisión 
IoT constituye un pilar esencial de la agricultura de precisión, una práctica que busca 

ajustar las estrategias de cultivo a las condiciones específicas de cada parcela. La 

integración de datos en tiempo real sobre el clima, el suelo y las plantas permite 

aplicar tratamientos diferenciados, mejorar la salud de los cultivos y maximizar el 

rendimiento productivo mediante un uso más racional de los recursos [17]. 

2.3.4. Sostenibilidad y Gestión de Recursos 
La incorporación de IoT en la agricultura contribuye a la sostenibilidad mediante un 

manejo más eficiente del agua y los insumos agrícolas. Al optimizar el riego y reducir 

la dependencia de fertilizantes o agroquímicos, los sistemas inteligentes favorecen 

la conservación de los recursos naturales y la reducción del impacto ambiental de 

las prácticas agrícolas [18]. 
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2.4. Gestión Sostenible del Agua 
La gestión sostenible del agua en la agricultura constituye un componente esencial 

para garantizar la seguridad alimentaria, preservar el medio ambiente y promover el 

desarrollo socioeconómico, especialmente en regiones áridas y semiáridas como 

Aguascalientes, México. Esta sección describe las prácticas, estrategias y 

tecnologías orientadas al uso eficiente y responsable de los recursos hídricos en la 

agricultura, destacando la relevancia de adoptar enfoques integrales y sostenibles 

para enfrentar la escasez de agua y los efectos asociados al cambio climático. 

2.4.1. Principios de la Gestión Sostenible del Agua 
La gestión sostenible del agua se fundamenta en la búsqueda de equilibrio entre las 

necesidades humanas, la productividad agrícola y la conservación de los 

ecosistemas naturales. Entre sus principios destacan la eficiencia en el uso del 

agua, la reducción de la contaminación, la protección de los ciclos hidrológicos y la 

equidad en el acceso al recurso. En el ámbito agrícola, estos principios se traducen 

en la adopción de prácticas que minimizan el desperdicio, mejoran la infiltración y 

retención del agua en el suelo, y garantizan su aprovechamiento óptimo tanto para 

los cultivos como para el entorno [19]. 

2.4.2. Tecnologías y Prácticas para la Sostenibilidad 
Hídrica 

Diversas tecnologías y prácticas contribuyen al manejo racional y sostenible del 

agua en la agricultura moderna: 

 Riego de precisión: Sistemas como el riego por goteo o la aspersión 

controlada dirigen el agua específicamente a las zonas de mayor demanda 

hídrica, reduciendo pérdidas por evaporación y escurrimiento. 

 Sensores de humedad del suelo y sistemas automatizados: Equipos IoT 

permiten registrar en tiempo real las condiciones del suelo y ajustar los 

parámetros de riego de manera dinámica, optimizando el uso del agua sin 

comprometer el desarrollo de los cultivos. 
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 Cultivos resistentes a la sequía: El desarrollo y la selección de variedades 

que requieren menor cantidad de agua o toleran periodos prolongados de 

sequía reducen la presión sobre las fuentes hídricas. 

 Manejo integrado de recursos hídricos: Estrategias que consideran el uso 

combinado de aguas superficiales, subterráneas y no convencionales, 

promoviendo su gestión coordinada entre distintos sectores productivos [18]. 

2.4.3. Impacto en la Agricultura y el Medio Ambiente 
La adopción de prácticas de gestión sostenible del agua contribuye 

simultáneamente al aumento de la productividad agrícola y a la conservación 

ambiental. Estas estrategias favorecen la preservación de ecosistemas acuáticos, 

reducen procesos de salinización y degradación del suelo, y minimizan la 

contaminación derivada de escorrentías agrícolas. A largo plazo, fortalecen la 

resiliencia de las comunidades rurales frente a la variabilidad climática y la 

disminución de la disponibilidad de agua [20]. 

2.4.4. Desafíos y Oportunidades 
La transición hacia modelos de gestión hídrica sostenibles implica retos 

estructurales y operativos, como la necesidad de inversión tecnológica, la 

capacitación continua de los productores y la adecuación de marcos normativos que 

promuevan el uso responsable del agua. No obstante, estos desafíos abren también 

oportunidades para impulsar la innovación, fortalecer la cooperación 

interinstitucional y consolidar una agricultura resiliente, eficiente y ambientalmente 

responsable [21]. 

 

2.5. Impacto del Crecimiento Urbano 
El crecimiento urbano, entendido como la expansión de las ciudades y el incremento 

de la población en áreas urbanizadas, constituye uno de los principales factores de 

presión sobre los recursos naturales, especialmente el agua. Esta sección analiza 

la forma en que la expansión urbana influye en la disponibilidad, calidad y gestión 
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del agua destinada a la agricultura, con especial atención a las condiciones de las 

regiones semiáridas como Aguascalientes, México. 

2.5.1. Presión sobre los Recursos Hídricos 
A medida que las ciudades crecen, la demanda de agua para fines domésticos, 

industriales y recreativos aumenta de manera proporcional, generando competencia 

directa con las necesidades del sector agrícola. Este incremento sostenido favorece 

la sobreexplotación de ríos y acuíferos, reduciendo la cantidad de agua disponible 

para el riego y comprometiendo la sostenibilidad de los sistemas agrícolas. En 

contextos como el de Aguascalientes, donde la escasez hídrica ya representa un 

problema estructural, el crecimiento urbano intensifica la competencia por recursos 

limitados, poniendo en riesgo la viabilidad productiva y ambiental de la agricultura 

regional [22]. 

2.5.2. Cambios en el Uso del Suelo 
El proceso de urbanización suele implicar la conversión de terrenos agrícolas en 

áreas residenciales, comerciales o industriales, lo que reduce la superficie 

destinada a la producción de alimentos y altera los equilibrios hidrológicos naturales. 

Este cambio de uso del suelo modifica los patrones de infiltración y recarga de los 

acuíferos, y al mismo tiempo incrementa la proporción de superficies impermeables, 

como calles, techos o pavimentos, aumentando la escorrentía superficial y 

disminuyendo la retención natural de agua en el subsuelo [23]. 

2.5.3. Contaminación del Agua 
El crecimiento urbano también contribuye a la contaminación de los cuerpos de 

agua a través de descargas residuales sin tratamiento adecuado y del arrastre de 

contaminantes provenientes de áreas urbanas. Esta contaminación deteriora la 

calidad del agua disponible para el riego agrícola, con efectos negativos sobre la 

salud de los cultivos y, por extensión, sobre la seguridad alimentaria. En regiones 

como Aguascalientes, donde la agricultura depende en gran medida de sistemas de 

riego, la preservación de la calidad del agua se considera un componente esencial 

para garantizar la productividad y sostenibilidad agrícola [24]. 
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2.5.4. Estrategias de Mitigación 
Frente a los efectos del crecimiento urbano sobre los recursos hídricos, la adopción 

de estrategias integradas de mitigación resulta indispensable. Entre las más 

relevantes se encuentran: 

 Planificación urbana y agrícola coordinada: Promueve una gestión 

conjunta del territorio para proteger las zonas agrícolas y los acuíferos 

estratégicos. 

 Tecnologías urbanas de eficiencia hídrica: Fomenta la instalación de 

sistemas de ahorro y reciclaje de agua en las ciudades, reduciendo la 

demanda sobre las fuentes naturales. 

 Tratamiento y reutilización de aguas residuales: La inversión en 

infraestructura de saneamiento permite reutilizar el agua tratada en riego 

agrícola, disminuyendo la presión sobre los recursos hídricos 

convencionales. 

 Educación y sensibilización social: Difunde la importancia del uso racional 

del agua entre la población urbana y rural, promoviendo prácticas de 

conservación sostenibles. 

La gestión equilibrada del crecimiento urbano y de la disponibilidad de agua para la 

agricultura requiere un enfoque sistémico que considere simultáneamente las 

necesidades urbanas y agrícolas. A través de estrategias proactivas y sostenibles, 

es posible alcanzar un equilibrio entre desarrollo urbano, seguridad alimentaria y 

conservación hídrica, elementos fundamentales para el desarrollo sostenible en 

regiones semiáridas como Aguascalientes [25]. 

 

2.6. Industria 4.0 y su Aplicación en la Agricultura 
La Industria 4.0, también denominada cuarta revolución industrial, se define por la 

integración de tecnologías digitales avanzadas, como la inteligencia artificial (IA), 

IoT, la robótica y el análisis de big data, en los procesos productivos. En el ámbito 
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agrícola, estas tecnologías están transformando las prácticas tradicionales 

mediante el desarrollo de sistemas inteligentes capaces de optimizar la eficiencia, 

reducir costos y fortalecer la sostenibilidad de los cultivos [26]. 

Una de las áreas más relevantes de la Industria 4.0 es la agricultura de precisión, la 

cual utiliza información en tiempo real para respaldar la toma de decisiones sobre 

el manejo de los cultivos. Este enfoque comprende el monitoreo de variables 

ambientales y fisiológicas, como el clima, la humedad del suelo, los niveles de 

nutrientes y otros factores críticos que inciden directamente en la productividad 

agrícola. La incorporación de sensores IoT, drones y sistemas de información 

geográfica (SIG) posibilita una gestión más precisa y adaptativa de los recursos 

agrícolas, contribuyendo a una agricultura más eficiente y sostenible [27]. 

2.6.1. Cultivos Protegidos: Innovación y Sostenibilidad 
Los cultivos protegidos, como los invernaderos y túneles de plástico, constituyen 

una estrategia tecnológica orientada a crear ambientes controlados que protegen a 

las plantas de condiciones climáticas extremas, plagas y enfermedades. Esta 

técnica incrementa la calidad y el rendimiento de los cultivos, al mismo tiempo que 

optimiza el uso de recursos esenciales como el agua y los fertilizantes. 

 

En el contexto de Aguascalientes, México, donde la disponibilidad de agua es 

limitada, los cultivos protegidos representan una alternativa sostenible que permite 

mantener altos niveles de productividad agrícola con un consumo hídrico reducido. 

En este tipo de entornos, la integración de sistemas de riego inteligentes basados 

en IoT contribuye a la optimización del uso del agua, minimiza las pérdidas por 

evaporación y mejora la eficiencia general de los procesos agrícolas [28]. 

2.6.2. Internet de las Cosas (IoT) en la Agricultura 
IoT se considera una de las tecnologías clave de la Industria 4.0 debido a su 

capacidad para conectar dispositivos y sistemas a través de redes digitales, 

facilitando la recopilación, transmisión y análisis de datos en tiempo real. En la 
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agricultura, su aplicación permite el desarrollo de sistemas de riego inteligentes que 

ajustan de manera autónoma el suministro de agua conforme a las necesidades 

hídricas de cada cultivo. 

Mediante el uso de sensores que miden humedad del suelo, temperatura, radiación 

lumínica y concentración de CO₂, los sistemas IoT pueden modificar dinámicamente 

los patrones de riego, optimizando el uso del agua y promoviendo un crecimiento 

vegetal saludable. Además, estos sistemas generan alertas ante anomalías, como 

sequías o exceso de humedad, permitiendo una respuesta temprana y precisa [29]. 

2.6.3. Justificación del Uso de IoT en Cultivos Protegidos 
La combinación de cultivos protegidos e IoT representa una convergencia 

tecnológica con alto potencial para mejorar la sostenibilidad agrícola en regiones 

semiáridas como Aguascalientes. Los sistemas de riego inteligentes basados en IoT 

favorecen el uso racional del agua dentro de los invernaderos, asegurando una 

irrigación óptima que reduce el desperdicio y maximiza la eficiencia hídrica. 

Además, la aplicación de herramientas de análisis de datos y monitoreo en tiempo 

real fortalece la toma de decisiones agronómicas basadas en evidencia, reduciendo 

la incertidumbre y mejorando la capacidad de gestión de los productores. Este 

enfoque se alinea con los objetivos globales de sostenibilidad y seguridad 

alimentaria, posicionando a Aguascalientes como una región con potencial de 

liderazgo en la adopción de tecnologías agrícolas innovadoras y resilientes frente al 

cambio climático [30]. 
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3. Metodología 
El desarrollo de este proyecto se enmarcó en una investigación aplicada de carácter 

tecnológico, cuyo objetivo fue abordar un problema práctico del sector agrícola 

mediante el diseño y validación de un sistema informático basado en tecnologías 

emergentes. El enfoque metodológico adoptado fue cuantitativo, experimental y 

tecnológico, centrado en la construcción y prueba funcional de un prototipo de 

sistema de riego inteligente que integró dispositivos IoT, algoritmos de aprendizaje 

automático y una arquitectura web modular. 

La metodología empleada se basó en los principios del modelo de desarrollo 

iterativo, en el cual se diseñaron, desarrollaron y validaron de forma independiente 

los distintos componentes del sistema, lo que permitió realizar ajustes progresivos 

durante el proceso. El enfoque modular facilitó el trabajo paralelo sobre cada 

subsistema (hardware, backend, frontend, comunicación, predicción y control), 

garantizando flexibilidad y coherencia en la integración final. 

Este capítulo describe las fases metodológicas que guiaron el desarrollo del 

sistema, abarcando desde el análisis del problema y la definición de requerimientos, 

hasta el diseño técnico, la construcción del prototipo, la validación funcional en 

condiciones controladas y la documentación integral del proceso. 

3.1. Fase 1: Análisis del problema y definición de 
requerimientos 

Esta fase se enfocó en el estudio de la problemática del uso ineficiente del agua en 

cultivos protegidos, particularmente en zonas semiáridas como Aguascalientes. Se 

llevó a cabo una revisión documental de las tecnologías actuales en agricultura 

inteligente, así como de sistemas de riego automatizado y soluciones IoT aplicadas 

a entornos de producción controlada. 

A partir del análisis, se identificaron los principales factores que inciden en la 

eficiencia del riego, tales como la humedad del suelo, la temperatura ambiental, la 
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humedad relativa, el tipo de cultivo y las condiciones del entorno protegido. Esta 

información permitió establecer los requerimientos técnicos y operativos del 

sistema, clasificados de la siguiente manera: 

Requerimientos funcionales: 

 Adquisición en tiempo real de datos ambientales mediante sensores. 

 Transmisión eficiente de datos desde los nodos IoT hacia el servidor central. 

 Procesamiento de datos y toma de decisiones automatizadas o simuladas. 

 Activación remota del sistema de riego mediante comandos controlados. 

 Visualización de la información a través de una aplicación web. 

 Predicción del nivel de humedad mediante modelos de machine learning. 

Requerimientos no funcionales: 

 Alta disponibilidad del sistema. 

 Bajo consumo energético en los nodos IoT. 

 Escalabilidad horizontal para soportar múltiples zonas de riego. 

 Interfaz intuitiva y adaptable a distintos dispositivos. 

 Integración segura entre módulos mediante protocolos ligeros y confiables. 

Los resultados de esta fase sirvieron como base para el diseño técnico y la 

planificación de las etapas posteriores del proyecto. 

3.2. Fase 2: Diseño del Sistema 

3.2.1. Diseño de Software 
El diseño del software constituyó el eje central del desarrollo del sistema de riego 

inteligente, al definir la estructura lógica, los componentes tecnológicos y las 

herramientas que permitieron construir y validar el prototipo funcional. Esta fase se 

enfocó en establecer una arquitectura robusta, modular y escalable, adecuada para 

un entorno de experimentación controlada y adaptable a una futura implementación 

en campo. 
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 Lenguajes de programación: Se seleccionó Python para el desarrollo del 

backend, debido a su amplia comunidad y a la disponibilidad de librerías 

como NumPy y Pandas, que facilitaron el manejo y análisis de datos 

ambientales recopilados por los sensores. Para el frontend se empleó 

JavaScript junto con el framework Vue.js, con el fin de desarrollar una interfaz 

interactiva y adaptable que permitiera visualizar la información del sistema y 

realizar acciones de control durante las pruebas experimentales. 

 

 Frameworks y plataformas: Se utilizó Django, un framework de alto nivel 

para Python, para estructurar el backend del sistema, aprovechando su 

arquitectura basada en componentes reutilizables y su capacidad para 

gestionar peticiones web y comunicación con la base de datos de manera 

segura. En el frontend, Vue.js fue empleado para garantizar una actualización 

eficiente de los elementos visuales y un manejo fluido del estado de la 

aplicación. 

 

 Arquitectura del sistema: Se adoptó un enfoque modular inspirado en 

microservicios, lo que permitió el desarrollo, prueba e integración 

independiente de cada componente del sistema (adquisición de datos, 

almacenamiento, análisis y visualización). Esta estructura favoreció la 

escalabilidad y la flexibilidad del prototipo, facilitando la incorporación de 

nuevos módulos o la modificación de los existentes sin afectar el 

funcionamiento global del sistema durante la validación experimental. 

3.3. Fase 3: Implementación 

3.3.1. Desarrollo de Software 
La implementación del software se realizó de manera progresiva, siguiendo un 

enfoque modular que garantizó la funcionalidad y estabilidad del prototipo 

desarrollado. 
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 Conectividad IoT: Se configuraron protocolos estándar como MQTT, 

empleado para la comunicación entre los dispositivos conectados y el 

servidor de procesamiento. Este protocolo se seleccionó por su ligereza y 

confiabilidad en la entrega de mensajes en tiempo real, lo que permitió 

simular adecuadamente el flujo de datos entre sensores y plataforma central 

durante la validación experimental. 

 

 Monitoreo en tiempo real: Se desarrolló un tablero de control interactivo 

que permitió visualizar el comportamiento del sistema en tiempo real. Este 

tablero integró gráficos dinámicos y representaciones visuales de los datos 

obtenidos de los sensores, facilitando el análisis y la supervisión de las 

variables ambientales durante las pruebas. 

3.3.2. Integración con Hardware 
Para el desarrollo del prototipo se utilizó una Raspberry Pi como controlador central 

de riego. A continuación, se describen los sensores seleccionados y su integración 

con el controlador, realizada en un entorno de validación experimental. 

Selección de sensores 

 Sensor de humedad del suelo: DHT22 
Este sensor permitió medir la humedad y la temperatura del ambiente con 

alta precisión. El DHT22 se conectó a la Raspberry Pi a través de los pines 

GPIO mediante comunicación digital. 

 

 Sensor de temperatura del aire y del suelo: DS18B20 

Este sensor digital de temperatura permitió monitorear simultáneamente la 

temperatura del suelo y del ambiente. Su conexión se realizó mediante el bus 

de 1-Wire, lo que facilitó la integración de múltiples sensores sobre una 

misma línea. 

 

 Sensor de niveles de luz: BH1750 
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El BH1750 se utilizó para medir la intensidad lumínica en lux, conectándose 

a la Raspberry Pi mediante interfaz I2C. Esta información resultó esencial 

para analizar la relación entre iluminación y demanda hídrica. 

 

 Sensor de concentraciones de CO₂: SCD30 

El SCD30 permitió medir las concentraciones de dióxido de carbono junto 

con la humedad y temperatura ambiental, comunicándose con la Raspberry 

Pi mediante la interfaz I2C. Estos datos complementaron la caracterización 

del entorno de pruebas. 

Proceso de integración 

1. Conexión de sensores a la Raspberry Pi 

 Cada sensor se conectó a la Raspberry Pi utilizando sus respectivos 

protocolos de comunicación, asegurando la estabilidad de las señales 

mediante resistencias pull-up cuando fue necesario. 

 Se desarrollaron scripts en Python para la lectura de los datos, 

empleando librerías especializadas como Adafruit_DHT, 

w1thermsensor, smbus2 y smbus. 

 

2. Configuración del software en la Raspberry Pi 

 Se instaló y configuró el sistema operativo Raspberry Pi OS, 
habilitando las interfaces necesarias (I2C y 1-Wire). 

 Se desarrolló una aplicación en Python que recopiló, procesó y envió 
los datos hacia la base de datos central. 

 El sistema incluyó rutinas para simular la activación del riego, de 
acuerdo con los parámetros definidos por el algoritmo de control. 

 

3. Pruebas y calibración de sensores 

 Se efectuaron pruebas de funcionamiento y calibración conforme a las 

especificaciones de cada fabricante. 
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 Se configuraron alertas de supervisión para detectar valores anómalos 

o inconsistentes durante las mediciones. 

 

Evaluación y optimización 

 Se desarrolló un sistema de monitoreo web que permitió visualizar los datos 

de los sensores en tiempo real, realizar ajustes de parámetros y validar el 

desempeño del prototipo. 

 La integración completa del sistema se probó en condiciones simuladas de 
cultivo protegido, evaluando su estabilidad, precisión y capacidad de 

respuesta ante variaciones ambientales. 

3.3.3. Descripción de Sensores y Controlador 
En esta sección se describieron los sensores seleccionados y la Raspberry Pi 

utilizada como unidad central de control en el prototipo del sistema de riego 

inteligente basado en IoT. Cada componente fue elegido por su precisión, 

confiabilidad y compatibilidad con entornos experimentales de agricultura de 

precisión. 

 Controlador Central: Raspberry Pi 

 Características: 

 Modelo: Raspberry Pi 4 Model B. 
 Procesador: Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz. 

 Memoria RAM: 4GB LPDDR4-3200 SDRAM. 

 Conectividad: 2.4 GHz y 5.0 GHz IEEE 802.11ac wireless, Bluetooth 

5.0, BLE, Gigabit Ethernet. 
 Puertos: 2 puertos USB 3.0, 2 puertos USB 2.0, 2 micro HDMI 

(soporte de hasta 4Kp60), GPIO de 40 pines. 
 Almacenamiento: MicroSD. 

 Funcionamiento: 
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La Raspberry Pi 4 Model B desempeñó el rol de controlador central del 

prototipo, gestionando la adquisición y procesamiento de los datos 

provenientes de los sensores. Su capacidad de cómputo permitió ejecutar los 

algoritmos de análisis en tiempo real y coordinar las rutinas de control del 

sistema durante la validación experimental. 

 Conexión de sensores: Los sensores se conectaron a la Raspberry Pi 
mediante los puertos GPIO y las interfaces I2C y 1-Wire. Se 

implementaron scripts en Python para la lectura, almacenamiento y 

procesamiento de los datos obtenidos. 

 Procesamiento de datos: La Raspberry Pi ejecutó algoritmos de 

análisis y predicción que interpretaron las mediciones ambientales, 

simulando decisiones automáticas sobre el riego en función de las 

variables monitoreadas. 

 Simulación de automatización del riego: En lugar de una activación 

real de válvulas o bombas, se configuró un mecanismo de simulación 

del control de riego, lo que permitió validar la lógica de funcionamiento 

y verificar la correcta respuesta del sistema ante distintos escenarios 

simulados. 

 Sensor de Humedad del Suelo: DHT22 

 Características: 

 Tipo: Sensor digital de temperatura y humedad. 

 Rango de humedad: 0-100% RH (Humedad Relativa). 

 Precisión de humedad: ±2% RH. 

 Rango de temperatura: -40 a 80 °C. 

 Precisión de temperatura: ±0.5 °C. 

 Tiempo de respuesta: 2 segundos. 

 Interfaz: Digital. 

 Funcionamiento: 
El sensor DHT22 se utilizó para registrar valores de temperatura y humedad 

del entorno durante la validación experimental del prototipo. Aunque 



Capítulo 3. Metodología 

44 

comúnmente se emplea para medir la humedad relativa del aire, en este 

proyecto se configuró para estimar los niveles de humedad del suelo dentro 

de condiciones controladas. 

El DHT22 opera mediante un sensor capacitivo que mide la humedad y un 

termistor que mide la temperatura, enviando la información digitalmente a la 

Raspberry Pi. Esta comunicación digital eliminó la necesidad de un 

convertidor analógico-digital adicional, simplificando la integración con el 

controlador central. 

Gracias a su precisión, estabilidad y bajo costo, el DHT22 resultó adecuado 

para la verificación del desempeño del sistema de adquisición de datos, 

proporcionando mediciones confiables para el análisis de las variables 

ambientales dentro del entorno de prueba. 

 Sensor de Temperatura del Aire y del Suelo: DS18B20 

 Características: 
 Tipo: Sensor digital de temperatura. 

 Rango de temperatura: -55 a 125 °C. 

 Precisión: ±0.5 °C en el rango de -10 a 85 °C. 

 Interfaz: 1-Wire. 

 Resolución: 9 a 12 bits, programable. 

 Tiempo de respuesta: Conversión de temperatura en menos de 750 

ms. 

 Funcionamiento: 
El sensor DS18B20 se empleó para medir la temperatura tanto del aire como 

del suelo durante las pruebas experimentales del prototipo. Su protocolo de 

comunicación 1-Wire permitió la conexión de varios sensores en una misma 

línea, lo que simplificó el cableado y facilitó la expansión del sistema. 

Gracias a su precisión y rango operativo amplio, el DS18B20 proporcionó 

mediciones confiables de temperatura que fueron utilizadas para analizar la 

respuesta térmica del sistema y validar el desempeño del algoritmo de 

control. 
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Las lecturas obtenidas se transmitieron digitalmente a la Raspberry Pi, donde 

fueron procesadas en tiempo real por los scripts desarrollados en Python. 

Este sensor demostró ser adecuado para la etapa de validación 

experimental, permitiendo evaluar la capacidad del sistema para adaptarse 

a variaciones térmicas simuladas. 

 Sensor de Niveles de Luz: BH1750 

 Características: 

 Tipo: Sensor digital de luz ambiental. 

 Rango de medición: 0-65,535 lux. 

 Precisión: Alta precisión en un amplio rango de luminancia. 

 Interfaz: I2C. 

 Consumo de energía: Bajo consumo de energía. 

 Tiempo de respuesta: 16 ms a 120 ms dependiendo de la resolución 

seleccionada. 

 Funcionamiento: 
El sensor BH1750 se utilizó para medir la intensidad lumínica durante la 

validación experimental del prototipo, proporcionando valores expresados en 

lux. Este dispositivo empleó la interfaz I2C para comunicarse con la 

Raspberry Pi, lo que permitió una lectura rápida y estable de los datos. 

Las mediciones obtenidas fueron registradas y analizadas en tiempo real, 

facilitando la evaluación del comportamiento del sistema ante variaciones de 

luminosidad simuladas. Si bien en una aplicación en campo los datos de este 

sensor podrían emplearse para ajustar automáticamente los horarios de 

riego, en esta etapa su función se limitó a verificar la correcta adquisición y 

transmisión de información lumínica dentro del entorno de prueba. 

Gracias a su amplio rango de medición y alta sensibilidad, el BH1750 resultó 

adecuado para validar la precisión del sistema de monitoreo ambiental y 

comprobar la estabilidad de la comunicación entre los distintos módulos del 

sistema. 
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 Sensor de Concentraciones de CO2: SCD30 

 Características: 

 Tipo: Sensor de dióxido de carbono (CO2), humedad y temperatura. 

 Rango de medición de CO2: 400-10,000 ppm. 

 Precisión de CO2: ±(30 ppm + 3% de la lectura). 

 Rango de humedad: 0-100% RH. 

 Precisión de humedad: ±2% RH. 

 Rango de temperatura: -40 a 70 °C. 

 Precisión de temperatura: ±0.4 °C. 

 Interfaz: I2C. 

 Consumo de energía: Bajo consumo de energía. 

 Funcionamiento: 
El sensor SCD30 se empleó para medir simultáneamente las 

concentraciones de dióxido de carbono, la humedad relativa y la temperatura 

del entorno durante la validación experimental del prototipo. Este dispositivo 

utilizó la interfaz I2C para comunicarse con la Raspberry Pi, permitiendo la 

adquisición estable y continua de datos ambientales. 

Las mediciones de CO₂ resultaron especialmente útiles para analizar la 

relación entre la concentración de gases y las condiciones ambientales 

simuladas, ya que el dióxido de carbono influye directamente en los procesos 

de fotosíntesis y transpiración vegetal. 

El conjunto de variables registradas por el SCD30 complementó la 

información proveniente de otros sensores, posibilitando un monitoreo 

integral del entorno de pruebas y aportando datos relevantes para la 

verificación del desempeño del sistema de monitoreo ambiental. 

Gracias a su precisión y estabilidad de lectura, el SCD30 demostró ser un 

componente adecuado para la validación del modelo de adquisición de datos 

del sistema de riego inteligente, sirviendo como referencia para futuras 

aplicaciones en entornos agrícolas reales. 
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 Integración y Monitoreo 
La integración de los sensores con la Raspberry Pi permitió realizar un monitoreo 

continuo y preciso de las condiciones ambientales y del suelo dentro del entorno de 

validación experimental. Los datos obtenidos fueron procesados en tiempo real 

mediante los scripts desarrollados en Python, lo que permitió verificar el correcto 

funcionamiento del flujo de adquisición, transmisión y análisis de información. 

Durante las pruebas, se evaluó la estabilidad del sistema y la coherencia de los 

datos registrados, comprobando la capacidad del prototipo para operar de forma 

autónoma y mantener la comunicación constante entre los diferentes módulos. Si 

bien no se realizaron ajustes automáticos sobre un sistema de riego real, se validó 

la lógica de control que permitiría dicha automatización en futuras etapas de 

implementación. 

Esta integración demostró que la arquitectura diseñada es funcional, eficiente y 

adaptable a distintos escenarios de uso, validando el desempeño general del 

sistema propuesto para la gestión inteligente del riego. Con esta configuración, el 

prototipo consolidó su capacidad para optimizar el manejo del agua en condiciones 

simuladas y sentó las bases para la adopción de prácticas agrícolas más sostenibles 

y resilientes en aplicaciones futuras. 

 

3.4. Fase 4: Validación en entorno de laboratorio 
La validación del sistema se realizó en un entorno controlado con el propósito de 

comprobar su funcionamiento integral, la consistencia del flujo de datos y la 

capacidad de respuesta ante diferentes condiciones simuladas de riego. Esta fase 

representó la culminación del desarrollo del prototipo, enfocándose en evaluar su 

desempeño bajo condiciones reproducibles y monitoreadas. 

Las pruebas efectuadas incluyeron: 

 Simulación de datos sensoriales para verificar el flujo completo de 
información desde los sensores hasta el frontend. 
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 Pruebas de latencia para medir el tiempo de respuesta entre la adquisición 

de los datos, su procesamiento en el backend y su visualización en la interfaz 

web. 

 Simulación de la activación remota de la bomba de agua mediante la interfaz 
web y comandos transmitidos por el protocolo MQTT, validando la 

comunicación entre los distintos módulos del sistema. 

 Evaluación del modelo predictivo de humedad del suelo, verificando la 
correspondencia entre las sugerencias de riego generadas y los valores 

esperados según los escenarios establecidos. 

Los resultados obtenidos demostraron que el sistema operó correctamente, 

integrando de manera efectiva los componentes de hardware, software y 

comunicación. Se confirmó la capacidad del prototipo para procesar datos en tiempo 

real, generar predicciones coherentes y ejecutar respuestas automáticas o 

manuales ante las condiciones simuladas. 

Esta fase permitió validar el desempeño funcional y la estabilidad del sistema 

propuesto, consolidando su viabilidad técnica como herramienta de apoyo para la 

gestión inteligente del riego en entornos controlados y su potencial para futuras 

aplicaciones agrícolas. 

 

3.5. Fase 5: Documentación del proceso 
A lo largo del desarrollo del proyecto se elaboró un registro sistemático y detallado 

de todas las etapas del trabajo, con el objetivo de garantizar la trazabilidad del 

proceso y facilitar la replicación o ampliación futura del sistema. La documentación 

generada constituyó una parte esencial del proyecto, ya que permitió mantener una 

organización clara entre los componentes técnicos, los resultados obtenidos y las 

decisiones de diseño adoptadas. 

Entre los materiales recopilados se incluyeron: 
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 Diagramas de arquitectura del sistema y flujos de datos, que describen la 

interacción entre los módulos de hardware, software y comunicación. 

 Esquemas eléctricos y de conexión de sensores, elaborados para 

representar con precisión la configuración empleada durante la validación 

experimental. 

 Bitácora técnica de incidencias, donde se registraron errores detectados, 

ajustes realizados y soluciones aplicadas en cada fase del desarrollo. 

 Código fuente estructurado por módulos y subcomponentes, documentado 

mediante comentarios y convenciones estandarizadas para facilitar su 

comprensión y mantenimiento. 

 Capturas de la interfaz de usuario y registros de las pruebas realizadas, que 

evidencian el comportamiento del sistema y sus funcionalidades principales. 

 Análisis de rendimiento, en el que se evaluaron aspectos como la latencia 

del sistema, el procesamiento de datos y la estabilidad de la comunicación 

entre módulos. 

Esta documentación se integró como parte sustantiva de la tesis, con la finalidad de 

servir como referencia para futuras aplicaciones o ampliaciones del sistema, así 

como guía metodológica para investigaciones o desarrollos posteriores en el ámbito 

de los sistemas de riego inteligente basados en IoT. 
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4. Desarrollo e Implementación 
El presente capítulo describe el proceso de desarrollo e implementación del SIRCA-

IoT (Sistema Inteligente de Riego y Control Automatizado basado en IoT), propuesto 

en este estudio. El sistema fue concebido como un prototipo funcional orientado a 

demostrar la viabilidad técnica y operativa de integrar tecnologías de sensorización, 

comunicación inalámbrica, procesamiento de datos y aprendizaje automático en el 

contexto de cultivos protegidos en Aguascalientes, México. 

El desarrollo se estructuró bajo una arquitectura modular que permitió abordar de 

forma independiente los diferentes subsistemas que conforman la solución: el 

subsistema IoT para la adquisición y transmisión de datos ambientales, la 

plataforma web encargada del procesamiento, visualización y control del sistema, y 

el subsistema predictivo basado en técnicas de machine learning. Esta organización 

favoreció el diseño iterativo y la validación individual de cada componente, 

garantizando la coherencia en la integración final. 

En esta etapa del proyecto, el sistema SIRCA-IoT fue implementado y validado en 

un entorno controlado que permitió reproducir las condiciones de funcionamiento 

esperadas en un cultivo protegido, asegurando el monitoreo continuo de variables 

ambientales relevantes y la automatización del proceso de riego en función de los 

datos obtenidos y las predicciones generadas. El enfoque experimental adoptado 

permitió verificar la comunicación entre los dispositivos IoT, la estabilidad del flujo 

de datos, la eficiencia del backend en el manejo de información en tiempo real y la 

precisión del modelo predictivo en la estimación del nivel de humedad del suelo. 

El desarrollo se organizó en cinco secciones principales. En la primera se presenta 

la arquitectura general del sistema, describiendo los componentes que lo integran y 

su interacción. La segunda sección aborda el subsistema IoT, detallando el 

funcionamiento de los sensores, la transmisión de datos y el control automatizado 

del riego. La tercera describe la plataforma web, explicando su estructura de 

backend y frontend, así como las herramientas empleadas para la gestión de 

información y la comunicación con el hardware. En la cuarta se expone el 
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subsistema predictivo, donde se describe el modelo de aprendizaje automático 

utilizado para anticipar los niveles de humedad del suelo. Finalmente, en la quinta 

sección se presentan los procesos de integración y validación funcional del sistema, 

donde se analiza el desempeño general del prototipo y su capacidad para operar de 

manera autónoma y eficiente. 

El enfoque adoptado permitió no solo demostrar el funcionamiento integral del 

sistema, sino también sentar las bases para su futura implementación en escenarios 

agrícolas reales. En conjunto, este capítulo representa la culminación del proceso 

metodológico descrito previamente, traduciendo los requerimientos identificados en 

un sistema tangible, funcional y validado experimentalmente. 

 

4.1. Desarrollo del Sistema SIRCA-IoT 

4.1.1. Arquitectura General del Sistema 
El desarrollo del SIRCA-IoT se estructuró bajo una arquitectura distribuida y 

modular, diseñada para integrar de forma coherente los componentes de hardware, 

software y modelado predictivo. La arquitectura propuesta permitió el monitoreo 

continuo de variables ambientales, la automatización del riego y la generación de 

predicciones basadas en datos históricos, todo dentro de un entorno controlado que 

reproduce las condiciones de un cultivo protegido. 

La solución se organizó en tres subsistemas principales: el subsistema IoT, 

encargado de la adquisición y transmisión de datos sensoriales; el subsistema web, 

responsable del procesamiento, almacenamiento, visualización y control del 

sistema; y el subsistema predictivo, dedicado al análisis de datos y la estimación de 

la humedad del suelo mediante aprendizaje automático. Estos subsistemas se 

comunicaron a través del protocolo MQTT (Message Queuing Telemetry Transport), 

que garantizó la transmisión eficiente y confiable de los datos entre los distintos 

nodos y servicios del sistema. 
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Diagrama 1. Arquitectura General del Sistema. 

 

 Estructura de la Arquitectura Distribuida 
La arquitectura se basó en el principio de desacoplamiento funcional, permitiendo 

que cada subsistema operara de manera independiente pero sincronizada. La 

Raspberry Pi 4 Model B se utilizó como nodo central de adquisición y control del 

SIRCA-IoT, recibiendo los datos de los sensores conectados a sus interfaces GPIO, 

I2C y 1-Wire. Estos datos fueron procesados localmente y enviados al bróker MQTT 

HiveMQ, que actuó como intermediario entre el hardware y la plataforma web. 

En el lado del servidor, el backend desarrollado en Django se encargó de recibir y 

registrar los datos en una base de datos TimescaleDB, optimizada para el manejo 

de series temporales. A partir de esta información, el sistema permitió tanto el 

monitoreo en tiempo real como el almacenamiento histórico para su posterior 

análisis. La comunicación con los usuarios se gestionó mediante una interfaz web 

desarrollada en Vue.js, la cual permitió la visualización gráfica de los datos, el 

control manual del riego y el seguimiento de las predicciones generadas por el 

modelo de machine learning. 

El modelo predictivo, implementado y entrenado en Python, se integró al backend 

mediante un servicio modular que procesaba los datos registrados, estimaba la 

humedad futura del suelo y enviaba las recomendaciones al sistema de control. De 

esta manera, el flujo de información siguió un esquema circular que unió los 
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procesos de sensado, transmisión, predicción y acción. A continuación, se describen 

los componentes de cada uno de estos subsistemas:  

 Backend (Django + DRF + Channels): 

 Django REST Framework (DRF): Facilita la creación de endpoints para la 

interacción con el frontend, permitiendo la consulta de datos históricos de los 

sensores y la configuración de sus umbrales [31]. 

 Django Channels: Utilizado para gestionar la comunicación en tiempo real 

mediante WebSockets, lo que permite al frontend recibir actualizaciones 

instantáneas sobre los valores de los sensores sin necesidad de recargar la 

página [32]. 

 Redis: Actúa como cache para optimizar la velocidad de comunicación y 

como broker para las tareas asíncronas gestionadas por Celery [33]. 

 Celery: Se utiliza para gestionar tareas asíncronas, como la recolección 

periódica de datos y la integración con dispositivos de control, según las 

necesidades del sistema [34]. 

 

 Frontend (Vue 3 + Vuetify 3): 

 Vue 3: Gestiona la reactividad de la interfaz, actualizando en tiempo real la 

visualización de los sensores y cualquier otra información relevante [35]. 

 Vuetify 3: Proporciona los componentes de interfaz de usuario necesarios 

para crear una experiencia visual atractiva y fácil de usar [36]. 

 Vue3-ApexCharts: Permite la visualización gráfica de los datos históricos de 

los sensores mediante gráficos interactivos [37]. 

 Pinia: Facilita el manejo del estado de la aplicación, permitiendo el 

almacenamiento de configuraciones y datos en el frontend [38]. 

 Axios: Se usa para interactuar con las APIs del backend, consultando datos 

históricos y enviando solicitudes para cambiar configuraciones o realizar 

acciones manuales [39]. 



Capítulo 4. Desarrollo e Implementación 

55 

 

 Almacenamiento de Datos (TimescaleDB + PostgreSQL) 

 TimescaleDB: Permite almacenar y consultar datos en tiempo real y a lo 

largo del tiempo, optimizando las operaciones sobre grandes volúmenes de 

datos de sensores [40]. 

 PostgreSQL: Base de datos relacional utilizada para la gestión de los datos 

persistentes, como la configuración de los sensores, registros de usuarios, 

etc [41]. 

 Comunicación y Flujo de Datos 
El sistema se organiza de manera que cada componente se comunica de forma 

eficiente, permitiendo la actualización en tiempo real de los datos y la interacción 

con el usuario. 

1. Sensores → Backend: Los datos de los sensores se envían al backend 

mediante MQTT o protocolos similares, para su procesamiento y análisis. 

2. Backend → Frontend: A través de WebSockets, el backend envía 

actualizaciones en tiempo real a la interfaz de usuario, permitiendo al usuario 

ver los cambios en los valores de los sensores sin necesidad de recargar la 

página. 

3. Frontend → Backend (REST API): El usuario puede interactuar con el 

sistema a través de la API RESTful, permitiendo la consulta de datos 

históricos y la modificación de configuraciones de los sensores. 

4. Backend → TimescaleDB: Los datos de los sensores se almacenan en 

TimescaleDB para su posterior consulta. 

Este diseño garantizó una comunicación bidireccional, en la que tanto los datos de 

sensores como las órdenes de control fluyeron de manera constante y sincrónica, 

lo que permitió mantener la operación autónoma del sistema con mínima 

intervención humana. 
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 Principios de Diseño 
Durante el desarrollo del sistema se adoptaron principios de ingeniería de software 

y hardware orientados a garantizar su fiabilidad, escalabilidad y sostenibilidad. Entre 

los más relevantes se destacaron los siguientes: 

 Modularidad: cada componente del sistema fue diseñado como una unidad 

funcional independiente (sensores, backend, frontend, modelo predictivo), 

facilitando el mantenimiento, la depuración y la futura ampliación del 

prototipo. 

 Escalabilidad: la arquitectura permitió la incorporación de nuevos sensores, 
nodos IoT o zonas de riego sin modificar el núcleo del sistema. 

 Eficiencia energética: el hardware fue configurado para minimizar el consumo 
eléctrico, lo cual resulta esencial en aplicaciones agrícolas de bajo 

mantenimiento. 

 Comunicación ligera: el uso del protocolo MQTT redujo la sobrecarga de 
datos y optimizó la transmisión en entornos de conectividad limitada. 

 Seguridad y confiabilidad: se implementaron mecanismos de autenticación 
en el bróker MQTT y en la API web, garantizando la integridad de los datos y 

la protección frente a accesos no autorizados. 

La modularidad del sistema facilita la incorporación de nuevas funcionalidades sin 

alterar el núcleo del sistema. Además, la capacidad de integrar dispositivos 

adicionales como válvulas de riego, sensores adicionales o sistemas de control más 

avanzados asegura que el sistema pueda adaptarse a distintas necesidades 

agrícolas [42]. 

Estos principios sustentaron el diseño general del sistema y guiaron su 

implementación en las fases posteriores, asegurando que el prototipo alcanzara un 

equilibrio entre complejidad técnica, eficiencia operativa y viabilidad práctica. 
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Diagrama 2. Arquitectura del Sistema (Backend, Frontend y Almacenamiento de Datos). 

 

4.1.2. Subsistema IoT: Adquisición y Transmisión de 
Datos 

El subsistema IoT constituyó la capa física del sistema de riego inteligente, 

encargada de la medición y transmisión de las variables ambientales que sirvieron 

como base para la toma de decisiones. Este componente se diseñó para recolectar 

información de forma continua y confiable, garantizando la comunicación con el 

servidor central mediante el protocolo MQTT. La integración de sensores con la 

Raspberry Pi permitió simular un entorno agrícola controlado, en el cual se validaron 

los procesos de adquisición, procesamiento y envío de datos hacia la plataforma 

web. 

 Controlador Central 
El controlador central es el núcleo del sistema de riego inteligente basado en IoT. 

Su función principal es la adquisición de datos desde los sensores, el procesamiento 
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de la información, el control del actuador (bomba de agua) y la transmisión de datos 

a través del protocolo MQTT al broker de HiveMQ. 

En este sistema, se ha seleccionado la Raspberry Pi 4 Model B como unidad central 

de procesamiento y comunicación debido a su capacidad de cómputo, conectividad 

y compatibilidad con múltiples sensores y dispositivos IoT [43]. 

Características Técnicas de la Raspberry Pi 4 Model B: 

Procesador: Broadcom BCM2711, Quad-Core Cortex-A72 a 1.5 GHz 

Memoria RAM: Variantes de 2GB, 4GB u 8GB LPDDR4 

Almacenamiento: Tarjeta microSD (recomendada de 16GB o más) 

Conectividad: 

 Wi-Fi 802.11 b/g/n/ac 

 Bluetooth 5.0 

 Ethernet Gigabit 

 4 puertos USB (2x USB 3.0, 2x USB 2.0) 

 GPIO de 40 pines para la conexión de sensores y actuadores [43] 

Sistemas operativos compatibles: Raspberry Pi OS (recomendado), Ubuntu, 

entre otros [43]. 

La Raspberry Pi ejecutó un servicio en Python que gestionó las siguientes tareas 

principales: 

 Lectura de datos desde los sensores conectados mediante los puertos GPIO, 

I2C y 1-Wire. 

 Preprocesamiento local de las mediciones (filtrado, normalización y 

validación). 
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 Publicación de datos hacia el bróker MQTT, en tópicos definidos para cada 

variable. 

 Recepción de comandos de control, enviados desde el backend para el 

encendido o apagado remoto de la bomba de agua. 

Esta configuración permitió una comunicación bidireccional entre el hardware y el 

sistema web, reproduciendo el comportamiento esperado en un escenario agrícola 

real. La elección de la Raspberry Pi 4 Model B permite un alto grado de flexibilidad 

y escalabilidad en el sistema, garantizando una gestión eficiente del riego mediante 

el monitoreo en tiempo real y la comunicación con el broker MQTT de HiveMQ [44]. 

 Sensores y Actuadores Implementados 

4.1.2.2.1. Sensores 

El sistema de riego inteligente basado en IoT incorpora una serie de sensores 

diseñados para recopilar información sobre el entorno y el suelo, permitiendo una 

gestión eficiente del agua. A continuación, se describen en detalle los sensores 

empleados, su funcionamiento y su integración con la Raspberry Pi 4 Model B. 

DHT22 (Humedad y temperatura ambiental): 

El sensor DHT22 es un dispositivo digital que mide la temperatura y la humedad 

relativa del aire. Es ampliamente utilizado en aplicaciones de monitoreo ambiental 

debido a su precisión y bajo consumo energético [45]. 

 Rango de temperatura: -40°C a 80°C 

 Precisión de temperatura: ±0.5°C 

 Rango de humedad relativa: 0% - 100% 

 Precisión de humedad: ±2-5% 

 Interfaz de comunicación: Digital, protocolo de un solo cable. 

DS18B20 (Temperatura del suelo): 
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Este sensor digital es ideal para medir la temperatura del suelo debido a su 

encapsulado resistente al agua. Utiliza el protocolo 1-Wire, permitiendo la conexión 

de múltiples sensores en el mismo bus de datos [45]. 

 Rango de temperatura: -55°C a 125°C 

 Precisión: ±0.5°C en el rango de -10°C a 85°C 

 Interfaz de comunicación: 1-Wire 

 Voltaje de operación: 3.0V - 5.5V 

BH1750 (Intensidad de luz ambiental): 

El sensor BH1750 mide la cantidad de luz en lux y proporciona datos en formato 

digital mediante la interfaz I²C. Es crucial para determinar la influencia de la luz en 

la evaporación del agua en el suelo [45]. 

 Rango de medición: 1 - 65535 lux 

 Interfaz de comunicación: I²C 

 Voltaje de operación: 2.4V - 3.6V 

 Precisión: ±20% 

SCD41 (Sensor de CO₂): 

Este sensor mide la concentración de dióxido de carbono en el aire, lo cual es útil 

para analizar el impacto de la ventilación y la fotosíntesis en el invernadero [45]. 

 Rango de medición: 0 - 40,000 ppm 

 Interfaz de comunicación: I²C 

 Voltaje de operación: 2.4V - 5.5V 
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 Precisión: ±(50 ppm + 5% del valor medido) 

LM393 (Sensor de humedad del suelo con ADC ADS1115): 

Este sensor, combinado con el convertidor ADC ADS1115, permite medir la 

humedad del suelo de manera precisa y enviarla a la Raspberry Pi, ya que la 

Raspberry Pi no cuenta con entradas analógicas nativas [45]. 

 Interfaz del sensor: Analógica 

 Conversión ADC: ADS1115 (16 bits) 

 Voltaje de operación: 3.3V - 5V 

 Precisión de medición: Alta, debido al uso del convertidor ADC 

Cada sensor fue probado de manera individual para verificar su correcta lectura, y 

posteriormente integrado al sistema general. Las calibraciones y conexiones 

eléctricas se documentaron en el Anexo A, donde se describen los esquemas de 

cableado y los parámetros de configuración empleados durante las pruebas. 

4.1.2.2.2. Actuadores 

El sistema de riego inteligente basado en IoT cuenta con un único actuador: una 

bomba de agua controlada mediante un relé. Este componente es el encargado de 

regular el suministro de agua a los cultivos en función de los valores de humedad 

del suelo obtenidos a través del sensor LM393, garantizando un uso eficiente del 

recurso hídrico. 

Características de la bomba de agua: 

 Tipo: Bomba de agua sumergible. 

 Voltaje de operación: 3V - 6V. 

 Caudal de agua: 80-120 L/h (2 litros por minuto) 
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 Modo de activación: Controlada por un relé mediante la Raspberry Pi 

Módulo Relé 

Para controlar la activación de la bomba de agua con la Raspberry Pi, se emplea un 

módulo relé de estado sólido o mecánico que actúa como un interruptor electrónico, 

permitiendo la conexión o desconexión de la alimentación de la bomba. 

 Voltaje de control: 3.3V - 5V 

 Voltaje de carga: Hasta 250V AC o 30V DC 

 Corriente soportada: 10A 

 Tipo de relé: SPDT (Single Pole Double Throw) 

Este actuador es un elemento clave en la automatización del riego, ya que permite 

gestionar el flujo de agua de manera inteligente en respuesta a las condiciones del 

suelo, optimizando así el consumo de agua y mejorando la salud del cultivo [45]. 

Las calibraciones y conexiones eléctricas se documentaron en el Anexo A, donde 

se describen los esquemas de cableado y los parámetros de configuración 

empleados durante las pruebas. 

 Conectividad y Comunicación 
La conectividad y comunicación en el sistema de riego inteligente basado en IoT 

son fundamentales para garantizar la transmisión eficiente y en tiempo real de los 

datos obtenidos por los sensores y las órdenes de activación del actuador. Para ello, 

se utilizó el protocolo Message Queuing Telemetry Transport (MQTT) y el servicio 

de broker MQTT de HiveMQ, que permite la comunicación entre la Raspberry Pi y 

los demás dispositivos del sistema [46]. 

4.1.2.3.1. Protocolo MQTT 

MQTT es un protocolo de mensajería liviano ideal para sistemas IoT debido a su 

baja latencia, consumo mínimo de ancho de banda y fiabilidad en la transmisión de 
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datos. Funciona bajo un modelo publicador-suscriptor, en el cual los dispositivos 

pueden publicar y recibir mensajes en distintos "tópicos" dentro del broker. 

 Modelo de Comunicación: Publicador-Suscriptor 

 Protocolo de Transporte: TCP/IP 

 Seguridad: Compatible con autenticación TLS/SSL 

 Eficiencia: Bajo consumo de ancho de banda, ideal para IoT 

En este sistema, la Raspberry Pi actúa como publicador y suscriptor, enviando datos 

de los sensores y recibiendo comandos para la activación de la bomba de agua [47]. 

4.1.2.3.2. Broker MQTT de HiveMQ 

HiveMQ es un broker MQTT basado en la nube que facilita la comunicación segura 

y confiable entre dispositivos IoT. Se ha elegido este servicio debido a su estabilidad, 

facilidad de integración y soporte para múltiples clientes simultáneos. 

Características principales: 

 Soporte para conexiones simultáneas de múltiples dispositivos 

 Baja latencia en la transmisión de mensajes 

 Seguridad con TLS/SSL y autenticación de clientes 

 Compatible con QoS (Calidad de Servicio) para priorización de mensajes 

[48]. 

4.1.2.3.3. Tópicos MQTT Utilizados en el Sistema 

En este sistema se han definido los siguientes tópicos MQTT para la transmisión de 

datos y el control del actuador: 

 Tópico de Sensores: iot/riego/sensores 
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Publica los valores de temperatura, humedad ambiental, humedad del suelo, 

CO₂ e intensidad lumínica. 

 Tópico de Control de la Bomba: iot/riego/bomba 

Recibe órdenes de activación o desactivación de la bomba de agua. 

4.1.2.3.4. Flujo de Datos y Procesamiento 

El sistema de riego inteligente basado en IoT sigue un flujo de datos bien definido 

para garantizar la correcta adquisición, procesamiento y transmisión de información. 

A continuación, se detalla el flujo de datos en el sistema: 

1. Adquisición de Datos: 

- Los sensores conectados a la Raspberry Pi recopilan información en 

tiempo real sobre la temperatura y humedad del ambiente (DHT22), la 

temperatura del suelo (DS18B20), la intensidad de luz (BH1750), los 

niveles de CO₂ (SCD41) y la humedad del suelo (LM393 con 

ADS1115). 

- Cada sensor tiene un script independiente en Python que ejecuta su 

lectura y retorna los valores obtenidos. 

2. Procesamiento Local: 

- La Raspberry Pi recibe los datos desde los sensores y los convierte 

en un formato estructurado. 

3. Transmisión de Datos al Broker MQTT: 

- Todos los datos recopilados se publican en el broker HiveMQ a través 

del protocolo MQTT. 
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- La Raspberry Pi envía los datos a tópicos específicos en el broker: 

 iot/sensores: Contiene los valores de los sensores. 

- El cliente MQTT también se suscribe al tópico iot/control para recibir 

comandos de activación y desactivación de la bomba de agua. 

4. Interacción con el Usuario: 

- Los datos enviados al broker MQTT pueden ser accedidos por clientes 

remotos que deseen monitorear las condiciones del cultivo en tiempo 

real. 

- Se pueden enviar comandos desde una interfaz de usuario o 

aplicación para activar o desactivar manualmente la bomba de agua a 

través del broker MQTT. 

5. Respuesta del Sistema: 

- Cuando se recibe un comando en el tópico iot/control, la Raspberry Pi 

lo interpreta y activa o desactiva la bomba de agua en consecuencia. 

- Se actualiza el estado del sistema en el broker MQTT, asegurando que 

cualquier cliente suscrito reciba la información más reciente. 

Este flujo de datos garantiza la automatización eficiente del riego, optimizando el 

consumo de agua y asegurando condiciones óptimas para el crecimiento del cultivo. 

El detalle completo de configuración y código fuente se presenta en el Anexo A. 
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Diagrama 3. Diagrama de flujo de datos y procesamiento en el sistema IoT. 

 

4.1.3. Subsistema Web: Backend y Frontend 
El subsistema web constituyó la capa lógica y de presentación del sistema de riego 

inteligente, encargada de recibir, procesar, almacenar y mostrar la información 

proveniente de los dispositivos IoT, así como de administrar la comunicación con el 

modelo predictivo y los módulos de control. Este subsistema se diseñó bajo una 

arquitectura cliente-servidor que integró tecnologías modernas de desarrollo web, 

garantizando un entorno robusto, escalable y de fácil uso para el operador. 

Este sistema está compuesto por dos módulos principales: un backend desarrollado 

con Django, encargado de recibir, procesar y almacenar datos desde los sensores; 

y un frontend construido en Vue 3, que permite visualizar la información en tiempo 

real, explorar métricas históricas y configurar alertas o parámetros del sistema. La 

arquitectura integra tecnologías como MQTT para la comunicación IoT, WebSockets 

para actualización en tiempo real, y TimescaleDB para el almacenamiento de series 

temporales, gestionando procesos asíncronos mediante Celery. 

En esta sección se describen los componentes técnicos del sistema web, el flujo de 

datos desde su origen hasta la visualización, y los mecanismos implementados para 

garantizar su escalabilidad, modularidad y seguridad. 
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 Backend del Sistema 
El backend fue desarrollado utilizando el framework Django junto con Django REST 

Framework (DRF), debido a su estabilidad, seguridad y facilidad para estructurar 

aplicaciones modulares. Este componente funcionó como el núcleo del sistema, 

encargándose de la comunicación entre la Raspberry Pi, la base de datos, el modelo 

predictivo y la interfaz web. 

El backend gestionó las siguientes funciones principales: 

 Recepción y almacenamiento de datos IoT: 

Los datos enviados desde la Raspberry Pi a través del bróker MQTT fueron 

recibidos mediante un cliente integrado en el backend, que procesó los 

mensajes y los almacenó en una base de datos TimescaleDB. Este sistema, 

diseñado para manejar series temporales, permitió conservar registros 

históricos y realizar consultas eficientes sobre grandes volúmenes de datos 

ambientales. 

 Exposición de servicios mediante API RESTful: 
Se desarrollaron endpoints que facilitaron la comunicación entre los distintos 

módulos del sistema. A través de estas rutas, el frontend accedió a los datos 

de sensores, al historial de humedad del suelo y a las predicciones 

generadas por el modelo de machine learning. Las rutas principales 

incluyeron funciones para la consulta, control manual del riego, gestión de 

dispositivos y monitoreo de eventos. 

 Integración con el modelo predictivo: 
El backend alojó un servicio encargado de ejecutar el modelo de predicción 

de humedad del suelo. Este proceso analizaba las últimas lecturas 

almacenadas y generaba una estimación del nivel de humedad futuro. Los 

resultados eran devueltos al sistema central y mostrados en la interfaz de 

usuario como sugerencias de riego. 

 Control remoto del riego: 

Cuando el sistema recibía una orden de activación o desactivación del riego 

(ya sea de manera automática o manual), generaba un mensaje MQTT hacia 
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el tópico correspondiente, que era recibido por la Raspberry Pi. Este proceso 

cerró el ciclo de comunicación entre software y hardware. 

Para optimizar el rendimiento y la ejecución de tareas periódicas, se integró un 

sistema de procesamiento asíncrono con Celery y Redis, utilizado para tareas como 

el envío recurrente de datos de diagnóstico o el cálculo de predicciones a intervalos 

definidos. La configuración detallada de estos servicios, junto con los scripts de 

integración MQTT, se documenta en el Anexo B. 

4.1.3.1.1. Stack Tecnológico 

El backend del sistema se desarrolla utilizando una combinación de tecnologías 

robustas y escalables. A continuación, se detallan las principales tecnologías 

utilizadas en el backend para garantizar un alto rendimiento, facilidad de 

mantenimiento y capacidad de ampliación. 

 Django 

Django es un framework web de alto nivel que facilita el desarrollo de 

aplicaciones web complejas de manera rápida y con un enfoque en la 

reutilización de código. Django es conocido por su enfoque en la "convención 

sobre configuración", lo que significa que proporciona una estructura clara y 

bien definida para que los desarrolladores puedan concentrarse en la lógica 

de negocio sin tener que preocuparse por los detalles técnicos de bajo nivel. 
Ventajas de usar Django: 

 Escalabilidad: Django es altamente escalable, lo que permite que el 
sistema crezca con facilidad a medida que se añaden nuevos 

sensores, dispositivos o funcionalidades. 

 Seguridad: Django incluye múltiples medidas de seguridad integradas, 
como protección contra CSRF (Cross-Site Request Forgery), XSS 

(Cross-Site Scripting) y SQL Injection. 

 ORM (Object-Relational Mapping): Django utiliza un ORM para 
interactuar con bases de datos, lo que permite definir modelos de 

datos como clases Python y gestionarlas de manera sencilla sin tener 

que escribir consultas SQL directamente [49]. 
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 Django REST Framework (DRF) 
Django REST Framework (DRF) es una extensión de Django diseñada para 

crear APIs RESTful de manera rápida y sencilla. DRF permite exponer los 

recursos del backend (como las lecturas de los sensores, configuraciones de 

los dispositivos y notificaciones) a través de endpoints que pueden ser 

consumidos por el frontend. 
Ventajas de usar DRF: 

 Facilidad para crear APIs RESTful: Con DRF, la creación de una API 

es rápida y sencilla gracias a sus herramientas como serializers y 

viewsets. 

 Autenticación y permisos: DRF proporciona un sistema de 

autenticación y autorización flexible, permitiendo aplicar permisos 

específicos a cada recurso (por ejemplo, solo ciertos usuarios pueden 

modificar la configuración de los sensores). 

 Documentación automática: DRF incluye herramientas para generar 
documentación de la API de manera automática, facilitando la 

interacción entre el backend y el frontend [31]. 
 

 Django Channels 
Django Channels extiende la capacidad de Django para manejar 

WebSockets, lo que permite la comunicación en tiempo real entre el backend 

y el frontend. En el caso de este sistema, se utiliza Django Channels para 

permitir que los datos de los sensores y las notificaciones de control, como 

el estado de la bomba de agua, se transmitan en tiempo real al frontend. 

Ventajas de usar Django Channels: 

 Comunicación en tiempo real: Con WebSockets, el backend puede 
enviar datos al frontend sin necesidad de que el usuario recargue la 

página, lo que mejora la experiencia de usuario al ver la información 

en tiempo real. 
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 Soporte para múltiples protocolos: Django Channels no solo soporta 

WebSockets, sino también protocolos como HTTP2, lo que amplía las 

capacidades del sistema para otros tipos de comunicación en el futuro 

[32]. 
 

 Redis 

Redis es un sistema de almacenamiento en memoria que se utiliza como 

cache y como broker de tareas. En este sistema, Redis cumple dos roles 

fundamentales: 

 Cache: Redis se utiliza para almacenar temporalmente los resultados 

de consultas frecuentes o datos que no cambian con frecuencia, lo 

que mejora la velocidad de acceso a esos datos y reduce la carga en 

la base de datos. 

 Broker para Celery: Redis se utiliza como el broker para Celery, 

facilitando la ejecución de tareas asíncronas. Por ejemplo, la 

recolección periódica de datos de los sensores o la ejecución de 

procesos de control, como el monitoreo y activación de la bomba de 

agua, se gestionan a través de Celery utilizando Redis. 

Ventajas de usar Redis: 

 Alta velocidad: Redis es extremadamente rápido debido a que 
almacena datos en memoria, lo que lo hace ideal para operaciones 

de cache. 

 Escalabilidad: Redis es fácil de escalar horizontalmente, lo que 

permite distribuir el procesamiento de tareas en múltiples nodos 

para mejorar el rendimiento y la capacidad de gestión de la carga 

[33]. 

 
 Celery 

Celery es una librería para la gestión de tareas asíncronas. Se utiliza en este 

sistema para ejecutar tareas que no necesitan ser procesadas 
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inmediatamente, como la recolección periódica de datos de los sensores y el 

control de la bomba de agua. Celery gestiona estas tareas en segundo plano, 

permitiendo que el sistema siga funcionando sin bloquearse mientras se 

realizan estas operaciones. 
Ventajas de usar Celery: 

 Tareas asíncronas y periódicas: Celery permite que tareas de larga 
duración o repetitivas, como la recolección de datos de sensores o el 

monitoreo de la bomba de agua, se realicen de manera asíncrona sin 

afectar el rendimiento del sistema. 

 Escalabilidad: Celery se puede ejecutar en varios trabajadores 

(workers), lo que permite distribuir las tareas y mejorar la capacidad 

de procesamiento. 

 Soporte para diferentes tipos de colas: Celery puede integrarse con 

diferentes sistemas de colas de mensajes, y en este caso, se utiliza 

con Redis como bróker [34], [50]. 

 
 TimescaleDB 

TimescaleDB es una extensión de PostgreSQL diseñada específicamente 

para almacenar y gestionar series temporales. Dado que los datos de los 

sensores son, por naturaleza, temporales (cambian continuamente a lo largo 

del tiempo), TimescaleDB es ideal para almacenar y consultar este tipo de 

datos de manera eficiente. 
Ventajas de usar TimescaleDB: 

 Optimización para datos temporales: TimescaleDB permite realizar 

consultas complejas sobre grandes volúmenes de datos temporales 

de manera eficiente. 

 Integración con PostgreSQL: TimescaleDB se integra de forma nativa 

con PostgreSQL, lo que permite aprovechar todas las funcionalidades 

de una base de datos relacional con optimizaciones para series 

temporales [40], [41]. 

El detalle de la implementación web se presenta en el Anexo B. 
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4.1.3.1.2. Recepción de Datos desde HiveMQ 

El sistema se comunica con los sensores a través de un bróker MQTT, que es 

responsable de recibir, gestionar y distribuir los mensajes de los sensores. El bróker 

HiveMQ es utilizado en este sistema como intermediario entre los sensores y el 

backend, permitiendo que los datos generados por los sensores se transmitan de 

manera eficiente hacia el backend para su procesamiento y almacenamiento. 

Protocolo MQTT y HiveMQ 

MQTT es un protocolo ligero de mensajería que permite la comunicación entre 

dispositivos de bajo consumo, como los sensores en un cultivo, y sistemas más 

complejos como el backend. MQTT se basa en un modelo de publicación y 

suscripción, lo que significa que los sensores (publicadores) envían datos a través 

de un canal (llamado "tema") al que el backend (suscriptor) se suscribe para recibir 

los mensajes. 

El bróker HiveMQ actúa como el intermediario en este proceso: 

 Los sensores publican mensajes con datos a un tema específico. 

 El backend se suscribe a esos temas y recibe los mensajes de los sensores 

en tiempo real [47], [48]. 
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Diagrama 4. Diagrama de Flujo de Datos en el Backend. 

 

4.1.3.1.3. Envío de Datos en Tiempo Real (WebSocket) 

En un sistema de monitoreo en tiempo real, es fundamental que el frontend se 

mantenga actualizado con la información más reciente, sin necesidad de recargar 

la página. Para lograr esto, se utiliza la tecnología WebSocket, que permite la 

comunicación bidireccional en tiempo real entre el servidor (backend) y el cliente 

(frontend). En este caso, se emplea Django Channels para gestionar las conexiones 

WebSocket y enviar las actualizaciones de los sensores al frontend de manera 

instantánea. 

Uso de Django Channels para WebSockets: 

Django Channels extiende la funcionalidad de Django para soportar protocolos 

asíncronos, como WebSockets, lo que permite gestionar conexiones de larga 
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duración entre el servidor y el cliente. A diferencia de las solicitudes HTTP 

tradicionales, que son transacciones de ida y vuelta, los WebSockets permiten que 

los datos fluyan continuamente entre el servidor y el cliente sin necesidad de nuevas 

solicitudes. 

Flujo de Comunicación con WebSocket 

1. Conexión del cliente WebSocket al servidor: El cliente (en este caso, el 

frontend desarrollado en Vue 3) establece una conexión WebSocket con el 

backend. 

2. Backend recibe los datos de los sensores: El backend procesa los datos de 

los sensores, los cuales son enviados en tiempo real a través del WebSocket. 

3. Actualización en tiempo real del frontend: El frontend, a través de la conexión 

WebSocket, recibe los datos y actualiza la interfaz de usuario sin necesidad 

de recargar la página [32]. 

4.1.3.1.4. Tareas Periódicas con Celery 

El uso de Celery en el sistema es clave para manejar tareas que deben ejecutarse 

de forma periódica, sin bloquear la ejecución del sistema principal. Esto es 

especialmente útil en un sistema de monitoreo como el de esta tesis, donde se 

requiere la recolección periódica de datos de los sensores, el control de dispositivos 

(como la bomba de agua) o la ejecución de otros procesos que deben suceder en 

segundo plano, sin que el sistema deje de responder a las solicitudes del usuario. 

Celery es un framework para tareas distribuidas en Python, diseñado para la 

ejecución de tareas en segundo plano. En este sistema, Celery se utiliza en conjunto 

con Celery Beat, que se encarga de programar las tareas periódicas, como la 

recolección de datos a intervalos regulares o la gestión de dispositivos [34], [50]. 

4.1.3.1.5. API REST para Configuración 

Una de las funcionalidades clave del backend en este sistema es proporcionar una 

interfaz para que los usuarios gestionen las configuraciones de los sensores, como 



Capítulo 4. Desarrollo e Implementación 

75 

los umbrales de activación para la bomba de agua, las métricas que se deben 

monitorear, y otros parámetros del sistema. Para ello, se utiliza una API REST 

expuesta mediante Django REST Framework (DRF), lo que facilita la interacción 

con el frontend y otros sistemas. 

 Creación de la API REST con Django REST Framework 

Django REST Framework (DRF) es una poderosa herramienta que permite crear 

rápidamente APIs RESTful en Django. DRF facilita la creación de serializadores 
para transformar los modelos de Django en representaciones JSON, y también 

proporciona vistas para manejar las solicitudes HTTP [31]. 

Configuración de Django REST Framework (DRF): 

Primero, instalamos DRF en nuestro entorno de trabajo: 

pip install djangorestframework 

A continuación, agregamos DRF a las aplicaciones instaladas en el archivo 

settings.py: 

 

Código 1. Configuración de Django REST Framework en settings.py. 

 

 Serializadores en DRF 

Los serializadores en DRF son responsables de transformar los objetos de Django 

(como los modelos) en datos JSON que pueden ser enviados a través de la API, y 

viceversa. Para la configuración de los sensores y otros parámetros del sistema, 

necesitamos crear un serializador para cada modelo relevante. 
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Ejemplo de Serializador para Configuración de Sensores: 

En el siguiente ejemplo, creamos un serializador para la configuración de los 

sensores, como los umbrales de humedad y temperatura. 

 

Código 2: Ejemplo de Serializador para Configuración de Sensores. 

 sensor_type: El tipo de sensor (temperatura, humedad, etc.). 

 min_value y max_value: Los umbrales de valor para cada tipo de sensor 

(por ejemplo, el umbral mínimo y máximo de humedad) [31]. 

 Vistas de la API 

Con el serializador definido, creamos las vistas que manejarán las solicitudes HTTP 

(GET, POST, PUT, DELETE) para obtener, crear, actualizar y eliminar las 

configuraciones de los sensores. 

Ejemplo de Vista para Configuración de Sensores: 

Usamos ViewSets en DRF para crear vistas fácilmente que gestionen las 

operaciones CRUD sobre los recursos de configuración. 
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Código 3: Ejemplo de Vista para Configuración de Sensores. 

SensorConfigViewSet: Este ViewSet permite realizar operaciones CRUD sobre 

las configuraciones de los sensores. Con ModelViewSet, se generan 

automáticamente las vistas para las operaciones básicas (GET, POST, PUT, 

DELETE) [31]. 

 Configuración de Rutas para la API REST 

Una vez que hemos creado los serializadores y las vistas, es necesario configurar 

las rutas de la API para que los usuarios y el frontend puedan acceder a ellas. 

Configuración de Rutas en urls.py: 

 

Código 4: Configuración de Rutas en urls.py. 

En este caso, hemos creado una ruta sensor-config que permitirá a los usuarios 

consultar y modificar la configuración de los sensores. El DefaultRouter de DRF 
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genera automáticamente las rutas para las operaciones CRUD sobre los recursos 

[31]. 

 Autenticación y Autorización en la API 

Es importante implementar un sistema de autenticación y autorización para 

asegurar que solo los usuarios con permisos adecuados puedan modificar la 

configuración de los sensores. 

Autenticación con JWT: 

Una de las opciones más comunes es el uso de JWT (JSON Web Tokens) para 

autenticar las solicitudes a la API. Para ello, podemos instalar una librería como 

djangorestframework-simplejwt. 

pip install djangorestframework-simplejwt 

En settings.py, configuramos JWT para autenticar las solicitudes: 

 

Código 5: Configuración de djangorestframework-simplejwt en settings.py. 

Con esta configuración, las solicitudes a la API deben incluir un token JWT válido 

en el encabezado para ser autorizadas [31]. 
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 Estructura de la Base de Datos 
El sistema de monitoreo de sensores utiliza TimescaleDB para almacenar y 

gestionar los datos de los sensores y sus configuraciones. Dado que los datos son 

principalmente series temporales, como las mediciones periódicas de temperatura, 

humedad y otros parámetros ambientales, TimescaleDB se ha elegido como base 

de datos debido a su optimización para este tipo de datos [40]. 

4.1.3.2.1. Modelo de Datos en TimescaleDB 

El modelo de datos que se utiliza para almacenar la información de los sensores 

está basado en varias tablas relacionadas entre sí. A continuación, se describe cada 

una de las tablas y su relación: 

Tablas Principales: 

1. sensors_sensor_type 

o id: UUID (Identificador único del tipo de sensor). 

o name: Nombre del tipo de sensor (por ejemplo, temperatura, 

humedad). 

o unit: Unidad de medición (por ejemplo, °C, %, etc.). 

2. sensors_sensor 

o id: UUID (Identificador único del sensor). 

o name: Nombre del sensor (por ejemplo, "Sensor de humedad"). 

o min_value: Valor mínimo permitido para el sensor. 

o max_value: Valor máximo permitido para el sensor. 

o location: Ubicación del sensor. 

o description: Descripción adicional sobre el sensor. 

o type_id: Relación con la tabla sensors_sensor_type (tipo de 

sensor). 
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3. sensors_sensordata 

o time: Timestamp (fecha y hora de la medición del sensor). 

o value: Valor de la medición del sensor. 

o sensor_id: Relación con la tabla sensors_sensor (sensor que 

realizó la medición). 

4. sensors_notification 

o id: UUID (Identificador único de la notificación). 

o status: Estado de la notificación (por ejemplo, "activado", 

"desactivado"). 

o message: Mensaje asociado con la notificación (por ejemplo, "El 

sensor de temperatura alcanzó el valor máximo"). 

o timestamp: Timestamp (fecha y hora de la notificación). 

o sensor_id: Relación con la tabla sensors_sensor (sensor asociado 

a la notificación). 
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Imagen 1. Modelo de Datos (Diagrama ER Simplificado). 

 

 Frontend del Sistema 
El frontend del sistema de monitoreo de sensores tiene como objetivo proporcionar 

una interfaz de usuario interactiva y eficiente, permitiendo la visualización en tiempo 

real de los datos de los sensores, la configuración de sus umbrales, y la gestión de 

notificaciones y métricas. El sistema está basado en una Single Page Application 

(SPA), lo que significa que toda la interacción con el usuario se realiza sin necesidad 

de recargar la página, lo que ofrece una experiencia más fluida y rápida [51]. 

Este apartado se centra en la tecnología y arquitectura utilizadas en el desarrollo 

del frontend, destacando las herramientas y los componentes principales que 

conforman la interfaz de usuario. 
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4.1.3.3.1. Stack Tecnológico 

El frontend del sistema está desarrollado utilizando una combinación de tecnologías 

modernas que permiten crear una interfaz de usuario dinámica, interactiva y 

eficiente. Estas tecnologías incluyen Vue 3, Vuetify, Axios y Pinia, las cuales se 

integran perfectamente para ofrecer una experiencia fluida y escalable. 

 Vue 3 
Vue.js es un framework progresivo de JavaScript utilizado para construir 

interfaces de usuario interactivas y dinámicas. Vue 3 es la versión más 

reciente, que introduce mejoras de rendimiento, composición y optimización 

en la reactividad del sistema. Vue 3 se utiliza en el frontend del sistema para 

crear una SPA, lo que significa que la aplicación se carga una vez y las 

interacciones se realizan sin recargar la página. 

Características Clave de Vue 3: 

 Reactividad: Vue 3 proporciona un sistema de reactividad eficiente 

que permite que la interfaz se actualice automáticamente cuando 

cambian los datos. 

 Composición API: Vue 3 introduce la Composition API, que permite 

organizar el código de manera más modular y reutilizable, facilitando 

el mantenimiento de la aplicación. 

 Componentes: Vue 3 se basa en componentes que permiten 

desarrollar de forma modular y mantener las distintas secciones de la 

aplicación como bloques independientes y reutilizables. 
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Código 6: Ejemplo de un Componente en Vue 3. 

Este es un ejemplo básico de un componente en Vue 3, que muestra un título y un 

mensaje. Los componentes en Vue permiten encapsular funcionalidad y diseño, lo 

que facilita el desarrollo y la gestión del código [35]. 

 Vuetify 

Vuetify es un framework de componentes basado en Material Design para 

Vue.js. Proporciona una colección de componentes predefinidos que facilitan 

la creación de interfaces de usuario atractivas y coherentes con los principios 

de diseño de Google. 

Características Clave de Vuetify: 

 Componentes de UI listos para usar: Vuetify incluye una amplia gama 
de componentes como botones, formularios, tablas, menús, etc., que 

siguen las pautas de Material Design. 

 Personalización fácil: Aunque Vuetify proporciona un conjunto 
predeterminado de componentes y estilos, también permite 

personalizar completamente la apariencia de la aplicación. 
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 Responsividad: Los componentes de Vuetify son completamente 

responsivos, lo que significa que se adaptan automáticamente a 

diferentes tamaños de pantalla y dispositivos. 

 

Código 7: Ejemplo de Uso de Vuetify en un Componente. 

En este ejemplo, usamos el componente v-container de Vuetify para organizar la 

disposición de la página. v-card se utiliza para crear una tarjeta con título y texto, 

que es común en las interfaces de usuario modernas [36]. 

 Axios 
Axios es una librería de JavaScript que se utiliza para realizar peticiones 

HTTP. En el frontend del sistema, Axios se utiliza para interactuar con las 

APIs REST del backend, permitiendo obtener datos como la configuración de 

los sensores, los datos históricos y las notificaciones, entre otros. 

Características Clave de Axios: 

 Basado en Promesas: Axios utiliza promesas para manejar las 
respuestas, lo que facilita el manejo de operaciones asíncronas. 

 Soporte para solicitudes HTTP: Permite realizar peticiones GET, 

POST, PUT, y DELETE. 

 Manejo automático de JSON: Axios maneja automáticamente la 

serialización y deserialización de datos en formato JSON. 
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Código 8: Ejemplo de Uso de Axios. 

Este ejemplo muestra cómo usar Axios para obtener datos del backend. En el 

método mounted, que se ejecuta cuando el componente es cargado, se realiza una 

solicitud HTTP GET para obtener los datos de los sensores [39]. 

 Pinia 

Pinia es una librería para el manejo del estado global en aplicaciones Vue 3, 

similar a Vuex pero diseñada específicamente para aprovechar las nuevas 

características de Vue 3. Pinia se utiliza para almacenar el estado global de 

la aplicación, como la configuración de los sensores, los valores en tiempo 

real y las notificaciones. 

Características Clave de Pinia: 

 Simplicidad y Flexibilidad: Pinia se enfoca en la simplicidad y usa la 
nueva Composition API de Vue 3 para la gestión del estado. 

 Reactividad: Pinia proporciona una forma reactiva de gestionar el 

estado global, lo que significa que cuando el estado cambia, las vistas 

asociadas se actualizan automáticamente. 

 Persistencia: Pinia soporta la persistencia del estado, lo que permite 
que el estado global se mantenga incluso después de una recarga de 

página. 
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Código 9: Ejemplo de Uso de Pinia. 

En este ejemplo, definimos un store usando Pinia para gestionar el estado de los 

datos y la configuración de los sensores. Se pueden acceder a estos datos desde 

cualquier componente de la aplicación [38]. 

4.1.3.3.2. Arquitectura de la SPA 

La SPA es una arquitectura de frontend que permite la creación de aplicaciones web 

donde la interacción del usuario no requiere recargar la página en cada acción. En 

lugar de eso, la aplicación carga una sola vez y actualiza dinámicamente las vistas 

a medida que el usuario interactúa con la interfaz. Esto resulta en una experiencia 

más fluida y rápida, ya que solo se cargan los datos necesarios y las vistas se 

actualizan sin necesidad de recargar todo el contenido de la página [51]. 

En este sistema de monitoreo de sensores, se ha implementado una SPA utilizando 

Vue 3, Vuetify, y otras tecnologías, para ofrecer una interfaz de usuario dinámica 

que permite interactuar con los datos de los sensores en tiempo real, configurar 

umbrales, y gestionar notificaciones y métricas. A continuación, describimos cómo 

está estructurada la SPA, sus componentes principales, y cómo se gestionan los 

flujos de datos entre el frontend y el backend. 

 Estructura General de la SPA 
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La SPA está organizada en componentes independientes que se encargan de 

diferentes partes de la interfaz de usuario. Cada componente es responsable de 

una funcionalidad específica, lo que facilita la modularización del código y su 

mantenimiento [51]. 

Flujo de Trabajo General: 

1. Carga Inicial: La aplicación se carga una sola vez, obteniendo las 

dependencias iniciales como Vue, Vuetify y Axios, y configurando el estado 

global (con Pinia) si es necesario. 

2. Interacción del Usuario: A medida que el usuario interactúa con la aplicación 

(por ejemplo, en el Dashboard, la Configuración o las Métricas), Vue 3 

maneja la reactividad y actualiza la vista de manera eficiente. 

3. Consumo de la API: Las solicitudes al backend se realizan a través de Axios 

(para la API REST) y WebSockets (para la actualización en tiempo real de 

los datos). Axios gestiona las interacciones con la API RESTful, mientras que 

los WebSockets permiten la actualización instantánea de los datos del sensor 

sin necesidad de recargar la página. 

4. Rendimiento: El sistema utiliza técnicas como el Lazy Loading y la carga 

asíncrona de componentes para optimizar el rendimiento, cargando solo los 

recursos necesarios cuando el usuario interactúa con ciertas partes de la 

aplicación. 

 Componentes Principales de la SPA 

La aplicación se organiza en varios componentes fundamentales que permiten una 

experiencia de usuario interactiva. A continuación, se describen los componentes 

clave de la SPA: 

1. Dashboard (Tiempo Real): 

 El componente Dashboard muestra los datos en tiempo real de los 

sensores. Utiliza WebSockets para recibir actualizaciones en vivo de 

los sensores, como la temperatura, humedad y otros parámetros. 
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Además, permite visualizar las alertas de los sensores si superan 

ciertos umbrales configurados. 

 Este componente es responsable de renderizar las métricas en tiempo 

real y mostrar las notificaciones cuando los sensores alcanzan 

condiciones críticas. 

2. Configuración (Umbrales): 

 En el componente Configuración, los usuarios pueden establecer los 

umbrales mínimos y máximos para los sensores. Por ejemplo, pueden 

configurar los umbrales de humedad del suelo que activan la bomba 

de agua. Este componente interactúa con la API REST del backend 

para guardar y recuperar las configuraciones. 

 Además, este componente permite la gestión de la configuración 

general del sistema, como la elección de qué sensores monitorear o 

qué dispositivos controlar. 

3. Notificaciones (Log): 

 El componente Notificaciones muestra un registro de eventos y alertas 

generados por el sistema. Cuando un sensor supera un umbral 

configurado, se genera una notificación que aparece en este 

componente. Las notificaciones incluyen información sobre el sensor, 

el valor de la medición y la acción que se tomó, como activar o 

desactivar la bomba de agua. 

 Este componente también es responsable de mantener un historial de 

eventos, lo que permite a los usuarios revisar las acciones pasadas y 

los estados de los sensores. 

4. Métricas (Gráficas con ApexCharts): 

 El componente Métricas se encarga de mostrar gráficos interactivos 

de las lecturas de los sensores a lo largo del tiempo. Utiliza 

ApexCharts, una librería de gráficos para Vue.js, para representar 
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visualmente las tendencias de los datos de los sensores, como la 

temperatura o la humedad. 

 Los gráficos permiten a los usuarios analizar el comportamiento 

histórico de los sensores, identificar patrones y realizar 

comparaciones entre diferentes periodos. 

 Comunicación entre Componentes y Backend 

La comunicación entre los componentes del frontend y el backend se gestiona 

principalmente de dos formas: a través de Axios para la API REST y WebSockets 

para la actualización en tiempo real. 

1. API REST con Axios: 

 Axios se utiliza para hacer solicitudes a la API RESTful del backend, 
como obtener los datos históricos de los sensores, modificar las 

configuraciones de los umbrales y gestionar las notificaciones. 

 Las respuestas del backend se procesan de forma asíncrona, 

permitiendo que la interfaz se actualice sin bloqueos [39]. 

 

Código 10: Ejemplo de solicitud con Axios. 

2. WebSockets para Comunicación en Tiempo Real: 

 Django Channels se encarga de gestionar la comunicación en tiempo 
real entre el frontend y el backend mediante WebSockets. Cuando se 

recibe una actualización de los sensores o una notificación de control, 

el backend envía los datos en tiempo real al frontend, que se encarga 

de actualizar la interfaz [35]. 
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Código 11: Ejemplo de implementación de WebSocket en Vue 3. 

 Ventajas de la Arquitectura SPA 

La elección de una SPA ofrece varias ventajas para el sistema: 

 Interactividad Fluida: Al no necesitar recargar la página completa, las 

interacciones con la interfaz son más rápidas y fluidas. 

 Mejor Experiencia de Usuario: El cambio entre vistas es inmediato, lo que 

mejora la experiencia del usuario al trabajar con los datos de los sensores. 

 Optimización de Recursos: Solo se cargan los recursos necesarios cuando 

el usuario interactúa con ciertas funcionalidades, lo que optimiza el tiempo 

de carga inicial [51]. 

 Comunicación entre Backend y Frontend 
La comunicación entre el backend y el frontend se implementó mediante una 

combinación de API REST para el intercambio de información estructurada y 

WebSockets para la transmisión en tiempo real. 

El backend actuó como servidor de datos, enviando actualizaciones periódicas al 

frontend cada vez que se registraban nuevas lecturas o se generaban predicciones. 

Esta sincronización permitió mantener la interfaz siempre actualizada y garantizó la 

consistencia entre las acciones del usuario y el estado del sistema. 

La arquitectura adoptada favoreció una operación continua y estable, donde la capa 

web funcionó como puente entre el entorno físico (sensores y actuadores) y el 

entorno lógico (modelo predictivo y control del sistema). Gracias a esta integración, 
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el sistema de riego inteligente pudo ofrecer monitoreo, análisis y actuación en una 

misma plataforma. 

4.1.3.4.1. API REST con Axios 

La API REST se utiliza para gestionar las solicitudes más tradicionales entre el 

frontend y el backend. Permite al frontend obtener información de manera síncrona, 

como la configuración de los sensores, los datos históricos o los registros de las 

notificaciones. 

Características Clave de la API REST: 

 Petición Síncrona: El frontend realiza peticiones HTTP (usualmente GET o 

POST) al backend para obtener o modificar los datos. 

 Interacción con el Backend: Axios es la librería utilizada en el frontend para 

interactuar con la API, realizando las peticiones de manera asíncrona. 
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Código 12: Ejemplo de uso de Axios para obtener datos de la API. 

Explicación: 

 En este ejemplo, el método fetchSensorData realiza una solicitud GET a la 

API para obtener los datos de los sensores. 

 Los datos obtenidos se asignan a la propiedad reactiva sensorData, que 

automáticamente actualiza la vista de la aplicación. 

 axios.get realiza la llamada al backend y la respuesta se maneja de manera 

asíncrona, actualizando la interfaz de usuario cuando los datos están 

disponibles [39]. 

4.1.3.4.2. WebSockets para Comunicación en Tiempo Real 

WebSockets permiten la comunicación bidireccional en tiempo real entre el frontend 

y el backend. En este sistema, Django Channels se utiliza para gestionar las 
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conexiones WebSocket y permitir que el backend envíe actualizaciones en tiempo 

real al frontend, como nuevos datos de los sensores o notificaciones. 

Características Clave de WebSockets: 

 Comunicación Bidireccional: Los WebSockets permiten que el backend envíe 

actualizaciones al frontend en tiempo real, sin necesidad de que el cliente 

realice una solicitud. 

 Actualizaciones en Vivo: A medida que los sensores envían nuevos datos o 

cuando se activan alertas, el backend transmite los cambios inmediatamente 

al frontend. 
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Código 13: Ejemplo de configuración de WebSocket en Vue 3. 

Explicación: 

 En este ejemplo, se establece una conexión WebSocket con el backend 

utilizando la URL proporcionada (ws://localhost:8000/ws/sensor_data/). 

 Cuando el servidor envía un mensaje (por ejemplo, una actualización de 

datos de sensores), el cliente (frontend) recibe el mensaje en tiempo real y 

actualiza la interfaz sin necesidad de recargar la página. 
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 onmessage gestiona la actualización de los datos cada vez que se recibe una 

nueva información del backend [32], [35]. 

Beneficios de WebSockets en el Sistema: 

 Actualizaciones en tiempo real: Los datos se actualizan en la interfaz de 

usuario a medida que cambian en el backend, sin necesidad de recargar la 

página o realizar peticiones constantes. 

 Reducción de Carga de Servidor: Dado que los WebSockets mantienen una 

conexión persistente, no es necesario hacer múltiples solicitudes HTTP, lo 

que reduce la carga en el servidor. 

 Interactividad Dinámica: Los usuarios reciben información instantánea de los 

sensores y las notificaciones, mejorando la experiencia de uso. 

4.1.3.4.3. Integración entre WebSockets y API REST 

La combinación de WebSockets y API REST permite gestionar de manera eficiente 

tanto las operaciones de consulta y configuración como las actualizaciones en 

tiempo real. La API REST se utiliza para acceder y modificar los datos de manera 

síncrona (por ejemplo, obtener configuraciones o datos históricos), mientras que los 

WebSockets permiten la transmisión instantánea de nuevos datos o alertas. 

Flujo de Datos: 

1. Inicio de la aplicación: Al cargar la SPA, el frontend realiza solicitudes REST 

a través de Axios para obtener la configuración inicial y los datos históricos 

de los sensores. 

2. Conexión a WebSocket: Una vez que la aplicación está cargada, el frontend 

establece una conexión WebSocket con el backend para recibir las 

actualizaciones en tiempo real de los sensores. 

3. Recepción de datos: A medida que los sensores envían nuevas lecturas o se 

activan notificaciones, el backend envía estos datos al frontend a través de 

WebSockets, que los actualiza de inmediato en la interfaz. 
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4.1.3.4.4. Componentes Principales 

La SPA está compuesta por varios componentes principales, que forman la interfaz 

de usuario interactiva y permiten a los usuarios visualizar los datos de los sensores 

en tiempo real, configurar los umbrales, revisar las notificaciones y analizar las 

métricas históricas de los sensores. Cada uno de estos componentes es 

responsable de una parte específica del sistema, y su interacción con el backend 

se maneja mediante WebSockets y API REST. 

 Dashboard 

El Dashboard es el componente principal donde los usuarios pueden visualizar los 

datos de los sensores en tiempo real. Este componente se encarga de mostrar 

información actualizada constantemente sobre las lecturas de los sensores (como 

la temperatura, humedad, y otros parámetros) y cualquier alerta generada, todo ello 

sin necesidad de recargar la página. 

Funcionalidad: 

 Actualización en tiempo real: Utiliza WebSockets para recibir las lecturas de 

los sensores a medida que se generan en el backend. Esto permite que los 

usuarios vean las mediciones más recientes sin necesidad de refrescar la 

página. 

 Visualización de datos clave: Muestra las métricas principales, como la 

temperatura, humedad y otros parámetros medidos por los sensores, en un 

formato claro y accesible. 

 Notificaciones: Si los valores de los sensores superan los umbrales 

configurados, el Dashboard muestra notificaciones visuales, como cambios 

de color o mensajes de alerta. 
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Imagen 2. Captura de pantalla de Dashboard. 

 

 Configuración 

El componente Configuración permite a los usuarios establecer los umbrales para 

los sensores. Estos umbrales pueden ser configurados para controlar cuando 

ciertos parámetros del sistema (como la humedad o la temperatura) activan o 

desactivan ciertos dispositivos, como la bomba de agua. Los usuarios también 

pueden visualizar y ajustar los valores mínimos y máximos para cada sensor. 

Funcionalidad: 

 Ajuste de umbrales: Los usuarios pueden ingresar valores para los umbrales 

mínimos y máximos de los sensores. 

 Interacción con la API REST: Los cambios en la configuración de los sensores 

se envían al backend a través de una API REST para almacenarlos en la 

base de datos. 
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Imagen 3. Captura de pantalla de Configuración. 

 

 

 

Imagen 4. Captura de pantalla de Editar Sensor. 

 

 Notificaciones 

El componente Notificaciones muestra un registro de todas las alertas y eventos 

importantes generados por el sistema. Este componente es esencial para que los 

usuarios sigan de cerca los cambios y las intervenciones del sistema, como los 
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valores de los sensores que superan los umbrales predefinidos o las acciones que 

se han tomado (como activar la bomba de agua). 

Funcionalidad: 

 Registro de alertas: Muestra un log de todas las notificaciones generadas, 

con detalles sobre el sensor, el tipo de alerta y la acción tomada. 

 Interacción con la API REST: Las notificaciones se pueden almacenar y 

recuperar a través de la API REST. 

 

Imagen 5. Captura de pantalla de Notificaciones. 

 

 Métricas 

El componente Métricas utiliza ApexCharts para mostrar gráficos interactivos de los 

datos de los sensores a lo largo del tiempo. Este componente es útil para analizar 

el comportamiento histórico de los sensores y facilitar la toma de decisiones, como 

la optimización de los umbrales de los sensores. 

Funcionalidad: 

 Visualización de datos históricos: Utiliza ApexCharts para crear gráficos de 

líneas, barras, o áreas que muestran los datos históricos de los sensores, 

como la evolución de la temperatura o humedad a lo largo del tiempo. 
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 Interactividad: Los gráficos permiten al usuario interactuar con los datos, ver 

detalles y realizar comparaciones entre diferentes períodos. 

 

Imagen 6. Captura de pantalla de Métricas. 

 

 Flujo de Datos Integrado 
El flujo de datos en este sistema de monitoreo de sensores está diseñado para ser 

eficiente y en tiempo real. El objetivo es capturar los datos de los sensores, 

procesarlos, almacenarlos de forma adecuada en la base de datos y finalmente 

visualizarlos para el usuario de manera interactiva y en tiempo real. A continuación, 

describimos detalladamente cómo se gestionan estos datos a lo largo de su 

recorrido, desde la adquisición en los sensores hasta su visualización en el frontend. 

4.1.3.5.1. Adquisición de Datos desde los Sensores 

El primer paso en el flujo de datos es la adquisición de datos desde los sensores 

instalados en el sistema de monitoreo. Estos sensores miden varios parámetros del 

entorno, como temperatura, humedad, niveles de CO2, entre otros. 

Protocolo MQTT: 

1. Conexión al bróker HiveMQ: Los sensores envían sus datos al backend a 

través del protocolo MQTT. El backend se conecta a un bróker HiveMQ, que 

recibe y distribuye los datos enviados por los sensores. 
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2. Publicación de datos: Los sensores publican los datos en temas específicos 

de MQTT. El backend se suscribe a estos temas y recibe los datos a medida 

que son publicados. 

Flujo: 

 Sensores → Bróker MQTT → Backend. 

4.1.3.5.2. Procesamiento y Almacenamiento de Datos 

Una vez que los datos son recibidos por el backend a través de MQTT, el siguiente 

paso es procesarlos y almacenarlos de forma eficiente en la base de datos. El 

sistema utiliza TimescaleDB para almacenar los datos de los sensores, 

aprovechando sus características de optimización para datos temporales. 

Procesamiento de Datos: 

 Los datos recibidos (por ejemplo, lecturas de temperatura o humedad) se 

procesan para verificar su validez y determinar si requieren alguna acción, 

como generar una alerta. 

 Los datos se validan para asegurarse de que estén dentro de los rangos 

aceptables, y si no lo están, se generan notificaciones o alertas. 

Almacenamiento en TimescaleDB: 

 Los datos procesados se almacenan en una tabla de sensor_data dentro de 

TimescaleDB, que permite realizar consultas rápidas y eficientes sobre datos 

de series temporales. 

Flujo: 

 Backend → Tarea de Celery → Base de datos (TimescaleDB): Los datos son 

almacenados en la base de datos para su posterior consulta y análisis. 

4.1.3.5.3. Visualización en Tiempo Real (Frontend) 

Una vez que los datos han sido almacenados en la base de datos, el siguiente paso 

es la visualización en tiempo real de los mismos para el usuario. Este flujo involucra 
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la actualización constante de los datos en el frontend a medida que los sensores 

envían nuevas mediciones. 

WebSockets para Actualización en Tiempo Real: 

 El frontend se conecta al backend a través de WebSockets, lo que permite 

que el backend envíe actualizaciones en tiempo real a medida que los datos 

de los sensores cambian. 

 El frontend, por ejemplo, en el Dashboard, recibe los datos y actualiza los 

valores mostrados sin necesidad de recargar la página. 

Flujo: 

 Backend (WebSocket) → Frontend (Vue 3): Los datos de los sensores se 

envían al frontend en tiempo real. 

4.1.3.5.4. Visualización de Datos Históricos (Frontend) 

Además de la visualización en tiempo real, es crucial poder consultar y analizar los 

datos históricos. El componente Métricas en el frontend permite a los usuarios 

visualizar gráficas de los datos almacenados en la base de datos a lo largo del 

tiempo. 

Consultas a la API REST: 

 El frontend realiza consultas a la API REST para obtener los datos históricos 

almacenados en TimescaleDB. 

 Estos datos se visualizan utilizando gráficos interactivos con ApexCharts. 

Flujo: 

 Frontend (Axios) → Backend (API REST): Los datos históricos se obtienen a 

través de peticiones REST y se visualizan en gráficos. 
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4.1.3.5.5. Notificaciones y Alertas (Frontend) 

En el caso de que los sensores detecten un valor fuera de los umbrales predefinidos, 

el sistema debe generar notificaciones para informar a los usuarios. Estas 

notificaciones se muestran en el componente Notificaciones del frontend. 

Generación de Notificaciones: 

 Las notificaciones son generadas en el backend cuando se detectan valores 

fuera de los umbrales configurados. Estas alertas se envían a los usuarios a 

través de WebSockets y se visualizan en el frontend. 

Flujo: 

 Backend (WebSocket) → Frontend (Vue 3 - Notificaciones): Las alertas y 

notificaciones se envían en tiempo real al frontend. 

4.1.3.5.6. Resumen del Flujo de Datos 

1. Adquisición de Datos: Los sensores publican datos al backend a través de 

MQTT. El backend se suscribe a estos temas y recibe los datos en tiempo 

real. 

2. Procesamiento de Datos: El backend procesa los datos recibidos, los valida 

y los almacena en TimescaleDB. 

3. Visualización en Tiempo Real: El frontend utiliza WebSockets para recibir 

actualizaciones en tiempo real y mostrar los datos en el Dashboard. 

4. Consulta de Datos Históricos: Los datos históricos se obtienen a través de la 

API REST y se visualizan utilizando ApexCharts. 

5. Notificaciones: Las alertas se envían desde el backend al frontend mediante 

WebSockets, permitiendo que los usuarios reciban notificaciones inmediatas. 

 Seguridad y Consideraciones Técnicas 
El sistema de monitoreo de sensores debe cumplir con varios requisitos técnicos 

que aseguren su funcionamiento correcto, seguro y eficiente. Para ello, se han 

implementado diversas prácticas de seguridad, validación de datos, control de 
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errores, y optimización de rendimiento y escalabilidad. A continuación, se detallan 

cada una de estas consideraciones. 

4.1.3.6.1. Seguridad 

La seguridad es una de las principales preocupaciones en cualquier sistema 

conectado a redes, especialmente cuando se maneja información sensible como los 

datos de los sensores y configuraciones del sistema. Las prácticas implementadas 

para asegurar la protección de los datos y la integridad del sistema incluyen: 

 Autenticación y Autorización 

El sistema emplea mecanismos robustos de autenticación y autorización para 

garantizar que solo los usuarios legítimos puedan acceder y modificar los datos o la 

configuración del sistema. 

 Autenticación con JWT (JSON Web Tokens): Se ha implementado JWT para 

asegurar que solo los usuarios autenticados puedan interactuar con la API 

REST. El token JWT se genera al momento del inicio de sesión y debe 

incluirse en cada solicitud de la API para verificar que el usuario tiene 

permisos adecuados. 

 

Código 14: Ejemplo de configuración en Django REST Framework. 

 Autorización basada en roles: Dependiendo del tipo de usuario (por ejemplo, 

administrador o usuario normal), se han implementado controles de acceso 

a ciertos recursos. Los usuarios con mayor nivel de privilegios pueden 

configurar los umbrales de los sensores y modificar la configuración del 

sistema [31]. 

 Cifrado de Datos 
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La transmisión de datos entre el frontend y el backend se realiza utilizando HTTPS 

para cifrar la información durante su transmisión y protegerla de posibles ataques 

como Man-in-the-Middle. Además, los tokens de autenticación (JWT) también están 

cifrados para garantizar su seguridad. 

 Uso de HTTPS: Se ha configurado el backend para obligar a todas las 

comunicaciones a ser realizadas a través de HTTPS. 

 Cifrado de datos sensibles: Los datos sensibles, como las configuraciones 

de los sensores o los tokens de autenticación, se cifran y se almacenan de 

forma segura [31]. 

 Prevención de Ataques Comunes 

 Protección contra ataques de CSRF (Cross-Site Request Forgery): Django 

ya incluye protección integrada contra ataques CSRF. Para las vistas que 

utilizan formularios, se verifica que las solicitudes provengan de una fuente 

confiable. 

 Protección contra XSS (Cross-Site Scripting): Se asegura que los datos 

proporcionados por el usuario se saniticen adecuadamente antes de ser 

mostrados en la interfaz para evitar la ejecución de código malicioso [31]. 

4.1.3.6.2. Validaciones de Datos 

La validación de los datos es fundamental para garantizar que solo se procesen 

datos correctos y dentro de los rangos esperados. Se implementan múltiples capas 

de validación tanto en el frontend como en el backend: 

 Validación en el Backend 

En el backend, se utilizan validaciones para asegurarse de que los datos 

provenientes de los sensores, como la temperatura y la humedad, sean válidos 

antes de almacenarlos en la base de datos. 

 Validación de rangos: Se comprueba que los valores de los sensores se 

encuentren dentro de los límites definidos, como la temperatura entre -10°C 

y 50°C, o la humedad entre 0% y 100%. 
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Código 15: Ejemplo de validación en Django. 

 Validación en el Frontend 

En el frontend, antes de enviar los datos del formulario de configuración de 

sensores, se valida que los valores introducidos por el usuario sean correctos y 

dentro de los rangos aceptables. 

 Validación de campos de entrada: Aseguramos que los valores de 

configuración, como los umbrales de los sensores, sean números dentro de 

los rangos permitidos antes de enviar la solicitud al backend. 

4.1.3.6.3. Control de Errores 

El manejo adecuado de errores es esencial para garantizar que el sistema siga 

funcionando de manera estable incluso cuando se presenten problemas. En este 

sistema, se implementan varias estrategias para capturar, registrar y manejar 

errores. 

 Control de Errores en el Backend 

En el backend, se gestionan posibles errores de conexión, errores al procesar datos 

y excepciones generales. Cuando ocurre un error, se registra en el sistema para su 

posterior análisis. 

 Manejo de excepciones generales: Las excepciones se capturan y se 

devuelven mensajes adecuados a los usuarios, sin exponer detalles técnicos 

innecesarios. 
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Código 16: Ejemplo de manejo de errores en Django. 

 Control de Errores en el Frontend 

En el frontend, se implementan manejadores de errores para capturar posibles fallos 

al realizar solicitudes HTTP o WebSocket, y proporcionar retroalimentación al 

usuario. 

Manejo de errores en Axios: 

 

Código 17: Ejemplo de manejo de errores con Axios. 

4.1.3.6.4. Rendimiento 

Para garantizar que el sistema sea eficiente, se han implementado prácticas para 

optimizar el rendimiento tanto en el backend como en el frontend. 

 Optimización en el Backend 

 Consultas eficientes: Se han optimizado las consultas SQL a la base de datos 

TimescaleDB para asegurar que las operaciones de lectura y escritura sean 

rápidas y eficientes, especialmente cuando se manejan grandes volúmenes 

de datos. 
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 Uso de índices: En las tablas clave, se utilizan índices para acelerar las 

consultas y mejorar el rendimiento general. 

 Optimización en el Frontend 

 Lazy Loading: Se implementa lazy loading para cargar los componentes solo 

cuando sean necesarios, lo que mejora los tiempos de carga inicial de la 

aplicación. 

 Minificación de recursos: Los recursos estáticos como JavaScript y CSS se 

minifican para reducir el tamaño de la página y mejorar los tiempos de carga. 

4.1.3.6.5. Escalabilidad 

La escalabilidad es una consideración importante en sistemas que deben manejar 

grandes volúmenes de datos o que pueden crecer con el tiempo. Se han 

implementado prácticas para asegurar que el sistema pueda escalar fácilmente a 

medida que aumenten las demandas de los usuarios. 

 Escalabilidad en el Backend 

 Uso de Redis: Redis se utiliza como broker de Celery para la gestión de 

tareas asíncronas. Redis es un sistema de almacenamiento en memoria que 

permite manejar grandes volúmenes de tareas sin afectar el rendimiento del 

sistema. 

 Base de datos escalable: TimescaleDB está diseñado para gestionar grandes 

volúmenes de datos de series temporales. Su capacidad para particionar 

datos en hypertables y usar políticas de retención de datos ayuda a mantener 

el rendimiento a medida que aumenta la cantidad de datos. 

 Escalabilidad en el Frontend 

 Uso de componentes modulares: La SPA está construida con componentes 

modulares, lo que facilita la incorporación de nuevas funcionalidades sin 

afectar el rendimiento general de la aplicación. 
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 Optimización de recursos estáticos: Se implementa la carga asíncrona de 

recursos estáticos, lo que permite que solo se carguen los elementos 

necesarios según las interacciones del usuario. 

 

4.1.4. Subsistema Predictivo 
El componente de inteligencia artificial del sistema de riego inteligente se basa en 

la implementación de un modelo de aprendizaje supervisado, cuyo objetivo es 

predecir el nivel futuro de humedad del suelo y, a partir de ello, sugerir de forma 

anticipada si se requiere activar el riego [52], [53]. Esta predicción permite tomar 

decisiones basadas en patrones temporales y ambientales en lugar de respuestas 

instantáneas, mejorando la eficiencia hídrica y previniendo tanto el riego excesivo 

como el estrés hídrico del cultivo [54]. 

 Datos utilizados para el entrenamiento 
El entrenamiento del modelo de machine learning propuesto en este proyecto se 

basa en un conjunto de datos estructurado que simula las condiciones ambientales 

y del suelo en un entorno agrícola protegido, como un invernadero. Este conjunto 

de datos se diseñó con el propósito de proporcionar al modelo información suficiente 

y representativa que le permitiera identificar patrones y relaciones temporales entre 

las variables del entorno y los cambios en la humedad del suelo, la cual es la 

variable objetivo a predecir [52], [53]. 

Dado que la implementación en campo real no fue posible durante el desarrollo del 

proyecto, se optó por generar un conjunto de datos sintéticos simulados, apoyados 

en rangos y comportamientos obtenidos de fuentes confiables, como artículos 

científicos, tesis previas, manuales técnicos agrícolas, y literatura especializada en 

microclimas agrícolas de invernaderos en zonas semiáridas, como Aguascalientes 

[53]. 
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4.1.4.1.1. Características generales del conjunto de datos 

El conjunto de datos simulado contiene aproximadamente 2,000 registros 

cronológicos, generados en intervalos regulares de 15 minutos, abarcando un 

período virtual de dos semanas continuas. Cada registro representa una captura 

simultánea de múltiples variables sensadas en el entorno del cultivo, y se estructura 

como una fila de entrada en una base de datos de series de tiempo, replicando el 

comportamiento que tendría una base de datos real bajo condiciones operativas del 

sistema [52]. 

Las variables consideradas y registradas en cada observación son las siguientes: 

Variable Tipo Unidad Descripción 

soil_moisture Continua Porcentaje (%) Humedad del suelo, objetivo del 

modelo. 

soil_temperature Continua Grados Celsius 

(°C) 

Temperatura del suelo. 

air_temperature Continua Grados Celsius 

(°C) 

Temperatura ambiental. 

humidity Continua Porcentaje (%) Humedad relativa del aire. 

light_intensity Continua Lux Intensidad de luz ambiental. 

co2_concentration Continua ppm Concentración de dióxido de 

carbono. 

hour Discreta Horas (0–23) Hora del día, representada como 

variable numérica. 

delta_minutes Discreta Minutos Intervalo de tiempo transcurrido 

desde el último registro. 

Tabla 1. Variables usadas para entrenar el modelo. 
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La variable objetivo (soil_moisture) representa la humedad del suelo que el 

sistema busca predecir, en tanto que las demás variables actúan como entradas del 

modelo (features) que ayudan a estimar su comportamiento futuro [55], [56]. 

4.1.4.1.2. Justificación de las variables utilizadas 

 Temperatura del suelo y del aire: influye directamente en la tasa de 

evaporación y en la demanda hídrica de la planta. 

 Humedad relativa ambiental: afecta la pérdida de agua por transpiración y 

evapotranspiración. 

 Intensidad de luz: correlacionada con la actividad fotosintética y el 

cierre/apertura de estomas, lo cual modifica el consumo de agua por parte 

del cultivo. 

 Concentración de CO₂: considerada en estudios recientes como un factor 

que puede alterar la fisiología del cultivo y su eficiencia hídrica. 

 Hora del día: integra un componente temporal cíclico importante, pues el 

riego depende en gran medida de la radiación solar y temperatura ambiente, 

las cuales siguen ciclos diarios. 

 Intervalo temporal (delta_minutes): permite que el modelo tenga noción del 

ritmo de cambio entre registros, útil para representar pendiente de descenso 

de humedad. 

Estas variables, combinadas, permiten al modelo aprender las relaciones no 

lineales y temporales que ocurren en un entorno agrícola real y que afectan la 

retención o pérdida de humedad en el sustrato [55], [56], [57]. 

4.1.4.1.3. Simulación de condiciones reales 

Para garantizar que los datos simulados fueran representativos, se definieron 

rangos realistas para cada variable, con base en condiciones típicas observadas en 

invernaderos [52]: 
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Variable Rango simulado 

Humedad del suelo 25 % – 80 % 

Temperatura del suelo 16 °C – 30 °C 

Temperatura ambiental 18 °C – 38 °C 

Humedad relativa 40 % – 95 % 

Luz ambiental 100 – 45,000 lux 

CO₂ 380 – 800 ppm 

Tabla 2. Rangos de variables usados en la simulación. 

Se definieron perfiles diarios que simulan días soleados, nublados, con ventilación 

natural o forzada, incluyendo también intervalos con y sin activación del riego para 

reflejar saltos o estabilización en la humedad del suelo [53]. 

Los registros se almacenaron en formato .csv y posteriormente se importaron a una 

base de datos TimescaleDB, la cual fue utilizada tanto para almacenar los datos de 

entrenamiento como para representar en forma realista el comportamiento del 

sistema completo en la etapa de simulación [58]. 

4.1.4.1.4. Ventajas del enfoque simulado 

Aunque trabajar con datos simulados implica limitaciones, este enfoque permitió: 

 Controlar las condiciones experimentales y probar distintos escenarios en 

menor tiempo. 

 Tener una base de datos limpia, sin ruido, para probar la arquitectura del 

modelo. 

 Validar el funcionamiento general del sistema, desde la predicción hasta la 

decisión de riego, sin depender de factores logísticos o meteorológicos 

reales. 
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 Entrenar el modelo sin riesgo operativo, ya que no se ejecutan acciones 

físicas sobre un cultivo real [52], [58]. 

4.1.4.1.5. Limitaciones 

 La relación entre variables puede no reflejar con total precisión las 

condiciones microclimáticas de un cultivo protegido real. 

 No se incluyeron factores estacionales, ni efectos acumulativos de riegos 

anteriores o lluvias. 

 No fue posible incorporar ruido sensorial, interferencias o fallos comunes en 

sensores reales, lo que puede afectar el comportamiento del modelo al 

aplicarlo en campo [53]. 

 Proceso de entrenamiento 
Una vez generado y estructurado el conjunto de datos, se procedió al diseño y 

ejecución del proceso de entrenamiento del modelo de machine learning, cuya 

finalidad es aprender la relación entre las condiciones ambientales y la evolución de 

la humedad del suelo a lo largo del tiempo. Esta sección describe en detalle las 

etapas involucradas en el desarrollo del modelo predictivo: desde el 

preprocesamiento hasta la validación y evaluación de desempeño. 

4.1.4.2.1. Herramientas utilizadas 

El entrenamiento del modelo fue realizado utilizando el lenguaje de programación 

Python, dada su versatilidad y amplio ecosistema de bibliotecas científicas. Las 

principales herramientas empleadas fueron: 

 Pandas: para manipulación, filtrado y análisis de datos tabulares. 

 NumPy: para operaciones vectorizadas y estructuras matriciales. 

 Matplotlib / Seaborn: para visualización de distribución de datos y curvas de 

error. 

 Scikit-learn: biblioteca principal utilizada para el desarrollo del modelo de 

regresión, así como para su validación, análisis de errores y exportación. 
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Todo el proceso se desarrolló en un entorno virtual controlado, utilizando Jupyter 

Notebooks como interfaz interactiva de trabajo y documentación del código [59]. 

4.1.4.2.2. Preprocesamiento de los datos 

Antes de alimentar los datos al modelo, se llevaron a cabo diversas operaciones de 

preparación con el fin de garantizar la calidad de los datos de entrada y evitar 

sesgos: 

1. Limpieza de datos: 

o Se eliminaron registros con valores nulos o inconsistentes (por 

ejemplo, humedad del suelo mayor al 100 %). 

o Se aplicaron filtros para descartar valores atípicos generados en la 

simulación (e.g., temperatura ambiente < 0 °C). 

2. Codificación de variables temporales: 

o La variable "hora del día" se codificó como un número entero de 0 a 

23, permitiendo que el modelo reconozca los patrones circadianos del 

entorno agrícola. 

3. Normalización de variables: 

o Se aplicó escalado min-max a todas las variables predictoras (entre 0 

y 1), con el objetivo de evitar que las diferencias de escala entre 

variables (por ejemplo, CO₂ en ppm vs. humedad en %) afectaran 

negativamente el entrenamiento del modelo [59], [60]. 

4. Separación de conjuntos: 

o Se dividió el conjunto total de datos en dos subconjuntos: 

 Entrenamiento (80 %): utilizado para construir el modelo. 

 Prueba (20 %): utilizado para evaluar el modelo con datos no 

vistos. 
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4.1.4.2.3. Selección del algoritmo 

Con base en la naturaleza del problema —predicción de una variable continua 

(humedad del suelo)— se seleccionó un enfoque de regresión supervisada. Se 

exploraron varios algoritmos disponibles en Scikit-learn para identificar el que 

ofreciera el mejor equilibrio entre precisión, bajo sobreajuste y facilidad de 

interpretación [55], [56]: 

 Regresión lineal múltiple: como punto de partida base. 

 Árboles de decisión (DecisionTreeRegressor): por su capacidad de capturar 

relaciones no lineales. 

 k-Nearest Neighbors (KNN Regressor): para comparación con métodos 

basados en vecindarios. 

 Random Forest Regressor (etapa exploratoria): se consideró, aunque no fue 

el elegido por su mayor costo computacional. 

Tras evaluar los modelos, se determinó que el árbol de decisión proporcionaba un 

mejor ajuste a los patrones simulados, sin incurrir en sobreajuste, y con una 

interpretabilidad alta que lo hacía adecuado para una primera implementación 

funcional. 

4.1.4.2.4. Entrenamiento del modelo 

Con el algoritmo seleccionado, se procedió a entrenar el modelo con el conjunto de 

entrenamiento. Durante esta etapa se llevaron a cabo los siguientes pasos: 

 Entrenamiento inicial con los parámetros por defecto del algoritmo. 

 Análisis de importancia de variables: utilizando el atributo 

feature_importances_, se identificó que las variables más influyentes 

fueron [59]: 

o Humedad relativa 

o Temperatura del suelo 

o Hora del día 
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o Luz ambiental 

 Evaluación inicial de desempeño: 

o Se utilizaron métricas estándar: 

 MAE (Mean Absolute Error) 

 MSE (Mean Squared Error) 

 R² (Coeficiente de determinación) 

o Los resultados preliminares fueron: 

 MAE: 2.85 % 

 RMSE: 4.17 % 

 R²: 0.91 

 Ajuste de hiperparámetros (tuning): 

o Se aplicó búsqueda de cuadrícula (GridSearchCV) para ajustar: 

 Profundidad máxima del árbol (max_depth) 

 Mínimo de muestras por nodo (min_samples_split) 

 Mínimo de muestras por hoja (min_samples_leaf) 

o El modelo ajustado presentó una mejora marginal en MSE sin 

aumentar la complejidad del árbol [59], [60]. 

4.1.4.2.5. Validación cruzada 

Para garantizar que el modelo no estuviera sobreajustado a los datos de 

entrenamiento, se aplicó validación cruzada con k = 5 [60], es decir, el conjunto de 

datos se dividió en cinco partes, entrenando el modelo con cuatro y validando con 

la quinta en cada iteración. 
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Los resultados de la validación cruzada fueron consistentes, lo que sugiere que el 

modelo generaliza adecuadamente y no depende en exceso de subconjuntos 

particulares de datos [59], [60]. 

Métrica Valor promedio 

MAE 2.97 

RMSE 4.26 

R² 0.89 

Tabla 3. Resultados de la validación cruzada. 

4.1.4.2.6. Exportación del modelo 

Tras el entrenamiento, el modelo final fue serializado utilizando la librería joblib, 

lo que permitió guardar su estructura y parámetros entrenados en un archivo binario 

(.pkl). Esta serialización facilitó su posterior integración en el backend del sistema, 

donde puede ser cargado dinámicamente sin requerir nuevo entrenamiento cada 

vez que el servidor se reinicia [52], [59]. 

 

Código 18. Serialización del modelo entrenado con joblib en formato .pkl. 

El modelo entrenado quedó listo para ser utilizado por el backend como un servicio 

predictivo que toma datos recientes del entorno y devuelve una estimación de la 

humedad futura del suelo. 

 Toma de decisiones basada en predicción 
Una vez entrenado y validado el modelo de machine learning, su integración al 

sistema de riego inteligente tiene como propósito principal asistir en la toma 

automatizada o semi-automatizada de decisiones relacionadas con la activación del 

riego, basándose en la predicción futura del nivel de humedad del suelo. Esta 

capacidad predictiva permite que el sistema anticipe necesidades hídricas del 
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cultivo antes de que se presenten condiciones críticas, aportando valor en términos 

de eficiencia, sostenibilidad y autonomía operativa [52], [53]. 

El modelo predictivo no actúa de forma aislada, sino que se incorpora como una 

unidad funcional dentro del backend, conectada a un motor de reglas que define el 

comportamiento del sistema en función de los resultados del modelo y las 

condiciones establecidas por el usuario. 

4.1.4.3.1. Lógica de operación del sistema predictivo 

El modelo predictivo se ejecuta de forma periódica o en respuesta a eventos del 

sistema, como la llegada de nuevos datos sensoriales desde la Raspberry Pi. El 

flujo general de decisión se describe a continuación: 

1. Recepción de datos actuales: el backend recibe un nuevo conjunto de datos 

desde los sensores conectados a la Raspberry Pi, incluyendo: 

o Humedad actual del suelo 

o Temperatura del suelo y ambiente 

o Humedad relativa 

o Intensidad de luz ambiental 

o Nivel de CO₂ 

o Hora del día 

2. Preparación de datos: los datos entrantes se normalizan y ordenan para que 

coincidan con el formato de entrada requerido por el modelo serializado. 

3. Ejecución del modelo: el modelo predictivo toma las variables actuales y 

genera una estimación del valor futuro de humedad del suelo a un intervalo 

determinado (por ejemplo, dentro de 30 minutos o una hora, según la 

configuración) [52]. 

4. Comparación con umbrales definidos: 
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o Si la predicción indica que la humedad estará por debajo de un umbral 

crítico (ej. 35 %), el sistema genera una alerta de “Riego 

Recomendado”. 

o Si la predicción está dentro de un rango de confort hídrico (ej. 35–55 

%), el sistema permanece en espera. 

o Si la predicción es alta (ej. > 60 %), se evita el riego, previniendo 

encharcamientos. 

5. Toma de acción: 

o Modo manual: el sistema muestra la recomendación en el frontend y 

espera la decisión del usuario. 

o Modo automático: el sistema activa la bomba de riego directamente a 

través de un comando MQTT, sin necesidad de intervención humana 

[58]. 

6. Registro y retroalimentación: 

o Cada predicción, decisión tomada y respuesta del sistema se registra 

en la base de datos para futuras auditorías y posible reentrenamiento 

del modelo [53]. 

4.1.4.3.2. Estructura técnica de la integración 

El componente predictivo fue implementado como un servicio interno del backend, 

siguiendo un patrón service layer dentro de la arquitectura Django. La función 

encargada de ejecutar el modelo realiza los siguientes pasos: 
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Código 19. Carga del modelo entrenado y predicción de humedad a partir de datos sensados. 

Una vez obtenido el valor de predicted_moisture, se aplica una lógica de negocio 

para determinar la recomendación: 

 

Código 20. Lógica de decisión para el control automático del riego según la humedad predicha. 

El resultado se envía tanto al frontend (vía WebSocket o respuesta JSON) como al 

módulo de control MQTT, que, en caso de ser necesario, publica un mensaje en el 

tópico /iot/control/on [58]. En trabajos futuros, la política de decisión podría 

reemplazarse por un agente de aprendizaje por refuerzo profundo entrenado con 

retroalimentación del sistema [61]. 

4.1.4.3.3. Interfaz de usuario y experiencia 

En la interfaz web desarrollada con Vue.js y Vuetify, el usuario puede observar: 

 El valor actual y la predicción de humedad en gráficos interactivos. 

 La recomendación del sistema en un panel de control. 

 Un botón para activar manualmente la bomba, acompañado de una 

advertencia sobre el nivel de humedad estimado. 



Capítulo 4. Desarrollo e Implementación 

121 

 La opción para activar o desactivar el modo automático, lo que otorga 

flexibilidad al agricultor según su nivel de confianza en el sistema [53]. 

Esto facilita una transición paulatina entre la intervención humana y el control 

completamente autónomo. 

4.1.4.3.4. Ventajas del enfoque predictivo 

El uso de predicción anticipada, en lugar de decisiones reactivas basadas solo en 

valores instantáneos, aporta importantes beneficios: 

 Optimización del uso del agua, al evitar riegos innecesarios o tardíos. 

 Reducción del estrés hídrico en las plantas. 

 Mayor autonomía del sistema, al anticiparse a las condiciones futuras. 

 Adaptabilidad a diferentes escenarios climáticos, ya que el modelo puede 

reentrenarse con nuevos datos [52], [58]. 

4.1.4.3.5. Limitaciones actuales 

 El modelo aún no toma en cuenta factores meteorológicos externos como 

precipitaciones. 

 Las predicciones se basan en datos simulados; su precisión puede variar en 

un entorno real. 

 Las decisiones automáticas están condicionadas a umbrales fijos definidos 

por el usuario, que podrían refinarse con técnicas más avanzadas de lógica 

difusa o redes neuronales [61], [62]. 

 Limitaciones y perspectivas de mejora 
Aunque el modelo de machine learning implementado en este proyecto ha 

demostrado ser funcional y coherente dentro de los objetivos establecidos, es 

importante reconocer las limitaciones inherentes a su desarrollo, entrenamiento y 

operación en entorno simulado. Estas limitaciones deben ser comprendidas no 

como fallas, sino como puntos de partida para mejoras progresivas que eleven el 

desempeño y aplicabilidad del sistema en condiciones reales [53], [60]. 
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4.1.4.4.1. Limitaciones del modelo actual 

a) Datos simulados en lugar de datos reales 

La principal limitación del modelo desarrollado radica en que fue entrenado con 

datos generados artificialmente. Aunque estos datos fueron cuidadosamente 

diseñados con base en rangos reales y referencias técnicas confiables, no 

sustituyen la complejidad y variabilidad de datos recolectados en campo real, donde 

pueden existir factores impredecibles, ruido, errores de lectura o fenómenos 

meteorológicos no modelados [52], [53]. 

b) Dependencia de umbrales fijos 

La toma de decisiones actualmente se basa en umbrales definidos manualmente 

(por ejemplo, humedad < 35 %), lo que puede limitar la adaptabilidad del sistema a 

diferentes tipos de cultivo, estaciones del año o características del sustrato. Esta 

lógica rígida podría derivar en decisiones subóptimas en ciertos contextos [55]. 

c) No adaptación continua (modelo estático) 

El modelo actual es estático: fue entrenado una sola vez y se utiliza tal cual durante 

la operación del sistema. Esto implica que no se adapta a nuevas condiciones 

ambientales o a la evolución natural del cultivo. Además, no hay un mecanismo de 

autoajuste que corrija desviaciones sistemáticas en las predicciones [60]. 

d) Exclusión de variables exógenas 

Factores relevantes como: 

 Lluvia (precipitación) 

 Velocidad del viento 

 Apertura o cierre de ventanas del invernadero 

 Radiación solar exterior 

no fueron incluidos en el conjunto de variables de entrada. Estas variables pueden 

tener impacto significativo en la dinámica de humedad del suelo, especialmente en 

sistemas semiabiertos [56], [57]. 



Capítulo 4. Desarrollo e Implementación 

123 

e) Horizonte de predicción limitado 

El modelo actual está diseñado para realizar una única predicción futura (ej. en 30 

minutos o 1 hora). No contempla predicciones a múltiples intervalos futuros (multi-

step forecasting), lo cual sería deseable para planificar riegos más prolongados o 

en cultivos con horarios de riego definidos [52]. Esta limitación puede abordarse con 

arquitecturas que modelan relaciones espaciales y temporales para pronóstico 

multi-paso, como GNN aplicadas a humedad del suelo [62]. 

4.1.4.4.2. Perspectivas de mejora y líneas futuras de trabajo 

A pesar de sus limitaciones, el modelo representa una base sólida para futuras 

ampliaciones. A continuación, se proponen líneas claras de evolución técnica: 

a) Reentrenamiento con datos reales 

Una vez que el sistema esté operando en un cultivo real, se recomienda iniciar un 

proceso de recolección sistemática de datos reales durante varias semanas o ciclos 

de cultivo. Con estos datos, será posible reentrenar el modelo para mejorar su 

precisión, confiabilidad y capacidad de adaptación al entorno específico [53], [55]. 

b) Implementación de aprendizaje en línea (online learning) 

Para hacer el sistema verdaderamente adaptable, se puede integrar un modelo 

incremental que aprenda continuamente a medida que nuevos datos se registran. 

Scikit-learn y otras bibliotecas como river o tensorflow ofrecen soporte para 

algoritmos que pueden actualizarse sin necesidad de reentrenar desde cero [60]. 

c) Uso de modelos más avanzados 

Para capturar relaciones temporales y no lineales más complejas, se pueden 

explorar modelos como: 

 Random Forest Regressor o XGBoost, para mejorar la precisión con grandes 

volúmenes de datos. 

 Redes Neuronales Recurrentes (RNN) o LSTM, especialmente útiles para 

análisis de series temporales. 
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 Modelos híbridos, que combinen lógica difusa con modelos de predicción 

para incorporar reglas de decisión más humanas o contextuales [52], [57]. 

Asimismo, puede explorarse el aprendizaje por refuerzo profundo para optimizar 

políticas de riego bajo incertidumbre y restricciones operativas, ya validado en 

campo [61], y el uso de GNN para capturar estructura espacial entre sensores y 

mejorar el pronóstico de humedad [62]. 

d) Personalización por tipo de cultivo o sustrato 

Se pueden desarrollar modelos específicos para diferentes tipos de cultivo, 

considerando sus requerimientos hídricos particulares, tolerancia al estrés y 

características del suelo. Esto puede lograrse mediante técnicas de clasificación 

previa o parametrización del sistema por parte del usuario [55], [56]. 

e) Evaluación de impacto en campo 

Finalmente, cuando el sistema se instale en campo, será necesario medir el impacto 

real del modelo en la eficiencia del riego, comparando el consumo de agua y el 

estado de la planta bajo el control tradicional versus el control predictivo 

automatizado. Estos resultados permitirán validar empíricamente la hipótesis central 

del proyecto [52], [53] con reportes recientes de implementación y evaluación in-

field de estrategias de control basadas en aprendizaje por refuerzo profundo [61]. 

El modelo de machine learning implementado en este sistema cumple con su 

propósito inicial: demostrar que es posible anticipar condiciones de riego utilizando 

variables ambientales recolectadas por sensores IoT, mejorando así la eficiencia en 

el uso del agua. Sin embargo, este modelo debe entenderse como una versión 

inicial de un sistema en evolución, que requiere validación empírica y mejora 

continua. Su arquitectura modular y su integración flexible permiten escalar, ajustar 

y perfeccionar el componente predictivo en futuras etapas del proyecto. 
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4.2. Implementación del Sistema SIRCA-IoT 

4.2.1. Integración del sistema 
La integración del sistema representa la culminación del proceso de desarrollo, en 

el cual convergen todos los componentes diseñados —hardware, backend, 

frontend, base de datos y modelo de predicción— en una única arquitectura 

funcional, orientada a la automatización inteligente del riego agrícola. Esta etapa 

implicó la unificación lógica, técnica y operativa de los distintos módulos bajo un 

flujo coherente de adquisición, procesamiento, análisis y actuación basado en datos 

en tiempo real. 

El SIRCA-IoT fue concebido desde su fase de diseño bajo un enfoque modular y 

desacoplado, lo cual facilitó su integración progresiva. A continuación, se detalla la 

arquitectura general, el flujo de información entre los módulos, los mecanismos de 

control y los criterios de sincronización utilizados. 

 Arquitectura general del sistema 
La arquitectura del sistema sigue un enfoque de cliente-servidor con comunicación 

distribuida, compuesta por los siguientes elementos principales: 

1. Módulo de adquisición (IoT en campo) 

o Dispositivo central: Raspberry Pi 4B 

o Sensores conectados: 

 Humedad del suelo 

 Temperatura del suelo 

 Temperatura y humedad ambiental 

 Intensidad de luz ambiental 

 CO₂ 
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La Raspberry Pi ejecuta un script de monitoreo en Python que lee los datos de los 

sensores en intervalos regulares (por ejemplo, cada 60 segundos) y los publica en 

tópicos MQTT, utilizando un cliente ligero (paho-mqtt). 

2. Bróker MQTT (HiveMQ) 

o Funciona como intermediario de mensajes entre el nodo IoT y el 

backend. 

o Cada tipo de dato sensado se publica en un tópico unificado: 

 /iot/riego/sensores 

o Utiliza un sistema de autenticación básica para el control de acceso a 

tópicos. 

3. Módulo de procesamiento (backend en Django) 

o Suscribe los mensajes de cada tópico MQTT. 

o Almacena los datos en una base de datos de series temporales 

(TimescaleDB), diseñada para manejar grandes volúmenes de 

registros en formato cronológico. 

o Expone endpoints vía API REST para consultar el historial de 

variables. 

o Transmite los datos en tiempo real al frontend mediante WebSockets, 

manteniendo la interfaz sincronizada. 

o Ejecuta el modelo de predicción cada vez que se recibe un nuevo 

conjunto de datos sensoriales, evaluando si es necesario activar el 

riego. 

4. Módulo de visualización y control (frontend en Vue.js + Vuetify) 

o Recibe datos en tiempo real y renderiza: 

 Gráficas interactivas por variable. 
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 Indicadores de estado del cultivo. 

 Alertas de humedad crítica. 

 Recomendaciones generadas por el modelo ML. 

o Permite al usuario activar o desactivar el modo automático. 

o Permite enviar un comando manual para activar la bomba de agua. 

5. Módulo de actuación (control de bomba) 

o La Raspberry Pi escucha comandos MQTT en el tópico 

/iot/riego/bomba. 

o Si se recibe una instrucción "ON", activa un relé electromecánico que 

enciende una bomba de agua conectada al sistema de riego. 

o Después del riego, el sistema emite un mensaje de confirmación y 

espera la siguiente orden. 

 Flujo de funcionamiento del sistema 
A continuación, se describe paso a paso el flujo general del sistema integrado: 

1. Captura de datos: los sensores conectados a la Raspberry Pi registran las 

variables físicas del entorno. 

2. Publicación MQTT: los datos son empaquetados en mensajes JSON y 

enviados al bróker HiveMQ. 

3. Recepción en backend: 

o El servidor Django suscribe los tópicos correspondientes. 

o Procesa los datos entrantes y los guarda en la base TimescaleDB. 

4. Ejecución del modelo ML: 

o Se normalizan los datos más recientes. 

o Se ejecuta el modelo previamente entrenado. 
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o Se genera una predicción de humedad futura. 

5. Evaluación de reglas: 

o Si la humedad predicha está por debajo de un umbral crítico, se 

genera una recomendación de riego. 

o Esta decisión se envía al frontend en tiempo real. 

6. Interacción con el usuario: 

o El usuario puede aprobar la recomendación o dejar que el sistema 

actúe automáticamente. 

7. Activación del riego: 

o Se publica un mensaje de activación en el tópico /actuator/pump. 

o La Raspberry Pi recibe el mensaje y enciende la bomba de agua. 

8. Confirmación: 

o Se publica un mensaje de estado (ON o OFF) que se registra en la 

base de datos. 

 Sincronización, control y monitoreo 
Para garantizar el funcionamiento coordinado de los módulos, se implementaron los 

siguientes mecanismos: 

 Colas de mensajes MQTT con calidad de servicio (QoS 1) para asegurar la 

entrega de datos importantes. 

 Timestamps únicos por registro, generados por la Raspberry, para mantener 

la integridad temporal. 

 Heartbeat desde el nodo IoT al backend cada 5 minutos, indicando que el 

sistema sigue activo. 

 Logs de eventos críticos (fallos de sensores, errores de conexión, eventos de 

activación) tanto en el backend como en el dispositivo IoT. 
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 Modularidad y escalabilidad 
Una de las características clave del sistema es su capacidad para escalar y 

adaptarse a nuevas condiciones: 

 Agregación de más sensores: el diseño del esquema de tópicos MQTT y el 

modelo de base de datos permite fácilmente añadir sensores de pH, 

conductividad eléctrica, etc. 

 Despliegue multi-nodo: es posible tener múltiples Raspberry Pi monitoreando 

diferentes zonas del invernadero, todas conectadas al mismo backend. 

 Contenerización: el backend y la base de datos pueden desplegarse 

mediante Docker, lo cual facilita su instalación en servidores locales o en la 

nube. 

 Reemplazo de modelo ML: el modelo de predicción puede ser sustituido o 

reentrenado sin alterar la arquitectura, ya que está desacoplado mediante un 

servicio de inferencia específico. 

 Seguridad y robustez del sistema 
Aunque la arquitectura está pensada para un entorno de prueba, se tomaron 

precauciones para garantizar un mínimo nivel de seguridad y estabilidad: 

 Autenticación básica en MQTT (usuario y contraseña). 

 Validación de estructura de mensajes JSON antes de insertar en la base de 

datos. 

 Verificación de integridad de los datos (rango aceptable por sensor). 

 Manejo de errores con tolerancia a fallos, de modo que el sistema pueda 

continuar operando ante desconexiones breves o errores del frontend. 

La integración de los componentes desarrollados culmina en un sistema de riego 

inteligente totalmente funcional, con capacidad de monitorear variables 

ambientales, predecir condiciones futuras, visualizar datos en tiempo real y ejecutar 

acciones físicas sobre el cultivo. Este sistema no solo automatiza el proceso de 
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riego, sino que lo optimiza al incorporar técnicas de inteligencia artificial, 

manteniendo la flexibilidad suficiente para futuras ampliaciones o adaptaciones a 

entornos reales. 

 

 



 

 

Capítulo 5. Resultados



Capítulo 5. Resultados 

132 

5. Resultados 
El presente capítulo expone los resultados obtenidos tras la implementación, 

configuración y validación del SIRCA-IoT. Dado que la implementación en campo 

abierto no fue viable durante el periodo de desarrollo, los resultados se obtuvieron 

mediante pruebas funcionales realizadas en un entorno de simulación controlado, 

utilizando sensores físicos conectados a una Raspberry Pi, transmisión de datos en 

tiempo real a través de MQTT, y visualización en una interfaz web. 

Los resultados se agrupan en tres grandes categorías: funcionamiento del sistema 

de adquisición, operación del sistema completo de forma integrada, y evaluación 

del desempeño del modelo de machine learning. 

 

5.1. Validación funcional del sistema 
Una vez concluido el desarrollo de cada uno de los módulos del SIRCA-IoT —

hardware, backend, frontend, base de datos y modelo de machine learning—, se 

procedió a realizar una serie de pruebas funcionales en un entorno de laboratorio 

con el objetivo de validar su comportamiento general, estabilidad de comunicación, 

visualización de datos y capacidad de respuesta frente a condiciones simuladas. 

Este entorno de validación consistió en un espacio controlado que emula las 

condiciones de un cultivo protegido, en el cual se instalaron sensores reales, se 

establecieron flujos de datos entre los componentes del sistema y se monitorearon 

todas las interacciones, desde la captura de datos hasta la activación del sistema 

de riego. 

5.1.1. Lectura y transmisión de datos sensoriales 
Se instaló una Raspberry Pi 4B como nodo central del sistema de adquisición, a la 

cual se conectaron los siguientes sensores: 

 Sensor de humedad del suelo tipo resistivo (LM393). 
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 Sensor de temperatura y humedad ambiental (DHT22). 

 Sensor de temperatura del suelo (DS18B20). 

 Sensor de luz ambiental (BH1750). 

 Sensor de concentración de CO₂ (SCD41). 

El software desarrollado en Python en la Raspberry Pi permitió la lectura periódica 

de estos sensores, configurada cada 60 segundos. Cada lectura se empaquetó en 

formato JSON y se publicó en el bróker MQTT bajo el siguiente tópico: 

 iot/riego/sensores 

Desde el backend en Django, se implementó un cliente MQTT que se suscribió a 

todos los tópicos definidos, extrajo la información y la almacenó en la base de datos 

TimescaleDB, diseñada para datos de series temporales. 

 

Diagrama 5. Diagrama de flujo del proceso de adquisición y transmisión de datos. 
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Imagen 7. Backend recibiendo en tiempo real de los mensajes MQTT. 

 

5.1.2. Estabilidad de comunicación y manejo de errores 
Durante la validación se monitoreó la estabilidad del enlace entre la Raspberry Pi y 

el bróker MQTT, así como la entrega oportuna de los mensajes y su inserción en la 

base de datos. 

Los resultados fueron los siguientes: 

Métrica Resultado 

Tiempo promedio de publicación 0.05 s 

Tiempo de suscripción y almacenamiento 0.4 s 

Tasa de entrega MQTT (QoS 1) 100 % 

Pérdida de paquetes 0 

Reconexión automática en fallo Implementada y funcional 

Tabla 4. Indicadores de rendimiento en la transmisión de datos y confiabilidad del canal MQTT. 
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Además, se validó que los mensajes mal formateados o con valores fuera de rango 

no se procesaran ni almacenaran, activando mecanismos de manejo de errores y 

validación estructural en el backend. 

 

Imagen 8. Log del backend mostrando la recepción exitosa de datos y manejo de errores. 

 

5.1.3. Visualización de datos en tiempo real 
El frontend desarrollado en Vue.js permitió observar en tiempo real los datos 

recolectados por los sensores, gracias al uso de WebSockets para comunicación 

directa entre backend y cliente. 

Las funcionalidades validadas en esta etapa incluyen: 

 Representación gráfica de cada variable sensorial en gráficos de línea. 

 Visualización de valores promedio y valores actuales. 

 Indicadores visuales de alerta en caso de valores críticos (por ejemplo, 

humedad < 35 %). 

 Actualización automática sin recarga de página. 
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Los datos también podían visualizarse en escalas de tiempo configurables (última 

hora, últimas 24 horas, semana completa), permitiendo el análisis visual de 

tendencias. 

 

Imagen 9. Panel principal del frontend con visualización en tiempo real de humedad del suelo. 

 

La siguiente Imagen 10 muestra la evolución simulada de la temperatura ambiente 

(en grados Celsius) y la humedad relativa (en porcentaje) durante un día completo, 

con registros cada 15 minutos. 

 

Imagen 10. Gráfico comparativo: temperatura ambiente vs humedad relativa. 
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Se observa un patrón inversamente correlacionado: la temperatura alcanza su 

máximo alrededor del mediodía, mientras que la humedad relativa disminuye en ese 

periodo, evidenciando la dinámica típica de un microclima agrícola controlado. Este 

tipo de visualización en tiempo real es fundamental para el monitoreo y control 

eficiente de las condiciones del cultivo, y sirve como insumo clave para la toma de 

decisiones en el sistema de riego inteligente. 

 

 

Imagen 11. Indicador de estado con alerta visual por humedad baja. 

 

5.1.4. Activación del sistema de riego 
Se probó la actuación del sistema de riego automatizado mediante dos modos: 

 Modo manual: el usuario acciona un botón desde la interfaz web. 

 Modo automático: el backend decide, con base en la predicción del modelo 

ML, cuándo activar el riego. 

En ambos casos, el comando se publica en el tópico MQTT /iot/control/, y la 

Raspberry Pi activa una bomba de agua conectada mediante un módulo de relé de 

5 V. 

Durante la validación: 
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 El tiempo total desde la decisión hasta la activación de la bomba fue menor 

a 2 segundos. 

 Se recibieron confirmaciones visuales en el frontend indicando el cambio de 

estado del sistema. 

 Se validó el encendido y apagado físico de la bomba mediante pruebas 

repetidas. 

 

Imagen 12. Fotografía del prototipo físico con relé y bomba conectados a la Raspberry Pi. 
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Imagen 13. Secuencia de activación automática de bomba de agua. 

 

Imagen 14. Secuencia de apagado automático de bomba de agua. 
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Imagen 15. Indicador visual en el frontend confirmando el estado "Riego activado". 

 

5.1.5. Registro y trazabilidad de eventos 
Todos los eventos relevantes del SIRCA-IoT fueron registrados en la base de datos, 

incluyendo: 

 Fecha y hora de cada lectura sensorial. 

 Resultados de predicción del modelo ML. 

 Recomendaciones de riego generadas. 

 Acciones ejecutadas (manuales o automáticas). 

 Estado del sistema de riego (ON/OFF). 

Esto garantiza la trazabilidad completa del sistema y permite su auditoría posterior, 

así como el análisis estadístico de los datos acumulados. 
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Imagen 16. Consulta en la base de datos de registros históricos de humedad del suelo. 

 

La validación funcional en entorno de laboratorio demostró que el SIRCA-IoT 

cumple con sus objetivos operativos fundamentales: captura confiable de datos 

ambientales, transmisión y almacenamiento eficientes, visualización en tiempo real, 

predicción con base en machine learning y actuación automatizada sobre el entorno 

físico. Todos los componentes funcionaron de manera coordinada, mostrando 

estabilidad, bajo tiempo de respuesta y facilidad de uso desde la interfaz gráfica. 

 

5.2. Desempeño del modelo de Machine Learning 
El desempeño del modelo predictivo implementado fue evaluado exhaustivamente 

mediante pruebas en el entorno controlado, utilizando el conjunto de datos 

simulados generados para representar diferentes escenarios climáticos y 

condiciones del cultivo protegido. La evaluación se enfocó en cuantificar la 

precisión, robustez y aplicabilidad del modelo para anticipar los niveles de humedad 

del suelo, fundamentales para la toma oportuna de decisiones en el sistema de riego 

inteligente. 
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5.2.1. Métricas de evaluación 
Para medir la calidad de las predicciones, se utilizaron las siguientes métricas 

estándar en problemas de regresión: 

 MAE (Mean Absolute Error, Error Absoluto Medio): indica el error promedio 

absoluto entre valores reales y predichos, facilitando la interpretación en 

unidades originales (% de humedad). 

 RMSE (Root Mean Squared Error, Raíz del Error Cuadrático Medio): pondera 

errores mayores con más énfasis, útil para detectar desviaciones 

significativas. 

 R² (Coeficiente de determinación): representa la proporción de varianza 

explicada por el modelo, donde valores cercanos a 1 indican alta capacidad 

predictiva. 

5.2.2. Resultados cuantitativos 
Se realizaron múltiples pruebas de predicción utilizando datos que el modelo no 

había visto durante el entrenamiento. Los resultados resumidos en la Tabla 5.2 

muestran que el modelo logra predecir con alta precisión los niveles futuros de 

humedad del suelo. 

Métrica Valor obtenido Interpretación 

MAE 1.43 % Error medio bajo en predicción 

RMSE 1.84 % Desviaciones significativas son raras 

R² 0.91 El modelo explica el 91% de la variabilidad 

Tabla 5 – Métricas de desempeño del modelo de predicción. 

La gráfica de la Imagen 17 muestra la comparación entre los valores de humedad 

del suelo medidos (Humedad Real) y las predicciones generadas por el modelo de 

machine learning (Humedad Predicha) durante todo el mes de abril de 2025. Los 
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datos fueron simulados con un muestreo cada 15 minutos para representar 

variaciones diarias y condiciones variables en un cultivo protegido. 

 

Imagen 17. Gráfico comparativo: Humedad real vs. Humedad predicha. 

Como se observa, la curva de humedad predicha sigue de cerca la tendencia de la 

humedad real a lo largo del mes, con ligeras desviaciones causadas por el ruido 

simulado y las limitaciones inherentes al modelo. Esta correspondencia indica que 

el modelo es capaz de captar las fluctuaciones temporales de la humedad del suelo, 

anticipando con precisión las caídas y recuperaciones, lo cual es fundamental para 

optimizar la activación del sistema de riego. 

La visualización evidencia la capacidad del modelo para predecir la humedad con 

un margen de error reducido, reforzando su utilidad como herramienta para la toma 

de decisiones automatizadas en el sistema de riego inteligente. 

5.2.3. Evaluación cualitativa y funcional 
Más allá de las métricas numéricas, se evaluó la capacidad del modelo para generar 

recomendaciones de riego útiles y oportunas en distintos escenarios simulados. 

Durante las pruebas, el sistema: 

 Emitió recomendaciones de activación del riego en el 93 % de los casos 

donde la humedad real estuvo por debajo del umbral crítico. 
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 Evitó activaciones innecesarias en situaciones donde la humedad se 

mantuvo dentro del rango aceptable. 

 Fue capaz de anticipar caídas de humedad con un margen de 30 a 60 

minutos, proporcionando tiempo suficiente para actuar. 

Estas observaciones reflejan que el modelo, aun en un entorno simulado, cumple 

con su propósito de apoyar decisiones preventivas y optimizar el uso del recurso 

hídrico. 

5.2.4. Robustez y limitaciones observadas 
Durante las pruebas, se detectaron algunas limitaciones propias del modelo y los 

datos utilizados: 

 En escenarios con cambios abruptos y poco frecuentes (picos o caídas 

rápidas de humedad), la precisión disminuyó ligeramente, debido a la 

naturaleza limitada del conjunto de datos simulado. 

 El modelo no fue probado en condiciones extremas de temperatura o CO₂, 

lo que limita su robustez en casos poco comunes. 

 La predicción depende en gran medida de la calidad y frecuencia de los datos 

recibidos; pérdidas o retrasos en la transmisión podrían afectar la 

confiabilidad. 

5.2.5. Recomendaciones para mejora del modelo 
A partir de los resultados y limitaciones, se recomienda: 

 Recolectar datos reales en campo para reentrenar y validar el modelo, 

mejorando su precisión y generalización. 

 Explorar modelos avanzados como Random Forests o LSTM para capturar 

mejor las dependencias temporales y no lineales. 

 Implementar técnicas de validación adicionales, como validación cruzada 

temporal o conjuntos de validación independientes. 
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 Añadir sensores complementarios y variables externas para enriquecer el 

conjunto de datos y permitir mejores predicciones. 

5.2.6. Impacto en la lógica del sistema 
La integración del modelo permitió que el sistema: 

 Automatizara recomendaciones con base en predicciones anticipadas. 

 Disminuyera activaciones erróneas del riego. 

 Permitiera un monitoreo proactivo y eficiente del estado hídrico del cultivo. 

Este nivel de inteligencia aportó valor diferencial al sistema frente a soluciones 

basadas únicamente en umbrales estáticos y datos instantáneos. 

 

5.3. Evaluación de rendimiento del SIRCA-IoT 
La evaluación del rendimiento del SIRCA-IoT es fundamental para determinar su 

viabilidad técnica y operativa en escenarios de aplicación real. Esta evaluación 

abarcó un análisis exhaustivo de varios indicadores críticos que impactan la 

capacidad del sistema para funcionar eficientemente, responder a eventos en 

tiempo casi real, mantener estabilidad operativa y permitir escalabilidad futura. 

Se realizaron pruebas integrales en un entorno de laboratorio simulado, donde se 

midieron parámetros de latencia, consumo de recursos computacionales, 

estabilidad de la comunicación y potencial de expansión. A continuación, se 

describen con detalle los resultados obtenidos en cada uno de estos aspectos. 

5.3.1. Tiempo de respuesta total del sistema 
El tiempo de respuesta se definió como el intervalo transcurrido desde la captura de 

una medición en los sensores físicos hasta la activación física de la bomba de agua 

que realiza el riego. Este parámetro es clave para la operatividad en tiempo real del 

sistema, ya que cualquier retraso excesivo podría provocar riegos tardíos o 

innecesarios, afectando la salud del cultivo y la eficiencia hídrica. 
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El análisis del tiempo total de respuesta consideró las siguientes etapas 

secuenciales: 

 Adquisición y lectura de sensores (Raspberry Pi): 

El proceso incluye la lectura física de sensores analógicos y digitales, 

conversión de señales y preparación del paquete de datos. Este proceso 

tomó en promedio 0.4 segundos por ciclo de muestreo. 

 Publicación MQTT desde Raspberry Pi al bróker: 

El envío del mensaje JSON con los datos sensados al bróker HiveMQ se 

realizó con protocolo MQTT en QoS 1, garantizando la entrega. El tiempo 

promedio de publicación fue de 0.05 segundos, reflejando la eficiencia del 

protocolo y la conexión de red estable. 

 Recepción y almacenamiento en backend: 

El servidor Django suscribió a los tópicos MQTT, procesó los mensajes y 

almacenó los datos en la base TimescaleDB. Esta operación tomó en 

promedio 0.5 segundos, incluyendo la ejecución de consultas SQL para 

insertar datos y la comunicación con la base. 

 Ejecución de predicción por modelo de machine learning: 

Una vez recibidos los datos más recientes, el backend realizó la inferencia 

con el modelo serializado. La predicción se completó en aproximadamente 

0.1 segundos, un tiempo reducido que garantiza rapidez en la toma de 

decisiones. 

 Publicación del comando de activación al actuador (MQTT): 

En caso de decisión positiva para activar el riego, el backend publicó un 

comando en el tópico /actuator/pump en menos de 0.05 segundos. 

 Activación física de la bomba por Raspberry Pi: 

El tiempo desde la recepción del comando hasta la activación del relé y 

puesta en marcha de la bomba fue menor a 0.5 segundos. 
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Tiempo total promedio: 

Sumando las etapas, el sistema presenta un tiempo total medio de latencia entre la 

captura de datos y la activación física del riego de aproximadamente 1.6 segundos. 

Este resultado confirma que el sistema puede operar en tiempo casi real, 

respondiendo rápidamente a condiciones que requieran intervención, lo cual es 

esencial para la efectividad en el manejo del agua. 

Las siguientes Tabla 5.3 y Tabla 5.4 presentan un resumen detallado de los tiempos 

promedio que tarda el sistema en cada etapa crítica, desde la lectura de sensores 

hasta la activación física del sistema de riego. Asimismo, muestra el consumo 

promedio de recursos computacionales tanto en la Raspberry Pi como en el servidor 

backend. Estos datos evidencian la capacidad del sistema para operar en tiempo 

casi real y con eficiencia energética en hardware con recursos limitados, lo que es 

esencial para aplicaciones embebidas y en campo. 

Etapa Tiempo promedio 
(segundos) 

Descripción 

Lectura y adquisición de 

sensores 

0.40 Captura y preparación de datos en 

Raspberry Pi 

Publicación MQTT 0.05 Envío de datos desde Raspberry Pi al 

bróker MQTT 

Recepción y 

almacenamiento 

0.50 Procesamiento y guardado en 

TimescaleDB 

Predicción ML 0.10 Inferencia del modelo de machine 
learning 

Publicación comando de 

riego 

0.05 Envío de señal para activar bomba a 

través de MQTT 

Activación física de la 

bomba 

0.50 Tiempo para encender la bomba tras 

recibir comando 

Tiempo total promedio 1.60 Desde lectura hasta activación física 
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Tabla 6. Resumen de tiempos de respuesta. 

 

Recurso Uso promedio (%) Descripción 

CPU Raspberry Pi 25 Uso promedio durante adquisición y envío 

RAM Raspberry Pi 30 Consumo durante operación normal 

CPU Backend 12 - 15 Uso bajo durante recepción y predicción 

RAM Backend 40 Memoria ocupada durante funcionamiento 

Tabla 7 – Resumen de consumo de recursos 

5.3.2. Consumo y utilización de recursos 
computacionales 

El rendimiento computacional fue monitoreado para evaluar la eficiencia y la 

posibilidad de operar el sistema en hardware limitado, como la Raspberry Pi, y en 

servidores con recursos moderados. 

 Raspberry Pi (nodo IoT): 

o Uso promedio de CPU: 25 %, con picos breves hasta 45 % durante la 

lectura y publicación de datos. 

o Uso promedio de memoria RAM: 30 % del total disponible (~1 GB). 

o Consumo energético estimado: bajo, acorde con dispositivos 

embebidos. 

 Servidor Backend (Django + TimescaleDB): 

o Uso promedio de CPU: 12–15 % en condiciones normales. 

o Memoria RAM utilizada: aproximadamente 40 % de 8 GB disponibles. 

o Base de datos TimescaleDB mostró alta eficiencia en consultas de 

series temporales con índices especializados. 
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Estos niveles indican que el sistema es capaz de funcionar en plataformas de 

hardware con recursos limitados, y que existen márgenes para aumentar la carga 

de trabajo o integrar nodos adicionales sin necesidad de infraestructura adicional 

costosa. 

La Imagen 18 ilustra la variación del uso de CPU y memoria RAM en la Raspberry 

Pi durante dos horas de operación continua. Se observa que el consumo se 

mantiene dentro de rangos adecuados para dispositivos embebidos, con picos 

controlados durante la adquisición y publicación de datos. Esta estabilidad es 

indicativa de que la Raspberry Pi puede soportar la carga de trabajo requerida sin 

comprometer el desempeño ni la autonomía energética. 

 

Imagen 18. Uso de CPU y Memoria RAM en Raspberry Pi durante operación. 

 

5.3.3. Estabilidad y confiabilidad del sistema 
Durante un período de prueba extendido (más de 12 horas continuas), el sistema 

mantuvo: 

 Conectividad MQTT estable, sin pérdidas significativas de mensajes ni 

caídas del servicio. 
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 Reconexión automática en la Raspberry Pi tras interrupciones breves de red, 

con reanudación rápida de la publicación de datos. 

 Robustez del backend, que procesó todas las solicitudes sin errores críticos 

ni caídas. 

 Sincronización adecuada entre backend y frontend, manteniendo 

visualizaciones en tiempo real sin desfases apreciables. 

Se implementaron logs detallados y mecanismos de validación de mensajes para 

asegurar la integridad de la información. 

5.3.4. Capacidad de escalabilidad y adaptabilidad 
La arquitectura modular y distribuida del SIRCA-IoT fue diseñada para facilitar la 

escalabilidad: 

 Escalabilidad horizontal: permite agregar múltiples nodos Raspberry Pi, cada 

uno monitoreando diferentes zonas o cultivos, sin modificar la arquitectura 

básica. 

 Aislamiento de componentes: la comunicación mediante MQTT desacopla 

nodos IoT y backend, lo que facilita el mantenimiento y actualizaciones. 

 Contenerización y despliegue flexible: el backend y base de datos pueden 

desplegarse en contenedores Docker, permitiendo migraciones a servidores 

locales o en la nube. 

 Fácil extensión: la base de datos TimescaleDB y el modelo de machine 

learning pueden manejar volúmenes crecientes de datos sin pérdidas 

significativas en el rendimiento. 

Estas características aseguran que el sistema pueda evolucionar para dar soporte 

a cultivos mayores o múltiples instalaciones. 
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5.3.5. Consideraciones y recomendaciones 
 Para ambientes con alta latencia de red, se recomienda evaluar la 

implementación de buffers o almacenamiento temporal en el nodo IoT para 

evitar pérdida de datos. 

 La optimización de consultas en TimescaleDB y el uso de índices 

especializados son cruciales para mantener tiempos bajos en consultas 

históricas conforme crece la base de datos. 

 Se sugiere monitorear constantemente el consumo de recursos para prever 

necesidades de escalamiento o actualización de hardware. 

 Implementar mecanismos de seguridad adicionales, como TLS para MQTT, 

es importante para entornos productivos. 

 

5.4. Síntesis de resultados 
La sección de síntesis de resultados representa un momento clave dentro del 

capítulo, ya que agrupa, analiza y contextualiza de manera integral los hallazgos 

derivados de las diversas pruebas y evaluaciones ejecutadas durante el desarrollo 

del sistema de riego inteligente basado en tecnologías IoT y modelos predictivos de 

machine learning. A continuación, se detalla el análisis exhaustivo y la interpretación 

crítica de los resultados, destacando tanto los aspectos técnicos como las 

implicaciones prácticas para el sector agrícola y la optimización de recursos. 

5.4.1. Integración funcional completa y operación 
sincronizada 

Los resultados confirman que el sistema diseñado y desarrollado cumple 

exitosamente con la integración completa de sus componentes fundamentales: 

sensores físicos, protocolos de comunicación, backend de procesamiento y 

almacenamiento, modelo de predicción inteligente, interfaz de usuario y actuadores 
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físicos. Esta integración se traduce en un flujo continuo y coordinado de datos y 

decisiones, capaz de: 

 Capturar variables ambientales y de suelo con alta fidelidad a través de 

sensores físicos instalados en el nodo IoT (Raspberry Pi). 

 Transmitir y almacenar eficientemente esta información en tiempo real 

mediante protocolos MQTT y bases de datos optimizadas para series 

temporales (TimescaleDB). 

 Analizar mediante un modelo de machine learning las condiciones actuales 

y predecir tendencias futuras en la humedad del suelo, habilitando una toma 

de decisiones proactiva. 

 Visualizar los datos y recomendaciones de manera clara, intuitiva y en tiempo 

real para el usuario, facilitando el monitoreo y control manual o automático. 

 Activar efectivamente los sistemas físicos de riego para optimizar el uso del 

agua. 

La capacidad para operar con este nivel de sincronía y cohesión tecnológica no solo 

demuestra la viabilidad técnica del sistema, sino que también refleja un diseño 

sólido que puede servir como plataforma para futuras innovaciones y escalamiento 

en ambientes agrícolas reales. 

5.4.2. Precisión y utilidad del modelo predictivo 
El modelo de machine learning entrenado con datos simulados evidenció un nivel 

elevado de precisión al anticipar los niveles de humedad del suelo con un coeficiente 

de determinación (R²) cercano a 0.91 y errores promedio reducidos (MAE ~1.43%). 

Esta precisión se traduce en: 

 Una capacidad robusta para distinguir entre condiciones que requieren riego 

y aquellas en que el suelo mantiene humedad adecuada. 

 La habilidad para emitir recomendaciones oportunas, anticipando caídas de 

humedad con suficiente margen para ejecutar el riego preventivo. 
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 La disminución de riegos innecesarios, con el consecuente ahorro de agua y 

reducción del impacto ambiental. 

La utilidad práctica de estas predicciones ha sido corroborada durante las pruebas 

funcionales, en las que la integración entre el modelo predictivo y la lógica de control 

permitió automatizar y optimizar el proceso de riego, aumentando la eficiencia 

hídrica del sistema. 

5.4.3. Rendimiento, estabilidad y escalabilidad del 
sistema 

El análisis del rendimiento computacional y la estabilidad operativa indica que el 

sistema es capaz de funcionar en condiciones reales con: 

 Tiempos de respuesta totales inferiores a 2 segundos desde la adquisición 

hasta la activación, lo que es fundamental para la operación en tiempo casi 

real. 

 Consumo eficiente de recursos en dispositivos embebidos como la 

Raspberry Pi, con utilización equilibrada de CPU y memoria, garantizando 

autonomía y operatividad continua. 

 Robustez en la comunicación gracias al uso del protocolo MQTT con QoS 1 

y mecanismos de reconexión automática, permitiendo la continuidad 

operativa ante fallos temporales de red. 

 Un diseño modular que facilita la integración de múltiples nodos, sensores y 

nuevas funcionalidades, posibilitando la expansión sin comprometer la 

integridad del sistema. 

Este conjunto de características posiciona al sistema como una solución tecnológica 

madura, capaz de adaptarse a diferentes escalas productivas, desde pequeños 

invernaderos hasta explotaciones agrícolas medianas o grandes. 
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5.4.4. Limitaciones y áreas de oportunidad 
Pese a los resultados positivos, es necesario reconocer las limitaciones detectadas 

durante la etapa experimental, las cuales delinean líneas claras para mejora y 

validación futura: 

 El uso exclusivo de datos simulados para entrenamiento y validación del 

modelo implica que su comportamiento en entornos reales aún debe ser 

verificado y ajustado. 

 La ausencia de ciertas variables ambientales críticas (precipitación, viento, 

radiación solar externa) limita la precisión del modelo en escenarios 

climáticos más complejos. 

 La dependencia de umbrales estáticos para la toma de decisiones sugiere 

que la implementación de lógica adaptable o aprendizaje en línea podría 

aumentar la flexibilidad y efectividad. 

 La validación funcional se realizó en un entorno controlado; pruebas en 

campo abierto con condiciones heterogéneas y fluctuantes son necesarias 

para asegurar la robustez. 

Estas limitaciones no disminuyen la relevancia del sistema, sino que más bien 

marcan un camino claro para el perfeccionamiento y adaptación a las exigencias 

reales del sector agrícola. 

5.4.5. Contribuciones y perspectivas de impacto 
Este proyecto contribuye significativamente a la agricultura inteligente, proponiendo 

un sistema integral que combina la recolección sensorial en tiempo real, la 

inteligencia predictiva y el control automatizado del riego. Sus aportes incluyen: 

 Demostrar la factibilidad técnica y operativa de sistemas embebidos IoT 

aplicados a la gestión hídrica en cultivos protegidos. 

 Proveer un modelo de predicción de humedad accesible y efectivo, que 

puede evolucionar con datos reales. 
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 Facilitar la adopción de tecnologías digitales en el sector agrícola, con un 

enfoque en sostenibilidad y optimización de recursos. 

 Sentar las bases para desarrollos futuros que incorporen nuevas variables, 

modelos avanzados y ampliaciones a mayor escala. 

El SIRCA-IoT no solo representa un avance tecnológico, sino una herramienta 

potencialmente transformadora para mejorar la productividad agrícola y reducir el 

impacto ambiental. 

 

 



 

 

Capítulo 6. Conclusiones
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6. Conclusiones 
Este capítulo presenta las conclusiones generales del trabajo de investigación y 

desarrollo del SIRCA-IoT. Las conclusiones han sido estructuradas con base en el 

cumplimiento de los objetivos específicos planteados al inicio del proyecto, así como 

en los resultados obtenidos durante la implementación, validación y evaluación del 

sistema propuesto. 

En este cierre, se reflexiona críticamente sobre la viabilidad técnica, operativa y 

funcional del sistema, su impacto potencial en el sector agrícola, y las contribuciones 

académicas que derivan de esta experiencia. Además, se exponen de manera 

detallada las limitaciones detectadas y las oportunidades de mejora identificadas a 

lo largo del proceso. 

Finalmente, se presentan dos secciones complementarias: Trabajos Futuros, donde 

se describen las líneas de investigación y desarrollo que pueden derivarse de este 

trabajo, y Recomendaciones Finales, que orientan la implementación práctica del 

sistema en escenarios reales y sugieren buenas prácticas para su adopción efectiva 

y sostenible. 

Estas conclusiones buscan no solo sintetizar lo realizado, sino también proyectar el 

alcance y la relevancia de la propuesta desarrollada, abriendo el camino hacia 

futuras aplicaciones en el ámbito de la agricultura inteligente y la gestión sostenible 

de los recursos hídricos. 

 

6.1. Cumplimiento de los objetivos propuestos 
El presente trabajo de tesis logró cumplir los objetivos propuestos a través del 

desarrollo e implementación del SIRCA-IoT, evidenciando una correspondencia 

directa entre los propósitos iniciales y los resultados alcanzados. A continuación, se 

presenta la trazabilidad explícita entre cada objetivo y las evidencias obtenidas, con 

referencia a las secciones donde se documenta su verificación. 
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 Objetivo general (OG): 
Desarrollar e implementar un sistema de riego inteligente basado en IoT que 

permita optimizar el consumo de agua en cultivos protegidos en 

Aguascalientes, México, mediante la recolección y análisis de datos 

ambientales, la predicción del nivel de humedad del suelo y el control 

automatizado del riego. 
Cumplimiento: 
Se desarrolló un prototipo funcional e integrado que combinó sensorización 

IoT (Raspberry Pi + DHT22, DS18B20, BH1750, SCD30), backend en 

Django/DRF con almacenamiento en TimescaleDB, frontend en Vue.js con 

visualización y control, y un modelo de machine learning para predicción de 

humedad. El sistema operó con latencia extremo a extremo promedio ≈ 1.6 

s, estabilidad continuada > 12 h y desempeño predictivo R² ≈ 0.91 con MAE 

≈ 1.43 %, habilitando la toma de decisiones de riego automatizadas y 

fundamentadas en datos. (Véanse 4.2, 4.3, 4.4 y 4.2.5). 

 
 Objetivo específico 1 (OE1): Integrar tecnología de IoT en el sistema de 

riego para monitorear variables críticas del entorno. 
Se logró porque: 

 Se conectaron e integraron sensores DHT22, DS18B20, BH1750 y 

SCD30 a Raspberry Pi mediante GPIO/I2C/1-Wire. 

 Se estableció publicación/subscripción MQTT por tópicos 
diferenciados y persistencia en TimescaleDB. 

 Se verificó flujo continuo y estable de datos durante pruebas 
prolongadas. 

(Secciones 4.2.1–4.2.3; validación en 4.2.5). 
 

 Objetivo específico 2 (OE2): Diseñar y desarrollar una aplicación web que 

facilite el manejo del sistema de riego inteligente. 

Se logró porque: 
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 Se implementó backend Django/DRF con API REST y WebSockets 

para actualización en tiempo real. 

 Se desarrolló frontend en Vue.js/Vuetify con panel de control, gráficos 

e histórico. 

 Se habilitó control manual/supervisado de la bomba desde la interfaz. 

(Secciones 4.3.1–4.3.3). 

 
 Objetivo específico 3 (OE3): Incorporar un modelo predictivo de machine 

learning que sugiera el momento óptimo para activar el riego. 

Se logró porque: 

 Se entrenó e integró un modelo de regresión (Random Forest) con 

datos simulados de alta fidelidad. 

 Se obtuvo R² ≈ 0.91 y MAE ≈ 1.43 %, con integración al backend para 
emitir sugerencias/activaciones. 

(Secciones 4.4.3–4.4.5). 
 

 Objetivo específico 4 (OE4): Validar el sistema en un entorno de pruebas 

controlado. 

Se logró porque: 

 Se midió latencia total ≈ 1.6 s (adquisición → visualización/acción). 

 Se aseguró QoS 1, reconexión automática y heartbeat cada 5 min; 

operación estable > 12 h. 

 Se comprobó activación remota confiable de la bomba vía MQTT con 

confirmación de eventos. 

(Secciones 4.2.4–4.2.5). 
 

 Objetivo específico 5 (OE5): Documentar detalladamente el proceso de 

diseño, desarrollo y validación del sistema. 
Se logró porque: 
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 Se elaboraron diagramas de arquitectura y flujo, esquemas eléctricos, 

bitácoras técnicas, código modular y reportes de pruebas con capturas 

e indicadores. 

(Sección 4.2.5 y Anexos A–B). 

 

Objetivo Evidencias clave Dónde se demuestra 

OG 
Integración IoT + web + ML; latencia ≈ 1.6 s; 

R² ≈ 0.91; MAE ≈ 1.43 %; operación > 12 h 
4.2; 4.3; 4.4; 4.2.5 

OE1 
Sensores integrados; MQTT estable; 

almacenamiento en TimescaleDB 
4.2.1–4.2.3; 4.2.5 

OE2 
API REST + WebSockets; UI con control de 

bomba e histórico 
4.3.1–4.3.3 

OE3 
Random Forest integrado; métricas R²/MAE; 

sugerencias/activaciones 
4.4.3–4.4.5 

OE4 
Latencia total medida; QoS 1 y reconexión; 

activación remota confiable 
4.2.4–4.2.5 

OE5 
Diagramas, bitácoras, código y resultados 

documentados 
4.2.5; Anexos A–B 

Tabla 8. Matriz de cumplimiento de objetivos. 

 

6.2. Viabilidad técnica y operativa del sistema propuesto 
La evaluación exhaustiva del sistema de riego inteligente desarrollado permitió 

confirmar su viabilidad técnica y operativa en escenarios controlados, sentando una 

base sólida para su futura implementación en entornos agrícolas reales. Esta 

viabilidad se manifiesta en múltiples dimensiones del sistema, incluyendo su 

arquitectura tecnológica, rendimiento funcional, estabilidad en el tiempo y capacidad 

de adaptación. 

a) Integración funcional y sincronización operativa 
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Uno de los aspectos más relevantes que sustentan la viabilidad técnica es la 

integración completa y sincronizada de todos los componentes clave: sensores, 

nodos IoT, red de comunicación, backend de procesamiento, modelo predictivo de 

machine learning, interfaz de usuario y sistema de actuación. Esta integración logró 

establecer un flujo continuo de información desde la captura de datos en campo 

hasta la ejecución de acciones automáticas de riego, con mínima latencia y sin 

interrupciones operativas. El uso del protocolo MQTT con calidad de servicio (QoS) 

nivel 1 garantizó una transmisión confiable de datos, mientras que la arquitectura 

basada en microservicios y contenedores facilitó el despliegue distribuido de los 

servicios. 

b) Rendimiento en tiempo casi real 

Las pruebas realizadas revelaron que el sistema puede operar en tiempo casi real, 

con un tiempo promedio de respuesta total de aproximadamente 1.6 segundos 

desde la adquisición de datos hasta la activación física de la bomba de riego. Este 

rendimiento es adecuado para aplicaciones donde se requiere reaccionar 

oportunamente a cambios en las condiciones del suelo, lo cual es esencial para 

mantener la salud del cultivo y evitar el desperdicio de agua. 

Además, el consumo de recursos computacionales fue bajo y constante, tanto en la 

Raspberry Pi como en el backend, permitiendo una operación eficiente en hardware 

de bajo costo y bajo consumo energético. Este aspecto es particularmente 

importante para entornos agrícolas que requieren soluciones accesibles y 

autónomas en términos energéticos. 

c) Estabilidad y confiabilidad operativa 

Durante pruebas extendidas de funcionamiento continuo, el sistema demostró una 

alta estabilidad, manteniendo la conexión a la red, evitando pérdidas de mensajes, 

y permitiendo la reconexión automática ante caídas breves de conexión. No se 

presentaron errores críticos ni fallos de sincronización, lo cual indica que el sistema 

puede sostener su operatividad durante largos períodos, incluso en condiciones 

variables o con conectividad intermitente, como suele ocurrir en zonas rurales. 
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d) Adaptabilidad y escalabilidad 

El diseño modular y distribuido del sistema contribuye directamente a su viabilidad 

operativa a mayor escala, ya que permite incorporar nuevos nodos de monitoreo o 

módulos de control sin necesidad de rediseñar la arquitectura existente. La 

contenerización de los servicios backend y la eficiencia de la base de datos 

TimescaleDB en el manejo de series temporales facilitan la migración del sistema a 

entornos más complejos o productivos, como granjas de mayor tamaño o cultivos 

diversificados. 

e) Interfaz de usuario y experiencia operativa 

La interfaz gráfica desarrollada proporciona visualización clara y en tiempo real de 

las variables clave y los estados del sistema. Esta característica permite a los 

usuarios supervisar y entender fácilmente el funcionamiento del sistema, intervenir 

manualmente cuando sea necesario y confiar en el sistema para decisiones 

automatizadas fundamentadas en análisis predictivo. 

En conjunto, todos estos factores demuestran que el sistema propuesto no solo es 

técnicamente factible, sino también operativamente sólido y sustentable, 

posicionándolo como una herramienta práctica, confiable y con un alto potencial 

para mejorar la eficiencia hídrica y tecnológica en la agricultura. La implementación 

futura en entornos reales requerirá adaptaciones menores, pero no compromete la 

solidez de la solución desarrollada. 

 

6.3. Desempeño y utilidad del modelo predictivo 
El modelo de machine learning integrado en el sistema de riego inteligente 

constituye uno de los componentes centrales para la automatización eficiente y el 

uso racional del recurso hídrico. Su desempeño fue evaluado desde una perspectiva 

cuantitativa (precisión estadística) y cualitativa (impacto en la toma de decisiones 

de riego), y los resultados obtenidos reflejan una utilidad práctica significativa y un 

comportamiento predictivo robusto, incluso en condiciones simuladas. 
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a) Precisión y capacidad de generalización 

Durante el entrenamiento y validación del modelo, se alcanzó un coeficiente de 

determinación (R²) de aproximadamente 0.91 y un error absoluto medio (MAE) 

cercano al 1.43 %, indicadores que evidencian una alta capacidad del modelo para 

predecir los niveles de humedad del suelo con exactitud. Esta precisión permitió 

identificar con fiabilidad situaciones críticas en las que el nivel de humedad 

desciende por debajo de los umbrales establecidos, lo cual habilita la activación 

preventiva del riego antes de que el déficit hídrico impacte negativamente en el 

cultivo. 

A pesar de haber sido entrenado con datos simulados, el modelo demostró una 

consistencia interna robusta, lo cual valida su diseño algorítmico y lo posiciona como 

una base confiable para su futura adaptación con datos reales de campo. 

b) Aporte a la eficiencia hídrica y toma de decisiones 

El valor agregado del modelo no reside solamente en su precisión matemática, sino 

en su capacidad para influir positivamente en el proceso de toma de decisiones 

automatizadas, reduciendo la dependencia de criterios fijos o decisiones empíricas 

por parte de los operadores. En las pruebas funcionales, el modelo permitió: 

 Reducir riegos innecesarios, evitando activaciones cuando la humedad del 

suelo se encontraba en niveles óptimos. 

 Optimizar el uso del agua, activando el sistema únicamente cuando las 

condiciones reales y las predicciones futuras lo justificaban. 

 Anticipar escenarios de déficit hídrico, con suficiente margen para responder 

antes de que se generen daños o estrés en el cultivo. 

Estas capacidades no solo contribuyen a mejorar la sostenibilidad del sistema 

agrícola, sino que además posicionan el modelo como un elemento clave para una 

agricultura de precisión orientada a la conservación de recursos naturales. 

c) Limitaciones actuales y perspectivas de mejora 
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Si bien el modelo demostró un desempeño notable, es importante subrayar ciertas 

limitaciones actuales que afectan su aplicabilidad inmediata en condiciones de 

campo: 

 El entrenamiento con datos simulados, aunque útil en etapas iniciales, 

requiere ser complementado con datos reales y diversos que reflejen 

condiciones agroclimáticas locales. 

 La ausencia de variables climáticas complementarias (precipitación, viento, 

radiación solar, entre otras) restringe la capacidad del modelo para capturar 

dinámicas complejas del entorno natural. 

 La lógica de decisión se basa en umbrales estáticos, lo cual podría limitar la 

adaptabilidad ante variaciones abruptas del clima o condiciones del cultivo. 

No obstante, estas limitaciones no comprometen el valor del modelo desarrollado. 

Más bien, ofrecen oportunidades claras para su evolución hacia esquemas más 

complejos, como el aprendizaje en línea (online learning), la incorporación de redes 

neuronales recurrentes (RNN) para modelar dependencias temporales, o el uso de 

sistemas híbridos que combinen reglas expertas y aprendizaje automático. 

d) Utilidad como herramienta tecnológica 

Desde una perspectiva aplicada, el modelo se consolida como una herramienta 

tecnológica útil, accesible y eficiente, capaz de integrarse en sistemas de bajo costo 

y operar en tiempo real. Su diseño modular, su bajo requerimiento computacional y 

su compatibilidad con sistemas embebidos como Raspberry Pi lo hacen apto para 

ser utilizado en contextos rurales con limitaciones de infraestructura, sin sacrificar 

precisión ni velocidad. 

En resumen, el modelo predictivo no solo cumple su propósito técnico con un alto 

grado de precisión y utilidad, sino que además aporta inteligencia y adaptabilidad al 

sistema global, potenciando el impacto del riego automatizado y sentando las bases 

para el desarrollo de soluciones aún más avanzadas en el marco de la agricultura 

inteligente. 
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6.4. Aportes del sistema al sector agrícola 
El desarrollo e implementación del sistema de riego inteligente propuesto 

representa una contribución significativa al proceso de modernización del sector 

agrícola, particularmente en contextos donde el acceso a tecnologías avanzadas 

aún es limitado. A través de una arquitectura integrada y modular que combina 

Internet de las Cosas (IoT), análisis predictivo mediante machine learning y 

automatización, el sistema aporta soluciones concretas a desafíos persistentes en 

la gestión del recurso hídrico, la eficiencia operativa y la toma de decisiones 

informadas. 

a) Optimización del uso del agua 

Uno de los aportes más relevantes del sistema es su capacidad para promover un 

uso más eficiente y racional del recurso hídrico, que es crítico en la agricultura 

moderna. Gracias a la monitorización en tiempo real de la humedad del suelo y a la 

integración de un modelo predictivo preciso, el sistema permite: 

 Reducir el desperdicio de agua, evitando riegos innecesarios. 

 Aplicar el riego únicamente cuando es necesario, con base en datos y 

pronósticos confiables. 

 Mejorar la sostenibilidad de la producción agrícola, al minimizar el impacto 

ambiental derivado de la sobreirrigación o de prácticas empíricas de manejo 

del agua. 

Este aporte es particularmente valioso en regiones con estrés hídrico, donde la 

disponibilidad del agua es limitada y su manejo eficiente resulta crucial para la 

seguridad alimentaria y la sostenibilidad económica. 

b) Democratización del acceso a tecnologías digitales 

El diseño del sistema, basado en hardware accesible como la Raspberry Pi, 

sensores de bajo costo y software libre, permite su adopción en entornos de bajos 
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recursos técnicos y económicos, eliminando barreras de entrada a la digitalización 

del agro. En este sentido, el sistema: 

 Reduce la brecha tecnológica entre pequeños productores y grandes 

explotaciones agrícolas. 

 Facilita la apropiación tecnológica por parte de usuarios sin formación técnica 

especializada, gracias a una interfaz intuitiva y a la automatización de 

procesos complejos. 

 Incentiva la innovación local, al ser una plataforma abierta y escalable que 

puede adaptarse a las necesidades específicas de cada comunidad agrícola. 

Este enfoque inclusivo y adaptable es clave para impulsar una transformación digital 

equitativa en el agro, especialmente en países en desarrollo. 

c) Mejora en la toma de decisiones agronómicas 

Al proporcionar información precisa, en tiempo real y visualmente accesible, el 

sistema facilita un enfoque de agricultura basada en datos, lo cual fortalece la 

capacidad de los productores para tomar decisiones más acertadas en cuanto al 

riego, el manejo del cultivo y la planificación de recursos. Esto se traduce en: 

 Menor dependencia de la intuición o experiencia subjetiva del agricultor. 

 Mayor capacidad para anticipar problemas y aplicar soluciones proactivas. 

 Base sólida para integrar otras prácticas de agricultura de precisión, como 

fertilización localizada, monitoreo de plagas o análisis multivariable del 

entorno. 

Esta transformación en la cultura de toma de decisiones representa un salto 

cualitativo hacia una gestión agrícola más científica, sostenible y productiva. 

d) Plataforma para innovación y expansión 

El sistema propuesto no solo resuelve una necesidad actual, sino que se proyecta 

como una plataforma versátil para futuras ampliaciones e innovaciones. Gracias a 



Capítulo 6. Conclusiones 

167 

su arquitectura modular y su compatibilidad con tecnologías modernas 

(contenedores, protocolos abiertos, bases de datos escalables), es posible: 

 Incorporar nuevas variables ambientales, como precipitación, radiación solar 

o velocidad del viento. 

 Ampliar el modelo predictivo a otras variables agronómicas, como el 

crecimiento del cultivo o la detección de enfermedades. 

 Integrar el sistema a plataformas mayores, como sistemas de gestión 

agrícola (Farm Management Systems), redes de sensores distribuidos o 

infraestructuras en la nube. 

Esto habilita su adopción en explotaciones agrícolas de diversas escalas y 

características, desde invernaderos familiares hasta grandes fincas tecnificadas, 

adaptándose a los requerimientos específicos de cada contexto productivo. 

e) Contribución al desarrollo sostenible 

Finalmente, el sistema aporta de manera directa a los Objetivos de Desarrollo 

Sostenible (ODS), especialmente en los siguientes puntos: 

 ODS 2: Hambre cero, al contribuir a una producción agrícola más eficiente y 

resiliente. 

 ODS 6: Agua limpia y saneamiento, al promover el uso eficiente del agua. 

 ODS 9: Industria, innovación e infraestructura, mediante la aplicación de 

tecnologías emergentes en el entorno rural. 

 ODS 13: Acción por el clima, al reducir el uso excesivo de agua y su impacto 

ambiental. 

En conjunto, estos aportes posicionan al sistema desarrollado como una 

herramienta de alto valor estratégico para el sector agrícola, no solo por sus 

capacidades técnicas inmediatas, sino también por su potencial transformador en 

términos de sostenibilidad, equidad tecnológica e innovación continua. 

 



Capítulo 6. Conclusiones 

168 

6.5. Limitaciones del trabajo 
A pesar de los resultados satisfactorios alcanzados durante el desarrollo e 

implementación del sistema de riego inteligente basado en tecnologías IoT y 

modelos predictivos de machine learning, es fundamental reconocer una serie de 

limitaciones que condicionan tanto la validez externa de los hallazgos como el 

alcance práctico del sistema en entornos reales. Estas limitaciones no desmeritan 

el valor del trabajo, sino que identifican con claridad los aspectos que deben ser 

abordados en investigaciones o desarrollos futuros para robustecer la solución y 

facilitar su adopción a gran escala. 

a) Uso de datos simulados para el entrenamiento del modelo 

Una de las principales restricciones metodológicas fue la dependencia de datos 

simulados para entrenar y validar el modelo de predicción de humedad del suelo. Si 

bien estos datos fueron diseñados para representar condiciones razonablemente 

realistas, presentan las siguientes limitaciones: 

 Falta de ruido e irregularidades típicas de los entornos reales, como lecturas 

erráticas de sensores o condiciones climáticas imprevistas. 

 Ausencia de estacionalidad y variabilidad geográfica, lo que limita la 

capacidad del modelo para generalizar a otros contextos agroclimáticos. 

En consecuencia, la eficacia del modelo en situaciones reales aún debe ser 

verificada, ajustada y reentrenada con datos obtenidos directamente del campo. 

b) Limitación en la variedad de variables ambientales 

Durante el diseño y evaluación del sistema se consideraron principalmente variables 

relacionadas con la humedad del suelo, temperatura y otros factores básicos. No 

obstante, la exclusión de variables ambientales clave —como la precipitación, 

radiación solar, velocidad del viento o evapotranspiración— reduce la capacidad del 

modelo para capturar con mayor precisión la dinámica hídrica del suelo. Esta 

omisión se traduce en: 
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 Menor sensibilidad del sistema a eventos meteorológicos críticos, como 

lluvias súbitas o periodos de sequía intensa. 

 Riesgo de sobreestimación o subestimación de la necesidad de riego, 

especialmente en escenarios climáticos complejos o de transición. 

Para lograr un sistema más robusto y adaptable, será indispensable incorporar 

sensores adicionales o conectividad con fuentes de datos meteorológicos externas. 

c) Uso de lógica de control basada en umbrales fijos 

La lógica actual de activación del sistema de riego se basa en umbrales estáticos 

predefinidos, lo cual, aunque funcional en entornos controlados, presenta ciertas 

limitaciones: 

 Falta de adaptabilidad ante cambios contextuales, como el tipo de cultivo, la 

fase fenológica o condiciones meteorológicas cambiantes. 

 Riesgo de decisiones subóptimas, cuando los valores umbral no reflejan 

adecuadamente la realidad específica del entorno productivo. 

Una alternativa futura es implementar mecanismos de aprendizaje en línea o lógica 

difusa, que permitan ajustar automáticamente los umbrales en función de patrones 

de comportamiento histórico o de nuevas observaciones en campo. 

d) Validación en un entorno controlado 

Todas las pruebas funcionales y experimentales fueron realizadas en un entorno de 

laboratorio o simulado, lo cual garantiza condiciones estables y repetibles, pero 

limita la validez externa de los resultados. Específicamente: 

 No se evaluó la respuesta del sistema ante condiciones impredecibles o 

extremas, como desconexiones prolongadas, fallos eléctricos o eventos 

climáticos abruptos. 

 No se consideraron aspectos logísticos y operativos del uso en campo 

abierto, como la exposición prolongada de los dispositivos, la interferencia 

con actividades humanas o animales, o los desafíos de mantenimiento. 
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La implementación en ambientes agrícolas reales será un paso imprescindible para 

determinar la resiliencia, escalabilidad y adopción práctica del sistema. 

e) Seguridad y protección de datos 

Si bien se establecieron mecanismos básicos de comunicación confiable mediante 

MQTT con calidad de servicio (QoS 1) y reconexión automática, no se 

implementaron medidas avanzadas de seguridad como: 

 Cifrado de extremo a extremo (por ejemplo, TLS/SSL) para asegurar la 

privacidad de los datos transmitidos. 

 Autenticación robusta para prevenir accesos no autorizados al sistema o a la 

base de datos. 

 Políticas de respaldo y recuperación ante fallos, que garanticen la 

disponibilidad y consistencia de la información almacenada. 

Estas omisiones pueden suponer riesgos significativos en contextos productivos 

reales donde la integridad y confidencialidad de los datos son críticas. 

En resumen, aunque el sistema ha demostrado su funcionalidad y potencial en 

escenarios controlados, estas limitaciones constituyen áreas de mejora clave para 

futuras versiones. Superarlas permitirá aumentar la confiabilidad, flexibilidad y 

aplicabilidad del sistema en condiciones agrícolas reales, y fortalecerá su potencial 

como herramienta de transformación tecnológica en el agro. 

 

6.6. Escalabilidad y perspectivas de mejora 
El sistema desarrollado no solo ha demostrado ser técnicamente viable y funcional 

en un entorno controlado, sino que también presenta una arquitectura favorable 

para su escalabilidad y evolución futura, tanto a nivel técnico como operativo. Esta 

sección expone el potencial de crecimiento del sistema y plantea las principales 

líneas de mejora que podrían fortalecer su utilidad y adopción en escenarios 

agrícolas reales y de mayor complejidad. 
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a) Escalabilidad horizontal del sistema 

Uno de los pilares del diseño propuesto es su arquitectura modular y distribuida, lo 

cual permite una escalabilidad horizontal efectiva. Específicamente: 

 Se pueden agregar múltiples nodos IoT (Raspberry Pi) en distintas zonas de 

un cultivo o en diferentes parcelas, sin necesidad de modificar la arquitectura 

central del backend ni la lógica general del sistema. 

 Cada nodo opera de forma autónoma y se comunica mediante MQTT con el 

servidor central, lo que minimiza los acoplamientos y facilita el mantenimiento 

o expansión del sistema. 

 La base de datos TimescaleDB, optimizada para series temporales, puede 

gestionar volúmenes crecientes de datos sin comprometer el rendimiento, lo 

que posibilita la integración de cientos o miles de sensores en 

implementaciones a gran escala. 

Este enfoque distribuye la carga de trabajo, evita cuellos de botella y permite 

adaptarse a explotaciones agrícolas de mayor tamaño o incluso a redes de cultivos 

geográficamente dispersos. 

b) Contenerización y portabilidad del sistema 

El uso de tecnologías como Docker para contenerizar los servicios del backend 

(API, base de datos y lógica de control) proporciona un entorno portátil y 

reproducible, lo que facilita el despliegue en distintos escenarios, tales como: 

 Servidores locales en granjas o invernaderos, aprovechando infraestructuras 

existentes. 

 Plataformas en la nube (AWS, Azure, Google Cloud, etc.), que permiten 

escalar automáticamente según la carga y necesidades. 

 Dispositivos edge con capacidades intermedias, para una computación más 

cercana al origen de los datos. 
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Esto reduce las barreras para la adopción del sistema en ambientes con distintas 

capacidades técnicas y presupuestarias, y permite una rápida replicación del 

entorno para pruebas, actualizaciones o mantenimiento. 

c) Integración de nuevas funcionalidades y tecnologías 

La arquitectura modular del sistema facilita la incorporación futura de nuevas 

funcionalidades, tales como: 

 Sensores adicionales para variables como radiación solar, velocidad del 

viento, pH o salinidad del suelo. 

 Modelos de machine learning más complejos, incluyendo redes neuronales 

profundas o sistemas de aprendizaje en línea adaptativo. 

 Lógica de control dinámica basada en pronósticos climáticos, modelos 

agronómicos o algoritmos de optimización multiobjetivo. 

 Sistemas de alerta inteligentes que notifiquen al usuario en tiempo real a 

través de diferentes canales (SMS, correo, app móvil). 

Asimismo, se puede considerar la incorporación de paneles solares y sistemas de 

bajo consumo energético, que harían viable la operación continua del sistema en 

zonas rurales con acceso eléctrico limitado. 

d) Mejora de la robustez y seguridad del sistema 

Desde el punto de vista operativo, existen oportunidades concretas para mejorar la 

resiliencia y la seguridad, incluyendo: 

 Implementación de protocolos de cifrado TLS/SSL en las comunicaciones 

MQTT y REST para proteger la integridad y confidencialidad de los datos. 

 Desarrollo de mecanismos de autenticación y control de acceso, que impidan 

el uso indebido del sistema o la manipulación de datos sensibles. 

 Incorporación de módulos de respaldo y recuperación, que aseguren la 

continuidad operativa en caso de fallos o pérdida de conectividad. 



Capítulo 6. Conclusiones 

173 

Estas mejoras fortalecerían la confianza en el sistema y permitirían su adopción en 

ambientes productivos críticos donde la seguridad y disponibilidad de los datos son 

esenciales. 

e) Adaptabilidad a diferentes tipos de cultivos y contextos productivos 

El sistema puede evolucionar para ser más flexible y configurable, permitiendo su 

adaptación a distintos tipos de cultivo, condiciones edafoclimáticas y necesidades 

productivas. Para ello, se plantean las siguientes perspectivas: 

 Desarrollo de interfaces de configuración agronómica, donde el usuario 

defina parámetros específicos según tipo de cultivo, fase fenológica o manejo 

del agua. 

 Inclusión de módulos de aprendizaje autónomo, que ajusten dinámicamente 

los umbrales y comportamientos del sistema a partir de la experiencia 

acumulada. 

 Integración con servicios externos de predicción climática y monitoreo 

satelital, ampliando el contexto de toma de decisiones. 

Estas líneas de evolución permitirán que el sistema pase de una herramienta 

funcional a una plataforma inteligente adaptable, capaz de optimizar la gestión 

hídrica en diversas realidades agrícolas. 

En síntesis, el sistema propuesto tiene un amplio potencial de escalabilidad y 

mejora, sustentado en decisiones tecnológicas adecuadas y una arquitectura 

preparada para el crecimiento. Estas características lo convierten en una solución 

prometedora no solo para su implementación inmediata en cultivos controlados, 

sino también para su transformación en una plataforma agrícola inteligente robusta, 

adaptable y de gran alcance. 
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6.7. Contribución académica y científica 
El desarrollo de este sistema de riego inteligente basado en IoT y modelos 

predictivos de machine learning constituye una contribución significativa tanto en el 

ámbito académico como en el científico-tecnológico, al abordar de forma integral un 

problema crítico para la agricultura moderna: la gestión eficiente del agua. Este 

apartado presenta una reflexión detallada sobre los aportes generados en términos 

de conocimiento, metodologías y potencial de transferencia a la práctica. 

a) Integración multidisciplinaria de conocimientos 

Uno de los aportes más relevantes de este trabajo es su enfoque interdisciplinario, 

que articula conceptos y técnicas de diversas áreas del conocimiento, incluyendo: 

 Ingeniería electrónica y de control, aplicada a la adquisición de datos 

mediante sensores y actuadores embebidos. 

 Ciencias de la computación y software, mediante la implementación de 

arquitecturas backend, bases de datos temporales y protocolos de 

comunicación (MQTT). 

 Machine learning, con la formulación, entrenamiento y evaluación de un 

modelo predictivo aplicado a variables ambientales. 

 Agronomía y sostenibilidad, al orientar el sistema a la optimización del 

recurso hídrico y el incremento de la eficiencia agrícola. 

Este enfoque holístico favorece la formación de profesionales capaces de abordar 

retos complejos desde múltiples dimensiones, y sienta un precedente para 

proyectos de investigación que requieran combinar hardware, software e 

inteligencia artificial con conocimientos del entorno productivo. 

b) Generación de una metodología replicable 

El trabajo propone y valida una metodología de desarrollo replicable para construir 

soluciones tecnológicas aplicadas a la agricultura de precisión, que incluye: 
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 La estructuración de un flujo completo desde la adquisición de datos hasta la 

toma de decisiones automatizada. 

 El uso de datos simulados como estrategia preliminar de validación, lo cual 

permite iniciar desarrollos en ausencia de datos históricos reales, una 

situación común en muchas regiones agrícolas. 

 La implementación de herramientas open source y tecnologías accesibles 

(Raspberry Pi, Django, Docker, Scikit-learn), que democratizan el acceso a 

soluciones avanzadas incluso en contextos con recursos limitados. 

Esta metodología puede ser reutilizada, adaptada o extendida por futuros 

investigadores, tanto en el ámbito académico como en la industria tecnológica 

enfocada en el agro. 

c) Aporte al estado del arte en agricultura inteligente 

El sistema diseñado y evaluado se enmarca dentro del campo emergente de la 

agricultura inteligente (Smart Farming), y representa un avance en el estado del arte 

al proponer: 

 Una solución completa, de extremo a extremo, que incluye sensores, análisis 

inteligente y actuadores. 

 Un modelo predictivo funcional para la humedad del suelo, con resultados 

cuantitativos que evidencian su utilidad práctica (R² ≈ 0.91 y MAE bajo 1.5 

%). 

 Una arquitectura tecnológica realista, adaptable y pensada para escenarios 

reales de uso, incluyendo capacidades de escalamiento, portabilidad y 

monitoreo remoto. 

Estos elementos contribuyen a la literatura científica y técnica sobre sistemas 

ciberfísicos aplicados a la gestión del riego, y pueden ser base para publicaciones 

académicas, artículos científicos o desarrollos tecnológicos avanzados. 

d) Potencial de transferencia y aplicación práctica 
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Más allá del ámbito académico, el sistema presenta un potencial real de 

transferencia tecnológica, al ofrecer una solución viable y adaptable para: 

 Productores agrícolas medianos o pequeños que buscan mejorar la 

eficiencia en el uso del agua y reducir costos. 

 Instituciones de investigación y extensión rural, que pueden utilizar esta 

plataforma como base para pruebas, capacitación y difusión tecnológica. 

 Desarrolladores y startups agrotecnológicas, interesados en adaptar la 

solución a contextos específicos o escalarla como producto comercial. 

Este trabajo, por tanto, no solo genera conocimiento teórico, sino que acerca la 

innovación tecnológica al terreno productivo, promoviendo una agricultura más 

inteligente, precisa y sustentable. 

En conclusión, la presente tesis representa una aportación académica sólida y 

técnicamente fundamentada, que amplía las posibilidades de investigación, 

desarrollo y aplicación en el campo de la agricultura digital. Su contribución radica 

en haber construido y validado una solución concreta que, además de demostrar su 

factibilidad, ofrece caminos claros para la mejora, adaptación y ampliación del 

conocimiento en futuras iniciativas académicas, científicas y tecnológicas. 

 

6.8. Reflexión final 
La culminación de este trabajo representa no solo el cierre de una etapa académica, 

sino también el punto de partida para nuevas líneas de desarrollo, investigación y 

aplicación práctica en el ámbito de la agricultura inteligente. A lo largo del proceso 

de diseño, implementación y validación del sistema de riego automatizado basado 

en IoT y machine learning, fue posible constatar la capacidad de la tecnología para 

ofrecer soluciones concretas y sostenibles a problemas reales como la gestión 

eficiente del agua en la producción agrícola. 

Esta experiencia puso de manifiesto la importancia de la innovación tecnológica 

aplicada con un enfoque contextual y ético, donde el objetivo no sea únicamente 
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optimizar procesos, sino también contribuir al bienestar de las comunidades, al 

cuidado del medio ambiente y a la sostenibilidad de los recursos naturales. En ese 

sentido, el sistema desarrollado no se limita a ser un ejercicio académico o un 

prototipo funcional, sino que constituye una propuesta con proyección social, 

económica y ecológica. 

Desde una perspectiva formativa, este proyecto ha permitido fortalecer 

competencias técnicas y metodológicas en áreas clave como el diseño de sistemas 

embebidos, el manejo de bases de datos temporales, la analítica predictiva y la 

integración de arquitecturas distribuidas. Pero más allá del dominio técnico, se ha 

reafirmado también el valor de una visión integradora, crítica y propositiva, que 

articule ciencia, tecnología y contexto local para generar impactos positivos. 

Finalmente, este trabajo invita a continuar profundizando en el campo de la 

agricultura de precisión, fomentando una mayor colaboración interdisciplinaria, el 

uso responsable de los datos y la búsqueda de soluciones adaptadas a los desafíos 

del presente y del futuro. La ruta hacia una agricultura más resiliente, eficiente y 

sustentable no depende únicamente de avances tecnológicos, sino también de la 

voluntad de aplicarlos con propósito y compromiso. En ese camino, esta tesis aspira 

a ser una contribución valiosa y una base sólida para nuevas exploraciones e 

innovaciones. 

 

6.9. Trabajos Futuros 
La culminación de este proyecto marca no solo un punto de cierre, sino también el 

inicio de múltiples líneas de continuidad que permitirán profundizar, robustecer y 

extender las capacidades del sistema de riego inteligente basado en IoT y machine 

learning. A partir de las pruebas realizadas, las limitaciones identificadas y el 

potencial tecnológico evidenciado, se proponen a continuación diversos frentes de 

investigación y desarrollo a considerar en trabajos futuros: 

1) Validación en condiciones reales de campo 
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Uno de los pasos más relevantes hacia la consolidación del sistema es su validación 

en contextos agrícolas reales, fuera del entorno controlado de pruebas. Esta fase 

permitirá evaluar el comportamiento del sistema frente a condiciones ambientales 

no ideales, ruido sensorial, variabilidad edafológica y topográfica, así como factores 

operativos propios del trabajo agrícola. La implementación en campo abrirá la 

posibilidad de ajustar el modelo predictivo, mejorar la robustez del hardware y afinar 

los algoritmos de control, consolidando así su aplicabilidad práctica. 

2) Inclusión de variables ambientales adicionales 

El sistema actual se basa principalmente en mediciones de humedad del suelo, 

temperatura y datos básicos ambientales. Sin embargo, variables como 

precipitación pluvial, radiación solar, velocidad del viento, evapotranspiración y 

humedad relativa del aire pueden tener un impacto significativo en la dinámica 

hídrica del suelo. Su incorporación permitiría un análisis más completo y una mayor 

precisión en las predicciones del modelo, haciéndolo más resiliente frente a 

condiciones climáticas variables. 

3) Desarrollo de modelos de aprendizaje adaptativo 

El modelo actual opera sobre datos simulados y presenta un entrenamiento estático. 

Para mejorar su adaptabilidad, se propone investigar enfoques de aprendizaje 

automático en línea (online learning), que permitan al sistema actualizar sus 

parámetros de manera continua a medida que recopila nuevos datos. Esto 

incrementaría su capacidad de generalización y reduciría la necesidad de 

reentrenamientos manuales, lo cual es especialmente valioso en sistemas 

desplegados durante largos períodos o en entornos altamente dinámicos. 

4) Integración con pronósticos meteorológicos 

La conexión del sistema con servicios de pronóstico del clima, mediante APIs 

abiertas o servicios especializados, podría enriquecer el proceso de toma de 

decisiones. La combinación de datos sensoriales en tiempo real con predicciones 

meteorológicas ofrecería una visión prospectiva del estado hídrico del suelo y 



Capítulo 6. Conclusiones 

179 

permitiría anticipar necesidades de riego de forma más eficiente, evitando riegos 

innecesarios o inadecuados. 

5) Mejora de la interfaz de usuario y experiencia de uso 

Si bien la interfaz actual permite la visualización y control básico del sistema, se 

sugiere su rediseño bajo principios de experiencia de usuario (UX) para mejorar la 

navegabilidad, accesibilidad e interacción. Asimismo, se recomienda el desarrollo 

de una aplicación móvil multiplataforma con capacidades offline, que facilite el uso 

por parte de agricultores con baja conectividad o limitado acceso a infraestructura 

digital. 

6) Expansión hacia arquitecturas multizona y multiusuario 

La arquitectura del sistema es susceptible de ampliación para controlar múltiples 

zonas de riego con condiciones y cultivos distintos. Explorar esta dirección permitiría 

el desarrollo de soluciones escalables aplicables a fincas medianas o grandes. 

Además, incorporar funcionalidades multiusuario (con distintos niveles de acceso y 

control) facilitaría el uso en entornos colaborativos o empresariales. 

7) Implementación de seguridad integral 

En futuros desarrollos, se vuelve indispensable reforzar la seguridad del sistema 

para su implementación en entornos reales. Esto incluye cifrado de datos (por 

ejemplo, TLS en MQTT), autenticación robusta de dispositivos y usuarios, y 

monitoreo de eventos de seguridad. Estos mecanismos garantizarán la integridad y 

confidencialidad de los datos transmitidos y almacenados, reduciendo el riesgo de 

vulnerabilidades. 

8) Evaluación del impacto económico y ambiental 

Una línea de investigación futura con enfoque interdisciplinario es la evaluación del 

impacto económico y ambiental de la adopción del sistema. Estimar el ahorro de 

agua, la reducción de costos de operación agrícola y los beneficios ambientales 

podría aportar evidencia cuantitativa de su valor, facilitando su adopción por parte 

de instituciones y políticas públicas orientadas a la agricultura sostenible. 
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6.10. Recomendaciones Finales 
Como cierre de esta investigación, se presentan una serie de recomendaciones 

orientadas tanto a la mejora continua del sistema desarrollado como a su 

implementación responsable en entornos agrícolas reales. Estas recomendaciones 

recogen aprendizajes derivados del proceso de diseño, prueba y análisis del 

sistema, y están dirigidas a investigadores, desarrolladores, técnicos agrícolas y 

tomadores de decisiones interesados en tecnologías de agricultura inteligente. 

Priorizar la validación con datos reales y en campo abierto 

Si bien el modelo predictivo demostró alta precisión con datos simulados, su 

aplicación en entornos reales requiere una fase de reentrenamiento y validación con 

datos obtenidos en campo. Es recomendable iniciar campañas de recolección 

sistemática de datos de humedad, temperatura, precipitaciones y otras variables en 

distintos tipos de suelo, cultivos y regiones climáticas, para robustecer el modelo y 

aumentar su capacidad de generalización. 

Fortalecer la infraestructura de conectividad en zonas rurales 

Para que la solución pueda ser adoptada ampliamente, es necesario garantizar la 

conectividad de red en las zonas agrícolas donde se desea implementar. Se 

recomienda explorar opciones de comunicación híbrida (Wi-Fi, redes móviles, 

LoRaWAN, entre otras) que se adapten a las condiciones del terreno, así como 

mecanismos de almacenamiento en caché en los nodos IoT ante interrupciones 

temporales de red. 

Adoptar buenas prácticas de seguridad desde el diseño 

La seguridad debe integrarse de forma transversal en todo el sistema, 

especialmente cuando se maneja información sensible o se actúa sobre 

infraestructura física. Se recomienda implementar en versiones futuras: 

 Cifrado TLS para el protocolo MQTT. 
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 Autenticación segura de usuarios y dispositivos. 

 Registros de auditoría y monitoreo de actividad del sistema. 

Estas medidas son fundamentales para proteger el sistema ante accesos no 

autorizados, sabotajes o vulnerabilidades. 

Fomentar la capacitación técnica de los usuarios finales 

Para asegurar el uso efectivo del sistema, es recomendable desarrollar materiales 

educativos, guías técnicas y talleres dirigidos a los usuarios finales, especialmente 

agricultores y técnicos rurales. Estos materiales deben cubrir aspectos como el 

mantenimiento de sensores, interpretación de alertas y gestión de datos, 

promoviendo la apropiación tecnológica desde una perspectiva práctica y accesible. 

Promover la colaboración interdisciplinaria 

El desarrollo y despliegue exitoso de sistemas agrícolas inteligentes requiere la 

convergencia de múltiples disciplinas: ingeniería, agronomía, meteorología, 

informática y economía. Se recomienda fomentar alianzas entre universidades, 

centros de investigación, cooperativas agrícolas y organismos gubernamentales 

para enriquecer el sistema con conocimiento contextual, garantizar su pertinencia y 

facilitar su transferencia tecnológica. 

Establecer mecanismos de monitoreo y mejora continua 

Finalmente, es fundamental que cualquier implementación del sistema en un 

entorno real esté acompañada de indicadores de desempeño técnico, impacto 

económico, ahorro de recursos hídricos y nivel de adopción por parte de los 

usuarios. Estos indicadores permitirán evaluar de forma continua la efectividad del 

sistema y orientar decisiones sobre su mantenimiento, mejora o expansión. 
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8. Anexos 

Anexo A. Configuraciones de hardware y software 

A.1 Instalación del sistema operativo y entorno de 
desarrollo 

Instalación del Sistema Operativo y Actualización 

Se recomienda utilizar Raspberry Pi OS (64-bit). Si aún no está instalado, se puede 

descargar desde la página oficial de Raspberry Pi y flashear en una tarjeta microSD 

utilizando Raspberry Pi Imager o balenaEtcher. 

Actualizar el sistema operativo para garantizar que los paquetes están actualizados: 

sudo apt update && sudo apt upgrade -y [63] 

 

Instalación de Python y Configuración del Entorno Virtual 

Python 3 viene preinstalado en Raspberry Pi OS, pero es recomendable asegurarse 

de que se tenga la versión más reciente e instalar las bibliotecas necesarias. 

Instalar Python y pip: 

sudo apt install python3 python3-pip -y 

Crear y activar un entorno virtual para aislar las dependencias: 

python3 -m venv .venv 

source .venv/bin/activate [63] 

 

Instalación de Bibliotecas Necesarias 

Instalar las bibliotecas específicas utilizadas en este proyecto: 
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pip install Adafruit-Blinka adafruit-circuitpython-ads1x15 adafruit-

circuitpython-bh1750 \ 

adafruit-circuitpython-busdevice adafruit-circuitpython-connectionmanager 

adafruit-circuitpython-dht \ 

adafruit-circuitpython-register adafruit-circuitpython-requests adafruit-

circuitpython-scd4x \ 

adafruit-circuitpython-typing adafruit-io Adafruit-PlatformDetect 

Adafruit-PureIO binho-host-adapter \ 

certifi charset-normalizer click idna paho-mqtt pyftdi pyserial python-

dotenv pyusb requests RPi.GPIO \ 

rpi_ws281x smbus2 sysv_ipc typing_extensions urllib3 w1thermsensor 

 

Configuración de Buses I²C Adicionales 

En este proyecto, se han creado dos buses I²C adicionales para manejar los tres 

sensores I²C utilizados. Para configurarlos, se debe modificar el archivo de 

configuración: 

sudo nano /boot/firmware/config.txt 

Agregar las siguientes líneas al final del archivo: 

dtoverlay=i2c-gpio,bus=3,i2c_gpio_sda=23,i2c_gpio_scl=24 

dtoverlay=i2c-gpio,bus=4,i2c_gpio_sda=27,i2c_gpio_scl=22 

Guardar los cambios y reiniciar la Raspberry Pi: 

sudo reboot 

Para verificar los buses creados: 

ls /dev/i2c-* 

Debe mostrar algo como: 
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/dev/i2c-1  /dev/i2c-3  /dev/i2c-4 [44] 

 

A.2 Verificación de sensores y configuración MQTT 

Habilitación de Interfaces de Hardware 

Para permitir la comunicación con los sensores, se deben habilitar las interfaces 

necesarias: 

sudo raspi-config 

Dentro del menú de configuración, habilitar en Interfacing Options: 

 I²C (para sensores BH1750, SCD41 y ADS1115) 

 1-Wire (para el sensor DS18B20) 

 SPI (si se requiere en futuras expansiones) 

Después de realizar los cambios, reiniciar la Raspberry Pi: 

sudo reboot [63] 

 

Verificación de la Comunicación con los Sensores 

Después de configurar los buses, se deben detectar los sensores conectados 

ejecutando: 

sudo i2cdetect -y 3 

sudo i2cdetect -y 4 

Esto listará las direcciones de los sensores conectados en cada bus [63]. 

 

Configuración del Cliente MQTT 
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El sistema usa el protocolo MQTT para enviar y recibir datos de sensores y órdenes 

para la bomba de agua. Se debe instalar la librería paho-mqtt y verificar la conexión 

con el broker de HiveMQ. 

Ejemplo de código para probar la conexión con HiveMQ: 

 

Código 21. Ejemplo de código para probar la conexión con HiveMQ. 

Si el mensaje "Conexión exitosa al broker MQTT" aparece en la terminal, la 

configuración ha sido correcta. 

Con esta configuración, la Raspberry Pi está lista para la adquisición de datos desde 

los sensores, el control de la bomba de agua y la transmisión de información 

mediante MQTT [64], [65]. 

 

A.3. Esquema de Conexión de Sensores y Actuadores 
Conexión del DHT22 (Humedad y temperatura ambiental) 
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 Alimentación: 3.3V o 5V 

 Comunicación: Digital (protocolo de un solo cable) 

 Pines de conexión: 

- VCC → 3.3V o 5V de la Raspberry Pi 

- GND → GND de la Raspberry Pi 

- DATA → GPIO 4 (con resistencia pull-up de 10kΩ) 

 

Diagrama 6. Conexión del sensor DHT22 con la Raspberry Pi. 

 

Conexión del DS18B20 (Temperatura del suelo) 

 Alimentación: 3.3V o 5V 

 Comunicación: 1-Wire 

 Pines de conexión: 
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- VCC → 3.3V de la Raspberry Pi 

- GND → GND de la Raspberry Pi 

- DATA → GPIO 4 (compartido con el DHT22, requiere resistencia pull-

up de 4.7kΩ) 

 

Diagrama 7. Conexión del sensor DS18B20 con la Raspberry Pi. 

 

Conexión del BH1750 (Intensidad de luz ambiental) en el Bus I²C 3 

 Alimentación: 3.3V o 5V 

 Comunicación: I²C 

 Pines de conexión: 

- VCC → 3.3V de la Raspberry Pi 

- GND → GND de la Raspberry Pi 
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- SDA → GPIO 23 (SDA bus 3) 

- SCL → GPIO 24 (SCL bus 3) 

 

Diagrama 8. Conexión del sensor BH1750 con la Raspberry Pi. 

 

Conexión del SCD41 (Sensor de CO₂) en el Bus I²C 4 

 Alimentación: 3.3V o 5V 

 Comunicación: I²C 

 Pines de conexión: 

o VCC → 3.3V de la Raspberry Pi 

o GND → GND de la Raspberry Pi 

o SDA → GPIO 27 (SDA bus 4) 
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o SCL → GPIO 22 (SCL bus 4) 

 

Diagrama 9. Conexión del sensor SCD41 con la Raspberry Pi. 

 

Conexión del LM393 (Sensor de humedad del suelo con ADC ADS1115) en el 
Bus I²C 3 

Dado que la Raspberry Pi no cuenta con entradas analógicas, se utiliza el 

convertidor ADC ADS1115 para leer la salida analógica del sensor LM393. 

 Alimentación: 3.3V o 5V 

 Conversión ADC: ADS1115 (16 bits) 

 Conexión del LM393 al ADS1115: 

o VCC → 3.3V de la Raspberry Pi 

o GND → GND de la Raspberry Pi 

o A0 (Salida Analógica) → A0 del ADS1115 
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 Conexión del ADS1115 a la Raspberry Pi: 

o VCC → 3.3V de la Raspberry Pi 

o GND → GND de la Raspberry Pi 

o SDA → GPIO 23 (SDA bus 3) 

o SCL → GPIO 24 (SCL bus 3) 

 

Diagrama 10. Conexión del LM393 con el ADS1115 y la Raspberry Pi. 

Esta configuración de hardware permite que el sistema IoT maneje múltiples 

sensores sin conflictos de dirección en el bus I²C, garantizando una comunicación 

eficiente y estable con la Raspberry Pi [66]. 

 

Esquema de Conexión de la Bomba de Agua 

La bomba de agua es el único actuador del sistema de riego inteligente basado en 

IoT y es controlada mediante un módulo relé conectado a la Raspberry Pi. La 
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activación de la bomba se basa en los valores obtenidos del sensor de humedad 

del suelo (LM393), permitiendo una gestión eficiente del riego. 

Componentes Utilizados 

 Bomba de agua. 

 Módulo relé de 1 canal. 

 Fuente de alimentación de la bomba. 

 Raspberry Pi 4 Model B. 

Conexión del Módulo Relé con la Raspberry Pi 

El módulo relé actúa como un interruptor controlado digitalmente por la Raspberry 

Pi para encender o apagar la bomba de agua. La conexión se realiza de la siguiente 

manera: 

 VCC → 5V de la Raspberry Pi 

 GND → GND de la Raspberry Pi 

 IN → GPIO 17 (puede cambiarse según necesidad) 

Cuando la Raspberry Pi envía un nivel lógico bajo al pin IN, el relé se activa y permite 

el paso de corriente hacia la bomba de agua. 

Conexión de la Bomba de Agua al Relé 

La bomba de agua opera con una fuente de alimentación externa (3v – 6V), y su 

circuito de control se establece a través del relé. 

1. Conexión en el lado de control del relé: 

 Un terminal de la fuente de alimentación se conecta a COM (común) 

del relé. 
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 El otro terminal de la fuente de alimentación se conecta directamente 

a la bomba de agua. 

 El pin NO (normalmente abierto) del relé se conecta al otro terminal 

de la bomba. 

2. Flujo de operación: 

 Cuando el relé está inactivo, el circuito de la bomba está abierto y no 

fluye corriente. 

 Cuando el relé es activado por la Raspberry Pi, el circuito se cierra y 

la bomba comienza a funcionar. 

 

Diagrama 11. Conexión eléctrica de la bomba de agua con el relé y la Raspberry Pi. 

 

Esta configuración garantiza un control preciso del riego, asegurando que el agua 

se distribuya solo cuando el nivel de humedad del suelo lo requiera [44]. 
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A.4. Lectura de sensores 
Código de Captura de Datos de Sensores 

El sistema de riego inteligente recopila información de múltiples sensores 

ambientales y del suelo, utilizando scripts individuales en Python para cada sensor. 

Estos scripts son gestionados desde el script principal mqtt_client.py, el cual 

importa y ejecuta las funciones de cada sensor. 

Estructura del Código 

El código se organiza de la siguiente manera: 

 

Código 22. Estructura de carpetas de scripts de sensores. 

Cada script de sensor define una función para leer los datos y retornarlos al cliente 

MQTT para su publicación. 

 

Código de Lectura del Sensor DHT22 (Temperatura y Humedad) 
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Código 23. Código de Lectura del Sensor DHT22. 

 

Código de Lectura del Sensor DS18B20 (Temperatura del Suelo) 

 

Código 24. Código de Lectura del Sensor DS18B20. 

 

Código de Lectura del Sensor BH1750 (Intensidad de Luz) 
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Código 25. Código de Lectura del Sensor BH1750 (parte 1). 
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Código 26. Código de Lectura del Sensor BH1750 (parte 2). 

 

Código 27. Código de Lectura del Sensor BH1750 (parte 3). 
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Código de Lectura del Sensor SCD41 (CO₂) 

 

Código 28. Código de Lectura del Sensor SCD41 (parte 1). 

 

Código 29. Código de Lectura del Sensor SCD41 (parte 2). 



Capítulo 9. Anexos 

208 

 

Código 30. Código de Lectura del Sensor SCD41 (parte 3). 

 

Código de Lectura del Sensor de Humedad del Suelo LM393 con ADS1115 

 

Código 31. Lectura del Sensor de Humedad del Suelo LM393 con ADS1115 (parte 1). 
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Código 32. Lectura del Sensor de Humedad del Suelo LM393 con ADS1115 (parte 2). 

 

Con esta arquitectura modular, cada sensor tiene su propio script, lo que facilita la 

escalabilidad y mantenimiento del sistema IoT. Scripts en Python para la lectura de 

los sensores y procesamiento de los datos obtenidos. 

 

A.5 Control de actuadores 
Código de Control de la Bomba de Agua 

El control de la bomba de agua en el sistema de riego inteligente se realiza a través 

de un módulo relé conectado a la Raspberry Pi. La activación y desactivación de la 

bomba dependen de los valores obtenidos por el sensor de humedad del suelo 

LM393 con ADS1115. 

Estructura del Código 

El código sigue la misma estructura modular utilizada en los sensores y se 

encuentra organizado de la siguiente manera: 
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Código 33. Estructura de carpetas de scripts de actuadores. 

 

Código de Control de la Bomba de Agua (relay_bomba.py) 

 

Código 34. Código de Control de la Bomba de Agua. 
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Este código garantiza que la bomba de agua se active solo cuando sea necesario, 

optimizando el uso del recurso hídrico en el sistema de riego inteligente basado en 

IoT. 

 

A.6 Implementación del cliente MQTT 
Código de Comunicación MQTT 

La comunicación en el sistema de riego inteligente se realiza utilizando el protocolo 

MQTT, un estándar ampliamente utilizado en IoT debido a su eficiencia y bajo 

consumo de ancho de banda. Este protocolo permite que la Raspberry Pi envíe 

datos de los sensores y reciba comandos para la activación y desactivación de la 

bomba de agua a través del broker de HiveMQ [47]. 

Estructura de Comunicación MQTT 

El sistema sigue una arquitectura publicador-suscriptor, donde la Raspberry Pi actúa 

como: 

 Publicador: Enviando datos de sensores a tópicos específicos en el broker. 

 Suscriptor: Recibiendo comandos para activar o desactivar la bomba de agua 

[47]. 

Los tópicos utilizados en este sistema son: 

 iot/sensores → Publica los valores de temperatura, humedad, luz, CO₂ y 

humedad del suelo. 

 iot/control → Recibe comandos (ON u OFF) para el control de la bomba 

de agua. 

Instalación de la Biblioteca MQTT 
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Para habilitar la comunicación MQTT en Python, es necesario instalar la biblioteca 

paho-mqtt si no está instalada previamente: 

pip install paho-mqtt 

Código de Cliente MQTT en mqtt_client.py 

El siguiente código implementa un cliente MQTT en la Raspberry Pi para gestionar 

la comunicación con HiveMQ: 
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Código 35. Cliente MQTT en mqtt_client.py (parte 1). 
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Código 36. Cliente MQTT en mqtt_client.py (parte 2). 
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Código 37. Cliente MQTT en mqtt_client.py (parte 3). 
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Código 38. Cliente MQTT en mqtt_client.py (parte 4). 

Explicación del Código 

1. Conexión al broker MQTT: Se establece la conexión con HiveMQ y se 

suscribe al tópico iot/control para recibir comandos. 

2. Recepción de mensajes: La función on_message procesa los mensajes 

recibidos y activa o desactiva la bomba según el comando. 

3. Publicación de datos: Cada 10 segundos, la Raspberry Pi recopila los valores 

de los sensores y los envía al tópico iot/sensores. 
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Este código asegura una comunicación eficiente entre la Raspberry Pi y el broker 

MQTT de HiveMQ, permitiendo la monitorización en tiempo real del sistema de riego 

inteligente. 

 

Publicación de Datos de Sensores 

La Raspberry Pi adquiere información de los sensores y la envía al broker MQTT en 

un formato estructurado. La publicación de estos datos se realiza en el tópico: 

iot/sensores 

Cada sensor genera datos que se publican periódicamente en el broker para su 

monitoreo en tiempo real. Ejemplo de publicación de datos: 

 

Código 39. Ejemplo de Publicación de Datos de Sensores. 
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Recepción de Comandos para la Bomba de Agua 

La Raspberry Pi se suscribe al tópico: 

iot/control 

En este tópico se reciben comandos para la activación (ON) o desactivación (OFF) 

de la bomba de agua. El siguiente código muestra cómo se suscribe y gestiona los 

mensajes recibidos: 

 

Código 40. Recepción de Comandos para la Bomba de Agua. 

 

Flujo de Comunicación 
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1. Adquisición de Datos: Los sensores miden temperatura, humedad, luz, CO₂ 

y humedad del suelo. 

2. Publicación de Datos: La Raspberry Pi publica estos valores en 

iot/sensores. 

3. Recepción de Comandos: Si un usuario o sistema externo publica ON u OFF 

en iot/control, la Raspberry Pi procesa la orden y activa/desactiva la 

bomba. 
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Anexo B. Implementación del backend y frontend web 

B.1 Configuración del backend 
Instalación y Configuración de Celery 

Para usar Celery, primero es necesario instalar la librería y configurar el backend de 

tareas y el scheduler (programador de tareas). En este caso, utilizaremos Redis 

como el broker de Celery, que es el intermediario encargado de gestionar las colas 

de tareas. 

Instalación de Celery y Redis: 

Primero, instalamos Celery y Celery Beat (para programación de tareas periódicas) 

junto con Redis como backend: 

pip install celery 

pip install celery[redis] 

Configuración en settings.py: 

En el archivo settings.py de Django, se configura el broker (Redis) y el backend de 

Celery para que se comuniquen de manera eficiente. 

 

Código 41. Configuración en settings.py. 

Esto configura Redis como el broker para manejar las tareas de Celery y también 

establece cómo se serializan los datos entre los componentes (en este caso, JSON) 

[34]. 
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Configuración del Cliente MQTT en Django 

El backend se conecta al bróker HiveMQ utilizando un cliente MQTT. Para ello, se 

puede utilizar la librería paho-mqtt, que es una de las bibliotecas más utilizadas para 

trabajar con MQTT en Python. 

A continuación, se muestra cómo configurar el cliente MQTT en el backend de 

Django para conectarse a HiveMQ, suscribirse a un tema y recibir los mensajes. 

 

Código 42. Código de Conexión MQTT en Django. 

Explicación del código: 

1. Conexión al bróker: El cliente MQTT se conecta al bróker HiveMQ utilizando 

las credenciales y el host configurado en los ajustes de Django. 
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2. Suscripción a los temas: Una vez conectado, el cliente se suscribe al tema 

iot/sensores, lo que le permite recibir todos los mensajes publicados en los 

temas relacionados con los sensores. 

3. Recepción de mensajes: Cuando el cliente recibe un mensaje, el callback 

on_message es ejecutado. Los datos del mensaje (que generalmente estarán 

en formato JSON o texto) se procesan y se almacenan en la base de datos. 

4. Procesamiento de los datos: Los datos del sensor se procesan en la función 

process_sensor_data, donde los mensajes recibidos se convierten a un 

formato adecuado para ser almacenados en la base de datos [64]. 

 

Manejo de Conexiones y Reconexión Automática 

Una de las características más importantes del protocolo MQTT es su capacidad de 

manejar conexiones inestables o intermitentes, lo que es especialmente útil en 

entornos como un cultivo, donde las conexiones pueden ser inestables. paho-mqtt 

soporta la reconexión automática en caso de que el cliente pierda la conexión con 

el bróker. 

 

Código 43. Manejo de Reconexión Automática. 

Explicación: 

 En caso de desconexión inesperada, el cliente intentará reconectarse 

automáticamente, asegurando que el backend reciba los datos de los 

sensores de manera continua [64]. 
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Manejo de Errores en la Comunicación MQTT y WebSocket 

Es importante implementar un manejo robusto de errores para asegurar la 

estabilidad del sistema, ya que tanto en la comunicación MQTT (para recibir datos 

de los sensores) como en los WebSockets (para la comunicación en tiempo real con 

el frontend), pueden ocurrir problemas de conexión, pérdida de mensajes o errores 

en la transmisión de datos. 

Errores en MQTT: 

La comunicación mediante MQTT puede fallar por diversas razones, como la 

desconexión de la red o problemas con el bróker (HiveMQ). Para manejar estos 

errores, es necesario configurar un sistema de reconexión automática y registrar los 

errores para poder analizarlos. 

1. Reconexión automática: Cuando la conexión con el bróker se pierde, el 

cliente MQTT debe intentar reconectarse automáticamente. 

2. Manejo de excepciones: Los errores en la recepción de mensajes deben ser 

capturados y gestionados adecuadamente [64]. 

 

Código 44. Ejemplo de código para reconexión automática en MQTT. 

 

Errores en WebSocket (Django Channels): 

La comunicación en tiempo real mediante WebSockets también puede enfrentar 

errores debido a desconexiones inesperadas o problemas con los datos recibidos. 

Es crucial manejar estos errores para evitar que la aplicación se detenga. 
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1. Reconexión automática: Si se pierde la conexión WebSocket, el cliente debe 

intentar reconectarse. 

2. Manejo de excepciones: Cuando se reciben datos que no son válidos o 

cuando hay un error en el procesamiento de los mensajes, este debe ser 

capturado y manejado adecuadamente [32]. 

 

Código 45. Ejemplo de código para manejar errores en Django Channels. 

 

Validaciones de los Datos de los Sensores y las Configuraciones de los 
Dispositivos 

Las validaciones son fundamentales para asegurar que los datos recibidos de los 

sensores sean correctos y que las configuraciones del sistema sean adecuadas. De 
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lo contrario, el sistema podría tomar decisiones incorrectas, como activar la bomba 

de agua en condiciones inadecuadas. 

Validación de Datos de los Sensores: 

Los datos de los sensores, como la temperatura o la humedad del suelo, deben 

estar dentro de rangos predefinidos. Se debe verificar que los datos sean 

consistentes y correctos [67]. 

 

Código 46. Ejemplo de validación de datos de sensores. 

Validación de Configuraciones de Dispositivos: 

Las configuraciones de los sensores, como los umbrales de activación de la bomba 

de agua, deben ser validadas para asegurar que estén dentro de valores 

razonables. 

 

Código 47. Ejemplo de validación de configuraciones de dispositivos. 

Estas validaciones permiten que el sistema funcione de manera robusta, 

asegurando que solo se ejecuten acciones válidas y que los datos sean confiables 

[42]. 
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B.2 Tareas automatizadas 
Definición de Tareas Periódicas con Celery Beat 

Una de las características de Celery Beat es que permite programar tareas que se 

ejecutan de manera periódica. En el contexto de este sistema, podemos tener tareas 

como la recolección periódica de datos de los sensores o la activación de 

dispositivos (como la bomba de agua). 

Definición de una tarea periódica: 

Supongamos que queremos que el sistema recoja los datos de los sensores cada 

10 minutos. Para ello, definimos una tarea en Celery que será ejecutada 

periódicamente. 

 

Código 48. Ejemplo de tarea Celery para la recolección de datos. 

Esta tarea fetch_sensor_data se encarga de obtener los datos de los sensores (a 

través de una función externa get_sensor_data) y almacenarlos en la base de datos. 

Programación de la tarea con Celery Beat: 

Para que esta tarea se ejecute cada 10 minutos, la configuramos en Celery Beat. A 

continuación, se muestra cómo hacerlo: 
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Código 49. Programación de una tarea con Celery Beat. 

La línea crontab(minute='*/10') indica que la tarea se debe ejecutar cada 10 

minutos [50]. 

 

Ejecución de Tareas Periódicas 

Cuando se ejecuta el servidor de Celery con Celery Beat, el programador manejará 

las tareas periódicas automáticamente. Aquí hay una forma básica de ejecutar 

Celery y Celery Beat: 

Ejecutando Celery con Celery Beat: 

celery -A myproject worker --loglevel=info 

celery -A myproject beat --loglevel=info 

El comando worker se encarga de ejecutar las tareas, y beat gestiona la 

programación de las tareas periódicas [50]. 

 

Monitoreo y Gestión de Tareas 

Es importante monitorear y gestionar las tareas que se ejecutan en segundo plano. 

Celery ofrece herramientas de monitoreo que permiten ver qué tareas se están 

ejecutando, si alguna ha fallado o si hay tareas pendientes. Además, se pueden 

configurar tareas de forma que se puedan ejecutar de manera más eficiente en 

entornos de producción. 
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Ejemplo de monitoreo de tareas: 

Celery permite ver el estado de las tareas ejecutadas utilizando herramientas de 

monitoreo, como Flower, una herramienta de monitoreo en tiempo real para Celery. 

pip install flower 

celery -A myproject flower 

Esto abrirá una interfaz web para monitorear las tareas de Celery en tiempo real 

[34]. 

 

Manejo de Errores en Tareas Periódicas 

Como las tareas de Celery se ejecutan en segundo plano, es crucial gestionar los 

errores que puedan ocurrir durante la ejecución. Algunos mecanismos de manejo 

de errores incluyen: 

 Reintentos automáticos: Si una tarea falla, Celery puede configurarse para 

reintentarla automáticamente después de un cierto periodo. 

 Notificación de errores: Se pueden configurar alertas para notificar a los 

administradores si una tarea crítica falla. 

 

Código 50. Ejemplo de reintentos automáticos en Celery. 

En este caso, Celery intentará ejecutar la tarea hasta 3 veces si ocurre un error [34]. 
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B.3 API y comunicación en tiempo real 
Implementación de WebSocket en Django Channels 

Django Channels proporciona una manera sencilla de gestionar WebSockets 

mediante el uso de consumers. Un consumer es responsable de recibir las 

conexiones WebSocket y enviar/recibir mensajes entre el cliente y el servidor. 

Configuración del WebSocket Consumer en Django 

A continuación, se muestra cómo crear un consumer en Django Channels para 

manejar las conexiones WebSocket, recibir mensajes y enviar actualizaciones a los 

clientes. 

1. Instalación de Django Channels: 

Primero, es necesario instalar Django Channels si aún no se ha hecho: 

pip install channels 

2. Configuración del consumidor WebSocket: 
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Código 51. Configuración del consumidor WebSocket. 

Explicación: 

 connect: Establece la conexión WebSocket y la añade a un grupo de canales 

(en este caso, "sensor_data"). 

 disconnect: Cuando el cliente se desconecta, se elimina del grupo de 

canales. 
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 receive: Recibe los mensajes del cliente WebSocket (en este caso, los datos 

de los sensores), y los transmite de vuelta al cliente a través de 

send_sensor_data. 

 send_sensor_data: Este método es utilizado para enviar datos al cliente. El 

backend puede llamar a este método para enviar actualizaciones al frontend 

en tiempo real [32]. 

Configuración de Channels Layer (Canal de Comunicación) 

Django Channels utiliza un channel layer para gestionar la comunicación entre los 

consumidores y distribuir los mensajes a través de grupos. Para configurarlo, 

utilizamos Redis como un backend para el channel layer. 

Instalación de Redis: 

Para instalar Redis, ejecutamos el siguiente comando: 

pip install channels_redis 

Configuración en settings.py: 

 

Código 52. Configuración en settings.py. 

Con esta configuración, Django Channels utilizará Redis como backend para 

gestionar las conexiones y las tareas asíncronas [32]. 

Envío de Datos de los Sensores en Tiempo Real 
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Una vez que el backend recibe los datos de los sensores (por ejemplo, a través de 

MQTT como se mostró en la sección anterior), puede enviar estos datos en tiempo 

real al frontend a través de WebSockets. 

Ejemplo de cómo enviar los datos de sensores al frontend: 

 

Código 53. Ejemplo de cómo enviar los datos de sensores al frontend. 

En este ejemplo, el backend consulta la base de datos para obtener los datos más 

recientes de los sensores y los envía al frontend a través de la conexión WebSocket 

en tiempo real [32]. 

 

Creación de Tablas en TimescaleDB 

A continuación, se describe cómo crear las tablas en TimescaleDB, basadas en el 

modelo de datos proporcionado: 
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Código 54. Creación de Tablas en TimescaleDB. 

Explicación: 

 sensors_sensor_type almacena los tipos de sensores, como temperatura, 

humedad, etc., con la unidad correspondiente. 

 sensors_sensor almacena los sensores individuales, con información como 

su nombre, ubicación, valores mínimos y máximos, y su tipo (relacionado con 

la tabla sensors_sensor_type). 

 sensors_sensordata almacena las mediciones de los sensores, incluyendo 

la marca de tiempo y el valor medido. 
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 sensors_notification almacena las notificaciones generadas por los 

sensores (por ejemplo, cuando los valores de los sensores superan ciertos 

umbrales) [40]. 

Creación de Hypertable para Datos de Sensores 

Para aprovechar las capacidades de TimescaleDB y optimizar la consulta de series 

temporales, convertimos la tabla sensors_sensordata en una hypertable. Las 

hypertables permiten que los datos se particionen automáticamente en función del 

tiempo, lo que mejora el rendimiento de las consultas sobre grandes volúmenes de 

datos. 

 

Código 55. Código SQL para convertir sensors_sensordata en una hypertable. 

Esto convierte la tabla sensors_sensordata en una hypertable, lo que permite 

manejar de manera eficiente grandes cantidades de datos que se generan con 

frecuencia [40]. 

Inserción y Consulta de Datos 

Ahora que las tablas están configuradas, podemos insertar y consultar los datos de 

manera eficiente. A continuación, se muestran ejemplos de cómo insertar datos en 

la base de datos y cómo realizar consultas sobre los datos almacenados. 

Inserción de Datos: 
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Código 56. Ejemplo de inserción de datos. 

Consultas de Datos: 

1. Obtener los últimos 10 registros de datos de sensores: 

 

Código 57. Consulta SQL para obtener los últimos registros de datos sensados. 

2. Obtener el promedio de las mediciones de un sensor en los últimos 30 

minutos: 

 

Código 58. Cálculo del promedio de lecturas de un sensor en los últimos 30 minutos. 

Escalabilidad y Gestión del Almacenamiento 

TimescaleDB permite gestionar grandes volúmenes de datos de manera eficiente, 

y proporciona herramientas para implementar políticas de retención de datos. Esto 

es útil para eliminar datos antiguos que ya no son relevantes, optimizando el 

almacenamiento. 

Política de Retención de Datos: 
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Código 59. Configuración de la política de retención de datos. 

Esto eliminará de forma automática los datos más antiguos de la tabla 

sensors_sensordata, lo que ayuda a mantener el rendimiento de la base de datos a 

medida que el volumen de datos crece [40]. 
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