

UNIVERSIDAD AUTÓNOMA DE AGUASCALIENTES
CENTRO DE CIENCIAS BÁSICAS

TESIS

DESARROLLO E IMPLEMENTACIÓN DE UN SISTEMA DE

RIEGO INTELIGENTE BASADO EN INTERNET DE LAS

COSAS PARA CULTIVOS PROTEGIDOS EN

AGUASCALIENTES, MÉXICO

PRESENTA

Ing. William Alejandro Angulo Martínez

PARA OBTENER EL GRADO DE MAESTRÍA EN CIENCIAS CON OPCIONES A
LA COMPUTACIÓN, MATEMÁTICAS APLICADAS

TUTOR

Dr. Julio César Ponce Gallegos

ASESORES

Dr. Alejandro Padilla Díaz

Dr. Jaime Muñoz Arteaga

Aguascalientes, Ags, Noviembre de 2025

MTRO. EN C. JORGE MARTÍN ALFÉREZ CHÁVEZ
DECANO DEL CENTRO DE CIENCIAS BÁSICAS

PRESENTE

Por medio del presente como DIRECTOR designado del estudiante WILLIAM ALEJANDRO ANGULO
MARTÍNEZ Con ID 538560 quien realizó la tesis titulada: DESARROLLO E IMPLEMENTACIÓN DE UN
SISTEMA DE RIEGO INTELIGENTE BASADO EN INTERNET DE LAS COSAS PARA CULTIVOS PROTEGIDOS

EN AGUASCALIENTES, MÉXICO, un trabajo propio, innovador, relevante e inédito y con fundamento en
la fracción IX del Artículo 43 del Reglamento General de Posgrados, doy mi consentimiento de que la
versión final del documento ha sido revisada y las correcciones se han incorporado apropiadamente, por
lo que me permito emitir el VOTO APROBATORIO, para que él pueda continuar con el procedimiento
administrativo para la obtención del grado.

Pongo lo anterior a su digna consideración y sin otro particular por el momento, me permito enviarle un
cordial saludo.

C.C.p.- Interesado

Elaborado por: Depto. Apoyo al Posgrado.

C.c.p.- Coordinación del Programa de Posgrado

ATENTAMENTE

CARTA DE VOTO APROBATORIO

"Se Lumen Proferre"

Aguascalientes, Ags., a 12 de noviembre de 2025.

Dr. Julio César Ponce Gallegos
UDirector de tesis

Revisado por: Depto. Control Escolar/Depto. Gestión Integral.
Aprobado por: Depto. Control Escolar/ Depto. Apoyo al Posgrado.

Código: DO-SEE-FO-07
Actualización: 02
Emisión: 13/08/25

MTRO. EN C. JORGE MARTÍN ALFÉREZ CHÁVEZ
DECANO DEL CENTRO DE CIENCIAS BÁSICAS

PRESENTE

Por medio del presente como ASESOR designado del estudiante WILLIAM ALEJANDRO ANGULO
MART0NEZ Con ID 538560 quien realizó la tesis titulada: DESARROLLO E IMPLEMENTACIÓN DE UN
SISTEMA DE RIEGO INTELIGENTE BASADO EN INTERNET DE LAS COSAS PARA CULTIVOS PROTEGIDOS

EN AGUASCALIENTES, MÉXICo, un trabajo propio, innovador, relevante e inéditoy con fundamento en
la fracción IX del Artículo 43 del Reglamento General de Posgrados, doy mi consentimiento de que la
versión final del documento ha sido revisada y las correcciones se han incorporado apropiadamente, por
lo que me permito emitir el VOTO APROBATORIO, para que él pueda continuar con el procedimiento
administrativo para la obtención del grado.

Pongo lo anterior a su digna consideración y sin otro particular por el momento, me permito enviarle un
cordial saludo.

C.C.p.- Interesado

c.c.p.- Coordinación del Programa de Posgrado

Elaborado por: Depto. Apoyo al Posgrado.

ATENTAMENTE

Revisado por: Depto. Control Escolar/Depto. Gestión Integral.
Aprobado por: Depto. Control Escolar/ Depto. Apoyo al Posgrado.

"Se Lumen Proferre"

Aguascalientes, Ags., a 12 de noviembre de 2025.

CARTA DE VOTO APROBATORIO

Dr. Alejandro Padilla Díaz
Asesor de tesis

Código: DO-SEE-FO-07
Actualización: 02
Emisión: 13/08/25

MTRO. EN C. JORGE MARTIN ALFÉREZ CHÁVEZ
DECANO DEL CENTRO DE CIENCIAS BÁSICAs

PRESENTE

Por medio del presente como ASESOR designado del estudiante WILLIAM ALEJANDRO ANGULO
MART0NEZ Con ID 538560 quien realizó la tesis titulada: DESARROLLO E IMPLEMENTACIÓN DE UN
SISTEMA DE RIEGO INTELIGENTE BASADO EN INTERNET DE LAS COSAS PARA CULTIVOS PROTEGIDOS

EN AGUASCALIENTES, MÉXICO, un trabajo propio, innovador, relevante e inédito y con fundamento en
la fracción IX del Articulo 43 del Reglamento General de Posgrados, doy mi consentimiento de que la
versión final del documento ha sido revisada y las correcciones se han incorporado apropiadamente, por
lo que me permito emitir el VOTO APROBATORIO, para que él pueda continuar con el procedimiento
administrativo para la obtención del grado.

Pongo lo anterior a su digna consideración y sin otro particular por el momento, me permito enviarle un
cordial saludo.

C.C.p.- Interesado

c.c.p.- Coordinación del Programa de Posgrado

Elaborado por: Depto. Apoyo al Posgrado.

ATENTAMENTE

Revisado por: Depto. Control Escolar/Depto. Gestión Integral.
Aprobado por: Depto. Control Escolar/ Depto. Apoyo al Posgrado.

CARTA DE VOTO APROBATORIO

"Se Lumen Proferre"

Aguascalientes, Ags., a 12 de noviembre de 2025.

Dr. Jaime Muñoz Arteaga
Asesor de tesis

Cödigo: DO-SEE-FO-07
Actualización: 02
Emisión: 13/08/25

DICTAMEN DE IIBERACION ACAOÉMICA

PARA INICIAR LOS ÍRAMIT€S OEt EXAMEN DE GRAOO

recha d€ d¡ctaminación (dd/ñm/¿ d: 2r/r712025

ID 538560

Máertría en Ci€nciat coñ Opt¡ones a la Computa(ióñ, M'temática! LGAC ldel
lñ*eniería de Software

i{oDAL¡oaD DEL rEJ! ¡ ¡ ¡ 'T€s¡s Dor artíc.llot
{

lnóiiEo oi éreoo, rradkionel ' '. ' científ¡cos

D.la.iollo . lñpleñent.cróñ d. u¡ 5¡3t.N d' Ri4ol¡t'li¡'nt' Sasado en lof p'ñ
TITULO:

Setraba¡o para ayudar alcu¡dado delagua en €lerado, va qu€ e5 importante porq

ex ovquetraer¿ pro¡le-nt en unluturocercaño en produccion de alimento' atu' potable para

la poblacion Y como materia o iñdirpensable) d€ v¿ñas indulrias

rttD¡caR sEGú Co¡RESPToNDA: sr, No, a(¡o^lk)

Con base en eror criterios, se autori¡a cont¡nu.r con los rÉmite5 de titutac¡ón y protramación det€xamen d€ &ado:

IIRMAS

5í x

Elaboró:

.NoMBRE y FrnMA oEL{LA) coNs€tEño(a) 5EGúN LA LGAC D€ aDscRtpctoñ PA
. h @e@titu., h.@ nñó

OMIRE Y F¡RMA OEL COOiDINADOR OE POSG¡AOO:

Dra. Ma

M. en. C. rorge Martín Alfére¿ Cháv€¿

p

ñoMaRE y ftRMA oEt s€cREranto DE ¡NvEs¡GAoóN y posciaDo:

NOM BRE Y FIRMA OEL DEC¡NO:

ttot : pae.d. d ffia. poto d Dcpto. de Apoto ot posg@do

.i.-.rr¡tuo.rk 2.n dó.vd.rid.n6b6ñ¡¡ó.rqr.d.,s.¡¡r.-aJ.frkn d.od.rcd-¡.&úi' p'o,*tu rytuir.-l.rda.,

la rev¡s¡ón dcarléñica del
é coñAru.nt..on l.t IGAC d.lEI

rob emát ca lue abordadá d.sd. uñ enfoque mulr

r.tultados pr.sén$dor .¡ .l lrab.io 50ñ d. gñn r.l.v¡nci. ci.¡tífiÉ, t.cñolo8íc. o p.oLsion¿l

.l coñcimi.nto de eo áre¡E o d.huettñ m* dé uñ. .gonaciói
L.i.ponacion$ r6pond.ñ á lot

rrañ5féreñcia del concimi.nto o t{noló8i..
d. la h.rami.nra ántiplag¡o)cuñplécoñ la ética Para 1á i

st compl..onlo3cñ¿ládopor.lR.gl.NntoGen.ráld.Poiar.dos
cumpl. con los requ¡s¡tos t.ñal.do! .ñ el pl.n d..!rudlo! {créditor cúriculares, opt.livos, ádivid.d.e compl.runta.i.i, ettañc¡e, pEdetor.l,.tc.)

Cu.nta coñ los votos .probátorios dllcomitérutohel
cu.ñr. coñ l¿ can¡ d. et¡3t ..ióñ d.l u3u.rb (En 6¡0d. qe cocapond¡)
coincd. con él título y obj.t¡vo E¡Btñdo
fi.n. cona.ueñcia con cu.rpd á..démicos
l'.n.. cvud€ aSECHT actua ¿ádo

Ti.n.. o los artículoi .c.pt.dor o publi@dos ycumpl. coñ loi Bqukitos iñ!titu.ioñ¡|8 {éñ c*o d. qué p.oc.d.)

*Eo caso alé feti§ pr artíaulot da¡rdll@s t uulcdor (@pt ¿tr e¡o.i ta tstt tu. qt a¡tkut6)
Ac.pr¡cióñ o Publicac6ñ d. io! árticulos .n EvBr¡s ind.¡¡d.! de álro iñpa.to qún .l niwl d.l pro*ñru
tl (1.).rtudi.nte es el priru..uro(á)
al {lá) ¡ulo.lál d. cor6Doñd.nci. .e .l DiÉdor l¿} d.l N ú.1.o Ac¿démicó

an lor ¡niculos s. v.ñ rélléládor loe obj.tivo5 d.la t.rG, y¿ qu. so¡ producto d..sté táb:iod. invédiaációñ.
Lc árliculos iñt4En los capítulot d. lá r6isy 3. pr.s.ntañ .n .l idioma en qu.lo.rcn poblicedor

',En cato rle fesis @¡ Patente

rLbeg|D,¡Éo¡]fu¡,

aebb.do @i o coiror rñt./ D aFp .t po{.

L¡

tlOl-IBRE: will¡'m Alejandro Antulo Ma'tínez

PROGRAMA:

fggu.^"-'

IMPACTO SOCIAI (*ñalarel impa.to locr.do):

t nl
T----?----t
fs/-ilsr
lsr
lsllsI

ls!

--;_-l
-----E.--1

SI
ls/

Iual
INAl-fr¡---l
I t'tA

l-----M-

Fecha 11/24/2025
1) Datos personales

Nombre William Alejandro Angulo Martínez
Dirección Prolongación Libertad 1727 Int. 6 C.P. 20020
Ciudad Aguascalientes Estado Aguascalientes
Teléfono 5559076323 E-Mail williamangulomartinez@gmail.com

Grado Académico actual Licenciatura

CURP(18 car.)

RFC(13 car.)

ORCID(16 car.)

2)Datos escolares

Centro Centro de Ciencias Básicas
Departamento Ciencias de la Computación
Título al que opta Maestro en Ciencias de la Computación
Nivel: Especialidad Maestría Doctorado

3) Tesis

Título de la Tesis DESARROLLO E IMPLEMENTACIÓN DE UN SISTEMA DE RIEGO INTELIGENTE BASADO EN
INTERNET DE LAS COSAS PARA CULTIVOS PROTEGIDOS EN AGUASCALIENTES, MÉXICO.

Temas/materias Ingeniería de Software

Nombre del Tutor Dr. Julio César Ponce Gallegos

Sí se autoriza No se autoriza Se autoriza después de________años

4) Especificaciones para entrega de tesis en formato electrónico

Integrar en un sólo archivo el trabajo completo en formato PDF.
El texto en formato digital deberá ser identico al de la versión impresa incluyendo la paginación.

Método de entrega CD-ROM DVD Archivo electrónico

William Alejandro Angulo Martínez

Se entregará en un disco óptico no reescribible (CD+/-R o DVD+/-R), deberá de ser cerrado, no estar protegido, etiquetado o rotulado y
deberá contar con una caja con portada coincidente con los datos de la portada del trabajo. Excepto cuando, por alguna contingencia, la
Dirección General de Investigación y Posgrado, autorice a enviar solo el archivo electrónico.

Nombre y firma del Tesista

Si Usted cuenta con un registro
ORCID, le pedimos atentamente lo

proporcione.

Autorización para la publicación de Tesis
electrónicas

Restricciones de Publicación

Por medio de este conducto se autoriza al Departamento de Información Bibliográfica de la Universidad Autónoma de Aguascalientes la
publicación electrónica de esta tesis

De acuerdo a la Normatividad: DO-SEE-IT-05 Manual para la elaboración del Trabajo recepcional en los programas de posgrado: Tesis o
trabajo práctico.

Los anexos que contengan archivos electrónicos como multimedia, software, programas autoejecutables o aplicaciones deberán ser
agregados en el disco.

X

X

A U M W 9 4 0 6 1 7 H N E N R L 0 8

A U M W 9 4 0 6 1 7 I A 1

X

0 0 0 9 0 0 0 0 7 3 7 0 0 6 4 7- - -

Elaborado por: Jefe de Sección.
Revisado por: Jefe de DIB.
Aprobado por: Jefe de DIB.

Código: AD-CR-FO-13
Actualización: 04

Emisión: 08/05/2020

Agradecimientos

Quiero expresar mi más sincero agradecimiento a mi tutor Dr. Julio César Ponce Gallegos,
por su guía, compromiso y paciencia durante el desarrollo de este trabajo. Su orientación
académica y su confianza en mis capacidades fueron fundamentales para alcanzar los
objetivos planteados.

A mis asesores Dr. Alejandro Padilla Díaz y Dr. Jaime Muñoz Arteaga, por compartir su
experiencia, por sus valiosas observaciones y por contribuir al crecimiento académico y
técnico de esta investigación. Su acompañamiento constante hizo posible convertir una idea
en un proyecto tangible y significativo.

A mi familia, por su apoyo incondicional, por su comprensión en los momentos de ausencia
y por motivarme siempre a dar lo mejor de mí. Cada palabra de aliento y cada gesto de
cariño fueron el impulso que me permitió seguir adelante.

A quienes alguna vez compartieron conmigo sueños, retos o silencios, y que por distintos
motivos ya no están presentes: gracias por su granito de arena.

A todos ellos, gracias por formar parte de este logro, que no solo representa el cierre de una
etapa académica, sino también el resultado del esfuerzo compartido y del apoyo de quienes
siempre creyeron en mí.

A mi esposa, mi compañera de vida y de sueños.

Gracias por tu amor, por tu paciencia infinita y por creer en mí incluso en los momentos
más difíciles. Tu apoyo constante, tus palabras de aliento y tu comprensión fueron mi

mayor impulso para no rendirme. Esta meta es también tuya, porque sin ti este logro no
habría sido posible.

A mi madre, por ser mi ejemplo más grande de esfuerzo, amor y perseverancia.

Por enseñarme desde pequeño el valor del trabajo honesto, la dedicación y la fe en lo que
uno hace. Gracias por estar siempre, por tu cariño incondicional y por ser la raíz de todo

lo que soy.

Con todo mi amor y gratitud, dedico este trabajo a ustedes.

1

Índice General

ÍNDICE DE IMÁGENES .. 7

ÍNDICE DE DIAGRAMAS ... 8

ÍNDICE DE TABLAS .. 9

ÍNDICE DE CÓDIGOS ... 10

RESUMEN ... 12

ABSTRACT ... 13

1. INTRODUCCIÓN .. 15
1.1. CONTEXTO ... 15
1.2. PROBLEMA DE INVESTIGACIÓN .. 16
1.3. FORMULACIÓN DE OBJETIVOS .. 17

1.3.1. Objetivo General ... 17
1.3.2. Objetivos Específicos .. 17

1.4. JUSTIFICACIÓN ... 18
1.4.1. Pertinencia ... 19
1.4.2. Valor Científico .. 19
1.4.3. Valor Práctico .. 19

1.5. ALCANCE Y LIMITACIONES.. 20
1.5.1. Alcance ... 20
1.5.2. Limitaciones ... 22

2. MARCO TEÓRICO ... 25

2.1. SISTEMAS DE RIEGO .. 26
2.2. INTERNET DE LAS COSAS (IOT) ... 27
2.3. FUNDAMENTOS DE IOT APLICADOS A LA AGRICULTURA 28

2.3.1. Conectividad y Monitoreo en Tiempo Real .. 29
2.3.2. Automatización del Riego .. 29
2.3.3. Agricultura de Precisión ... 29
2.3.4. Sostenibilidad y Gestión de Recursos .. 29

2.4. GESTIÓN SOSTENIBLE DEL AGUA ... 30
2.4.1. Principios de la Gestión Sostenible del Agua ... 30

2

2.4.2. Tecnologías y Prácticas para la Sostenibilidad Hídrica... 30
2.4.3. Impacto en la Agricultura y el Medio Ambiente ... 31
2.4.4. Desafíos y Oportunidades ... 31

2.5. IMPACTO DEL CRECIMIENTO URBANO .. 31
2.5.1. Presión sobre los Recursos Hídricos ... 32
2.5.2. Cambios en el Uso del Suelo ... 32
2.5.3. Contaminación del Agua ... 32
2.5.4. Estrategias de Mitigación.. 33

2.6. INDUSTRIA 4.0 Y SU APLICACIÓN EN LA AGRICULTURA 33
2.6.1. Cultivos Protegidos: Innovación y Sostenibilidad .. 34
2.6.2. Internet de las Cosas (IoT) en la Agricultura ... 34
2.6.3. Justificación del Uso de IoT en Cultivos Protegidos .. 35

3. METODOLOGÍA ... 37

3.1. FASE 1: ANÁLISIS DEL PROBLEMA Y DEFINICIÓN DE REQUERIMIENTOS ... 37
3.2. FASE 2: DISEÑO DEL SISTEMA ... 38

3.2.1. Diseño de Software ... 38
3.3. FASE 3: IMPLEMENTACIÓN ... 39

3.3.1. Desarrollo de Software ... 39
3.3.2. Integración con Hardware .. 40
3.3.3. Descripción de Sensores y Controlador ... 42

 Controlador Central: Raspberry Pi .. 42

 Sensor de Humedad del Suelo: DHT22 ... 43

 Sensor de Temperatura del Aire y del Suelo: DS18B20 .. 44

 Sensor de Niveles de Luz: BH1750 ... 45

 Sensor de Concentraciones de CO2: SCD30 .. 46

 Integración y Monitoreo.. 47

3.4. FASE 4: VALIDACIÓN EN ENTORNO DE LABORATORIO.................................. 47
3.5. FASE 5: DOCUMENTACIÓN DEL PROCESO ... 48

4. DESARROLLO E IMPLEMENTACIÓN ... 51

4.1. DESARROLLO DEL SISTEMA SIRCA-IOT ... 52
4.1.1. Arquitectura General del Sistema .. 52

 Estructura de la Arquitectura Distribuida ... 53

 Comunicación y Flujo de Datos .. 55

3

 Principios de Diseño ... 56

4.1.2. Subsistema IoT: Adquisición y Transmisión de Datos .. 57
 Controlador Central .. 57

 Sensores y Actuadores Implementados .. 59

4.1.2.2.1. Sensores .. 59

4.1.2.2.2. Actuadores ... 61

 Conectividad y Comunicación .. 62

4.1.2.3.1. Protocolo MQTT .. 62

4.1.2.3.2. Broker MQTT de HiveMQ .. 63

4.1.2.3.3. Tópicos MQTT Utilizados en el Sistema ... 63

4.1.2.3.4. Flujo de Datos y Procesamiento ... 64

4.1.3. Subsistema Web: Backend y Frontend ... 66
 Backend del Sistema ... 67

4.1.3.1.1. Stack Tecnológico .. 68

4.1.3.1.2. Recepción de Datos desde HiveMQ .. 72

4.1.3.1.3. Envío de Datos en Tiempo Real (WebSocket) .. 73

4.1.3.1.4. Tareas Periódicas con Celery ... 74

4.1.3.1.5. API REST para Configuración ... 74

 Estructura de la Base de Datos .. 79

4.1.3.2.1. Modelo de Datos en TimescaleDB .. 79

 Frontend del Sistema .. 81

4.1.3.3.1. Stack Tecnológico .. 82

4.1.3.3.2. Arquitectura de la SPA ... 86

 Comunicación entre Backend y Frontend .. 90

4.1.3.4.1. API REST con Axios ... 91

4.1.3.4.2. WebSockets para Comunicación en Tiempo Real .. 92

4.1.3.4.3. Integración entre WebSockets y API REST .. 95

4.1.3.4.4. Componentes Principales ... 96

 Flujo de Datos Integrado ... 100

4.1.3.5.1. Adquisición de Datos desde los Sensores .. 100

4

4.1.3.5.2. Procesamiento y Almacenamiento de Datos .. 101

4.1.3.5.3. Visualización en Tiempo Real (Frontend).. 101

4.1.3.5.4. Visualización de Datos Históricos (Frontend) ... 102

4.1.3.5.5. Notificaciones y Alertas (Frontend) .. 103

4.1.3.5.6. Resumen del Flujo de Datos ... 103

 Seguridad y Consideraciones Técnicas .. 103

4.1.3.6.1. Seguridad .. 104

4.1.3.6.2. Validaciones de Datos .. 105

4.1.3.6.3. Control de Errores ... 106

4.1.3.6.4. Rendimiento ... 107

4.1.3.6.5. Escalabilidad ... 108

4.1.4. Subsistema Predictivo ..109
 Datos utilizados para el entrenamiento .. 109

4.1.4.1.1. Características generales del conjunto de datos ..110

4.1.4.1.2. Justificación de las variables utilizadas ... 111

4.1.4.1.3. Simulación de condiciones reales .. 111

4.1.4.1.4. Ventajas del enfoque simulado ...112

4.1.4.1.5. Limitaciones ...113

 Proceso de entrenamiento ... 113

4.1.4.2.1. Herramientas utilizadas ..113

4.1.4.2.2. Preprocesamiento de los datos ..114

4.1.4.2.3. Selección del algoritmo ...115

4.1.4.2.4. Entrenamiento del modelo ...115

4.1.4.2.5. Validación cruzada ...116

4.1.4.2.6. Exportación del modelo ..117

 Toma de decisiones basada en predicción .. 117

4.1.4.3.1. Lógica de operación del sistema predictivo ...118

4.1.4.3.2. Estructura técnica de la integración ..119

4.1.4.3.3. Interfaz de usuario y experiencia .. 120

5

4.1.4.3.4. Ventajas del enfoque predictivo .. 121

4.1.4.3.5. Limitaciones actuales ... 121

 Limitaciones y perspectivas de mejora .. 121

4.1.4.4.1. Limitaciones del modelo actual .. 122

4.1.4.4.2. Perspectivas de mejora y líneas futuras de trabajo ... 123

4.2. IMPLEMENTACIÓN DEL SISTEMA SIRCA-IOT ..125
4.2.1. Integración del sistema ..125

 Arquitectura general del sistema ... 125

 Flujo de funcionamiento del sistema ... 127

 Sincronización, control y monitoreo .. 128

 Modularidad y escalabilidad ... 129

 Seguridad y robustez del sistema ... 129

5. RESULTADOS ... 132

5.1. VALIDACIÓN FUNCIONAL DEL SISTEMA ..132
5.1.1. Lectura y transmisión de datos sensoriales ...132
5.1.2. Estabilidad de comunicación y manejo de errores ..134
5.1.3. Visualización de datos en tiempo real ...135
5.1.4. Activación del sistema de riego ..137
5.1.5. Registro y trazabilidad de eventos ..140

5.2. DESEMPEÑO DEL MODELO DE MACHINE LEARNING141
5.2.1. Métricas de evaluación ..142
5.2.2. Resultados cuantitativos ...142
5.2.3. Evaluación cualitativa y funcional ...143
5.2.4. Robustez y limitaciones observadas ..144
5.2.5. Recomendaciones para mejora del modelo ...144
5.2.6. Impacto en la lógica del sistema ...145

5.3. EVALUACIÓN DE RENDIMIENTO DEL SIRCA-IOT ..145
5.3.1. Tiempo de respuesta total del sistema ...145
5.3.2. Consumo y utilización de recursos computacionales...148
5.3.3. Estabilidad y confiabilidad del sistema ...149
5.3.4. Capacidad de escalabilidad y adaptabilidad ..150
5.3.5. Consideraciones y recomendaciones ..151

5.4. SÍNTESIS DE RESULTADOS ..151

6

5.4.1. Integración funcional completa y operación sincronizada151
5.4.2. Precisión y utilidad del modelo predictivo ..152
5.4.3. Rendimiento, estabilidad y escalabilidad del sistema ..153
5.4.4. Limitaciones y áreas de oportunidad ..154
5.4.5. Contribuciones y perspectivas de impacto ..154

6. CONCLUSIONES .. 157

6.1. CUMPLIMIENTO DE LOS OBJETIVOS PROPUESTOS ...157
6.2. VIABILIDAD TÉCNICA Y OPERATIVA DEL SISTEMA PROPUESTO................160
6.3. DESEMPEÑO Y UTILIDAD DEL MODELO PREDICTIVO162
6.4. APORTES DEL SISTEMA AL SECTOR AGRÍCOLA ...165
6.5. LIMITACIONES DEL TRABAJO ...168
6.6. ESCALABILIDAD Y PERSPECTIVAS DE MEJORA..170
6.7. CONTRIBUCIÓN ACADÉMICA Y CIENTÍFICA..174
6.8. REFLEXIÓN FINAL ...176
6.9. TRABAJOS FUTUROS ...177
6.10. RECOMENDACIONES FINALES ..180

7. BIBLIOGRAFÍA .. 183

8. ANEXOS ... 192

ANEXO A. CONFIGURACIONES DE HARDWARE Y SOFTWARE192
A.1 Instalación del sistema operativo y entorno de desarrollo..192
A.2 Verificación de sensores y configuración MQTT..194
A.3. Esquema de Conexión de Sensores y Actuadores ..195
A.4. Lectura de sensores ..203
A.5 Control de actuadores ...209
A.6 Implementación del cliente MQTT ...211

ANEXO B. IMPLEMENTACIÓN DEL BACKEND Y FRONTEND WEB220
B.1 Configuración del backend ..220
B.2 Tareas automatizadas ...226
B.3 API y comunicación en tiempo real ...229

7

Índice de Imágenes
Imagen 1. Modelo de Datos (Diagrama ER Simplificado). 81

Imagen 2. Captura de pantalla de Dashboard. 97

Imagen 3. Captura de pantalla de Configuración. 98

Imagen 4. Captura de pantalla de Editar Sensor. 98

Imagen 5. Captura de pantalla de Notificaciones. 99

Imagen 6. Captura de pantalla de Métricas. 100

Imagen 7. Backend recibiendo en tiempo real de los mensajes MQTT. 134

Imagen 8. Log del backend mostrando la recepción exitosa de datos y manejo de errores. 135

Imagen 9. Panel principal del frontend con visualización en tiempo real de humedad del suelo. 136

Imagen 10. Gráfico comparativo: temperatura ambiente vs humedad relativa. 136

Imagen 11. Indicador de estado con alerta visual por humedad baja. 137

Imagen 12. Fotografía del prototipo físico con relé y bomba conectados a la Raspberry Pi. 138

Imagen 13. Secuencia de activación automática de bomba de agua. 139

Imagen 14. Secuencia de apagado automático de bomba de agua. 139

Imagen 15. Indicador visual en el frontend confirmando el estado "Riego activado". 140

Imagen 16. Consulta en la base de datos de registros históricos de humedad del suelo. 141

Imagen 17. Gráfico comparativo: Humedad real vs. Humedad predicha. 143

Imagen 18. Uso de CPU y Memoria RAM en Raspberry Pi durante operación. 149

8

Índice de Diagramas
Diagrama 1. Arquitectura General del Sistema. 53

Diagrama 2. Arquitectura del Sistema (Backend, Frontend y Almacenamiento de Datos). 57

Diagrama 3. Diagrama de flujo de datos y procesamiento en el sistema IoT. 66

Diagrama 4. Diagrama de Flujo de Datos en el Backend. 73

Diagrama 5. Diagrama de flujo del proceso de adquisición y transmisión de datos. 133

Diagrama 6. Conexión del sensor DHT22 con la Raspberry Pi. 196

Diagrama 7. Conexión del sensor DS18B20 con la Raspberry Pi. 197

Diagrama 8. Conexión del sensor BH1750 con la Raspberry Pi. 198

Diagrama 9. Conexión del sensor SCD41 con la Raspberry Pi. 199

Diagrama 10. Conexión del LM393 con el ADS1115 y la Raspberry Pi. 200

Diagrama 11. Conexión eléctrica de la bomba de agua con el relé y la Raspberry Pi. 202

9

Índice de Tablas
Tabla 1. Variables usadas para entrenar el modelo. 110

Tabla 2. Rangos de variables usados en la simulación. 112

Tabla 3. Resultados de la validación cruzada. 117

Tabla 4. Indicadores de rendimiento en la transmisión de datos y confiabilidad del canal MQTT. 134

Tabla 5 – Métricas de desempeño del modelo de predicción. 142

Tabla 6. Resumen de tiempos de respuesta. 148

Tabla 7 – Resumen de consumo de recursos 148

Tabla 8. Matriz de cumplimiento de objetivos. 160

10

Índice de Códigos
Código 1. Configuración de Django REST Framework en settings.py. 75

Código 2: Ejemplo de Serializador para Configuración de Sensores. 76

Código 3: Ejemplo de Vista para Configuración de Sensores. 77

Código 4: Configuración de Rutas en urls.py. 77

Código 5: Configuración de djangorestframework-simplejwt en settings.py. 78

Código 6: Ejemplo de un Componente en Vue 3. 83

Código 7: Ejemplo de Uso de Vuetify en un Componente. 84

Código 8: Ejemplo de Uso de Axios. 85

Código 9: Ejemplo de Uso de Pinia. 86

Código 10: Ejemplo de solicitud con Axios. 89

Código 11: Ejemplo de implementación de WebSocket en Vue 3. 90

Código 12: Ejemplo de uso de Axios para obtener datos de la API. 92

Código 13: Ejemplo de configuración de WebSocket en Vue 3. 94

Código 14: Ejemplo de configuración en Django REST Framework. 104

Código 15: Ejemplo de validación en Django. 106

Código 16: Ejemplo de manejo de errores en Django. 107

Código 17: Ejemplo de manejo de errores con Axios. 107

Código 18. Serialización del modelo entrenado con joblib en formato .pkl. 117

Código 19. Carga del modelo entrenado y predicción de humedad a partir de datos sensados. 120

Código 20. Lógica de decisión para el control automático del riego según la humedad predicha. 120

Código 21. Ejemplo de código para probar la conexión con HiveMQ. 195

Código 22. Estructura de carpetas de scripts de sensores. 203

Código 23. Código de Lectura del Sensor DHT22. 204

Código 24. Código de Lectura del Sensor DS18B20. 204

Código 25. Código de Lectura del Sensor BH1750 (parte 1). 205

Código 26. Código de Lectura del Sensor BH1750 (parte 2). 206

Código 27. Código de Lectura del Sensor BH1750 (parte 3). 206

Código 28. Código de Lectura del Sensor SCD41 (parte 1). 207

Código 29. Código de Lectura del Sensor SCD41 (parte 2). 207

Código 30. Código de Lectura del Sensor SCD41 (parte 3). 208

Código 31. Lectura del Sensor de Humedad del Suelo LM393 con ADS1115 (parte 1). 208

Código 32. Lectura del Sensor de Humedad del Suelo LM393 con ADS1115 (parte 2). 209

11

Código 33. Estructura de carpetas de scripts de actuadores. 210

Código 34. Código de Control de la Bomba de Agua. 210

Código 35. Cliente MQTT en mqtt_client.py (parte 1). 213

Código 36. Cliente MQTT en mqtt_client.py (parte 2). 214

Código 37. Cliente MQTT en mqtt_client.py (parte 3). 215

Código 38. Cliente MQTT en mqtt_client.py (parte 4). 216

Código 39. Ejemplo de Publicación de Datos de Sensores. 217

Código 40. Recepción de Comandos para la Bomba de Agua. 218

Código 41. Configuración en settings.py. 220

Código 42. Código de Conexión MQTT en Django. 221

Código 43. Manejo de Reconexión Automática. 222

Código 44. Ejemplo de código para reconexión automática en MQTT. 223

Código 45. Ejemplo de código para manejar errores en Django Channels. 224

Código 46. Ejemplo de validación de datos de sensores. 225

Código 47. Ejemplo de validación de configuraciones de dispositivos. 225

Código 48. Ejemplo de tarea Celery para la recolección de datos. 226

Código 49. Programación de una tarea con Celery Beat. 227

Código 50. Ejemplo de reintentos automáticos en Celery. 228

Código 51. Configuración del consumidor WebSocket. 230

Código 52. Configuración en settings.py. 231

Código 53. Ejemplo de cómo enviar los datos de sensores al frontend. 232

Código 54. Creación de Tablas en TimescaleDB. 233

Código 55. Código SQL para convertir sensors_sensordata en una hypertable. 234

Código 56. Ejemplo de inserción de datos. 235

Código 57. Consulta SQL para obtener los últimos registros de datos sensados. 235

Código 58. Cálculo del promedio de lecturas de un sensor en los últimos 30 minutos. 235

Código 59. Configuración de la política de retención de datos. 236

12

Resumen
Aguascalientes, ubicado en una región semiárida de México, enfrenta una crisis

hídrica constante debido a la escasez de lluvias, la sobreexplotación de acuíferos y

la contaminación del agua. La agricultura, siendo una de sus principales actividades

económicas, se ve especialmente afectada por estas condiciones. Ante este

panorama, los cultivos protegidos representan una alternativa más eficiente en el

uso de suelo y agua.

Esta tesis presenta el desarrollo y validación experimental en laboratorio de un

sistema de riego inteligente basado en tecnologías de Internet de las Cosas (IoT) y

aprendizaje automático (machine learning). El sistema utiliza sensores conectados

a una Raspberry Pi para recolectar datos ambientales en tiempo real (como

humedad del suelo, temperatura y luz), los cuales son enviados vía MQTT a una

aplicación web que actúa como sistema central de monitoreo y control. A partir del

análisis de estos datos mediante un modelo de machine learning, el sistema

demuestra su capacidad para tomar decisiones automáticas simuladas orientadas

a optimizar el riego.

El objetivo principal es contribuir al uso eficiente del agua en cultivos protegidos,

alineándose con los objetivos de sostenibilidad del estado de Aguascalientes y de

México a nivel nacional. La investigación busca no solo ofrecer una solución técnica

viable, sino también aportar al desarrollo de sistemas agrícolas resilientes y

sostenibles ante los desafíos del cambio climático y el crecimiento urbano.

Palabras clave: riego inteligente, internet de las cosas, aprendizaje automático,

agricultura de precisión, cultivos protegidos, sostenibilidad hídrica

13

Abstract
Aguascalientes, located in a semi-arid region of Mexico, faces a constant water crisis

due to low rainfall, overexploitation of aquifers, and water pollution. Agriculture, being

one of its main economic activities, is particularly affected by these conditions. In this

context, protected crops represent a more efficient alternative for land and water

use.

This thesis presents the development and laboratory validation of an intelligent

irrigation system based on Internet of Things (IoT) and machine learning

technologies. The system uses sensors connected to a Raspberry Pi to collect real-

time environmental data (such as soil moisture, temperature, and light), which are

transmitted via MQTT to a web application that serves as the central monitoring and

control system. Through the analysis of these data using a machine learning model,

the system demonstrates its ability to perform simulated automated decision-making

aimed at optimizing irrigation.

The main objective is to contribute to the efficient use of water in protected crops, in

alignment with the sustainability goals of the state of Aguascalientes and of Mexico

at the national level. The research seeks not only to offer a viable technical solution

but also to contribute to the development of resilient and sustainable agricultural

systems in the face of climate change and urban growth challenges.

Keywords: smart irrigation, internet of things, machine learning, precision

agriculture, protected crops, water sustainability

Capítulo 1. Introducción

Capítulo 1. Introducción

15

1. Introducción

1.1. Contexto
Aguascalientes, un estado situado en el centro de México, se encuentra en una

región caracterizada por su clima semiárido, lo que representa un reto significativo

para la gestión de recursos hídricos y la agricultura. La escasez de agua se ha

convertido en una problemática crónica para el estado, exacerbada por factores

como largos períodos de sequía, precipitaciones insuficientes y un aumento en la

demanda de agua provocado por el crecimiento de la población y la expansión

urbana [1]. Esta situación se agrava aún más debido a la sobreexplotación de los

acuíferos y la contaminación del agua, poniendo en riesgo el suministro de agua

potable y la sostenibilidad de las actividades agrícolas, vitales para la economía

local [1].

La agricultura juega un papel crucial en el sustento económico y social de

Aguascalientes. Frente a las adversidades climáticas y los limitados recursos

hídricos, los agricultores han buscado alternativas para continuar produciendo de

manera eficiente. Los cultivos protegidos, tales como los que se desarrollan en

invernaderos y otras estructuras similares, surgen como una solución innovadora

frente a estas adversidades. Estos sistemas permiten un control más preciso del

ambiente de cultivo, lo que se traduce en rendimientos más altos y un uso más

eficiente del agua y del espacio, elementos críticos en un contexto de escasez

hídrica y presión sobre las tierras agrícolas.

En respuesta a estos desafíos, el desarrollo e implementación de tecnologías

avanzadas, como los sistemas de riego inteligente basados en la tecnología de

Internet de las Cosas (IoT), representan una vía prometedora para mejorar la

gestión del agua en la agricultura [2]. Mediante la utilización de sensores y

dispositivos conectados, estos sistemas pueden monitorear en tiempo real variables

clave como la humedad del suelo, la temperatura y la luminosidad, permitiendo

ajustes precisos y automáticos en el riego. Este enfoque no solo busca optimizar el

uso del agua, sino también alinear las prácticas agrícolas con estrategias de

Capítulo 1. Introducción

16

desarrollo sostenible, contribuyendo a los esfuerzos locales y nacionales para

enfrentar la escasez hídrica y fomentar una agricultura resiliente al cambio climático

[3], [4].

Esta investigación se inscribe en un momento crítico para Aguascalientes, buscando

aportar soluciones concretas a los retos de gestión del agua que enfrenta el estado,

al tiempo que se alinea con los objetivos de desarrollo sostenible y de mitigación de

los efectos del crecimiento urbano [3], [4]. Al hacerlo, no solo aborda una necesidad

inmediata, sino que también se proyecta hacia la construcción de un futuro más

sostenible y próspero para la agricultura en Aguascalientes.

1.2. Problema de Investigación
En Aguascalientes, México, la escasez de agua y las condiciones climáticas

adversas imponen desafíos significativos al sector agrícola, un componente vital de

la economía local. La limitada disponibilidad de agua y los métodos de riego

tradicionales, que a menudo resultan ineficientes, ponen en riesgo la sostenibilidad

a largo plazo de la agricultura en la región. Estos métodos no solo contribuyen a la

sobreexplotación de los acuíferos [1], sino que también aumentan la vulnerabilidad

de los cultivos ante condiciones climáticas extremas, afectando la productividad

agrícola y la seguridad alimentaria. Además, la contaminación del agua agrava la

situación, limitando aún más los recursos hídricos disponibles para uso agrícola [1].

Frente a este escenario, emerge la necesidad imperiosa de explorar y adoptar

soluciones tecnológicas innovadoras que permitan una gestión más eficiente del

agua. La tecnología de IoT presenta una oportunidad prometedora para revolucionar

los sistemas de riego mediante el monitoreo y control en tiempo real del uso del

agua, adaptándose precisamente a las necesidades de los cultivos [5]. Sin embargo,

a pesar del potencial evidente de esta tecnología para mejorar la eficiencia en el

uso del agua, su implementación en la agricultura de Aguascalientes aún es

incipiente y enfrenta varios obstáculos, desde la falta de conocimiento y recursos,

hasta la resistencia al cambio por parte de los agricultores.

Capítulo 1. Introducción

17

Este estudio se propone abordar esta brecha mediante el desarrollo y validación

experimental de un sistema de riego inteligente que optimice el uso del agua y que,

a futuro, pueda implementarse de manera accesible y práctica para los agricultores.

A través de este enfoque, se busca contribuir a la transformación de la agricultura

en Aguascalientes hacia prácticas más sostenibles y resilientes, alineando la

innovación tecnológica con los objetivos de desarrollo sostenible del estado y la

nación.

Por lo tanto, el problema central de esta investigación se articula en torno a cómo la

tecnología de IoT puede ser aprovechada para desarrollar un sistema de riego

inteligente que responda a las condiciones específicas de Aguascalientes,

mejorando la gestión del agua en la agricultura y contribuyendo a la sostenibilidad

y eficiencia del sector ante los retos impuestos por la escasez hídrica y el cambio

climático.

1.3. Formulación de Objetivos

1.3.1. Objetivo General
Desarrollar y validar experimentalmente un sistema de riego inteligente basado en

IoT que permita optimizar el consumo de agua en cultivos protegidos en

Aguascalientes, México, mediante la recolección y análisis de datos ambientales, la

predicción del nivel de humedad del suelo y el control automatizado del riego.

1.3.2. Objetivos Específicos
1. Integrar tecnología de IoT en el sistema de riego para monitorear

variables críticas del entorno.
Incorporar sensores y dispositivos IoT para monitorear variables críticas

como la humedad del suelo, temperatura del aire y del suelo, niveles de luz,

y concentraciones de CO2. Estos datos serán fundamentales para probar

ajustes automáticos simulados de los ciclos de riego y optimizar el uso del

agua.

Capítulo 1. Introducción

18

2. Diseñar y desarrollar una aplicación web que facilite la validación y
manejo de un sistema de riego inteligente.
Esta herramienta permitirá el acceso a información en tiempo real y el control

preciso del riego, basado en datos específicos de los sensores.

3. Incorporar un modelo predictivo de machine learning que sugiera el

momento óptimo para activar el riego.
Este modelo analizará los datos históricos para anticipar caídas en la

humedad del suelo y así optimizar el uso del agua.

4. Validar el sistema en un entorno de pruebas controlado.

Se simularán las condiciones operativas del sistema para evaluar su

desempeño, identificar posibles errores y ajustar su funcionamiento antes de

una implementación real.

5. Documentar detalladamente el proceso de diseño, desarrollo y

validación del sistema.
La documentación incluirá diagramas, flujos de trabajo, código fuente

relevante, resultados de simulaciones y análisis de viabilidad para futuras

implementaciones en campo.

1.4. Justificación
La realización de este proyecto se justifica desde varias perspectivas, destacando

su relevancia, valor científico y practicidad para abordar los desafíos críticos de

gestión del agua en Aguascalientes, México. Estos elementos subrayan la

importancia de desarrollar y evaluar experimentalmente un sistema de riego

inteligente basado en IoT para los cultivos protegidos en la región.

Capítulo 1. Introducción

19

1.4.1. Pertinencia
La escasez de agua es un desafío persistente en Aguascalientes, exacerbado por

condiciones climáticas extremas como largos periodos de sequía y precipitaciones

insuficientes [1]. La agricultura, siendo una de las principales actividades

económicas del estado, se ve particularmente afectada por estas condiciones

adversas. El desarrollo y validación de un sistema de riego inteligente orientado a

optimizar el uso del agua representa una solución crucial y oportuna. Este proyecto

no solo aborda un problema ambiental y económico significativo, sino que también

se alinea con los objetivos estratégicos del Plan de Desarrollo del Estado 2022-2027

de Aguascalientes [3] y el Plan Nacional de Desarrollo 2025-2030 de México [4], lo

que resalta su relevancia a nivel local y nacional.

1.4.2. Valor Científico
La validación experimental de un sistema de riego inteligente contribuye al avance

del campo de la agricultura de precisión, un área de investigación que explora cómo

las tecnologías avanzadas pueden mejorar la eficiencia y sostenibilidad de la

agricultura [2]. Al recopilar y analizar datos en tiempo real sobre variables críticas

como la humedad del suelo, la temperatura y la luz solar, este proyecto genera

información valiosa sobre la optimización del uso del agua en la agricultura. Este

conocimiento no solo tiene el potencial de mejorar las prácticas de riego en

Aguascalientes sino también de proporcionar un modelo replicable para otras

regiones con desafíos hídricos similares.

1.4.3. Valor Práctico
Desde una perspectiva práctica, el sistema propuesto busca servir como una

referencia tecnológica aplicable a las condiciones de la agricultura en

Aguascalientes. Al promover una gestión más eficiente del agua, pretende ofrecer

una herramienta capaz de reducir el consumo hídrico, aumentar la productividad de

los cultivos y fortalecer la sostenibilidad de las prácticas agrícolas. La aplicación

web desarrollada como parte del proyecto se concibe como una plataforma que

facilitará el monitoreo y control del riego de manera centralizada y accesible,

Capítulo 1. Introducción

20

permitiendo que los agricultores puedan adaptar el sistema a diferentes escenarios

productivos [5]. Este enfoque plantea una alternativa práctica y escalable que puede

contribuir al fortalecimiento de la sostenibilidad agrícola y a la modernización del

manejo del agua en la región. A largo plazo, se espera que los resultados del

proyecto sienten las bases para futuras implementaciones en campo, promoviendo

la adopción de tecnologías IoT en la agricultura y alineándose con los objetivos

regionales y nacionales de conservación del agua y mitigación del cambio climático.

En conjunto, la justificación de este proyecto radica en su capacidad para enfrentar

de manera efectiva una problemática ambiental crítica, contribuir al avance científico

en la agricultura de precisión [2], y ofrecer una base tecnológica sólida para futuras

aplicaciones prácticas en la agricultura de Aguascalientes. Este enfoque integral

asegura que el proyecto tenga un impacto significativo tanto en el ámbito académico

como en el práctico, promoviendo el uso eficiente de los recursos hídricos en la

agricultura y apoyando los objetivos de desarrollo sostenible de la región.

1.5. Alcance y Limitaciones

1.5.1. Alcance
El presente estudio tiene como propósito el desarrollo y validación funcional de un

prototipo de sistema de riego inteligente basado en IoT, enfocado en su aplicación

futura en cultivos protegidos en la región de Aguascalientes, México. El objetivo

principal consiste en contribuir a la optimización del uso del agua en procesos

agrícolas mediante la recolección, procesamiento y análisis de datos ambientales y

de humedad del suelo en tiempo real, así como la simulación del control

automatizado del riego en función de dicha información.

El sistema desarrollado contempla una arquitectura distribuida y modular que

incluye los siguientes elementos:

 Un conjunto de sensores físicos conectados a una Raspberry Pi, que actúa
como nodo de adquisición de datos y registra variables como humedad del

Capítulo 1. Introducción

21

suelo, humedad relativa ambiental, temperatura del suelo, temperatura del

aire, niveles de luz y concentración de CO2.

 El uso del protocolo MQTT (Message Queuing Telemetry Transport) para la

transmisión eficiente de los datos sensados hacia un bróker HiveMQ,

permitiendo la comunicación entre el hardware y el sistema central.

 Un backend desarrollado en Django con Django REST Framework (DRF),

que recibe y procesa los datos provenientes del bróker MQTT. Este backend

almacena la información en una base de datos especializada para series

temporales (TimescaleDB) y habilita la visualización y control del sistema

mediante el uso de WebSockets y una API RESTful.

 Un frontend desarrollado en Vue.js con el framework de diseño Vuetify, que

permite la interacción con el sistema en un entorno de validación, incluyendo

la visualización gráfica de datos históricos y en tiempo real, así como el

control manual o automatizado simulado del riego.

 La integración de un modelo de aprendizaje automático (machine learning)

que tiene como finalidad realizar predicciones sobre los niveles futuros de

humedad del suelo y sugerir automáticamente el momento óptimo para

activar el riego.

 Un sistema de control remoto para el encendido de una bomba de agua,

simulado mediante la misma red MQTT desde el backend hacia la Raspberry

Pi.

El diseño del sistema se plantea con capacidad de escalabilidad, de manera que

pueda adaptarse a diferentes tipos de cultivos protegidos y extenderse para

monitorear nuevas variables, controlar múltiples nodos o integrarse con plataformas

agrícolas existentes. Asimismo, se prioriza la modularidad del software para facilitar

Capítulo 1. Introducción

22

futuras actualizaciones, mejoras en la precisión del modelo predictivo y ajustes

según condiciones geográficas específicas.

1.5.2. Limitaciones
A pesar del alcance técnico del sistema y la solidez de su arquitectura, el desarrollo

del proyecto presenta ciertas limitaciones que condicionan su validación en un

entorno agrícola operativo. Estas limitaciones son principalmente de tipo logístico,

temporal y económico, y se detallan a continuación:

1. Ausencia de validación en campo real: Por cuestiones de tiempo y

recursos, no se contempla en esta etapa la instalación del sistema en un

cultivo protegido operativo. En consecuencia, todas las pruebas funcionales

se prevén en entornos controlados, sin exposición directa a las variaciones

de un ambiente agrícola real.

2. Uso de datos sintéticos para el modelo predictivo: Debido a la falta de

bases de datos locales con series temporales de humedad del suelo, el

modelo de machine learning se entrena con información generada

artificialmente. Esto limita su capacidad de generalización en escenarios

reales, por lo que se proyecta su reentrenamiento con datos obtenidos de

futuras pruebas en campo.

3. Restricciones en el hardware disponible: El prototipo se diseña con una

configuración mínima de sensores y componentes electrónicos, lo cual

restringe la evaluación de aspectos como durabilidad, resistencia ambiental

o tolerancia a fallos, que deberán comprobarse en etapas posteriores.

4. Imposibilidad de medir el impacto real en el ahorro de agua: Dado que

no se dispone aún de datos empíricos provenientes de un entorno agrícola

real, el impacto ambiental y económico se estima de forma teórica o mediante

comparaciones con antecedentes documentados.

Capítulo 1. Introducción

23

Estas limitaciones delimitan el alcance del trabajo al nivel de prototipo funcional

validado en condiciones controladas, sin comprometer la validez técnica ni la

viabilidad del sistema. Se proyecta que, en futuras etapas, el sistema pueda

instalarse y probarse en un entorno real de cultivo, permitiendo validar plenamente

su efectividad, confiabilidad y contribución al uso sostenible del recurso hídrico en

la agricultura protegida.

Capítulo 2. Marco Teórico

Capítulo 2. Marco Teórico

25

2. Marco Teórico
El desarrollo y aplicación de sistemas de riego inteligentes basados en IoT

representa un avance significativo en la optimización del uso del agua y la mejora

de la productividad agrícola en condiciones de escasez hídrica. Este capítulo

establece el marco teórico necesario para comprender los fundamentos y las

implicaciones de la adopción de tecnologías IoT en la agricultura, particularmente

en el contexto de cultivos protegidos en Aguascalientes, México. A través de una

revisión exhaustiva de la literatura, se abordan los conceptos clave relacionados

con la gestión sostenible del agua, el crecimiento urbano y su interacción con la

agricultura moderna, con énfasis en las soluciones tecnológicas que buscan hacer

frente a estos desafíos.

El capítulo se estructura a partir de una descripción de los principios básicos del IoT

y su relevancia en el desarrollo de sistemas de riego automatizados y adaptativos,

capaces de responder de manera eficiente a las necesidades hídricas específicas

de los cultivos. Luego, se analiza la gestión sostenible del agua como un

componente esencial de la agricultura en regiones semiáridas, identificando

prácticas y tecnologías que contribuyen a su conservación y uso eficiente. Además,

se examina el impacto del crecimiento urbano en la disponibilidad de recursos

hídricos y la función de los sistemas inteligentes de riego como medida de

mitigación, promoviendo una agricultura más sostenible y resiliente.

El análisis incorpora estudios de caso y trabajos previos relevantes que demuestran

la aplicación de tecnologías IoT en la agricultura, ofreciendo una visión general de

los avances tecnológicos y de sus beneficios potenciales. Este marco teórico

proporciona el sustento conceptual de la presente investigación y establece una

base sólida para el desarrollo de soluciones inteligentes en la gestión del agua

dentro de la agricultura de precisión.

En síntesis, se destaca la importancia de la integración de tecnologías avanzadas

en la agricultura como estrategia para enfrentar los retos actuales y futuros

asociados a la gestión del agua y la sostenibilidad agrícola.

Capítulo 2. Marco Teórico

26

2.1. Sistemas de Riego
El riego constituye una de las prácticas agrícolas más relevantes para garantizar la

disponibilidad de agua en las etapas críticas del desarrollo de los cultivos. Los

sistemas de riego se definen como el conjunto de infraestructuras, dispositivos y

procedimientos diseñados para distribuir agua de manera controlada sobre una

superficie cultivada, con el propósito de satisfacer las necesidades hídricas de las

plantas y mantener su equilibrio fisiológico [6].

En esencia, un sistema de riego busca compensar la deficiencia de precipitación o

irregularidad en la disponibilidad del agua, asegurando una producción agrícola

constante y sostenible.

A lo largo de la historia, los sistemas de riego han evolucionado desde métodos

tradicionales basados en el flujo por gravedad hasta soluciones modernas

controladas electrónicamente. En términos generales, se reconocen tres tipos

principales de sistemas:

1. Riego por superficie: se basa en la distribución del agua mediante canales o

surcos, aprovechando la gravedad. Aunque es un método simple y de bajo

costo, presenta una eficiencia relativamente baja debido a las pérdidas por

escurrimiento y evaporación [7].

2. Riego por aspersión: utiliza presión hidráulica para proyectar el agua en

forma de lluvia artificial sobre los cultivos. Este sistema permite una

distribución más uniforme, pero requiere un mayor consumo energético y

mantenimiento de los emisores.

3. Riego por goteo o microaspersión: suministra el agua directamente a la zona

radicular de las plantas mediante emisores localizados. Se considera uno de

los métodos más eficientes, con eficiencias de aplicación que pueden

superar el 90 %, reduciendo el desperdicio de agua y fertilizantes [8].

Capítulo 2. Marco Teórico

27

En las últimas décadas, la integración de tecnologías digitales, sensores y sistemas

de automatización ha impulsado el desarrollo de sistemas de riego inteligentes,

capaces de ajustar el caudal, la frecuencia y la duración del riego según las

condiciones reales del cultivo y del entorno [9]. Estos sistemas utilizan información

proveniente de sensores de humedad del suelo, temperatura, radiación solar y

condiciones atmosféricas, para tomar decisiones automáticas que optimicen el uso

del recurso hídrico.

Particularmente en regiones semiáridas como Aguascalientes, donde la

disponibilidad de agua es limitada, los sistemas de riego inteligentes representan

una alternativa tecnológica para aumentar la eficiencia del riego, reducir el consumo

hídrico y mejorar la sostenibilidad agrícola [10]. Su adopción contribuye al

cumplimiento de los Objetivos de Desarrollo Sostenible (ODS), especialmente en lo

relativo a la gestión responsable del agua y la producción agrícola sostenible.

2.2. Internet de las Cosas (IoT)
El Internet de las Cosas (IoT, por sus siglas en inglés Internet of Things) se refiere

a una red de dispositivos físicos interconectados que recopilan, procesan y

transmiten datos a través de internet, permitiendo la automatización y el control

remoto de procesos. Según la definición de la International Telecommunication

Union [11], la IoT es “una infraestructura global que conecta objetos físicos y

virtuales mediante capacidades de identificación, captura de datos, procesamiento

y comunicación, facilitando la interacción entre ellos y con el entorno”.

La IoT combina tecnologías de sensorización, comunicaciones inalámbricas,

computación en la nube y análisis de datos para generar ecosistemas inteligentes

capaces de operar de manera autónoma o semiautónoma. En el contexto agrícola,

esto se traduce en sistemas capaces de monitorear variables ambientales y de

cultivo en tiempo real, generando información que puede ser utilizada para optimizar

la producción, reducir pérdidas y mejorar la sostenibilidad de los recursos naturales

[12].

Capítulo 2. Marco Teórico

28

Los dispositivos IoT agrícolas incluyen sensores de humedad, temperatura, pH,

radiación solar o concentración de gases; controladores como microprocesadores

o microcontroladores (por ejemplo, Raspberry Pi, Arduino o ESP32); y plataformas

digitales que centralizan los datos en la nube. La integración de estos elementos

permite construir un sistema ciberfísico en el que los datos capturados en el entorno

se transforman en información útil para la toma de decisiones.

En los sistemas de riego inteligente, el IoT desempeña un papel esencial al

sincronizar el flujo de información entre los sensores de campo, el servidor y los

actuadores, posibilitando la automatización del riego según condiciones

ambientales o predicciones generadas mediante modelos de aprendizaje

automático [13]. Además, la comunicación basada en protocolos ligeros como

MQTT (Message Queuing Telemetry Transport) o CoAP (Constrained Application

Protocol) permite el intercambio eficiente de datos entre dispositivos con bajo

consumo energético, aspecto clave en entornos agrícolas remotos [14].

En conjunto, el IoT en la agricultura representa una de las aplicaciones más

prometedoras dentro de la llamada Agricultura 4.0, al integrar conectividad,

inteligencia artificial y computación distribuida para lograr una gestión más precisa,

sostenible y resiliente de los recursos agrícolas.

2.3. Fundamentos de IoT aplicados a la agricultura
IoT ha transformado diversos sectores industriales mediante su capacidad para

conectar dispositivos a internet, permitiendo la recopilación y el análisis de datos en

tiempo real para mejorar la toma de decisiones y la eficiencia operativa. En la

agricultura, su aplicación ofrece oportunidades de innovación significativas,

especialmente en el ámbito del riego inteligente y la gestión de recursos hídricos.

Este apartado describe los fundamentos de IoT aplicados a la agricultura,

analizando cómo esta tecnología contribuye a la optimización del uso del agua y al

aumento de la productividad de los cultivos.

Capítulo 2. Marco Teórico

29

2.3.1. Conectividad y Monitoreo en Tiempo Real
IoT se basa en sensores y dispositivos conectados que recopilan datos sobre

condiciones ambientales clave, como la humedad del suelo, la temperatura, la

luminosidad y otros factores determinantes para el crecimiento de los cultivos. Estos

datos se transmiten a plataformas centralizadas donde pueden ser monitoreados y

analizados en tiempo real, proporcionando a los agricultores información precisa

para decidir cuándo y cuánto regar, reduciendo el desperdicio de agua y

garantizando un manejo más racional de los recursos hídricos [15].

2.3.2. Automatización del Riego
Uno de los beneficios más destacados de IoT en la agricultura es la posibilidad de

automatizar el riego mediante el uso de algoritmos y modelos predictivos. Los

sistemas inteligentes ajustan los horarios y volúmenes de riego en función de los

datos recolectados por los sensores, lo que incrementa la eficiencia del uso del agua

y reduce la carga de trabajo manual, optimizando la gestión del tiempo y los

recursos [16].

2.3.3. Agricultura de Precisión
IoT constituye un pilar esencial de la agricultura de precisión, una práctica que busca

ajustar las estrategias de cultivo a las condiciones específicas de cada parcela. La

integración de datos en tiempo real sobre el clima, el suelo y las plantas permite

aplicar tratamientos diferenciados, mejorar la salud de los cultivos y maximizar el

rendimiento productivo mediante un uso más racional de los recursos [17].

2.3.4. Sostenibilidad y Gestión de Recursos
La incorporación de IoT en la agricultura contribuye a la sostenibilidad mediante un

manejo más eficiente del agua y los insumos agrícolas. Al optimizar el riego y reducir

la dependencia de fertilizantes o agroquímicos, los sistemas inteligentes favorecen

la conservación de los recursos naturales y la reducción del impacto ambiental de

las prácticas agrícolas [18].

Capítulo 2. Marco Teórico

30

2.4. Gestión Sostenible del Agua
La gestión sostenible del agua en la agricultura constituye un componente esencial

para garantizar la seguridad alimentaria, preservar el medio ambiente y promover el

desarrollo socioeconómico, especialmente en regiones áridas y semiáridas como

Aguascalientes, México. Esta sección describe las prácticas, estrategias y

tecnologías orientadas al uso eficiente y responsable de los recursos hídricos en la

agricultura, destacando la relevancia de adoptar enfoques integrales y sostenibles

para enfrentar la escasez de agua y los efectos asociados al cambio climático.

2.4.1. Principios de la Gestión Sostenible del Agua
La gestión sostenible del agua se fundamenta en la búsqueda de equilibrio entre las

necesidades humanas, la productividad agrícola y la conservación de los

ecosistemas naturales. Entre sus principios destacan la eficiencia en el uso del

agua, la reducción de la contaminación, la protección de los ciclos hidrológicos y la

equidad en el acceso al recurso. En el ámbito agrícola, estos principios se traducen

en la adopción de prácticas que minimizan el desperdicio, mejoran la infiltración y

retención del agua en el suelo, y garantizan su aprovechamiento óptimo tanto para

los cultivos como para el entorno [19].

2.4.2. Tecnologías y Prácticas para la Sostenibilidad
Hídrica

Diversas tecnologías y prácticas contribuyen al manejo racional y sostenible del

agua en la agricultura moderna:

 Riego de precisión: Sistemas como el riego por goteo o la aspersión

controlada dirigen el agua específicamente a las zonas de mayor demanda

hídrica, reduciendo pérdidas por evaporación y escurrimiento.

 Sensores de humedad del suelo y sistemas automatizados: Equipos IoT

permiten registrar en tiempo real las condiciones del suelo y ajustar los

parámetros de riego de manera dinámica, optimizando el uso del agua sin

comprometer el desarrollo de los cultivos.

Capítulo 2. Marco Teórico

31

 Cultivos resistentes a la sequía: El desarrollo y la selección de variedades

que requieren menor cantidad de agua o toleran periodos prolongados de

sequía reducen la presión sobre las fuentes hídricas.

 Manejo integrado de recursos hídricos: Estrategias que consideran el uso

combinado de aguas superficiales, subterráneas y no convencionales,

promoviendo su gestión coordinada entre distintos sectores productivos [18].

2.4.3. Impacto en la Agricultura y el Medio Ambiente
La adopción de prácticas de gestión sostenible del agua contribuye

simultáneamente al aumento de la productividad agrícola y a la conservación

ambiental. Estas estrategias favorecen la preservación de ecosistemas acuáticos,

reducen procesos de salinización y degradación del suelo, y minimizan la

contaminación derivada de escorrentías agrícolas. A largo plazo, fortalecen la

resiliencia de las comunidades rurales frente a la variabilidad climática y la

disminución de la disponibilidad de agua [20].

2.4.4. Desafíos y Oportunidades
La transición hacia modelos de gestión hídrica sostenibles implica retos

estructurales y operativos, como la necesidad de inversión tecnológica, la

capacitación continua de los productores y la adecuación de marcos normativos que

promuevan el uso responsable del agua. No obstante, estos desafíos abren también

oportunidades para impulsar la innovación, fortalecer la cooperación

interinstitucional y consolidar una agricultura resiliente, eficiente y ambientalmente

responsable [21].

2.5. Impacto del Crecimiento Urbano
El crecimiento urbano, entendido como la expansión de las ciudades y el incremento

de la población en áreas urbanizadas, constituye uno de los principales factores de

presión sobre los recursos naturales, especialmente el agua. Esta sección analiza

la forma en que la expansión urbana influye en la disponibilidad, calidad y gestión

Capítulo 2. Marco Teórico

32

del agua destinada a la agricultura, con especial atención a las condiciones de las

regiones semiáridas como Aguascalientes, México.

2.5.1. Presión sobre los Recursos Hídricos
A medida que las ciudades crecen, la demanda de agua para fines domésticos,

industriales y recreativos aumenta de manera proporcional, generando competencia

directa con las necesidades del sector agrícola. Este incremento sostenido favorece

la sobreexplotación de ríos y acuíferos, reduciendo la cantidad de agua disponible

para el riego y comprometiendo la sostenibilidad de los sistemas agrícolas. En

contextos como el de Aguascalientes, donde la escasez hídrica ya representa un

problema estructural, el crecimiento urbano intensifica la competencia por recursos

limitados, poniendo en riesgo la viabilidad productiva y ambiental de la agricultura

regional [22].

2.5.2. Cambios en el Uso del Suelo
El proceso de urbanización suele implicar la conversión de terrenos agrícolas en

áreas residenciales, comerciales o industriales, lo que reduce la superficie

destinada a la producción de alimentos y altera los equilibrios hidrológicos naturales.

Este cambio de uso del suelo modifica los patrones de infiltración y recarga de los

acuíferos, y al mismo tiempo incrementa la proporción de superficies impermeables,

como calles, techos o pavimentos, aumentando la escorrentía superficial y

disminuyendo la retención natural de agua en el subsuelo [23].

2.5.3. Contaminación del Agua
El crecimiento urbano también contribuye a la contaminación de los cuerpos de

agua a través de descargas residuales sin tratamiento adecuado y del arrastre de

contaminantes provenientes de áreas urbanas. Esta contaminación deteriora la

calidad del agua disponible para el riego agrícola, con efectos negativos sobre la

salud de los cultivos y, por extensión, sobre la seguridad alimentaria. En regiones

como Aguascalientes, donde la agricultura depende en gran medida de sistemas de

riego, la preservación de la calidad del agua se considera un componente esencial

para garantizar la productividad y sostenibilidad agrícola [24].

Capítulo 2. Marco Teórico

33

2.5.4. Estrategias de Mitigación
Frente a los efectos del crecimiento urbano sobre los recursos hídricos, la adopción

de estrategias integradas de mitigación resulta indispensable. Entre las más

relevantes se encuentran:

 Planificación urbana y agrícola coordinada: Promueve una gestión

conjunta del territorio para proteger las zonas agrícolas y los acuíferos

estratégicos.

 Tecnologías urbanas de eficiencia hídrica: Fomenta la instalación de

sistemas de ahorro y reciclaje de agua en las ciudades, reduciendo la

demanda sobre las fuentes naturales.

 Tratamiento y reutilización de aguas residuales: La inversión en

infraestructura de saneamiento permite reutilizar el agua tratada en riego

agrícola, disminuyendo la presión sobre los recursos hídricos

convencionales.

 Educación y sensibilización social: Difunde la importancia del uso racional

del agua entre la población urbana y rural, promoviendo prácticas de

conservación sostenibles.

La gestión equilibrada del crecimiento urbano y de la disponibilidad de agua para la

agricultura requiere un enfoque sistémico que considere simultáneamente las

necesidades urbanas y agrícolas. A través de estrategias proactivas y sostenibles,

es posible alcanzar un equilibrio entre desarrollo urbano, seguridad alimentaria y

conservación hídrica, elementos fundamentales para el desarrollo sostenible en

regiones semiáridas como Aguascalientes [25].

2.6. Industria 4.0 y su Aplicación en la Agricultura
La Industria 4.0, también denominada cuarta revolución industrial, se define por la

integración de tecnologías digitales avanzadas, como la inteligencia artificial (IA),

IoT, la robótica y el análisis de big data, en los procesos productivos. En el ámbito

Capítulo 2. Marco Teórico

34

agrícola, estas tecnologías están transformando las prácticas tradicionales

mediante el desarrollo de sistemas inteligentes capaces de optimizar la eficiencia,

reducir costos y fortalecer la sostenibilidad de los cultivos [26].

Una de las áreas más relevantes de la Industria 4.0 es la agricultura de precisión, la

cual utiliza información en tiempo real para respaldar la toma de decisiones sobre

el manejo de los cultivos. Este enfoque comprende el monitoreo de variables

ambientales y fisiológicas, como el clima, la humedad del suelo, los niveles de

nutrientes y otros factores críticos que inciden directamente en la productividad

agrícola. La incorporación de sensores IoT, drones y sistemas de información

geográfica (SIG) posibilita una gestión más precisa y adaptativa de los recursos

agrícolas, contribuyendo a una agricultura más eficiente y sostenible [27].

2.6.1. Cultivos Protegidos: Innovación y Sostenibilidad
Los cultivos protegidos, como los invernaderos y túneles de plástico, constituyen

una estrategia tecnológica orientada a crear ambientes controlados que protegen a

las plantas de condiciones climáticas extremas, plagas y enfermedades. Esta

técnica incrementa la calidad y el rendimiento de los cultivos, al mismo tiempo que

optimiza el uso de recursos esenciales como el agua y los fertilizantes.

En el contexto de Aguascalientes, México, donde la disponibilidad de agua es

limitada, los cultivos protegidos representan una alternativa sostenible que permite

mantener altos niveles de productividad agrícola con un consumo hídrico reducido.

En este tipo de entornos, la integración de sistemas de riego inteligentes basados

en IoT contribuye a la optimización del uso del agua, minimiza las pérdidas por

evaporación y mejora la eficiencia general de los procesos agrícolas [28].

2.6.2. Internet de las Cosas (IoT) en la Agricultura
IoT se considera una de las tecnologías clave de la Industria 4.0 debido a su

capacidad para conectar dispositivos y sistemas a través de redes digitales,

facilitando la recopilación, transmisión y análisis de datos en tiempo real. En la

Capítulo 2. Marco Teórico

35

agricultura, su aplicación permite el desarrollo de sistemas de riego inteligentes que

ajustan de manera autónoma el suministro de agua conforme a las necesidades

hídricas de cada cultivo.

Mediante el uso de sensores que miden humedad del suelo, temperatura, radiación

lumínica y concentración de CO₂, los sistemas IoT pueden modificar dinámicamente

los patrones de riego, optimizando el uso del agua y promoviendo un crecimiento

vegetal saludable. Además, estos sistemas generan alertas ante anomalías, como

sequías o exceso de humedad, permitiendo una respuesta temprana y precisa [29].

2.6.3. Justificación del Uso de IoT en Cultivos Protegidos
La combinación de cultivos protegidos e IoT representa una convergencia

tecnológica con alto potencial para mejorar la sostenibilidad agrícola en regiones

semiáridas como Aguascalientes. Los sistemas de riego inteligentes basados en IoT

favorecen el uso racional del agua dentro de los invernaderos, asegurando una

irrigación óptima que reduce el desperdicio y maximiza la eficiencia hídrica.

Además, la aplicación de herramientas de análisis de datos y monitoreo en tiempo

real fortalece la toma de decisiones agronómicas basadas en evidencia, reduciendo

la incertidumbre y mejorando la capacidad de gestión de los productores. Este

enfoque se alinea con los objetivos globales de sostenibilidad y seguridad

alimentaria, posicionando a Aguascalientes como una región con potencial de

liderazgo en la adopción de tecnologías agrícolas innovadoras y resilientes frente al

cambio climático [30].

Capítulo 3. Metodología

Capítulo 3. Metodología

37

3. Metodología
El desarrollo de este proyecto se enmarcó en una investigación aplicada de carácter

tecnológico, cuyo objetivo fue abordar un problema práctico del sector agrícola

mediante el diseño y validación de un sistema informático basado en tecnologías

emergentes. El enfoque metodológico adoptado fue cuantitativo, experimental y

tecnológico, centrado en la construcción y prueba funcional de un prototipo de

sistema de riego inteligente que integró dispositivos IoT, algoritmos de aprendizaje

automático y una arquitectura web modular.

La metodología empleada se basó en los principios del modelo de desarrollo

iterativo, en el cual se diseñaron, desarrollaron y validaron de forma independiente

los distintos componentes del sistema, lo que permitió realizar ajustes progresivos

durante el proceso. El enfoque modular facilitó el trabajo paralelo sobre cada

subsistema (hardware, backend, frontend, comunicación, predicción y control),

garantizando flexibilidad y coherencia en la integración final.

Este capítulo describe las fases metodológicas que guiaron el desarrollo del

sistema, abarcando desde el análisis del problema y la definición de requerimientos,

hasta el diseño técnico, la construcción del prototipo, la validación funcional en

condiciones controladas y la documentación integral del proceso.

3.1. Fase 1: Análisis del problema y definición de
requerimientos

Esta fase se enfocó en el estudio de la problemática del uso ineficiente del agua en

cultivos protegidos, particularmente en zonas semiáridas como Aguascalientes. Se

llevó a cabo una revisión documental de las tecnologías actuales en agricultura

inteligente, así como de sistemas de riego automatizado y soluciones IoT aplicadas

a entornos de producción controlada.

A partir del análisis, se identificaron los principales factores que inciden en la

eficiencia del riego, tales como la humedad del suelo, la temperatura ambiental, la

Capítulo 3. Metodología

38

humedad relativa, el tipo de cultivo y las condiciones del entorno protegido. Esta

información permitió establecer los requerimientos técnicos y operativos del

sistema, clasificados de la siguiente manera:

Requerimientos funcionales:

 Adquisición en tiempo real de datos ambientales mediante sensores.

 Transmisión eficiente de datos desde los nodos IoT hacia el servidor central.

 Procesamiento de datos y toma de decisiones automatizadas o simuladas.

 Activación remota del sistema de riego mediante comandos controlados.

 Visualización de la información a través de una aplicación web.

 Predicción del nivel de humedad mediante modelos de machine learning.

Requerimientos no funcionales:

 Alta disponibilidad del sistema.

 Bajo consumo energético en los nodos IoT.

 Escalabilidad horizontal para soportar múltiples zonas de riego.

 Interfaz intuitiva y adaptable a distintos dispositivos.

 Integración segura entre módulos mediante protocolos ligeros y confiables.

Los resultados de esta fase sirvieron como base para el diseño técnico y la

planificación de las etapas posteriores del proyecto.

3.2. Fase 2: Diseño del Sistema

3.2.1. Diseño de Software
El diseño del software constituyó el eje central del desarrollo del sistema de riego

inteligente, al definir la estructura lógica, los componentes tecnológicos y las

herramientas que permitieron construir y validar el prototipo funcional. Esta fase se

enfocó en establecer una arquitectura robusta, modular y escalable, adecuada para

un entorno de experimentación controlada y adaptable a una futura implementación

en campo.

Capítulo 3. Metodología

39

 Lenguajes de programación: Se seleccionó Python para el desarrollo del

backend, debido a su amplia comunidad y a la disponibilidad de librerías

como NumPy y Pandas, que facilitaron el manejo y análisis de datos

ambientales recopilados por los sensores. Para el frontend se empleó

JavaScript junto con el framework Vue.js, con el fin de desarrollar una interfaz

interactiva y adaptable que permitiera visualizar la información del sistema y

realizar acciones de control durante las pruebas experimentales.

 Frameworks y plataformas: Se utilizó Django, un framework de alto nivel

para Python, para estructurar el backend del sistema, aprovechando su

arquitectura basada en componentes reutilizables y su capacidad para

gestionar peticiones web y comunicación con la base de datos de manera

segura. En el frontend, Vue.js fue empleado para garantizar una actualización

eficiente de los elementos visuales y un manejo fluido del estado de la

aplicación.

 Arquitectura del sistema: Se adoptó un enfoque modular inspirado en

microservicios, lo que permitió el desarrollo, prueba e integración

independiente de cada componente del sistema (adquisición de datos,

almacenamiento, análisis y visualización). Esta estructura favoreció la

escalabilidad y la flexibilidad del prototipo, facilitando la incorporación de

nuevos módulos o la modificación de los existentes sin afectar el

funcionamiento global del sistema durante la validación experimental.

3.3. Fase 3: Implementación

3.3.1. Desarrollo de Software
La implementación del software se realizó de manera progresiva, siguiendo un

enfoque modular que garantizó la funcionalidad y estabilidad del prototipo

desarrollado.

Capítulo 3. Metodología

40

 Conectividad IoT: Se configuraron protocolos estándar como MQTT,

empleado para la comunicación entre los dispositivos conectados y el

servidor de procesamiento. Este protocolo se seleccionó por su ligereza y

confiabilidad en la entrega de mensajes en tiempo real, lo que permitió

simular adecuadamente el flujo de datos entre sensores y plataforma central

durante la validación experimental.

 Monitoreo en tiempo real: Se desarrolló un tablero de control interactivo

que permitió visualizar el comportamiento del sistema en tiempo real. Este

tablero integró gráficos dinámicos y representaciones visuales de los datos

obtenidos de los sensores, facilitando el análisis y la supervisión de las

variables ambientales durante las pruebas.

3.3.2. Integración con Hardware
Para el desarrollo del prototipo se utilizó una Raspberry Pi como controlador central

de riego. A continuación, se describen los sensores seleccionados y su integración

con el controlador, realizada en un entorno de validación experimental.

Selección de sensores

 Sensor de humedad del suelo: DHT22
Este sensor permitió medir la humedad y la temperatura del ambiente con

alta precisión. El DHT22 se conectó a la Raspberry Pi a través de los pines

GPIO mediante comunicación digital.

 Sensor de temperatura del aire y del suelo: DS18B20

Este sensor digital de temperatura permitió monitorear simultáneamente la

temperatura del suelo y del ambiente. Su conexión se realizó mediante el bus

de 1-Wire, lo que facilitó la integración de múltiples sensores sobre una

misma línea.

 Sensor de niveles de luz: BH1750

Capítulo 3. Metodología

41

El BH1750 se utilizó para medir la intensidad lumínica en lux, conectándose

a la Raspberry Pi mediante interfaz I2C. Esta información resultó esencial

para analizar la relación entre iluminación y demanda hídrica.

 Sensor de concentraciones de CO₂: SCD30

El SCD30 permitió medir las concentraciones de dióxido de carbono junto

con la humedad y temperatura ambiental, comunicándose con la Raspberry

Pi mediante la interfaz I2C. Estos datos complementaron la caracterización

del entorno de pruebas.

Proceso de integración

1. Conexión de sensores a la Raspberry Pi

 Cada sensor se conectó a la Raspberry Pi utilizando sus respectivos

protocolos de comunicación, asegurando la estabilidad de las señales

mediante resistencias pull-up cuando fue necesario.

 Se desarrollaron scripts en Python para la lectura de los datos,

empleando librerías especializadas como Adafruit_DHT,

w1thermsensor, smbus2 y smbus.

2. Configuración del software en la Raspberry Pi

 Se instaló y configuró el sistema operativo Raspberry Pi OS,
habilitando las interfaces necesarias (I2C y 1-Wire).

 Se desarrolló una aplicación en Python que recopiló, procesó y envió
los datos hacia la base de datos central.

 El sistema incluyó rutinas para simular la activación del riego, de
acuerdo con los parámetros definidos por el algoritmo de control.

3. Pruebas y calibración de sensores

 Se efectuaron pruebas de funcionamiento y calibración conforme a las

especificaciones de cada fabricante.

Capítulo 3. Metodología

42

 Se configuraron alertas de supervisión para detectar valores anómalos

o inconsistentes durante las mediciones.

Evaluación y optimización

 Se desarrolló un sistema de monitoreo web que permitió visualizar los datos

de los sensores en tiempo real, realizar ajustes de parámetros y validar el

desempeño del prototipo.

 La integración completa del sistema se probó en condiciones simuladas de
cultivo protegido, evaluando su estabilidad, precisión y capacidad de

respuesta ante variaciones ambientales.

3.3.3. Descripción de Sensores y Controlador
En esta sección se describieron los sensores seleccionados y la Raspberry Pi

utilizada como unidad central de control en el prototipo del sistema de riego

inteligente basado en IoT. Cada componente fue elegido por su precisión,

confiabilidad y compatibilidad con entornos experimentales de agricultura de

precisión.

 Controlador Central: Raspberry Pi

 Características:

 Modelo: Raspberry Pi 4 Model B.
 Procesador: Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz.

 Memoria RAM: 4GB LPDDR4-3200 SDRAM.

 Conectividad: 2.4 GHz y 5.0 GHz IEEE 802.11ac wireless, Bluetooth

5.0, BLE, Gigabit Ethernet.
 Puertos: 2 puertos USB 3.0, 2 puertos USB 2.0, 2 micro HDMI

(soporte de hasta 4Kp60), GPIO de 40 pines.
 Almacenamiento: MicroSD.

 Funcionamiento:

Capítulo 3. Metodología

43

La Raspberry Pi 4 Model B desempeñó el rol de controlador central del

prototipo, gestionando la adquisición y procesamiento de los datos

provenientes de los sensores. Su capacidad de cómputo permitió ejecutar los

algoritmos de análisis en tiempo real y coordinar las rutinas de control del

sistema durante la validación experimental.

 Conexión de sensores: Los sensores se conectaron a la Raspberry Pi
mediante los puertos GPIO y las interfaces I2C y 1-Wire. Se

implementaron scripts en Python para la lectura, almacenamiento y

procesamiento de los datos obtenidos.

 Procesamiento de datos: La Raspberry Pi ejecutó algoritmos de

análisis y predicción que interpretaron las mediciones ambientales,

simulando decisiones automáticas sobre el riego en función de las

variables monitoreadas.

 Simulación de automatización del riego: En lugar de una activación

real de válvulas o bombas, se configuró un mecanismo de simulación

del control de riego, lo que permitió validar la lógica de funcionamiento

y verificar la correcta respuesta del sistema ante distintos escenarios

simulados.

 Sensor de Humedad del Suelo: DHT22

 Características:

 Tipo: Sensor digital de temperatura y humedad.

 Rango de humedad: 0-100% RH (Humedad Relativa).

 Precisión de humedad: ±2% RH.

 Rango de temperatura: -40 a 80 °C.

 Precisión de temperatura: ±0.5 °C.

 Tiempo de respuesta: 2 segundos.

 Interfaz: Digital.

 Funcionamiento:
El sensor DHT22 se utilizó para registrar valores de temperatura y humedad

del entorno durante la validación experimental del prototipo. Aunque

Capítulo 3. Metodología

44

comúnmente se emplea para medir la humedad relativa del aire, en este

proyecto se configuró para estimar los niveles de humedad del suelo dentro

de condiciones controladas.

El DHT22 opera mediante un sensor capacitivo que mide la humedad y un

termistor que mide la temperatura, enviando la información digitalmente a la

Raspberry Pi. Esta comunicación digital eliminó la necesidad de un

convertidor analógico-digital adicional, simplificando la integración con el

controlador central.

Gracias a su precisión, estabilidad y bajo costo, el DHT22 resultó adecuado

para la verificación del desempeño del sistema de adquisición de datos,

proporcionando mediciones confiables para el análisis de las variables

ambientales dentro del entorno de prueba.

 Sensor de Temperatura del Aire y del Suelo: DS18B20

 Características:
 Tipo: Sensor digital de temperatura.

 Rango de temperatura: -55 a 125 °C.

 Precisión: ±0.5 °C en el rango de -10 a 85 °C.

 Interfaz: 1-Wire.

 Resolución: 9 a 12 bits, programable.

 Tiempo de respuesta: Conversión de temperatura en menos de 750

ms.

 Funcionamiento:
El sensor DS18B20 se empleó para medir la temperatura tanto del aire como

del suelo durante las pruebas experimentales del prototipo. Su protocolo de

comunicación 1-Wire permitió la conexión de varios sensores en una misma

línea, lo que simplificó el cableado y facilitó la expansión del sistema.

Gracias a su precisión y rango operativo amplio, el DS18B20 proporcionó

mediciones confiables de temperatura que fueron utilizadas para analizar la

respuesta térmica del sistema y validar el desempeño del algoritmo de

control.

Capítulo 3. Metodología

45

Las lecturas obtenidas se transmitieron digitalmente a la Raspberry Pi, donde

fueron procesadas en tiempo real por los scripts desarrollados en Python.

Este sensor demostró ser adecuado para la etapa de validación

experimental, permitiendo evaluar la capacidad del sistema para adaptarse

a variaciones térmicas simuladas.

 Sensor de Niveles de Luz: BH1750

 Características:

 Tipo: Sensor digital de luz ambiental.

 Rango de medición: 0-65,535 lux.

 Precisión: Alta precisión en un amplio rango de luminancia.

 Interfaz: I2C.

 Consumo de energía: Bajo consumo de energía.

 Tiempo de respuesta: 16 ms a 120 ms dependiendo de la resolución

seleccionada.

 Funcionamiento:
El sensor BH1750 se utilizó para medir la intensidad lumínica durante la

validación experimental del prototipo, proporcionando valores expresados en

lux. Este dispositivo empleó la interfaz I2C para comunicarse con la

Raspberry Pi, lo que permitió una lectura rápida y estable de los datos.

Las mediciones obtenidas fueron registradas y analizadas en tiempo real,

facilitando la evaluación del comportamiento del sistema ante variaciones de

luminosidad simuladas. Si bien en una aplicación en campo los datos de este

sensor podrían emplearse para ajustar automáticamente los horarios de

riego, en esta etapa su función se limitó a verificar la correcta adquisición y

transmisión de información lumínica dentro del entorno de prueba.

Gracias a su amplio rango de medición y alta sensibilidad, el BH1750 resultó

adecuado para validar la precisión del sistema de monitoreo ambiental y

comprobar la estabilidad de la comunicación entre los distintos módulos del

sistema.

Capítulo 3. Metodología

46

 Sensor de Concentraciones de CO2: SCD30

 Características:

 Tipo: Sensor de dióxido de carbono (CO2), humedad y temperatura.

 Rango de medición de CO2: 400-10,000 ppm.

 Precisión de CO2: ±(30 ppm + 3% de la lectura).

 Rango de humedad: 0-100% RH.

 Precisión de humedad: ±2% RH.

 Rango de temperatura: -40 a 70 °C.

 Precisión de temperatura: ±0.4 °C.

 Interfaz: I2C.

 Consumo de energía: Bajo consumo de energía.

 Funcionamiento:
El sensor SCD30 se empleó para medir simultáneamente las

concentraciones de dióxido de carbono, la humedad relativa y la temperatura

del entorno durante la validación experimental del prototipo. Este dispositivo

utilizó la interfaz I2C para comunicarse con la Raspberry Pi, permitiendo la

adquisición estable y continua de datos ambientales.

Las mediciones de CO₂ resultaron especialmente útiles para analizar la

relación entre la concentración de gases y las condiciones ambientales

simuladas, ya que el dióxido de carbono influye directamente en los procesos

de fotosíntesis y transpiración vegetal.

El conjunto de variables registradas por el SCD30 complementó la

información proveniente de otros sensores, posibilitando un monitoreo

integral del entorno de pruebas y aportando datos relevantes para la

verificación del desempeño del sistema de monitoreo ambiental.

Gracias a su precisión y estabilidad de lectura, el SCD30 demostró ser un

componente adecuado para la validación del modelo de adquisición de datos

del sistema de riego inteligente, sirviendo como referencia para futuras

aplicaciones en entornos agrícolas reales.

Capítulo 3. Metodología

47

 Integración y Monitoreo
La integración de los sensores con la Raspberry Pi permitió realizar un monitoreo

continuo y preciso de las condiciones ambientales y del suelo dentro del entorno de

validación experimental. Los datos obtenidos fueron procesados en tiempo real

mediante los scripts desarrollados en Python, lo que permitió verificar el correcto

funcionamiento del flujo de adquisición, transmisión y análisis de información.

Durante las pruebas, se evaluó la estabilidad del sistema y la coherencia de los

datos registrados, comprobando la capacidad del prototipo para operar de forma

autónoma y mantener la comunicación constante entre los diferentes módulos. Si

bien no se realizaron ajustes automáticos sobre un sistema de riego real, se validó

la lógica de control que permitiría dicha automatización en futuras etapas de

implementación.

Esta integración demostró que la arquitectura diseñada es funcional, eficiente y

adaptable a distintos escenarios de uso, validando el desempeño general del

sistema propuesto para la gestión inteligente del riego. Con esta configuración, el

prototipo consolidó su capacidad para optimizar el manejo del agua en condiciones

simuladas y sentó las bases para la adopción de prácticas agrícolas más sostenibles

y resilientes en aplicaciones futuras.

3.4. Fase 4: Validación en entorno de laboratorio
La validación del sistema se realizó en un entorno controlado con el propósito de

comprobar su funcionamiento integral, la consistencia del flujo de datos y la

capacidad de respuesta ante diferentes condiciones simuladas de riego. Esta fase

representó la culminación del desarrollo del prototipo, enfocándose en evaluar su

desempeño bajo condiciones reproducibles y monitoreadas.

Las pruebas efectuadas incluyeron:

 Simulación de datos sensoriales para verificar el flujo completo de
información desde los sensores hasta el frontend.

Capítulo 3. Metodología

48

 Pruebas de latencia para medir el tiempo de respuesta entre la adquisición

de los datos, su procesamiento en el backend y su visualización en la interfaz

web.

 Simulación de la activación remota de la bomba de agua mediante la interfaz
web y comandos transmitidos por el protocolo MQTT, validando la

comunicación entre los distintos módulos del sistema.

 Evaluación del modelo predictivo de humedad del suelo, verificando la
correspondencia entre las sugerencias de riego generadas y los valores

esperados según los escenarios establecidos.

Los resultados obtenidos demostraron que el sistema operó correctamente,

integrando de manera efectiva los componentes de hardware, software y

comunicación. Se confirmó la capacidad del prototipo para procesar datos en tiempo

real, generar predicciones coherentes y ejecutar respuestas automáticas o

manuales ante las condiciones simuladas.

Esta fase permitió validar el desempeño funcional y la estabilidad del sistema

propuesto, consolidando su viabilidad técnica como herramienta de apoyo para la

gestión inteligente del riego en entornos controlados y su potencial para futuras

aplicaciones agrícolas.

3.5. Fase 5: Documentación del proceso
A lo largo del desarrollo del proyecto se elaboró un registro sistemático y detallado

de todas las etapas del trabajo, con el objetivo de garantizar la trazabilidad del

proceso y facilitar la replicación o ampliación futura del sistema. La documentación

generada constituyó una parte esencial del proyecto, ya que permitió mantener una

organización clara entre los componentes técnicos, los resultados obtenidos y las

decisiones de diseño adoptadas.

Entre los materiales recopilados se incluyeron:

Capítulo 3. Metodología

49

 Diagramas de arquitectura del sistema y flujos de datos, que describen la

interacción entre los módulos de hardware, software y comunicación.

 Esquemas eléctricos y de conexión de sensores, elaborados para

representar con precisión la configuración empleada durante la validación

experimental.

 Bitácora técnica de incidencias, donde se registraron errores detectados,

ajustes realizados y soluciones aplicadas en cada fase del desarrollo.

 Código fuente estructurado por módulos y subcomponentes, documentado

mediante comentarios y convenciones estandarizadas para facilitar su

comprensión y mantenimiento.

 Capturas de la interfaz de usuario y registros de las pruebas realizadas, que

evidencian el comportamiento del sistema y sus funcionalidades principales.

 Análisis de rendimiento, en el que se evaluaron aspectos como la latencia

del sistema, el procesamiento de datos y la estabilidad de la comunicación

entre módulos.

Esta documentación se integró como parte sustantiva de la tesis, con la finalidad de

servir como referencia para futuras aplicaciones o ampliaciones del sistema, así

como guía metodológica para investigaciones o desarrollos posteriores en el ámbito

de los sistemas de riego inteligente basados en IoT.

Capítulo 4. Desarrollo e Implementación

Capítulo 4. Desarrollo e Implementación

51

4. Desarrollo e Implementación
El presente capítulo describe el proceso de desarrollo e implementación del SIRCA-

IoT (Sistema Inteligente de Riego y Control Automatizado basado en IoT), propuesto

en este estudio. El sistema fue concebido como un prototipo funcional orientado a

demostrar la viabilidad técnica y operativa de integrar tecnologías de sensorización,

comunicación inalámbrica, procesamiento de datos y aprendizaje automático en el

contexto de cultivos protegidos en Aguascalientes, México.

El desarrollo se estructuró bajo una arquitectura modular que permitió abordar de

forma independiente los diferentes subsistemas que conforman la solución: el

subsistema IoT para la adquisición y transmisión de datos ambientales, la

plataforma web encargada del procesamiento, visualización y control del sistema, y

el subsistema predictivo basado en técnicas de machine learning. Esta organización

favoreció el diseño iterativo y la validación individual de cada componente,

garantizando la coherencia en la integración final.

En esta etapa del proyecto, el sistema SIRCA-IoT fue implementado y validado en

un entorno controlado que permitió reproducir las condiciones de funcionamiento

esperadas en un cultivo protegido, asegurando el monitoreo continuo de variables

ambientales relevantes y la automatización del proceso de riego en función de los

datos obtenidos y las predicciones generadas. El enfoque experimental adoptado

permitió verificar la comunicación entre los dispositivos IoT, la estabilidad del flujo

de datos, la eficiencia del backend en el manejo de información en tiempo real y la

precisión del modelo predictivo en la estimación del nivel de humedad del suelo.

El desarrollo se organizó en cinco secciones principales. En la primera se presenta

la arquitectura general del sistema, describiendo los componentes que lo integran y

su interacción. La segunda sección aborda el subsistema IoT, detallando el

funcionamiento de los sensores, la transmisión de datos y el control automatizado

del riego. La tercera describe la plataforma web, explicando su estructura de

backend y frontend, así como las herramientas empleadas para la gestión de

información y la comunicación con el hardware. En la cuarta se expone el

Capítulo 4. Desarrollo e Implementación

52

subsistema predictivo, donde se describe el modelo de aprendizaje automático

utilizado para anticipar los niveles de humedad del suelo. Finalmente, en la quinta

sección se presentan los procesos de integración y validación funcional del sistema,

donde se analiza el desempeño general del prototipo y su capacidad para operar de

manera autónoma y eficiente.

El enfoque adoptado permitió no solo demostrar el funcionamiento integral del

sistema, sino también sentar las bases para su futura implementación en escenarios

agrícolas reales. En conjunto, este capítulo representa la culminación del proceso

metodológico descrito previamente, traduciendo los requerimientos identificados en

un sistema tangible, funcional y validado experimentalmente.

4.1. Desarrollo del Sistema SIRCA-IoT

4.1.1. Arquitectura General del Sistema
El desarrollo del SIRCA-IoT se estructuró bajo una arquitectura distribuida y

modular, diseñada para integrar de forma coherente los componentes de hardware,

software y modelado predictivo. La arquitectura propuesta permitió el monitoreo

continuo de variables ambientales, la automatización del riego y la generación de

predicciones basadas en datos históricos, todo dentro de un entorno controlado que

reproduce las condiciones de un cultivo protegido.

La solución se organizó en tres subsistemas principales: el subsistema IoT,

encargado de la adquisición y transmisión de datos sensoriales; el subsistema web,

responsable del procesamiento, almacenamiento, visualización y control del

sistema; y el subsistema predictivo, dedicado al análisis de datos y la estimación de

la humedad del suelo mediante aprendizaje automático. Estos subsistemas se

comunicaron a través del protocolo MQTT (Message Queuing Telemetry Transport),

que garantizó la transmisión eficiente y confiable de los datos entre los distintos

nodos y servicios del sistema.

Capítulo 4. Desarrollo e Implementación

53

Diagrama 1. Arquitectura General del Sistema.

 Estructura de la Arquitectura Distribuida
La arquitectura se basó en el principio de desacoplamiento funcional, permitiendo

que cada subsistema operara de manera independiente pero sincronizada. La

Raspberry Pi 4 Model B se utilizó como nodo central de adquisición y control del

SIRCA-IoT, recibiendo los datos de los sensores conectados a sus interfaces GPIO,

I2C y 1-Wire. Estos datos fueron procesados localmente y enviados al bróker MQTT

HiveMQ, que actuó como intermediario entre el hardware y la plataforma web.

En el lado del servidor, el backend desarrollado en Django se encargó de recibir y

registrar los datos en una base de datos TimescaleDB, optimizada para el manejo

de series temporales. A partir de esta información, el sistema permitió tanto el

monitoreo en tiempo real como el almacenamiento histórico para su posterior

análisis. La comunicación con los usuarios se gestionó mediante una interfaz web

desarrollada en Vue.js, la cual permitió la visualización gráfica de los datos, el

control manual del riego y el seguimiento de las predicciones generadas por el

modelo de machine learning.

El modelo predictivo, implementado y entrenado en Python, se integró al backend

mediante un servicio modular que procesaba los datos registrados, estimaba la

humedad futura del suelo y enviaba las recomendaciones al sistema de control. De

esta manera, el flujo de información siguió un esquema circular que unió los

Capítulo 4. Desarrollo e Implementación

54

procesos de sensado, transmisión, predicción y acción. A continuación, se describen

los componentes de cada uno de estos subsistemas:

 Backend (Django + DRF + Channels):

 Django REST Framework (DRF): Facilita la creación de endpoints para la

interacción con el frontend, permitiendo la consulta de datos históricos de los

sensores y la configuración de sus umbrales [31].

 Django Channels: Utilizado para gestionar la comunicación en tiempo real

mediante WebSockets, lo que permite al frontend recibir actualizaciones

instantáneas sobre los valores de los sensores sin necesidad de recargar la

página [32].

 Redis: Actúa como cache para optimizar la velocidad de comunicación y

como broker para las tareas asíncronas gestionadas por Celery [33].

 Celery: Se utiliza para gestionar tareas asíncronas, como la recolección

periódica de datos y la integración con dispositivos de control, según las

necesidades del sistema [34].

 Frontend (Vue 3 + Vuetify 3):

 Vue 3: Gestiona la reactividad de la interfaz, actualizando en tiempo real la

visualización de los sensores y cualquier otra información relevante [35].

 Vuetify 3: Proporciona los componentes de interfaz de usuario necesarios

para crear una experiencia visual atractiva y fácil de usar [36].

 Vue3-ApexCharts: Permite la visualización gráfica de los datos históricos de

los sensores mediante gráficos interactivos [37].

 Pinia: Facilita el manejo del estado de la aplicación, permitiendo el

almacenamiento de configuraciones y datos en el frontend [38].

 Axios: Se usa para interactuar con las APIs del backend, consultando datos

históricos y enviando solicitudes para cambiar configuraciones o realizar

acciones manuales [39].

Capítulo 4. Desarrollo e Implementación

55

 Almacenamiento de Datos (TimescaleDB + PostgreSQL)

 TimescaleDB: Permite almacenar y consultar datos en tiempo real y a lo

largo del tiempo, optimizando las operaciones sobre grandes volúmenes de

datos de sensores [40].

 PostgreSQL: Base de datos relacional utilizada para la gestión de los datos

persistentes, como la configuración de los sensores, registros de usuarios,

etc [41].

 Comunicación y Flujo de Datos
El sistema se organiza de manera que cada componente se comunica de forma

eficiente, permitiendo la actualización en tiempo real de los datos y la interacción

con el usuario.

1. Sensores → Backend: Los datos de los sensores se envían al backend

mediante MQTT o protocolos similares, para su procesamiento y análisis.

2. Backend → Frontend: A través de WebSockets, el backend envía

actualizaciones en tiempo real a la interfaz de usuario, permitiendo al usuario

ver los cambios en los valores de los sensores sin necesidad de recargar la

página.

3. Frontend → Backend (REST API): El usuario puede interactuar con el

sistema a través de la API RESTful, permitiendo la consulta de datos

históricos y la modificación de configuraciones de los sensores.

4. Backend → TimescaleDB: Los datos de los sensores se almacenan en

TimescaleDB para su posterior consulta.

Este diseño garantizó una comunicación bidireccional, en la que tanto los datos de

sensores como las órdenes de control fluyeron de manera constante y sincrónica,

lo que permitió mantener la operación autónoma del sistema con mínima

intervención humana.

Capítulo 4. Desarrollo e Implementación

56

 Principios de Diseño
Durante el desarrollo del sistema se adoptaron principios de ingeniería de software

y hardware orientados a garantizar su fiabilidad, escalabilidad y sostenibilidad. Entre

los más relevantes se destacaron los siguientes:

 Modularidad: cada componente del sistema fue diseñado como una unidad

funcional independiente (sensores, backend, frontend, modelo predictivo),

facilitando el mantenimiento, la depuración y la futura ampliación del

prototipo.

 Escalabilidad: la arquitectura permitió la incorporación de nuevos sensores,
nodos IoT o zonas de riego sin modificar el núcleo del sistema.

 Eficiencia energética: el hardware fue configurado para minimizar el consumo
eléctrico, lo cual resulta esencial en aplicaciones agrícolas de bajo

mantenimiento.

 Comunicación ligera: el uso del protocolo MQTT redujo la sobrecarga de
datos y optimizó la transmisión en entornos de conectividad limitada.

 Seguridad y confiabilidad: se implementaron mecanismos de autenticación
en el bróker MQTT y en la API web, garantizando la integridad de los datos y

la protección frente a accesos no autorizados.

La modularidad del sistema facilita la incorporación de nuevas funcionalidades sin

alterar el núcleo del sistema. Además, la capacidad de integrar dispositivos

adicionales como válvulas de riego, sensores adicionales o sistemas de control más

avanzados asegura que el sistema pueda adaptarse a distintas necesidades

agrícolas [42].

Estos principios sustentaron el diseño general del sistema y guiaron su

implementación en las fases posteriores, asegurando que el prototipo alcanzara un

equilibrio entre complejidad técnica, eficiencia operativa y viabilidad práctica.

Capítulo 4. Desarrollo e Implementación

57

Diagrama 2. Arquitectura del Sistema (Backend, Frontend y Almacenamiento de Datos).

4.1.2. Subsistema IoT: Adquisición y Transmisión de
Datos

El subsistema IoT constituyó la capa física del sistema de riego inteligente,

encargada de la medición y transmisión de las variables ambientales que sirvieron

como base para la toma de decisiones. Este componente se diseñó para recolectar

información de forma continua y confiable, garantizando la comunicación con el

servidor central mediante el protocolo MQTT. La integración de sensores con la

Raspberry Pi permitió simular un entorno agrícola controlado, en el cual se validaron

los procesos de adquisición, procesamiento y envío de datos hacia la plataforma

web.

 Controlador Central
El controlador central es el núcleo del sistema de riego inteligente basado en IoT.

Su función principal es la adquisición de datos desde los sensores, el procesamiento

Capítulo 4. Desarrollo e Implementación

58

de la información, el control del actuador (bomba de agua) y la transmisión de datos

a través del protocolo MQTT al broker de HiveMQ.

En este sistema, se ha seleccionado la Raspberry Pi 4 Model B como unidad central

de procesamiento y comunicación debido a su capacidad de cómputo, conectividad

y compatibilidad con múltiples sensores y dispositivos IoT [43].

Características Técnicas de la Raspberry Pi 4 Model B:

Procesador: Broadcom BCM2711, Quad-Core Cortex-A72 a 1.5 GHz

Memoria RAM: Variantes de 2GB, 4GB u 8GB LPDDR4

Almacenamiento: Tarjeta microSD (recomendada de 16GB o más)

Conectividad:

 Wi-Fi 802.11 b/g/n/ac

 Bluetooth 5.0

 Ethernet Gigabit

 4 puertos USB (2x USB 3.0, 2x USB 2.0)

 GPIO de 40 pines para la conexión de sensores y actuadores [43]

Sistemas operativos compatibles: Raspberry Pi OS (recomendado), Ubuntu,

entre otros [43].

La Raspberry Pi ejecutó un servicio en Python que gestionó las siguientes tareas

principales:

 Lectura de datos desde los sensores conectados mediante los puertos GPIO,

I2C y 1-Wire.

 Preprocesamiento local de las mediciones (filtrado, normalización y

validación).

Capítulo 4. Desarrollo e Implementación

59

 Publicación de datos hacia el bróker MQTT, en tópicos definidos para cada

variable.

 Recepción de comandos de control, enviados desde el backend para el

encendido o apagado remoto de la bomba de agua.

Esta configuración permitió una comunicación bidireccional entre el hardware y el

sistema web, reproduciendo el comportamiento esperado en un escenario agrícola

real. La elección de la Raspberry Pi 4 Model B permite un alto grado de flexibilidad

y escalabilidad en el sistema, garantizando una gestión eficiente del riego mediante

el monitoreo en tiempo real y la comunicación con el broker MQTT de HiveMQ [44].

 Sensores y Actuadores Implementados

4.1.2.2.1. Sensores

El sistema de riego inteligente basado en IoT incorpora una serie de sensores

diseñados para recopilar información sobre el entorno y el suelo, permitiendo una

gestión eficiente del agua. A continuación, se describen en detalle los sensores

empleados, su funcionamiento y su integración con la Raspberry Pi 4 Model B.

DHT22 (Humedad y temperatura ambiental):

El sensor DHT22 es un dispositivo digital que mide la temperatura y la humedad

relativa del aire. Es ampliamente utilizado en aplicaciones de monitoreo ambiental

debido a su precisión y bajo consumo energético [45].

 Rango de temperatura: -40°C a 80°C

 Precisión de temperatura: ±0.5°C

 Rango de humedad relativa: 0% - 100%

 Precisión de humedad: ±2-5%

 Interfaz de comunicación: Digital, protocolo de un solo cable.

DS18B20 (Temperatura del suelo):

Capítulo 4. Desarrollo e Implementación

60

Este sensor digital es ideal para medir la temperatura del suelo debido a su

encapsulado resistente al agua. Utiliza el protocolo 1-Wire, permitiendo la conexión

de múltiples sensores en el mismo bus de datos [45].

 Rango de temperatura: -55°C a 125°C

 Precisión: ±0.5°C en el rango de -10°C a 85°C

 Interfaz de comunicación: 1-Wire

 Voltaje de operación: 3.0V - 5.5V

BH1750 (Intensidad de luz ambiental):

El sensor BH1750 mide la cantidad de luz en lux y proporciona datos en formato

digital mediante la interfaz I²C. Es crucial para determinar la influencia de la luz en

la evaporación del agua en el suelo [45].

 Rango de medición: 1 - 65535 lux

 Interfaz de comunicación: I²C

 Voltaje de operación: 2.4V - 3.6V

 Precisión: ±20%

SCD41 (Sensor de CO₂):

Este sensor mide la concentración de dióxido de carbono en el aire, lo cual es útil

para analizar el impacto de la ventilación y la fotosíntesis en el invernadero [45].

 Rango de medición: 0 - 40,000 ppm

 Interfaz de comunicación: I²C

 Voltaje de operación: 2.4V - 5.5V

Capítulo 4. Desarrollo e Implementación

61

 Precisión: ±(50 ppm + 5% del valor medido)

LM393 (Sensor de humedad del suelo con ADC ADS1115):

Este sensor, combinado con el convertidor ADC ADS1115, permite medir la

humedad del suelo de manera precisa y enviarla a la Raspberry Pi, ya que la

Raspberry Pi no cuenta con entradas analógicas nativas [45].

 Interfaz del sensor: Analógica

 Conversión ADC: ADS1115 (16 bits)

 Voltaje de operación: 3.3V - 5V

 Precisión de medición: Alta, debido al uso del convertidor ADC

Cada sensor fue probado de manera individual para verificar su correcta lectura, y

posteriormente integrado al sistema general. Las calibraciones y conexiones

eléctricas se documentaron en el Anexo A, donde se describen los esquemas de

cableado y los parámetros de configuración empleados durante las pruebas.

4.1.2.2.2. Actuadores

El sistema de riego inteligente basado en IoT cuenta con un único actuador: una

bomba de agua controlada mediante un relé. Este componente es el encargado de

regular el suministro de agua a los cultivos en función de los valores de humedad

del suelo obtenidos a través del sensor LM393, garantizando un uso eficiente del

recurso hídrico.

Características de la bomba de agua:

 Tipo: Bomba de agua sumergible.

 Voltaje de operación: 3V - 6V.

 Caudal de agua: 80-120 L/h (2 litros por minuto)

Capítulo 4. Desarrollo e Implementación

62

 Modo de activación: Controlada por un relé mediante la Raspberry Pi

Módulo Relé

Para controlar la activación de la bomba de agua con la Raspberry Pi, se emplea un

módulo relé de estado sólido o mecánico que actúa como un interruptor electrónico,

permitiendo la conexión o desconexión de la alimentación de la bomba.

 Voltaje de control: 3.3V - 5V

 Voltaje de carga: Hasta 250V AC o 30V DC

 Corriente soportada: 10A

 Tipo de relé: SPDT (Single Pole Double Throw)

Este actuador es un elemento clave en la automatización del riego, ya que permite

gestionar el flujo de agua de manera inteligente en respuesta a las condiciones del

suelo, optimizando así el consumo de agua y mejorando la salud del cultivo [45].

Las calibraciones y conexiones eléctricas se documentaron en el Anexo A, donde

se describen los esquemas de cableado y los parámetros de configuración

empleados durante las pruebas.

 Conectividad y Comunicación
La conectividad y comunicación en el sistema de riego inteligente basado en IoT

son fundamentales para garantizar la transmisión eficiente y en tiempo real de los

datos obtenidos por los sensores y las órdenes de activación del actuador. Para ello,

se utilizó el protocolo Message Queuing Telemetry Transport (MQTT) y el servicio

de broker MQTT de HiveMQ, que permite la comunicación entre la Raspberry Pi y

los demás dispositivos del sistema [46].

4.1.2.3.1. Protocolo MQTT

MQTT es un protocolo de mensajería liviano ideal para sistemas IoT debido a su

baja latencia, consumo mínimo de ancho de banda y fiabilidad en la transmisión de

Capítulo 4. Desarrollo e Implementación

63

datos. Funciona bajo un modelo publicador-suscriptor, en el cual los dispositivos

pueden publicar y recibir mensajes en distintos "tópicos" dentro del broker.

 Modelo de Comunicación: Publicador-Suscriptor

 Protocolo de Transporte: TCP/IP

 Seguridad: Compatible con autenticación TLS/SSL

 Eficiencia: Bajo consumo de ancho de banda, ideal para IoT

En este sistema, la Raspberry Pi actúa como publicador y suscriptor, enviando datos

de los sensores y recibiendo comandos para la activación de la bomba de agua [47].

4.1.2.3.2. Broker MQTT de HiveMQ

HiveMQ es un broker MQTT basado en la nube que facilita la comunicación segura

y confiable entre dispositivos IoT. Se ha elegido este servicio debido a su estabilidad,

facilidad de integración y soporte para múltiples clientes simultáneos.

Características principales:

 Soporte para conexiones simultáneas de múltiples dispositivos

 Baja latencia en la transmisión de mensajes

 Seguridad con TLS/SSL y autenticación de clientes

 Compatible con QoS (Calidad de Servicio) para priorización de mensajes

[48].

4.1.2.3.3. Tópicos MQTT Utilizados en el Sistema

En este sistema se han definido los siguientes tópicos MQTT para la transmisión de

datos y el control del actuador:

 Tópico de Sensores: iot/riego/sensores

Capítulo 4. Desarrollo e Implementación

64

Publica los valores de temperatura, humedad ambiental, humedad del suelo,

CO₂ e intensidad lumínica.

 Tópico de Control de la Bomba: iot/riego/bomba

Recibe órdenes de activación o desactivación de la bomba de agua.

4.1.2.3.4. Flujo de Datos y Procesamiento

El sistema de riego inteligente basado en IoT sigue un flujo de datos bien definido

para garantizar la correcta adquisición, procesamiento y transmisión de información.

A continuación, se detalla el flujo de datos en el sistema:

1. Adquisición de Datos:

- Los sensores conectados a la Raspberry Pi recopilan información en

tiempo real sobre la temperatura y humedad del ambiente (DHT22), la

temperatura del suelo (DS18B20), la intensidad de luz (BH1750), los

niveles de CO₂ (SCD41) y la humedad del suelo (LM393 con

ADS1115).

- Cada sensor tiene un script independiente en Python que ejecuta su

lectura y retorna los valores obtenidos.

2. Procesamiento Local:

- La Raspberry Pi recibe los datos desde los sensores y los convierte

en un formato estructurado.

3. Transmisión de Datos al Broker MQTT:

- Todos los datos recopilados se publican en el broker HiveMQ a través

del protocolo MQTT.

Capítulo 4. Desarrollo e Implementación

65

- La Raspberry Pi envía los datos a tópicos específicos en el broker:

 iot/sensores: Contiene los valores de los sensores.

- El cliente MQTT también se suscribe al tópico iot/control para recibir

comandos de activación y desactivación de la bomba de agua.

4. Interacción con el Usuario:

- Los datos enviados al broker MQTT pueden ser accedidos por clientes

remotos que deseen monitorear las condiciones del cultivo en tiempo

real.

- Se pueden enviar comandos desde una interfaz de usuario o

aplicación para activar o desactivar manualmente la bomba de agua a

través del broker MQTT.

5. Respuesta del Sistema:

- Cuando se recibe un comando en el tópico iot/control, la Raspberry Pi

lo interpreta y activa o desactiva la bomba de agua en consecuencia.

- Se actualiza el estado del sistema en el broker MQTT, asegurando que

cualquier cliente suscrito reciba la información más reciente.

Este flujo de datos garantiza la automatización eficiente del riego, optimizando el

consumo de agua y asegurando condiciones óptimas para el crecimiento del cultivo.

El detalle completo de configuración y código fuente se presenta en el Anexo A.

Capítulo 4. Desarrollo e Implementación

66

Diagrama 3. Diagrama de flujo de datos y procesamiento en el sistema IoT.

4.1.3. Subsistema Web: Backend y Frontend
El subsistema web constituyó la capa lógica y de presentación del sistema de riego

inteligente, encargada de recibir, procesar, almacenar y mostrar la información

proveniente de los dispositivos IoT, así como de administrar la comunicación con el

modelo predictivo y los módulos de control. Este subsistema se diseñó bajo una

arquitectura cliente-servidor que integró tecnologías modernas de desarrollo web,

garantizando un entorno robusto, escalable y de fácil uso para el operador.

Este sistema está compuesto por dos módulos principales: un backend desarrollado

con Django, encargado de recibir, procesar y almacenar datos desde los sensores;

y un frontend construido en Vue 3, que permite visualizar la información en tiempo

real, explorar métricas históricas y configurar alertas o parámetros del sistema. La

arquitectura integra tecnologías como MQTT para la comunicación IoT, WebSockets

para actualización en tiempo real, y TimescaleDB para el almacenamiento de series

temporales, gestionando procesos asíncronos mediante Celery.

En esta sección se describen los componentes técnicos del sistema web, el flujo de

datos desde su origen hasta la visualización, y los mecanismos implementados para

garantizar su escalabilidad, modularidad y seguridad.

Capítulo 4. Desarrollo e Implementación

67

 Backend del Sistema
El backend fue desarrollado utilizando el framework Django junto con Django REST

Framework (DRF), debido a su estabilidad, seguridad y facilidad para estructurar

aplicaciones modulares. Este componente funcionó como el núcleo del sistema,

encargándose de la comunicación entre la Raspberry Pi, la base de datos, el modelo

predictivo y la interfaz web.

El backend gestionó las siguientes funciones principales:

 Recepción y almacenamiento de datos IoT:

Los datos enviados desde la Raspberry Pi a través del bróker MQTT fueron

recibidos mediante un cliente integrado en el backend, que procesó los

mensajes y los almacenó en una base de datos TimescaleDB. Este sistema,

diseñado para manejar series temporales, permitió conservar registros

históricos y realizar consultas eficientes sobre grandes volúmenes de datos

ambientales.

 Exposición de servicios mediante API RESTful:
Se desarrollaron endpoints que facilitaron la comunicación entre los distintos

módulos del sistema. A través de estas rutas, el frontend accedió a los datos

de sensores, al historial de humedad del suelo y a las predicciones

generadas por el modelo de machine learning. Las rutas principales

incluyeron funciones para la consulta, control manual del riego, gestión de

dispositivos y monitoreo de eventos.

 Integración con el modelo predictivo:
El backend alojó un servicio encargado de ejecutar el modelo de predicción

de humedad del suelo. Este proceso analizaba las últimas lecturas

almacenadas y generaba una estimación del nivel de humedad futuro. Los

resultados eran devueltos al sistema central y mostrados en la interfaz de

usuario como sugerencias de riego.

 Control remoto del riego:

Cuando el sistema recibía una orden de activación o desactivación del riego

(ya sea de manera automática o manual), generaba un mensaje MQTT hacia

Capítulo 4. Desarrollo e Implementación

68

el tópico correspondiente, que era recibido por la Raspberry Pi. Este proceso

cerró el ciclo de comunicación entre software y hardware.

Para optimizar el rendimiento y la ejecución de tareas periódicas, se integró un

sistema de procesamiento asíncrono con Celery y Redis, utilizado para tareas como

el envío recurrente de datos de diagnóstico o el cálculo de predicciones a intervalos

definidos. La configuración detallada de estos servicios, junto con los scripts de

integración MQTT, se documenta en el Anexo B.

4.1.3.1.1. Stack Tecnológico

El backend del sistema se desarrolla utilizando una combinación de tecnologías

robustas y escalables. A continuación, se detallan las principales tecnologías

utilizadas en el backend para garantizar un alto rendimiento, facilidad de

mantenimiento y capacidad de ampliación.

 Django

Django es un framework web de alto nivel que facilita el desarrollo de

aplicaciones web complejas de manera rápida y con un enfoque en la

reutilización de código. Django es conocido por su enfoque en la "convención

sobre configuración", lo que significa que proporciona una estructura clara y

bien definida para que los desarrolladores puedan concentrarse en la lógica

de negocio sin tener que preocuparse por los detalles técnicos de bajo nivel.
Ventajas de usar Django:

 Escalabilidad: Django es altamente escalable, lo que permite que el
sistema crezca con facilidad a medida que se añaden nuevos

sensores, dispositivos o funcionalidades.

 Seguridad: Django incluye múltiples medidas de seguridad integradas,
como protección contra CSRF (Cross-Site Request Forgery), XSS

(Cross-Site Scripting) y SQL Injection.

 ORM (Object-Relational Mapping): Django utiliza un ORM para
interactuar con bases de datos, lo que permite definir modelos de

datos como clases Python y gestionarlas de manera sencilla sin tener

que escribir consultas SQL directamente [49].

Capítulo 4. Desarrollo e Implementación

69

 Django REST Framework (DRF)
Django REST Framework (DRF) es una extensión de Django diseñada para

crear APIs RESTful de manera rápida y sencilla. DRF permite exponer los

recursos del backend (como las lecturas de los sensores, configuraciones de

los dispositivos y notificaciones) a través de endpoints que pueden ser

consumidos por el frontend.
Ventajas de usar DRF:

 Facilidad para crear APIs RESTful: Con DRF, la creación de una API

es rápida y sencilla gracias a sus herramientas como serializers y

viewsets.

 Autenticación y permisos: DRF proporciona un sistema de

autenticación y autorización flexible, permitiendo aplicar permisos

específicos a cada recurso (por ejemplo, solo ciertos usuarios pueden

modificar la configuración de los sensores).

 Documentación automática: DRF incluye herramientas para generar
documentación de la API de manera automática, facilitando la

interacción entre el backend y el frontend [31].

 Django Channels
Django Channels extiende la capacidad de Django para manejar

WebSockets, lo que permite la comunicación en tiempo real entre el backend

y el frontend. En el caso de este sistema, se utiliza Django Channels para

permitir que los datos de los sensores y las notificaciones de control, como

el estado de la bomba de agua, se transmitan en tiempo real al frontend.

Ventajas de usar Django Channels:

 Comunicación en tiempo real: Con WebSockets, el backend puede
enviar datos al frontend sin necesidad de que el usuario recargue la

página, lo que mejora la experiencia de usuario al ver la información

en tiempo real.

Capítulo 4. Desarrollo e Implementación

70

 Soporte para múltiples protocolos: Django Channels no solo soporta

WebSockets, sino también protocolos como HTTP2, lo que amplía las

capacidades del sistema para otros tipos de comunicación en el futuro

[32].

 Redis

Redis es un sistema de almacenamiento en memoria que se utiliza como

cache y como broker de tareas. En este sistema, Redis cumple dos roles

fundamentales:

 Cache: Redis se utiliza para almacenar temporalmente los resultados

de consultas frecuentes o datos que no cambian con frecuencia, lo

que mejora la velocidad de acceso a esos datos y reduce la carga en

la base de datos.

 Broker para Celery: Redis se utiliza como el broker para Celery,

facilitando la ejecución de tareas asíncronas. Por ejemplo, la

recolección periódica de datos de los sensores o la ejecución de

procesos de control, como el monitoreo y activación de la bomba de

agua, se gestionan a través de Celery utilizando Redis.

Ventajas de usar Redis:

 Alta velocidad: Redis es extremadamente rápido debido a que
almacena datos en memoria, lo que lo hace ideal para operaciones

de cache.

 Escalabilidad: Redis es fácil de escalar horizontalmente, lo que

permite distribuir el procesamiento de tareas en múltiples nodos

para mejorar el rendimiento y la capacidad de gestión de la carga

[33].

 Celery

Celery es una librería para la gestión de tareas asíncronas. Se utiliza en este

sistema para ejecutar tareas que no necesitan ser procesadas

Capítulo 4. Desarrollo e Implementación

71

inmediatamente, como la recolección periódica de datos de los sensores y el

control de la bomba de agua. Celery gestiona estas tareas en segundo plano,

permitiendo que el sistema siga funcionando sin bloquearse mientras se

realizan estas operaciones.
Ventajas de usar Celery:

 Tareas asíncronas y periódicas: Celery permite que tareas de larga
duración o repetitivas, como la recolección de datos de sensores o el

monitoreo de la bomba de agua, se realicen de manera asíncrona sin

afectar el rendimiento del sistema.

 Escalabilidad: Celery se puede ejecutar en varios trabajadores

(workers), lo que permite distribuir las tareas y mejorar la capacidad

de procesamiento.

 Soporte para diferentes tipos de colas: Celery puede integrarse con

diferentes sistemas de colas de mensajes, y en este caso, se utiliza

con Redis como bróker [34], [50].

 TimescaleDB

TimescaleDB es una extensión de PostgreSQL diseñada específicamente

para almacenar y gestionar series temporales. Dado que los datos de los

sensores son, por naturaleza, temporales (cambian continuamente a lo largo

del tiempo), TimescaleDB es ideal para almacenar y consultar este tipo de

datos de manera eficiente.
Ventajas de usar TimescaleDB:

 Optimización para datos temporales: TimescaleDB permite realizar

consultas complejas sobre grandes volúmenes de datos temporales

de manera eficiente.

 Integración con PostgreSQL: TimescaleDB se integra de forma nativa

con PostgreSQL, lo que permite aprovechar todas las funcionalidades

de una base de datos relacional con optimizaciones para series

temporales [40], [41].

El detalle de la implementación web se presenta en el Anexo B.

Capítulo 4. Desarrollo e Implementación

72

4.1.3.1.2. Recepción de Datos desde HiveMQ

El sistema se comunica con los sensores a través de un bróker MQTT, que es

responsable de recibir, gestionar y distribuir los mensajes de los sensores. El bróker

HiveMQ es utilizado en este sistema como intermediario entre los sensores y el

backend, permitiendo que los datos generados por los sensores se transmitan de

manera eficiente hacia el backend para su procesamiento y almacenamiento.

Protocolo MQTT y HiveMQ

MQTT es un protocolo ligero de mensajería que permite la comunicación entre

dispositivos de bajo consumo, como los sensores en un cultivo, y sistemas más

complejos como el backend. MQTT se basa en un modelo de publicación y

suscripción, lo que significa que los sensores (publicadores) envían datos a través

de un canal (llamado "tema") al que el backend (suscriptor) se suscribe para recibir

los mensajes.

El bróker HiveMQ actúa como el intermediario en este proceso:

 Los sensores publican mensajes con datos a un tema específico.

 El backend se suscribe a esos temas y recibe los mensajes de los sensores

en tiempo real [47], [48].

Capítulo 4. Desarrollo e Implementación

73

Diagrama 4. Diagrama de Flujo de Datos en el Backend.

4.1.3.1.3. Envío de Datos en Tiempo Real (WebSocket)

En un sistema de monitoreo en tiempo real, es fundamental que el frontend se

mantenga actualizado con la información más reciente, sin necesidad de recargar

la página. Para lograr esto, se utiliza la tecnología WebSocket, que permite la

comunicación bidireccional en tiempo real entre el servidor (backend) y el cliente

(frontend). En este caso, se emplea Django Channels para gestionar las conexiones

WebSocket y enviar las actualizaciones de los sensores al frontend de manera

instantánea.

Uso de Django Channels para WebSockets:

Django Channels extiende la funcionalidad de Django para soportar protocolos

asíncronos, como WebSockets, lo que permite gestionar conexiones de larga

Capítulo 4. Desarrollo e Implementación

74

duración entre el servidor y el cliente. A diferencia de las solicitudes HTTP

tradicionales, que son transacciones de ida y vuelta, los WebSockets permiten que

los datos fluyan continuamente entre el servidor y el cliente sin necesidad de nuevas

solicitudes.

Flujo de Comunicación con WebSocket

1. Conexión del cliente WebSocket al servidor: El cliente (en este caso, el

frontend desarrollado en Vue 3) establece una conexión WebSocket con el

backend.

2. Backend recibe los datos de los sensores: El backend procesa los datos de

los sensores, los cuales son enviados en tiempo real a través del WebSocket.

3. Actualización en tiempo real del frontend: El frontend, a través de la conexión

WebSocket, recibe los datos y actualiza la interfaz de usuario sin necesidad

de recargar la página [32].

4.1.3.1.4. Tareas Periódicas con Celery

El uso de Celery en el sistema es clave para manejar tareas que deben ejecutarse

de forma periódica, sin bloquear la ejecución del sistema principal. Esto es

especialmente útil en un sistema de monitoreo como el de esta tesis, donde se

requiere la recolección periódica de datos de los sensores, el control de dispositivos

(como la bomba de agua) o la ejecución de otros procesos que deben suceder en

segundo plano, sin que el sistema deje de responder a las solicitudes del usuario.

Celery es un framework para tareas distribuidas en Python, diseñado para la

ejecución de tareas en segundo plano. En este sistema, Celery se utiliza en conjunto

con Celery Beat, que se encarga de programar las tareas periódicas, como la

recolección de datos a intervalos regulares o la gestión de dispositivos [34], [50].

4.1.3.1.5. API REST para Configuración

Una de las funcionalidades clave del backend en este sistema es proporcionar una

interfaz para que los usuarios gestionen las configuraciones de los sensores, como

Capítulo 4. Desarrollo e Implementación

75

los umbrales de activación para la bomba de agua, las métricas que se deben

monitorear, y otros parámetros del sistema. Para ello, se utiliza una API REST

expuesta mediante Django REST Framework (DRF), lo que facilita la interacción

con el frontend y otros sistemas.

 Creación de la API REST con Django REST Framework

Django REST Framework (DRF) es una poderosa herramienta que permite crear

rápidamente APIs RESTful en Django. DRF facilita la creación de serializadores
para transformar los modelos de Django en representaciones JSON, y también

proporciona vistas para manejar las solicitudes HTTP [31].

Configuración de Django REST Framework (DRF):

Primero, instalamos DRF en nuestro entorno de trabajo:

pip install djangorestframework

A continuación, agregamos DRF a las aplicaciones instaladas en el archivo

settings.py:

Código 1. Configuración de Django REST Framework en settings.py.

 Serializadores en DRF

Los serializadores en DRF son responsables de transformar los objetos de Django

(como los modelos) en datos JSON que pueden ser enviados a través de la API, y

viceversa. Para la configuración de los sensores y otros parámetros del sistema,

necesitamos crear un serializador para cada modelo relevante.

Capítulo 4. Desarrollo e Implementación

76

Ejemplo de Serializador para Configuración de Sensores:

En el siguiente ejemplo, creamos un serializador para la configuración de los

sensores, como los umbrales de humedad y temperatura.

Código 2: Ejemplo de Serializador para Configuración de Sensores.

 sensor_type: El tipo de sensor (temperatura, humedad, etc.).

 min_value y max_value: Los umbrales de valor para cada tipo de sensor

(por ejemplo, el umbral mínimo y máximo de humedad) [31].

 Vistas de la API

Con el serializador definido, creamos las vistas que manejarán las solicitudes HTTP

(GET, POST, PUT, DELETE) para obtener, crear, actualizar y eliminar las

configuraciones de los sensores.

Ejemplo de Vista para Configuración de Sensores:

Usamos ViewSets en DRF para crear vistas fácilmente que gestionen las

operaciones CRUD sobre los recursos de configuración.

Capítulo 4. Desarrollo e Implementación

77

Código 3: Ejemplo de Vista para Configuración de Sensores.

SensorConfigViewSet: Este ViewSet permite realizar operaciones CRUD sobre

las configuraciones de los sensores. Con ModelViewSet, se generan

automáticamente las vistas para las operaciones básicas (GET, POST, PUT,

DELETE) [31].

 Configuración de Rutas para la API REST

Una vez que hemos creado los serializadores y las vistas, es necesario configurar

las rutas de la API para que los usuarios y el frontend puedan acceder a ellas.

Configuración de Rutas en urls.py:

Código 4: Configuración de Rutas en urls.py.

En este caso, hemos creado una ruta sensor-config que permitirá a los usuarios

consultar y modificar la configuración de los sensores. El DefaultRouter de DRF

Capítulo 4. Desarrollo e Implementación

78

genera automáticamente las rutas para las operaciones CRUD sobre los recursos

[31].

 Autenticación y Autorización en la API

Es importante implementar un sistema de autenticación y autorización para

asegurar que solo los usuarios con permisos adecuados puedan modificar la

configuración de los sensores.

Autenticación con JWT:

Una de las opciones más comunes es el uso de JWT (JSON Web Tokens) para

autenticar las solicitudes a la API. Para ello, podemos instalar una librería como

djangorestframework-simplejwt.

pip install djangorestframework-simplejwt

En settings.py, configuramos JWT para autenticar las solicitudes:

Código 5: Configuración de djangorestframework-simplejwt en settings.py.

Con esta configuración, las solicitudes a la API deben incluir un token JWT válido

en el encabezado para ser autorizadas [31].

Capítulo 4. Desarrollo e Implementación

79

 Estructura de la Base de Datos
El sistema de monitoreo de sensores utiliza TimescaleDB para almacenar y

gestionar los datos de los sensores y sus configuraciones. Dado que los datos son

principalmente series temporales, como las mediciones periódicas de temperatura,

humedad y otros parámetros ambientales, TimescaleDB se ha elegido como base

de datos debido a su optimización para este tipo de datos [40].

4.1.3.2.1. Modelo de Datos en TimescaleDB

El modelo de datos que se utiliza para almacenar la información de los sensores

está basado en varias tablas relacionadas entre sí. A continuación, se describe cada

una de las tablas y su relación:

Tablas Principales:

1. sensors_sensor_type

o id: UUID (Identificador único del tipo de sensor).

o name: Nombre del tipo de sensor (por ejemplo, temperatura,

humedad).

o unit: Unidad de medición (por ejemplo, °C, %, etc.).

2. sensors_sensor

o id: UUID (Identificador único del sensor).

o name: Nombre del sensor (por ejemplo, "Sensor de humedad").

o min_value: Valor mínimo permitido para el sensor.

o max_value: Valor máximo permitido para el sensor.

o location: Ubicación del sensor.

o description: Descripción adicional sobre el sensor.

o type_id: Relación con la tabla sensors_sensor_type (tipo de

sensor).

Capítulo 4. Desarrollo e Implementación

80

3. sensors_sensordata

o time: Timestamp (fecha y hora de la medición del sensor).

o value: Valor de la medición del sensor.

o sensor_id: Relación con la tabla sensors_sensor (sensor que

realizó la medición).

4. sensors_notification

o id: UUID (Identificador único de la notificación).

o status: Estado de la notificación (por ejemplo, "activado",

"desactivado").

o message: Mensaje asociado con la notificación (por ejemplo, "El

sensor de temperatura alcanzó el valor máximo").

o timestamp: Timestamp (fecha y hora de la notificación).

o sensor_id: Relación con la tabla sensors_sensor (sensor asociado

a la notificación).

Capítulo 4. Desarrollo e Implementación

81

Imagen 1. Modelo de Datos (Diagrama ER Simplificado).

 Frontend del Sistema
El frontend del sistema de monitoreo de sensores tiene como objetivo proporcionar

una interfaz de usuario interactiva y eficiente, permitiendo la visualización en tiempo

real de los datos de los sensores, la configuración de sus umbrales, y la gestión de

notificaciones y métricas. El sistema está basado en una Single Page Application

(SPA), lo que significa que toda la interacción con el usuario se realiza sin necesidad

de recargar la página, lo que ofrece una experiencia más fluida y rápida [51].

Este apartado se centra en la tecnología y arquitectura utilizadas en el desarrollo

del frontend, destacando las herramientas y los componentes principales que

conforman la interfaz de usuario.

Capítulo 4. Desarrollo e Implementación

82

4.1.3.3.1. Stack Tecnológico

El frontend del sistema está desarrollado utilizando una combinación de tecnologías

modernas que permiten crear una interfaz de usuario dinámica, interactiva y

eficiente. Estas tecnologías incluyen Vue 3, Vuetify, Axios y Pinia, las cuales se

integran perfectamente para ofrecer una experiencia fluida y escalable.

 Vue 3
Vue.js es un framework progresivo de JavaScript utilizado para construir

interfaces de usuario interactivas y dinámicas. Vue 3 es la versión más

reciente, que introduce mejoras de rendimiento, composición y optimización

en la reactividad del sistema. Vue 3 se utiliza en el frontend del sistema para

crear una SPA, lo que significa que la aplicación se carga una vez y las

interacciones se realizan sin recargar la página.

Características Clave de Vue 3:

 Reactividad: Vue 3 proporciona un sistema de reactividad eficiente

que permite que la interfaz se actualice automáticamente cuando

cambian los datos.

 Composición API: Vue 3 introduce la Composition API, que permite

organizar el código de manera más modular y reutilizable, facilitando

el mantenimiento de la aplicación.

 Componentes: Vue 3 se basa en componentes que permiten

desarrollar de forma modular y mantener las distintas secciones de la

aplicación como bloques independientes y reutilizables.

Capítulo 4. Desarrollo e Implementación

83

Código 6: Ejemplo de un Componente en Vue 3.

Este es un ejemplo básico de un componente en Vue 3, que muestra un título y un

mensaje. Los componentes en Vue permiten encapsular funcionalidad y diseño, lo

que facilita el desarrollo y la gestión del código [35].

 Vuetify

Vuetify es un framework de componentes basado en Material Design para

Vue.js. Proporciona una colección de componentes predefinidos que facilitan

la creación de interfaces de usuario atractivas y coherentes con los principios

de diseño de Google.

Características Clave de Vuetify:

 Componentes de UI listos para usar: Vuetify incluye una amplia gama
de componentes como botones, formularios, tablas, menús, etc., que

siguen las pautas de Material Design.

 Personalización fácil: Aunque Vuetify proporciona un conjunto
predeterminado de componentes y estilos, también permite

personalizar completamente la apariencia de la aplicación.

Capítulo 4. Desarrollo e Implementación

84

 Responsividad: Los componentes de Vuetify son completamente

responsivos, lo que significa que se adaptan automáticamente a

diferentes tamaños de pantalla y dispositivos.

Código 7: Ejemplo de Uso de Vuetify en un Componente.

En este ejemplo, usamos el componente v-container de Vuetify para organizar la

disposición de la página. v-card se utiliza para crear una tarjeta con título y texto,

que es común en las interfaces de usuario modernas [36].

 Axios
Axios es una librería de JavaScript que se utiliza para realizar peticiones

HTTP. En el frontend del sistema, Axios se utiliza para interactuar con las

APIs REST del backend, permitiendo obtener datos como la configuración de

los sensores, los datos históricos y las notificaciones, entre otros.

Características Clave de Axios:

 Basado en Promesas: Axios utiliza promesas para manejar las
respuestas, lo que facilita el manejo de operaciones asíncronas.

 Soporte para solicitudes HTTP: Permite realizar peticiones GET,

POST, PUT, y DELETE.

 Manejo automático de JSON: Axios maneja automáticamente la

serialización y deserialización de datos en formato JSON.

Capítulo 4. Desarrollo e Implementación

85

Código 8: Ejemplo de Uso de Axios.

Este ejemplo muestra cómo usar Axios para obtener datos del backend. En el

método mounted, que se ejecuta cuando el componente es cargado, se realiza una

solicitud HTTP GET para obtener los datos de los sensores [39].

 Pinia

Pinia es una librería para el manejo del estado global en aplicaciones Vue 3,

similar a Vuex pero diseñada específicamente para aprovechar las nuevas

características de Vue 3. Pinia se utiliza para almacenar el estado global de

la aplicación, como la configuración de los sensores, los valores en tiempo

real y las notificaciones.

Características Clave de Pinia:

 Simplicidad y Flexibilidad: Pinia se enfoca en la simplicidad y usa la
nueva Composition API de Vue 3 para la gestión del estado.

 Reactividad: Pinia proporciona una forma reactiva de gestionar el

estado global, lo que significa que cuando el estado cambia, las vistas

asociadas se actualizan automáticamente.

 Persistencia: Pinia soporta la persistencia del estado, lo que permite
que el estado global se mantenga incluso después de una recarga de

página.

Capítulo 4. Desarrollo e Implementación

86

Código 9: Ejemplo de Uso de Pinia.

En este ejemplo, definimos un store usando Pinia para gestionar el estado de los

datos y la configuración de los sensores. Se pueden acceder a estos datos desde

cualquier componente de la aplicación [38].

4.1.3.3.2. Arquitectura de la SPA

La SPA es una arquitectura de frontend que permite la creación de aplicaciones web

donde la interacción del usuario no requiere recargar la página en cada acción. En

lugar de eso, la aplicación carga una sola vez y actualiza dinámicamente las vistas

a medida que el usuario interactúa con la interfaz. Esto resulta en una experiencia

más fluida y rápida, ya que solo se cargan los datos necesarios y las vistas se

actualizan sin necesidad de recargar todo el contenido de la página [51].

En este sistema de monitoreo de sensores, se ha implementado una SPA utilizando

Vue 3, Vuetify, y otras tecnologías, para ofrecer una interfaz de usuario dinámica

que permite interactuar con los datos de los sensores en tiempo real, configurar

umbrales, y gestionar notificaciones y métricas. A continuación, describimos cómo

está estructurada la SPA, sus componentes principales, y cómo se gestionan los

flujos de datos entre el frontend y el backend.

 Estructura General de la SPA

Capítulo 4. Desarrollo e Implementación

87

La SPA está organizada en componentes independientes que se encargan de

diferentes partes de la interfaz de usuario. Cada componente es responsable de

una funcionalidad específica, lo que facilita la modularización del código y su

mantenimiento [51].

Flujo de Trabajo General:

1. Carga Inicial: La aplicación se carga una sola vez, obteniendo las

dependencias iniciales como Vue, Vuetify y Axios, y configurando el estado

global (con Pinia) si es necesario.

2. Interacción del Usuario: A medida que el usuario interactúa con la aplicación

(por ejemplo, en el Dashboard, la Configuración o las Métricas), Vue 3

maneja la reactividad y actualiza la vista de manera eficiente.

3. Consumo de la API: Las solicitudes al backend se realizan a través de Axios

(para la API REST) y WebSockets (para la actualización en tiempo real de

los datos). Axios gestiona las interacciones con la API RESTful, mientras que

los WebSockets permiten la actualización instantánea de los datos del sensor

sin necesidad de recargar la página.

4. Rendimiento: El sistema utiliza técnicas como el Lazy Loading y la carga

asíncrona de componentes para optimizar el rendimiento, cargando solo los

recursos necesarios cuando el usuario interactúa con ciertas partes de la

aplicación.

 Componentes Principales de la SPA

La aplicación se organiza en varios componentes fundamentales que permiten una

experiencia de usuario interactiva. A continuación, se describen los componentes

clave de la SPA:

1. Dashboard (Tiempo Real):

 El componente Dashboard muestra los datos en tiempo real de los

sensores. Utiliza WebSockets para recibir actualizaciones en vivo de

los sensores, como la temperatura, humedad y otros parámetros.

Capítulo 4. Desarrollo e Implementación

88

Además, permite visualizar las alertas de los sensores si superan

ciertos umbrales configurados.

 Este componente es responsable de renderizar las métricas en tiempo

real y mostrar las notificaciones cuando los sensores alcanzan

condiciones críticas.

2. Configuración (Umbrales):

 En el componente Configuración, los usuarios pueden establecer los

umbrales mínimos y máximos para los sensores. Por ejemplo, pueden

configurar los umbrales de humedad del suelo que activan la bomba

de agua. Este componente interactúa con la API REST del backend

para guardar y recuperar las configuraciones.

 Además, este componente permite la gestión de la configuración

general del sistema, como la elección de qué sensores monitorear o

qué dispositivos controlar.

3. Notificaciones (Log):

 El componente Notificaciones muestra un registro de eventos y alertas

generados por el sistema. Cuando un sensor supera un umbral

configurado, se genera una notificación que aparece en este

componente. Las notificaciones incluyen información sobre el sensor,

el valor de la medición y la acción que se tomó, como activar o

desactivar la bomba de agua.

 Este componente también es responsable de mantener un historial de

eventos, lo que permite a los usuarios revisar las acciones pasadas y

los estados de los sensores.

4. Métricas (Gráficas con ApexCharts):

 El componente Métricas se encarga de mostrar gráficos interactivos

de las lecturas de los sensores a lo largo del tiempo. Utiliza

ApexCharts, una librería de gráficos para Vue.js, para representar

Capítulo 4. Desarrollo e Implementación

89

visualmente las tendencias de los datos de los sensores, como la

temperatura o la humedad.

 Los gráficos permiten a los usuarios analizar el comportamiento

histórico de los sensores, identificar patrones y realizar

comparaciones entre diferentes periodos.

 Comunicación entre Componentes y Backend

La comunicación entre los componentes del frontend y el backend se gestiona

principalmente de dos formas: a través de Axios para la API REST y WebSockets

para la actualización en tiempo real.

1. API REST con Axios:

 Axios se utiliza para hacer solicitudes a la API RESTful del backend,
como obtener los datos históricos de los sensores, modificar las

configuraciones de los umbrales y gestionar las notificaciones.

 Las respuestas del backend se procesan de forma asíncrona,

permitiendo que la interfaz se actualice sin bloqueos [39].

Código 10: Ejemplo de solicitud con Axios.

2. WebSockets para Comunicación en Tiempo Real:

 Django Channels se encarga de gestionar la comunicación en tiempo
real entre el frontend y el backend mediante WebSockets. Cuando se

recibe una actualización de los sensores o una notificación de control,

el backend envía los datos en tiempo real al frontend, que se encarga

de actualizar la interfaz [35].

Capítulo 4. Desarrollo e Implementación

90

Código 11: Ejemplo de implementación de WebSocket en Vue 3.

 Ventajas de la Arquitectura SPA

La elección de una SPA ofrece varias ventajas para el sistema:

 Interactividad Fluida: Al no necesitar recargar la página completa, las

interacciones con la interfaz son más rápidas y fluidas.

 Mejor Experiencia de Usuario: El cambio entre vistas es inmediato, lo que

mejora la experiencia del usuario al trabajar con los datos de los sensores.

 Optimización de Recursos: Solo se cargan los recursos necesarios cuando

el usuario interactúa con ciertas funcionalidades, lo que optimiza el tiempo

de carga inicial [51].

 Comunicación entre Backend y Frontend
La comunicación entre el backend y el frontend se implementó mediante una

combinación de API REST para el intercambio de información estructurada y

WebSockets para la transmisión en tiempo real.

El backend actuó como servidor de datos, enviando actualizaciones periódicas al

frontend cada vez que se registraban nuevas lecturas o se generaban predicciones.

Esta sincronización permitió mantener la interfaz siempre actualizada y garantizó la

consistencia entre las acciones del usuario y el estado del sistema.

La arquitectura adoptada favoreció una operación continua y estable, donde la capa

web funcionó como puente entre el entorno físico (sensores y actuadores) y el

entorno lógico (modelo predictivo y control del sistema). Gracias a esta integración,

Capítulo 4. Desarrollo e Implementación

91

el sistema de riego inteligente pudo ofrecer monitoreo, análisis y actuación en una

misma plataforma.

4.1.3.4.1. API REST con Axios

La API REST se utiliza para gestionar las solicitudes más tradicionales entre el

frontend y el backend. Permite al frontend obtener información de manera síncrona,

como la configuración de los sensores, los datos históricos o los registros de las

notificaciones.

Características Clave de la API REST:

 Petición Síncrona: El frontend realiza peticiones HTTP (usualmente GET o

POST) al backend para obtener o modificar los datos.

 Interacción con el Backend: Axios es la librería utilizada en el frontend para

interactuar con la API, realizando las peticiones de manera asíncrona.

Capítulo 4. Desarrollo e Implementación

92

Código 12: Ejemplo de uso de Axios para obtener datos de la API.

Explicación:

 En este ejemplo, el método fetchSensorData realiza una solicitud GET a la

API para obtener los datos de los sensores.

 Los datos obtenidos se asignan a la propiedad reactiva sensorData, que

automáticamente actualiza la vista de la aplicación.

 axios.get realiza la llamada al backend y la respuesta se maneja de manera

asíncrona, actualizando la interfaz de usuario cuando los datos están

disponibles [39].

4.1.3.4.2. WebSockets para Comunicación en Tiempo Real

WebSockets permiten la comunicación bidireccional en tiempo real entre el frontend

y el backend. En este sistema, Django Channels se utiliza para gestionar las

Capítulo 4. Desarrollo e Implementación

93

conexiones WebSocket y permitir que el backend envíe actualizaciones en tiempo

real al frontend, como nuevos datos de los sensores o notificaciones.

Características Clave de WebSockets:

 Comunicación Bidireccional: Los WebSockets permiten que el backend envíe

actualizaciones al frontend en tiempo real, sin necesidad de que el cliente

realice una solicitud.

 Actualizaciones en Vivo: A medida que los sensores envían nuevos datos o

cuando se activan alertas, el backend transmite los cambios inmediatamente

al frontend.

Capítulo 4. Desarrollo e Implementación

94

Código 13: Ejemplo de configuración de WebSocket en Vue 3.

Explicación:

 En este ejemplo, se establece una conexión WebSocket con el backend

utilizando la URL proporcionada (ws://localhost:8000/ws/sensor_data/).

 Cuando el servidor envía un mensaje (por ejemplo, una actualización de

datos de sensores), el cliente (frontend) recibe el mensaje en tiempo real y

actualiza la interfaz sin necesidad de recargar la página.

Capítulo 4. Desarrollo e Implementación

95

 onmessage gestiona la actualización de los datos cada vez que se recibe una

nueva información del backend [32], [35].

Beneficios de WebSockets en el Sistema:

 Actualizaciones en tiempo real: Los datos se actualizan en la interfaz de

usuario a medida que cambian en el backend, sin necesidad de recargar la

página o realizar peticiones constantes.

 Reducción de Carga de Servidor: Dado que los WebSockets mantienen una

conexión persistente, no es necesario hacer múltiples solicitudes HTTP, lo

que reduce la carga en el servidor.

 Interactividad Dinámica: Los usuarios reciben información instantánea de los

sensores y las notificaciones, mejorando la experiencia de uso.

4.1.3.4.3. Integración entre WebSockets y API REST

La combinación de WebSockets y API REST permite gestionar de manera eficiente

tanto las operaciones de consulta y configuración como las actualizaciones en

tiempo real. La API REST se utiliza para acceder y modificar los datos de manera

síncrona (por ejemplo, obtener configuraciones o datos históricos), mientras que los

WebSockets permiten la transmisión instantánea de nuevos datos o alertas.

Flujo de Datos:

1. Inicio de la aplicación: Al cargar la SPA, el frontend realiza solicitudes REST

a través de Axios para obtener la configuración inicial y los datos históricos

de los sensores.

2. Conexión a WebSocket: Una vez que la aplicación está cargada, el frontend

establece una conexión WebSocket con el backend para recibir las

actualizaciones en tiempo real de los sensores.

3. Recepción de datos: A medida que los sensores envían nuevas lecturas o se

activan notificaciones, el backend envía estos datos al frontend a través de

WebSockets, que los actualiza de inmediato en la interfaz.

Capítulo 4. Desarrollo e Implementación

96

4.1.3.4.4. Componentes Principales

La SPA está compuesta por varios componentes principales, que forman la interfaz

de usuario interactiva y permiten a los usuarios visualizar los datos de los sensores

en tiempo real, configurar los umbrales, revisar las notificaciones y analizar las

métricas históricas de los sensores. Cada uno de estos componentes es

responsable de una parte específica del sistema, y su interacción con el backend

se maneja mediante WebSockets y API REST.

 Dashboard

El Dashboard es el componente principal donde los usuarios pueden visualizar los

datos de los sensores en tiempo real. Este componente se encarga de mostrar

información actualizada constantemente sobre las lecturas de los sensores (como

la temperatura, humedad, y otros parámetros) y cualquier alerta generada, todo ello

sin necesidad de recargar la página.

Funcionalidad:

 Actualización en tiempo real: Utiliza WebSockets para recibir las lecturas de

los sensores a medida que se generan en el backend. Esto permite que los

usuarios vean las mediciones más recientes sin necesidad de refrescar la

página.

 Visualización de datos clave: Muestra las métricas principales, como la

temperatura, humedad y otros parámetros medidos por los sensores, en un

formato claro y accesible.

 Notificaciones: Si los valores de los sensores superan los umbrales

configurados, el Dashboard muestra notificaciones visuales, como cambios

de color o mensajes de alerta.

Capítulo 4. Desarrollo e Implementación

97

Imagen 2. Captura de pantalla de Dashboard.

 Configuración

El componente Configuración permite a los usuarios establecer los umbrales para

los sensores. Estos umbrales pueden ser configurados para controlar cuando

ciertos parámetros del sistema (como la humedad o la temperatura) activan o

desactivan ciertos dispositivos, como la bomba de agua. Los usuarios también

pueden visualizar y ajustar los valores mínimos y máximos para cada sensor.

Funcionalidad:

 Ajuste de umbrales: Los usuarios pueden ingresar valores para los umbrales

mínimos y máximos de los sensores.

 Interacción con la API REST: Los cambios en la configuración de los sensores

se envían al backend a través de una API REST para almacenarlos en la

base de datos.

Capítulo 4. Desarrollo e Implementación

98

Imagen 3. Captura de pantalla de Configuración.

Imagen 4. Captura de pantalla de Editar Sensor.

 Notificaciones

El componente Notificaciones muestra un registro de todas las alertas y eventos

importantes generados por el sistema. Este componente es esencial para que los

usuarios sigan de cerca los cambios y las intervenciones del sistema, como los

Capítulo 4. Desarrollo e Implementación

99

valores de los sensores que superan los umbrales predefinidos o las acciones que

se han tomado (como activar la bomba de agua).

Funcionalidad:

 Registro de alertas: Muestra un log de todas las notificaciones generadas,

con detalles sobre el sensor, el tipo de alerta y la acción tomada.

 Interacción con la API REST: Las notificaciones se pueden almacenar y

recuperar a través de la API REST.

Imagen 5. Captura de pantalla de Notificaciones.

 Métricas

El componente Métricas utiliza ApexCharts para mostrar gráficos interactivos de los

datos de los sensores a lo largo del tiempo. Este componente es útil para analizar

el comportamiento histórico de los sensores y facilitar la toma de decisiones, como

la optimización de los umbrales de los sensores.

Funcionalidad:

 Visualización de datos históricos: Utiliza ApexCharts para crear gráficos de

líneas, barras, o áreas que muestran los datos históricos de los sensores,

como la evolución de la temperatura o humedad a lo largo del tiempo.

Capítulo 4. Desarrollo e Implementación

100

 Interactividad: Los gráficos permiten al usuario interactuar con los datos, ver

detalles y realizar comparaciones entre diferentes períodos.

Imagen 6. Captura de pantalla de Métricas.

 Flujo de Datos Integrado
El flujo de datos en este sistema de monitoreo de sensores está diseñado para ser

eficiente y en tiempo real. El objetivo es capturar los datos de los sensores,

procesarlos, almacenarlos de forma adecuada en la base de datos y finalmente

visualizarlos para el usuario de manera interactiva y en tiempo real. A continuación,

describimos detalladamente cómo se gestionan estos datos a lo largo de su

recorrido, desde la adquisición en los sensores hasta su visualización en el frontend.

4.1.3.5.1. Adquisición de Datos desde los Sensores

El primer paso en el flujo de datos es la adquisición de datos desde los sensores

instalados en el sistema de monitoreo. Estos sensores miden varios parámetros del

entorno, como temperatura, humedad, niveles de CO2, entre otros.

Protocolo MQTT:

1. Conexión al bróker HiveMQ: Los sensores envían sus datos al backend a

través del protocolo MQTT. El backend se conecta a un bróker HiveMQ, que

recibe y distribuye los datos enviados por los sensores.

Capítulo 4. Desarrollo e Implementación

101

2. Publicación de datos: Los sensores publican los datos en temas específicos

de MQTT. El backend se suscribe a estos temas y recibe los datos a medida

que son publicados.

Flujo:

 Sensores → Bróker MQTT → Backend.

4.1.3.5.2. Procesamiento y Almacenamiento de Datos

Una vez que los datos son recibidos por el backend a través de MQTT, el siguiente

paso es procesarlos y almacenarlos de forma eficiente en la base de datos. El

sistema utiliza TimescaleDB para almacenar los datos de los sensores,

aprovechando sus características de optimización para datos temporales.

Procesamiento de Datos:

 Los datos recibidos (por ejemplo, lecturas de temperatura o humedad) se

procesan para verificar su validez y determinar si requieren alguna acción,

como generar una alerta.

 Los datos se validan para asegurarse de que estén dentro de los rangos

aceptables, y si no lo están, se generan notificaciones o alertas.

Almacenamiento en TimescaleDB:

 Los datos procesados se almacenan en una tabla de sensor_data dentro de

TimescaleDB, que permite realizar consultas rápidas y eficientes sobre datos

de series temporales.

Flujo:

 Backend → Tarea de Celery → Base de datos (TimescaleDB): Los datos son

almacenados en la base de datos para su posterior consulta y análisis.

4.1.3.5.3. Visualización en Tiempo Real (Frontend)

Una vez que los datos han sido almacenados en la base de datos, el siguiente paso

es la visualización en tiempo real de los mismos para el usuario. Este flujo involucra

Capítulo 4. Desarrollo e Implementación

102

la actualización constante de los datos en el frontend a medida que los sensores

envían nuevas mediciones.

WebSockets para Actualización en Tiempo Real:

 El frontend se conecta al backend a través de WebSockets, lo que permite

que el backend envíe actualizaciones en tiempo real a medida que los datos

de los sensores cambian.

 El frontend, por ejemplo, en el Dashboard, recibe los datos y actualiza los

valores mostrados sin necesidad de recargar la página.

Flujo:

 Backend (WebSocket) → Frontend (Vue 3): Los datos de los sensores se

envían al frontend en tiempo real.

4.1.3.5.4. Visualización de Datos Históricos (Frontend)

Además de la visualización en tiempo real, es crucial poder consultar y analizar los

datos históricos. El componente Métricas en el frontend permite a los usuarios

visualizar gráficas de los datos almacenados en la base de datos a lo largo del

tiempo.

Consultas a la API REST:

 El frontend realiza consultas a la API REST para obtener los datos históricos

almacenados en TimescaleDB.

 Estos datos se visualizan utilizando gráficos interactivos con ApexCharts.

Flujo:

 Frontend (Axios) → Backend (API REST): Los datos históricos se obtienen a

través de peticiones REST y se visualizan en gráficos.

Capítulo 4. Desarrollo e Implementación

103

4.1.3.5.5. Notificaciones y Alertas (Frontend)

En el caso de que los sensores detecten un valor fuera de los umbrales predefinidos,

el sistema debe generar notificaciones para informar a los usuarios. Estas

notificaciones se muestran en el componente Notificaciones del frontend.

Generación de Notificaciones:

 Las notificaciones son generadas en el backend cuando se detectan valores

fuera de los umbrales configurados. Estas alertas se envían a los usuarios a

través de WebSockets y se visualizan en el frontend.

Flujo:

 Backend (WebSocket) → Frontend (Vue 3 - Notificaciones): Las alertas y

notificaciones se envían en tiempo real al frontend.

4.1.3.5.6. Resumen del Flujo de Datos

1. Adquisición de Datos: Los sensores publican datos al backend a través de

MQTT. El backend se suscribe a estos temas y recibe los datos en tiempo

real.

2. Procesamiento de Datos: El backend procesa los datos recibidos, los valida

y los almacena en TimescaleDB.

3. Visualización en Tiempo Real: El frontend utiliza WebSockets para recibir

actualizaciones en tiempo real y mostrar los datos en el Dashboard.

4. Consulta de Datos Históricos: Los datos históricos se obtienen a través de la

API REST y se visualizan utilizando ApexCharts.

5. Notificaciones: Las alertas se envían desde el backend al frontend mediante

WebSockets, permitiendo que los usuarios reciban notificaciones inmediatas.

 Seguridad y Consideraciones Técnicas
El sistema de monitoreo de sensores debe cumplir con varios requisitos técnicos

que aseguren su funcionamiento correcto, seguro y eficiente. Para ello, se han

implementado diversas prácticas de seguridad, validación de datos, control de

Capítulo 4. Desarrollo e Implementación

104

errores, y optimización de rendimiento y escalabilidad. A continuación, se detallan

cada una de estas consideraciones.

4.1.3.6.1. Seguridad

La seguridad es una de las principales preocupaciones en cualquier sistema

conectado a redes, especialmente cuando se maneja información sensible como los

datos de los sensores y configuraciones del sistema. Las prácticas implementadas

para asegurar la protección de los datos y la integridad del sistema incluyen:

 Autenticación y Autorización

El sistema emplea mecanismos robustos de autenticación y autorización para

garantizar que solo los usuarios legítimos puedan acceder y modificar los datos o la

configuración del sistema.

 Autenticación con JWT (JSON Web Tokens): Se ha implementado JWT para

asegurar que solo los usuarios autenticados puedan interactuar con la API

REST. El token JWT se genera al momento del inicio de sesión y debe

incluirse en cada solicitud de la API para verificar que el usuario tiene

permisos adecuados.

Código 14: Ejemplo de configuración en Django REST Framework.

 Autorización basada en roles: Dependiendo del tipo de usuario (por ejemplo,

administrador o usuario normal), se han implementado controles de acceso

a ciertos recursos. Los usuarios con mayor nivel de privilegios pueden

configurar los umbrales de los sensores y modificar la configuración del

sistema [31].

 Cifrado de Datos

Capítulo 4. Desarrollo e Implementación

105

La transmisión de datos entre el frontend y el backend se realiza utilizando HTTPS

para cifrar la información durante su transmisión y protegerla de posibles ataques

como Man-in-the-Middle. Además, los tokens de autenticación (JWT) también están

cifrados para garantizar su seguridad.

 Uso de HTTPS: Se ha configurado el backend para obligar a todas las

comunicaciones a ser realizadas a través de HTTPS.

 Cifrado de datos sensibles: Los datos sensibles, como las configuraciones

de los sensores o los tokens de autenticación, se cifran y se almacenan de

forma segura [31].

 Prevención de Ataques Comunes

 Protección contra ataques de CSRF (Cross-Site Request Forgery): Django

ya incluye protección integrada contra ataques CSRF. Para las vistas que

utilizan formularios, se verifica que las solicitudes provengan de una fuente

confiable.

 Protección contra XSS (Cross-Site Scripting): Se asegura que los datos

proporcionados por el usuario se saniticen adecuadamente antes de ser

mostrados en la interfaz para evitar la ejecución de código malicioso [31].

4.1.3.6.2. Validaciones de Datos

La validación de los datos es fundamental para garantizar que solo se procesen

datos correctos y dentro de los rangos esperados. Se implementan múltiples capas

de validación tanto en el frontend como en el backend:

 Validación en el Backend

En el backend, se utilizan validaciones para asegurarse de que los datos

provenientes de los sensores, como la temperatura y la humedad, sean válidos

antes de almacenarlos en la base de datos.

 Validación de rangos: Se comprueba que los valores de los sensores se

encuentren dentro de los límites definidos, como la temperatura entre -10°C

y 50°C, o la humedad entre 0% y 100%.

Capítulo 4. Desarrollo e Implementación

106

Código 15: Ejemplo de validación en Django.

 Validación en el Frontend

En el frontend, antes de enviar los datos del formulario de configuración de

sensores, se valida que los valores introducidos por el usuario sean correctos y

dentro de los rangos aceptables.

 Validación de campos de entrada: Aseguramos que los valores de

configuración, como los umbrales de los sensores, sean números dentro de

los rangos permitidos antes de enviar la solicitud al backend.

4.1.3.6.3. Control de Errores

El manejo adecuado de errores es esencial para garantizar que el sistema siga

funcionando de manera estable incluso cuando se presenten problemas. En este

sistema, se implementan varias estrategias para capturar, registrar y manejar

errores.

 Control de Errores en el Backend

En el backend, se gestionan posibles errores de conexión, errores al procesar datos

y excepciones generales. Cuando ocurre un error, se registra en el sistema para su

posterior análisis.

 Manejo de excepciones generales: Las excepciones se capturan y se

devuelven mensajes adecuados a los usuarios, sin exponer detalles técnicos

innecesarios.

Capítulo 4. Desarrollo e Implementación

107

Código 16: Ejemplo de manejo de errores en Django.

 Control de Errores en el Frontend

En el frontend, se implementan manejadores de errores para capturar posibles fallos

al realizar solicitudes HTTP o WebSocket, y proporcionar retroalimentación al

usuario.

Manejo de errores en Axios:

Código 17: Ejemplo de manejo de errores con Axios.

4.1.3.6.4. Rendimiento

Para garantizar que el sistema sea eficiente, se han implementado prácticas para

optimizar el rendimiento tanto en el backend como en el frontend.

 Optimización en el Backend

 Consultas eficientes: Se han optimizado las consultas SQL a la base de datos

TimescaleDB para asegurar que las operaciones de lectura y escritura sean

rápidas y eficientes, especialmente cuando se manejan grandes volúmenes

de datos.

Capítulo 4. Desarrollo e Implementación

108

 Uso de índices: En las tablas clave, se utilizan índices para acelerar las

consultas y mejorar el rendimiento general.

 Optimización en el Frontend

 Lazy Loading: Se implementa lazy loading para cargar los componentes solo

cuando sean necesarios, lo que mejora los tiempos de carga inicial de la

aplicación.

 Minificación de recursos: Los recursos estáticos como JavaScript y CSS se

minifican para reducir el tamaño de la página y mejorar los tiempos de carga.

4.1.3.6.5. Escalabilidad

La escalabilidad es una consideración importante en sistemas que deben manejar

grandes volúmenes de datos o que pueden crecer con el tiempo. Se han

implementado prácticas para asegurar que el sistema pueda escalar fácilmente a

medida que aumenten las demandas de los usuarios.

 Escalabilidad en el Backend

 Uso de Redis: Redis se utiliza como broker de Celery para la gestión de

tareas asíncronas. Redis es un sistema de almacenamiento en memoria que

permite manejar grandes volúmenes de tareas sin afectar el rendimiento del

sistema.

 Base de datos escalable: TimescaleDB está diseñado para gestionar grandes

volúmenes de datos de series temporales. Su capacidad para particionar

datos en hypertables y usar políticas de retención de datos ayuda a mantener

el rendimiento a medida que aumenta la cantidad de datos.

 Escalabilidad en el Frontend

 Uso de componentes modulares: La SPA está construida con componentes

modulares, lo que facilita la incorporación de nuevas funcionalidades sin

afectar el rendimiento general de la aplicación.

Capítulo 4. Desarrollo e Implementación

109

 Optimización de recursos estáticos: Se implementa la carga asíncrona de

recursos estáticos, lo que permite que solo se carguen los elementos

necesarios según las interacciones del usuario.

4.1.4. Subsistema Predictivo
El componente de inteligencia artificial del sistema de riego inteligente se basa en

la implementación de un modelo de aprendizaje supervisado, cuyo objetivo es

predecir el nivel futuro de humedad del suelo y, a partir de ello, sugerir de forma

anticipada si se requiere activar el riego [52], [53]. Esta predicción permite tomar

decisiones basadas en patrones temporales y ambientales en lugar de respuestas

instantáneas, mejorando la eficiencia hídrica y previniendo tanto el riego excesivo

como el estrés hídrico del cultivo [54].

 Datos utilizados para el entrenamiento
El entrenamiento del modelo de machine learning propuesto en este proyecto se

basa en un conjunto de datos estructurado que simula las condiciones ambientales

y del suelo en un entorno agrícola protegido, como un invernadero. Este conjunto

de datos se diseñó con el propósito de proporcionar al modelo información suficiente

y representativa que le permitiera identificar patrones y relaciones temporales entre

las variables del entorno y los cambios en la humedad del suelo, la cual es la

variable objetivo a predecir [52], [53].

Dado que la implementación en campo real no fue posible durante el desarrollo del

proyecto, se optó por generar un conjunto de datos sintéticos simulados, apoyados

en rangos y comportamientos obtenidos de fuentes confiables, como artículos

científicos, tesis previas, manuales técnicos agrícolas, y literatura especializada en

microclimas agrícolas de invernaderos en zonas semiáridas, como Aguascalientes

[53].

Capítulo 4. Desarrollo e Implementación

110

4.1.4.1.1. Características generales del conjunto de datos

El conjunto de datos simulado contiene aproximadamente 2,000 registros

cronológicos, generados en intervalos regulares de 15 minutos, abarcando un

período virtual de dos semanas continuas. Cada registro representa una captura

simultánea de múltiples variables sensadas en el entorno del cultivo, y se estructura

como una fila de entrada en una base de datos de series de tiempo, replicando el

comportamiento que tendría una base de datos real bajo condiciones operativas del

sistema [52].

Las variables consideradas y registradas en cada observación son las siguientes:

Variable Tipo Unidad Descripción

soil_moisture Continua Porcentaje (%) Humedad del suelo, objetivo del

modelo.

soil_temperature Continua Grados Celsius

(°C)

Temperatura del suelo.

air_temperature Continua Grados Celsius

(°C)

Temperatura ambiental.

humidity Continua Porcentaje (%) Humedad relativa del aire.

light_intensity Continua Lux Intensidad de luz ambiental.

co2_concentration Continua ppm Concentración de dióxido de

carbono.

hour Discreta Horas (0–23) Hora del día, representada como

variable numérica.

delta_minutes Discreta Minutos Intervalo de tiempo transcurrido

desde el último registro.

Tabla 1. Variables usadas para entrenar el modelo.

Capítulo 4. Desarrollo e Implementación

111

La variable objetivo (soil_moisture) representa la humedad del suelo que el

sistema busca predecir, en tanto que las demás variables actúan como entradas del

modelo (features) que ayudan a estimar su comportamiento futuro [55], [56].

4.1.4.1.2. Justificación de las variables utilizadas

 Temperatura del suelo y del aire: influye directamente en la tasa de

evaporación y en la demanda hídrica de la planta.

 Humedad relativa ambiental: afecta la pérdida de agua por transpiración y

evapotranspiración.

 Intensidad de luz: correlacionada con la actividad fotosintética y el

cierre/apertura de estomas, lo cual modifica el consumo de agua por parte

del cultivo.

 Concentración de CO₂: considerada en estudios recientes como un factor

que puede alterar la fisiología del cultivo y su eficiencia hídrica.

 Hora del día: integra un componente temporal cíclico importante, pues el

riego depende en gran medida de la radiación solar y temperatura ambiente,

las cuales siguen ciclos diarios.

 Intervalo temporal (delta_minutes): permite que el modelo tenga noción del

ritmo de cambio entre registros, útil para representar pendiente de descenso

de humedad.

Estas variables, combinadas, permiten al modelo aprender las relaciones no

lineales y temporales que ocurren en un entorno agrícola real y que afectan la

retención o pérdida de humedad en el sustrato [55], [56], [57].

4.1.4.1.3. Simulación de condiciones reales

Para garantizar que los datos simulados fueran representativos, se definieron

rangos realistas para cada variable, con base en condiciones típicas observadas en

invernaderos [52]:

Capítulo 4. Desarrollo e Implementación

112

Variable Rango simulado

Humedad del suelo 25 % – 80 %

Temperatura del suelo 16 °C – 30 °C

Temperatura ambiental 18 °C – 38 °C

Humedad relativa 40 % – 95 %

Luz ambiental 100 – 45,000 lux

CO₂ 380 – 800 ppm

Tabla 2. Rangos de variables usados en la simulación.

Se definieron perfiles diarios que simulan días soleados, nublados, con ventilación

natural o forzada, incluyendo también intervalos con y sin activación del riego para

reflejar saltos o estabilización en la humedad del suelo [53].

Los registros se almacenaron en formato .csv y posteriormente se importaron a una

base de datos TimescaleDB, la cual fue utilizada tanto para almacenar los datos de

entrenamiento como para representar en forma realista el comportamiento del

sistema completo en la etapa de simulación [58].

4.1.4.1.4. Ventajas del enfoque simulado

Aunque trabajar con datos simulados implica limitaciones, este enfoque permitió:

 Controlar las condiciones experimentales y probar distintos escenarios en

menor tiempo.

 Tener una base de datos limpia, sin ruido, para probar la arquitectura del

modelo.

 Validar el funcionamiento general del sistema, desde la predicción hasta la

decisión de riego, sin depender de factores logísticos o meteorológicos

reales.

Capítulo 4. Desarrollo e Implementación

113

 Entrenar el modelo sin riesgo operativo, ya que no se ejecutan acciones

físicas sobre un cultivo real [52], [58].

4.1.4.1.5. Limitaciones

 La relación entre variables puede no reflejar con total precisión las

condiciones microclimáticas de un cultivo protegido real.

 No se incluyeron factores estacionales, ni efectos acumulativos de riegos

anteriores o lluvias.

 No fue posible incorporar ruido sensorial, interferencias o fallos comunes en

sensores reales, lo que puede afectar el comportamiento del modelo al

aplicarlo en campo [53].

 Proceso de entrenamiento
Una vez generado y estructurado el conjunto de datos, se procedió al diseño y

ejecución del proceso de entrenamiento del modelo de machine learning, cuya

finalidad es aprender la relación entre las condiciones ambientales y la evolución de

la humedad del suelo a lo largo del tiempo. Esta sección describe en detalle las

etapas involucradas en el desarrollo del modelo predictivo: desde el

preprocesamiento hasta la validación y evaluación de desempeño.

4.1.4.2.1. Herramientas utilizadas

El entrenamiento del modelo fue realizado utilizando el lenguaje de programación

Python, dada su versatilidad y amplio ecosistema de bibliotecas científicas. Las

principales herramientas empleadas fueron:

 Pandas: para manipulación, filtrado y análisis de datos tabulares.

 NumPy: para operaciones vectorizadas y estructuras matriciales.

 Matplotlib / Seaborn: para visualización de distribución de datos y curvas de

error.

 Scikit-learn: biblioteca principal utilizada para el desarrollo del modelo de

regresión, así como para su validación, análisis de errores y exportación.

Capítulo 4. Desarrollo e Implementación

114

Todo el proceso se desarrolló en un entorno virtual controlado, utilizando Jupyter

Notebooks como interfaz interactiva de trabajo y documentación del código [59].

4.1.4.2.2. Preprocesamiento de los datos

Antes de alimentar los datos al modelo, se llevaron a cabo diversas operaciones de

preparación con el fin de garantizar la calidad de los datos de entrada y evitar

sesgos:

1. Limpieza de datos:

o Se eliminaron registros con valores nulos o inconsistentes (por

ejemplo, humedad del suelo mayor al 100 %).

o Se aplicaron filtros para descartar valores atípicos generados en la

simulación (e.g., temperatura ambiente < 0 °C).

2. Codificación de variables temporales:

o La variable "hora del día" se codificó como un número entero de 0 a

23, permitiendo que el modelo reconozca los patrones circadianos del

entorno agrícola.

3. Normalización de variables:

o Se aplicó escalado min-max a todas las variables predictoras (entre 0

y 1), con el objetivo de evitar que las diferencias de escala entre

variables (por ejemplo, CO₂ en ppm vs. humedad en %) afectaran

negativamente el entrenamiento del modelo [59], [60].

4. Separación de conjuntos:

o Se dividió el conjunto total de datos en dos subconjuntos:

 Entrenamiento (80 %): utilizado para construir el modelo.

 Prueba (20 %): utilizado para evaluar el modelo con datos no

vistos.

Capítulo 4. Desarrollo e Implementación

115

4.1.4.2.3. Selección del algoritmo

Con base en la naturaleza del problema —predicción de una variable continua

(humedad del suelo)— se seleccionó un enfoque de regresión supervisada. Se

exploraron varios algoritmos disponibles en Scikit-learn para identificar el que

ofreciera el mejor equilibrio entre precisión, bajo sobreajuste y facilidad de

interpretación [55], [56]:

 Regresión lineal múltiple: como punto de partida base.

 Árboles de decisión (DecisionTreeRegressor): por su capacidad de capturar

relaciones no lineales.

 k-Nearest Neighbors (KNN Regressor): para comparación con métodos

basados en vecindarios.

 Random Forest Regressor (etapa exploratoria): se consideró, aunque no fue

el elegido por su mayor costo computacional.

Tras evaluar los modelos, se determinó que el árbol de decisión proporcionaba un

mejor ajuste a los patrones simulados, sin incurrir en sobreajuste, y con una

interpretabilidad alta que lo hacía adecuado para una primera implementación

funcional.

4.1.4.2.4. Entrenamiento del modelo

Con el algoritmo seleccionado, se procedió a entrenar el modelo con el conjunto de

entrenamiento. Durante esta etapa se llevaron a cabo los siguientes pasos:

 Entrenamiento inicial con los parámetros por defecto del algoritmo.

 Análisis de importancia de variables: utilizando el atributo

feature_importances_, se identificó que las variables más influyentes

fueron [59]:

o Humedad relativa

o Temperatura del suelo

o Hora del día

Capítulo 4. Desarrollo e Implementación

116

o Luz ambiental

 Evaluación inicial de desempeño:

o Se utilizaron métricas estándar:

 MAE (Mean Absolute Error)

 MSE (Mean Squared Error)

 R² (Coeficiente de determinación)

o Los resultados preliminares fueron:

 MAE: 2.85 %

 RMSE: 4.17 %

 R²: 0.91

 Ajuste de hiperparámetros (tuning):

o Se aplicó búsqueda de cuadrícula (GridSearchCV) para ajustar:

 Profundidad máxima del árbol (max_depth)

 Mínimo de muestras por nodo (min_samples_split)

 Mínimo de muestras por hoja (min_samples_leaf)

o El modelo ajustado presentó una mejora marginal en MSE sin

aumentar la complejidad del árbol [59], [60].

4.1.4.2.5. Validación cruzada

Para garantizar que el modelo no estuviera sobreajustado a los datos de

entrenamiento, se aplicó validación cruzada con k = 5 [60], es decir, el conjunto de

datos se dividió en cinco partes, entrenando el modelo con cuatro y validando con

la quinta en cada iteración.

Capítulo 4. Desarrollo e Implementación

117

Los resultados de la validación cruzada fueron consistentes, lo que sugiere que el

modelo generaliza adecuadamente y no depende en exceso de subconjuntos

particulares de datos [59], [60].

Métrica Valor promedio

MAE 2.97

RMSE 4.26

R² 0.89

Tabla 3. Resultados de la validación cruzada.

4.1.4.2.6. Exportación del modelo

Tras el entrenamiento, el modelo final fue serializado utilizando la librería joblib,

lo que permitió guardar su estructura y parámetros entrenados en un archivo binario

(.pkl). Esta serialización facilitó su posterior integración en el backend del sistema,

donde puede ser cargado dinámicamente sin requerir nuevo entrenamiento cada

vez que el servidor se reinicia [52], [59].

Código 18. Serialización del modelo entrenado con joblib en formato .pkl.

El modelo entrenado quedó listo para ser utilizado por el backend como un servicio

predictivo que toma datos recientes del entorno y devuelve una estimación de la

humedad futura del suelo.

 Toma de decisiones basada en predicción
Una vez entrenado y validado el modelo de machine learning, su integración al

sistema de riego inteligente tiene como propósito principal asistir en la toma

automatizada o semi-automatizada de decisiones relacionadas con la activación del

riego, basándose en la predicción futura del nivel de humedad del suelo. Esta

capacidad predictiva permite que el sistema anticipe necesidades hídricas del

Capítulo 4. Desarrollo e Implementación

118

cultivo antes de que se presenten condiciones críticas, aportando valor en términos

de eficiencia, sostenibilidad y autonomía operativa [52], [53].

El modelo predictivo no actúa de forma aislada, sino que se incorpora como una

unidad funcional dentro del backend, conectada a un motor de reglas que define el

comportamiento del sistema en función de los resultados del modelo y las

condiciones establecidas por el usuario.

4.1.4.3.1. Lógica de operación del sistema predictivo

El modelo predictivo se ejecuta de forma periódica o en respuesta a eventos del

sistema, como la llegada de nuevos datos sensoriales desde la Raspberry Pi. El

flujo general de decisión se describe a continuación:

1. Recepción de datos actuales: el backend recibe un nuevo conjunto de datos

desde los sensores conectados a la Raspberry Pi, incluyendo:

o Humedad actual del suelo

o Temperatura del suelo y ambiente

o Humedad relativa

o Intensidad de luz ambiental

o Nivel de CO₂

o Hora del día

2. Preparación de datos: los datos entrantes se normalizan y ordenan para que

coincidan con el formato de entrada requerido por el modelo serializado.

3. Ejecución del modelo: el modelo predictivo toma las variables actuales y

genera una estimación del valor futuro de humedad del suelo a un intervalo

determinado (por ejemplo, dentro de 30 minutos o una hora, según la

configuración) [52].

4. Comparación con umbrales definidos:

Capítulo 4. Desarrollo e Implementación

119

o Si la predicción indica que la humedad estará por debajo de un umbral

crítico (ej. 35 %), el sistema genera una alerta de “Riego

Recomendado”.

o Si la predicción está dentro de un rango de confort hídrico (ej. 35–55

%), el sistema permanece en espera.

o Si la predicción es alta (ej. > 60 %), se evita el riego, previniendo

encharcamientos.

5. Toma de acción:

o Modo manual: el sistema muestra la recomendación en el frontend y

espera la decisión del usuario.

o Modo automático: el sistema activa la bomba de riego directamente a

través de un comando MQTT, sin necesidad de intervención humana

[58].

6. Registro y retroalimentación:

o Cada predicción, decisión tomada y respuesta del sistema se registra

en la base de datos para futuras auditorías y posible reentrenamiento

del modelo [53].

4.1.4.3.2. Estructura técnica de la integración

El componente predictivo fue implementado como un servicio interno del backend,

siguiendo un patrón service layer dentro de la arquitectura Django. La función

encargada de ejecutar el modelo realiza los siguientes pasos:

Capítulo 4. Desarrollo e Implementación

120

Código 19. Carga del modelo entrenado y predicción de humedad a partir de datos sensados.

Una vez obtenido el valor de predicted_moisture, se aplica una lógica de negocio

para determinar la recomendación:

Código 20. Lógica de decisión para el control automático del riego según la humedad predicha.

El resultado se envía tanto al frontend (vía WebSocket o respuesta JSON) como al

módulo de control MQTT, que, en caso de ser necesario, publica un mensaje en el

tópico /iot/control/on [58]. En trabajos futuros, la política de decisión podría

reemplazarse por un agente de aprendizaje por refuerzo profundo entrenado con

retroalimentación del sistema [61].

4.1.4.3.3. Interfaz de usuario y experiencia

En la interfaz web desarrollada con Vue.js y Vuetify, el usuario puede observar:

 El valor actual y la predicción de humedad en gráficos interactivos.

 La recomendación del sistema en un panel de control.

 Un botón para activar manualmente la bomba, acompañado de una

advertencia sobre el nivel de humedad estimado.

Capítulo 4. Desarrollo e Implementación

121

 La opción para activar o desactivar el modo automático, lo que otorga

flexibilidad al agricultor según su nivel de confianza en el sistema [53].

Esto facilita una transición paulatina entre la intervención humana y el control

completamente autónomo.

4.1.4.3.4. Ventajas del enfoque predictivo

El uso de predicción anticipada, en lugar de decisiones reactivas basadas solo en

valores instantáneos, aporta importantes beneficios:

 Optimización del uso del agua, al evitar riegos innecesarios o tardíos.

 Reducción del estrés hídrico en las plantas.

 Mayor autonomía del sistema, al anticiparse a las condiciones futuras.

 Adaptabilidad a diferentes escenarios climáticos, ya que el modelo puede

reentrenarse con nuevos datos [52], [58].

4.1.4.3.5. Limitaciones actuales

 El modelo aún no toma en cuenta factores meteorológicos externos como

precipitaciones.

 Las predicciones se basan en datos simulados; su precisión puede variar en

un entorno real.

 Las decisiones automáticas están condicionadas a umbrales fijos definidos

por el usuario, que podrían refinarse con técnicas más avanzadas de lógica

difusa o redes neuronales [61], [62].

 Limitaciones y perspectivas de mejora
Aunque el modelo de machine learning implementado en este proyecto ha

demostrado ser funcional y coherente dentro de los objetivos establecidos, es

importante reconocer las limitaciones inherentes a su desarrollo, entrenamiento y

operación en entorno simulado. Estas limitaciones deben ser comprendidas no

como fallas, sino como puntos de partida para mejoras progresivas que eleven el

desempeño y aplicabilidad del sistema en condiciones reales [53], [60].

Capítulo 4. Desarrollo e Implementación

122

4.1.4.4.1. Limitaciones del modelo actual

a) Datos simulados en lugar de datos reales

La principal limitación del modelo desarrollado radica en que fue entrenado con

datos generados artificialmente. Aunque estos datos fueron cuidadosamente

diseñados con base en rangos reales y referencias técnicas confiables, no

sustituyen la complejidad y variabilidad de datos recolectados en campo real, donde

pueden existir factores impredecibles, ruido, errores de lectura o fenómenos

meteorológicos no modelados [52], [53].

b) Dependencia de umbrales fijos

La toma de decisiones actualmente se basa en umbrales definidos manualmente

(por ejemplo, humedad < 35 %), lo que puede limitar la adaptabilidad del sistema a

diferentes tipos de cultivo, estaciones del año o características del sustrato. Esta

lógica rígida podría derivar en decisiones subóptimas en ciertos contextos [55].

c) No adaptación continua (modelo estático)

El modelo actual es estático: fue entrenado una sola vez y se utiliza tal cual durante

la operación del sistema. Esto implica que no se adapta a nuevas condiciones

ambientales o a la evolución natural del cultivo. Además, no hay un mecanismo de

autoajuste que corrija desviaciones sistemáticas en las predicciones [60].

d) Exclusión de variables exógenas

Factores relevantes como:

 Lluvia (precipitación)

 Velocidad del viento

 Apertura o cierre de ventanas del invernadero

 Radiación solar exterior

no fueron incluidos en el conjunto de variables de entrada. Estas variables pueden

tener impacto significativo en la dinámica de humedad del suelo, especialmente en

sistemas semiabiertos [56], [57].

Capítulo 4. Desarrollo e Implementación

123

e) Horizonte de predicción limitado

El modelo actual está diseñado para realizar una única predicción futura (ej. en 30

minutos o 1 hora). No contempla predicciones a múltiples intervalos futuros (multi-

step forecasting), lo cual sería deseable para planificar riegos más prolongados o

en cultivos con horarios de riego definidos [52]. Esta limitación puede abordarse con

arquitecturas que modelan relaciones espaciales y temporales para pronóstico

multi-paso, como GNN aplicadas a humedad del suelo [62].

4.1.4.4.2. Perspectivas de mejora y líneas futuras de trabajo

A pesar de sus limitaciones, el modelo representa una base sólida para futuras

ampliaciones. A continuación, se proponen líneas claras de evolución técnica:

a) Reentrenamiento con datos reales

Una vez que el sistema esté operando en un cultivo real, se recomienda iniciar un

proceso de recolección sistemática de datos reales durante varias semanas o ciclos

de cultivo. Con estos datos, será posible reentrenar el modelo para mejorar su

precisión, confiabilidad y capacidad de adaptación al entorno específico [53], [55].

b) Implementación de aprendizaje en línea (online learning)

Para hacer el sistema verdaderamente adaptable, se puede integrar un modelo

incremental que aprenda continuamente a medida que nuevos datos se registran.

Scikit-learn y otras bibliotecas como river o tensorflow ofrecen soporte para

algoritmos que pueden actualizarse sin necesidad de reentrenar desde cero [60].

c) Uso de modelos más avanzados

Para capturar relaciones temporales y no lineales más complejas, se pueden

explorar modelos como:

 Random Forest Regressor o XGBoost, para mejorar la precisión con grandes

volúmenes de datos.

 Redes Neuronales Recurrentes (RNN) o LSTM, especialmente útiles para

análisis de series temporales.

Capítulo 4. Desarrollo e Implementación

124

 Modelos híbridos, que combinen lógica difusa con modelos de predicción

para incorporar reglas de decisión más humanas o contextuales [52], [57].

Asimismo, puede explorarse el aprendizaje por refuerzo profundo para optimizar

políticas de riego bajo incertidumbre y restricciones operativas, ya validado en

campo [61], y el uso de GNN para capturar estructura espacial entre sensores y

mejorar el pronóstico de humedad [62].

d) Personalización por tipo de cultivo o sustrato

Se pueden desarrollar modelos específicos para diferentes tipos de cultivo,

considerando sus requerimientos hídricos particulares, tolerancia al estrés y

características del suelo. Esto puede lograrse mediante técnicas de clasificación

previa o parametrización del sistema por parte del usuario [55], [56].

e) Evaluación de impacto en campo

Finalmente, cuando el sistema se instale en campo, será necesario medir el impacto

real del modelo en la eficiencia del riego, comparando el consumo de agua y el

estado de la planta bajo el control tradicional versus el control predictivo

automatizado. Estos resultados permitirán validar empíricamente la hipótesis central

del proyecto [52], [53] con reportes recientes de implementación y evaluación in-

field de estrategias de control basadas en aprendizaje por refuerzo profundo [61].

El modelo de machine learning implementado en este sistema cumple con su

propósito inicial: demostrar que es posible anticipar condiciones de riego utilizando

variables ambientales recolectadas por sensores IoT, mejorando así la eficiencia en

el uso del agua. Sin embargo, este modelo debe entenderse como una versión

inicial de un sistema en evolución, que requiere validación empírica y mejora

continua. Su arquitectura modular y su integración flexible permiten escalar, ajustar

y perfeccionar el componente predictivo en futuras etapas del proyecto.

Capítulo 4. Desarrollo e Implementación

125

4.2. Implementación del Sistema SIRCA-IoT

4.2.1. Integración del sistema
La integración del sistema representa la culminación del proceso de desarrollo, en

el cual convergen todos los componentes diseñados —hardware, backend,

frontend, base de datos y modelo de predicción— en una única arquitectura

funcional, orientada a la automatización inteligente del riego agrícola. Esta etapa

implicó la unificación lógica, técnica y operativa de los distintos módulos bajo un

flujo coherente de adquisición, procesamiento, análisis y actuación basado en datos

en tiempo real.

El SIRCA-IoT fue concebido desde su fase de diseño bajo un enfoque modular y

desacoplado, lo cual facilitó su integración progresiva. A continuación, se detalla la

arquitectura general, el flujo de información entre los módulos, los mecanismos de

control y los criterios de sincronización utilizados.

 Arquitectura general del sistema
La arquitectura del sistema sigue un enfoque de cliente-servidor con comunicación

distribuida, compuesta por los siguientes elementos principales:

1. Módulo de adquisición (IoT en campo)

o Dispositivo central: Raspberry Pi 4B

o Sensores conectados:

 Humedad del suelo

 Temperatura del suelo

 Temperatura y humedad ambiental

 Intensidad de luz ambiental

 CO₂

Capítulo 4. Desarrollo e Implementación

126

La Raspberry Pi ejecuta un script de monitoreo en Python que lee los datos de los

sensores en intervalos regulares (por ejemplo, cada 60 segundos) y los publica en

tópicos MQTT, utilizando un cliente ligero (paho-mqtt).

2. Bróker MQTT (HiveMQ)

o Funciona como intermediario de mensajes entre el nodo IoT y el

backend.

o Cada tipo de dato sensado se publica en un tópico unificado:

 /iot/riego/sensores

o Utiliza un sistema de autenticación básica para el control de acceso a

tópicos.

3. Módulo de procesamiento (backend en Django)

o Suscribe los mensajes de cada tópico MQTT.

o Almacena los datos en una base de datos de series temporales

(TimescaleDB), diseñada para manejar grandes volúmenes de

registros en formato cronológico.

o Expone endpoints vía API REST para consultar el historial de

variables.

o Transmite los datos en tiempo real al frontend mediante WebSockets,

manteniendo la interfaz sincronizada.

o Ejecuta el modelo de predicción cada vez que se recibe un nuevo

conjunto de datos sensoriales, evaluando si es necesario activar el

riego.

4. Módulo de visualización y control (frontend en Vue.js + Vuetify)

o Recibe datos en tiempo real y renderiza:

 Gráficas interactivas por variable.

Capítulo 4. Desarrollo e Implementación

127

 Indicadores de estado del cultivo.

 Alertas de humedad crítica.

 Recomendaciones generadas por el modelo ML.

o Permite al usuario activar o desactivar el modo automático.

o Permite enviar un comando manual para activar la bomba de agua.

5. Módulo de actuación (control de bomba)

o La Raspberry Pi escucha comandos MQTT en el tópico

/iot/riego/bomba.

o Si se recibe una instrucción "ON", activa un relé electromecánico que

enciende una bomba de agua conectada al sistema de riego.

o Después del riego, el sistema emite un mensaje de confirmación y

espera la siguiente orden.

 Flujo de funcionamiento del sistema
A continuación, se describe paso a paso el flujo general del sistema integrado:

1. Captura de datos: los sensores conectados a la Raspberry Pi registran las

variables físicas del entorno.

2. Publicación MQTT: los datos son empaquetados en mensajes JSON y

enviados al bróker HiveMQ.

3. Recepción en backend:

o El servidor Django suscribe los tópicos correspondientes.

o Procesa los datos entrantes y los guarda en la base TimescaleDB.

4. Ejecución del modelo ML:

o Se normalizan los datos más recientes.

o Se ejecuta el modelo previamente entrenado.

Capítulo 4. Desarrollo e Implementación

128

o Se genera una predicción de humedad futura.

5. Evaluación de reglas:

o Si la humedad predicha está por debajo de un umbral crítico, se

genera una recomendación de riego.

o Esta decisión se envía al frontend en tiempo real.

6. Interacción con el usuario:

o El usuario puede aprobar la recomendación o dejar que el sistema

actúe automáticamente.

7. Activación del riego:

o Se publica un mensaje de activación en el tópico /actuator/pump.

o La Raspberry Pi recibe el mensaje y enciende la bomba de agua.

8. Confirmación:

o Se publica un mensaje de estado (ON o OFF) que se registra en la

base de datos.

 Sincronización, control y monitoreo
Para garantizar el funcionamiento coordinado de los módulos, se implementaron los

siguientes mecanismos:

 Colas de mensajes MQTT con calidad de servicio (QoS 1) para asegurar la

entrega de datos importantes.

 Timestamps únicos por registro, generados por la Raspberry, para mantener

la integridad temporal.

 Heartbeat desde el nodo IoT al backend cada 5 minutos, indicando que el

sistema sigue activo.

 Logs de eventos críticos (fallos de sensores, errores de conexión, eventos de

activación) tanto en el backend como en el dispositivo IoT.

Capítulo 4. Desarrollo e Implementación

129

 Modularidad y escalabilidad
Una de las características clave del sistema es su capacidad para escalar y

adaptarse a nuevas condiciones:

 Agregación de más sensores: el diseño del esquema de tópicos MQTT y el

modelo de base de datos permite fácilmente añadir sensores de pH,

conductividad eléctrica, etc.

 Despliegue multi-nodo: es posible tener múltiples Raspberry Pi monitoreando

diferentes zonas del invernadero, todas conectadas al mismo backend.

 Contenerización: el backend y la base de datos pueden desplegarse

mediante Docker, lo cual facilita su instalación en servidores locales o en la

nube.

 Reemplazo de modelo ML: el modelo de predicción puede ser sustituido o

reentrenado sin alterar la arquitectura, ya que está desacoplado mediante un

servicio de inferencia específico.

 Seguridad y robustez del sistema
Aunque la arquitectura está pensada para un entorno de prueba, se tomaron

precauciones para garantizar un mínimo nivel de seguridad y estabilidad:

 Autenticación básica en MQTT (usuario y contraseña).

 Validación de estructura de mensajes JSON antes de insertar en la base de

datos.

 Verificación de integridad de los datos (rango aceptable por sensor).

 Manejo de errores con tolerancia a fallos, de modo que el sistema pueda

continuar operando ante desconexiones breves o errores del frontend.

La integración de los componentes desarrollados culmina en un sistema de riego

inteligente totalmente funcional, con capacidad de monitorear variables

ambientales, predecir condiciones futuras, visualizar datos en tiempo real y ejecutar

acciones físicas sobre el cultivo. Este sistema no solo automatiza el proceso de

Capítulo 4. Desarrollo e Implementación

130

riego, sino que lo optimiza al incorporar técnicas de inteligencia artificial,

manteniendo la flexibilidad suficiente para futuras ampliaciones o adaptaciones a

entornos reales.

Capítulo 5. Resultados

Capítulo 5. Resultados

132

5. Resultados
El presente capítulo expone los resultados obtenidos tras la implementación,

configuración y validación del SIRCA-IoT. Dado que la implementación en campo

abierto no fue viable durante el periodo de desarrollo, los resultados se obtuvieron

mediante pruebas funcionales realizadas en un entorno de simulación controlado,

utilizando sensores físicos conectados a una Raspberry Pi, transmisión de datos en

tiempo real a través de MQTT, y visualización en una interfaz web.

Los resultados se agrupan en tres grandes categorías: funcionamiento del sistema

de adquisición, operación del sistema completo de forma integrada, y evaluación

del desempeño del modelo de machine learning.

5.1. Validación funcional del sistema
Una vez concluido el desarrollo de cada uno de los módulos del SIRCA-IoT —

hardware, backend, frontend, base de datos y modelo de machine learning—, se

procedió a realizar una serie de pruebas funcionales en un entorno de laboratorio

con el objetivo de validar su comportamiento general, estabilidad de comunicación,

visualización de datos y capacidad de respuesta frente a condiciones simuladas.

Este entorno de validación consistió en un espacio controlado que emula las

condiciones de un cultivo protegido, en el cual se instalaron sensores reales, se

establecieron flujos de datos entre los componentes del sistema y se monitorearon

todas las interacciones, desde la captura de datos hasta la activación del sistema

de riego.

5.1.1. Lectura y transmisión de datos sensoriales
Se instaló una Raspberry Pi 4B como nodo central del sistema de adquisición, a la

cual se conectaron los siguientes sensores:

 Sensor de humedad del suelo tipo resistivo (LM393).

Capítulo 5. Resultados

133

 Sensor de temperatura y humedad ambiental (DHT22).

 Sensor de temperatura del suelo (DS18B20).

 Sensor de luz ambiental (BH1750).

 Sensor de concentración de CO₂ (SCD41).

El software desarrollado en Python en la Raspberry Pi permitió la lectura periódica

de estos sensores, configurada cada 60 segundos. Cada lectura se empaquetó en

formato JSON y se publicó en el bróker MQTT bajo el siguiente tópico:

 iot/riego/sensores

Desde el backend en Django, se implementó un cliente MQTT que se suscribió a

todos los tópicos definidos, extrajo la información y la almacenó en la base de datos

TimescaleDB, diseñada para datos de series temporales.

Diagrama 5. Diagrama de flujo del proceso de adquisición y transmisión de datos.

Capítulo 5. Resultados

134

Imagen 7. Backend recibiendo en tiempo real de los mensajes MQTT.

5.1.2. Estabilidad de comunicación y manejo de errores
Durante la validación se monitoreó la estabilidad del enlace entre la Raspberry Pi y

el bróker MQTT, así como la entrega oportuna de los mensajes y su inserción en la

base de datos.

Los resultados fueron los siguientes:

Métrica Resultado

Tiempo promedio de publicación 0.05 s

Tiempo de suscripción y almacenamiento 0.4 s

Tasa de entrega MQTT (QoS 1) 100 %

Pérdida de paquetes 0

Reconexión automática en fallo Implementada y funcional

Tabla 4. Indicadores de rendimiento en la transmisión de datos y confiabilidad del canal MQTT.

Capítulo 5. Resultados

135

Además, se validó que los mensajes mal formateados o con valores fuera de rango

no se procesaran ni almacenaran, activando mecanismos de manejo de errores y

validación estructural en el backend.

Imagen 8. Log del backend mostrando la recepción exitosa de datos y manejo de errores.

5.1.3. Visualización de datos en tiempo real
El frontend desarrollado en Vue.js permitió observar en tiempo real los datos

recolectados por los sensores, gracias al uso de WebSockets para comunicación

directa entre backend y cliente.

Las funcionalidades validadas en esta etapa incluyen:

 Representación gráfica de cada variable sensorial en gráficos de línea.

 Visualización de valores promedio y valores actuales.

 Indicadores visuales de alerta en caso de valores críticos (por ejemplo,

humedad < 35 %).

 Actualización automática sin recarga de página.

Capítulo 5. Resultados

136

Los datos también podían visualizarse en escalas de tiempo configurables (última

hora, últimas 24 horas, semana completa), permitiendo el análisis visual de

tendencias.

Imagen 9. Panel principal del frontend con visualización en tiempo real de humedad del suelo.

La siguiente Imagen 10 muestra la evolución simulada de la temperatura ambiente

(en grados Celsius) y la humedad relativa (en porcentaje) durante un día completo,

con registros cada 15 minutos.

Imagen 10. Gráfico comparativo: temperatura ambiente vs humedad relativa.

Capítulo 5. Resultados

137

Se observa un patrón inversamente correlacionado: la temperatura alcanza su

máximo alrededor del mediodía, mientras que la humedad relativa disminuye en ese

periodo, evidenciando la dinámica típica de un microclima agrícola controlado. Este

tipo de visualización en tiempo real es fundamental para el monitoreo y control

eficiente de las condiciones del cultivo, y sirve como insumo clave para la toma de

decisiones en el sistema de riego inteligente.

Imagen 11. Indicador de estado con alerta visual por humedad baja.

5.1.4. Activación del sistema de riego
Se probó la actuación del sistema de riego automatizado mediante dos modos:

 Modo manual: el usuario acciona un botón desde la interfaz web.

 Modo automático: el backend decide, con base en la predicción del modelo

ML, cuándo activar el riego.

En ambos casos, el comando se publica en el tópico MQTT /iot/control/, y la

Raspberry Pi activa una bomba de agua conectada mediante un módulo de relé de

5 V.

Durante la validación:

Capítulo 5. Resultados

138

 El tiempo total desde la decisión hasta la activación de la bomba fue menor

a 2 segundos.

 Se recibieron confirmaciones visuales en el frontend indicando el cambio de

estado del sistema.

 Se validó el encendido y apagado físico de la bomba mediante pruebas

repetidas.

Imagen 12. Fotografía del prototipo físico con relé y bomba conectados a la Raspberry Pi.

Capítulo 5. Resultados

139

Imagen 13. Secuencia de activación automática de bomba de agua.

Imagen 14. Secuencia de apagado automático de bomba de agua.

Capítulo 5. Resultados

140

Imagen 15. Indicador visual en el frontend confirmando el estado "Riego activado".

5.1.5. Registro y trazabilidad de eventos
Todos los eventos relevantes del SIRCA-IoT fueron registrados en la base de datos,

incluyendo:

 Fecha y hora de cada lectura sensorial.

 Resultados de predicción del modelo ML.

 Recomendaciones de riego generadas.

 Acciones ejecutadas (manuales o automáticas).

 Estado del sistema de riego (ON/OFF).

Esto garantiza la trazabilidad completa del sistema y permite su auditoría posterior,

así como el análisis estadístico de los datos acumulados.

Capítulo 5. Resultados

141

Imagen 16. Consulta en la base de datos de registros históricos de humedad del suelo.

La validación funcional en entorno de laboratorio demostró que el SIRCA-IoT

cumple con sus objetivos operativos fundamentales: captura confiable de datos

ambientales, transmisión y almacenamiento eficientes, visualización en tiempo real,

predicción con base en machine learning y actuación automatizada sobre el entorno

físico. Todos los componentes funcionaron de manera coordinada, mostrando

estabilidad, bajo tiempo de respuesta y facilidad de uso desde la interfaz gráfica.

5.2. Desempeño del modelo de Machine Learning
El desempeño del modelo predictivo implementado fue evaluado exhaustivamente

mediante pruebas en el entorno controlado, utilizando el conjunto de datos

simulados generados para representar diferentes escenarios climáticos y

condiciones del cultivo protegido. La evaluación se enfocó en cuantificar la

precisión, robustez y aplicabilidad del modelo para anticipar los niveles de humedad

del suelo, fundamentales para la toma oportuna de decisiones en el sistema de riego

inteligente.

Capítulo 5. Resultados

142

5.2.1. Métricas de evaluación
Para medir la calidad de las predicciones, se utilizaron las siguientes métricas

estándar en problemas de regresión:

 MAE (Mean Absolute Error, Error Absoluto Medio): indica el error promedio

absoluto entre valores reales y predichos, facilitando la interpretación en

unidades originales (% de humedad).

 RMSE (Root Mean Squared Error, Raíz del Error Cuadrático Medio): pondera

errores mayores con más énfasis, útil para detectar desviaciones

significativas.

 R² (Coeficiente de determinación): representa la proporción de varianza

explicada por el modelo, donde valores cercanos a 1 indican alta capacidad

predictiva.

5.2.2. Resultados cuantitativos
Se realizaron múltiples pruebas de predicción utilizando datos que el modelo no

había visto durante el entrenamiento. Los resultados resumidos en la Tabla 5.2

muestran que el modelo logra predecir con alta precisión los niveles futuros de

humedad del suelo.

Métrica Valor obtenido Interpretación

MAE 1.43 % Error medio bajo en predicción

RMSE 1.84 % Desviaciones significativas son raras

R² 0.91 El modelo explica el 91% de la variabilidad

Tabla 5 – Métricas de desempeño del modelo de predicción.

La gráfica de la Imagen 17 muestra la comparación entre los valores de humedad

del suelo medidos (Humedad Real) y las predicciones generadas por el modelo de

machine learning (Humedad Predicha) durante todo el mes de abril de 2025. Los

Capítulo 5. Resultados

143

datos fueron simulados con un muestreo cada 15 minutos para representar

variaciones diarias y condiciones variables en un cultivo protegido.

Imagen 17. Gráfico comparativo: Humedad real vs. Humedad predicha.

Como se observa, la curva de humedad predicha sigue de cerca la tendencia de la

humedad real a lo largo del mes, con ligeras desviaciones causadas por el ruido

simulado y las limitaciones inherentes al modelo. Esta correspondencia indica que

el modelo es capaz de captar las fluctuaciones temporales de la humedad del suelo,

anticipando con precisión las caídas y recuperaciones, lo cual es fundamental para

optimizar la activación del sistema de riego.

La visualización evidencia la capacidad del modelo para predecir la humedad con

un margen de error reducido, reforzando su utilidad como herramienta para la toma

de decisiones automatizadas en el sistema de riego inteligente.

5.2.3. Evaluación cualitativa y funcional
Más allá de las métricas numéricas, se evaluó la capacidad del modelo para generar

recomendaciones de riego útiles y oportunas en distintos escenarios simulados.

Durante las pruebas, el sistema:

 Emitió recomendaciones de activación del riego en el 93 % de los casos

donde la humedad real estuvo por debajo del umbral crítico.

Capítulo 5. Resultados

144

 Evitó activaciones innecesarias en situaciones donde la humedad se

mantuvo dentro del rango aceptable.

 Fue capaz de anticipar caídas de humedad con un margen de 30 a 60

minutos, proporcionando tiempo suficiente para actuar.

Estas observaciones reflejan que el modelo, aun en un entorno simulado, cumple

con su propósito de apoyar decisiones preventivas y optimizar el uso del recurso

hídrico.

5.2.4. Robustez y limitaciones observadas
Durante las pruebas, se detectaron algunas limitaciones propias del modelo y los

datos utilizados:

 En escenarios con cambios abruptos y poco frecuentes (picos o caídas

rápidas de humedad), la precisión disminuyó ligeramente, debido a la

naturaleza limitada del conjunto de datos simulado.

 El modelo no fue probado en condiciones extremas de temperatura o CO₂,

lo que limita su robustez en casos poco comunes.

 La predicción depende en gran medida de la calidad y frecuencia de los datos

recibidos; pérdidas o retrasos en la transmisión podrían afectar la

confiabilidad.

5.2.5. Recomendaciones para mejora del modelo
A partir de los resultados y limitaciones, se recomienda:

 Recolectar datos reales en campo para reentrenar y validar el modelo,

mejorando su precisión y generalización.

 Explorar modelos avanzados como Random Forests o LSTM para capturar

mejor las dependencias temporales y no lineales.

 Implementar técnicas de validación adicionales, como validación cruzada

temporal o conjuntos de validación independientes.

Capítulo 5. Resultados

145

 Añadir sensores complementarios y variables externas para enriquecer el

conjunto de datos y permitir mejores predicciones.

5.2.6. Impacto en la lógica del sistema
La integración del modelo permitió que el sistema:

 Automatizara recomendaciones con base en predicciones anticipadas.

 Disminuyera activaciones erróneas del riego.

 Permitiera un monitoreo proactivo y eficiente del estado hídrico del cultivo.

Este nivel de inteligencia aportó valor diferencial al sistema frente a soluciones

basadas únicamente en umbrales estáticos y datos instantáneos.

5.3. Evaluación de rendimiento del SIRCA-IoT
La evaluación del rendimiento del SIRCA-IoT es fundamental para determinar su

viabilidad técnica y operativa en escenarios de aplicación real. Esta evaluación

abarcó un análisis exhaustivo de varios indicadores críticos que impactan la

capacidad del sistema para funcionar eficientemente, responder a eventos en

tiempo casi real, mantener estabilidad operativa y permitir escalabilidad futura.

Se realizaron pruebas integrales en un entorno de laboratorio simulado, donde se

midieron parámetros de latencia, consumo de recursos computacionales,

estabilidad de la comunicación y potencial de expansión. A continuación, se

describen con detalle los resultados obtenidos en cada uno de estos aspectos.

5.3.1. Tiempo de respuesta total del sistema
El tiempo de respuesta se definió como el intervalo transcurrido desde la captura de

una medición en los sensores físicos hasta la activación física de la bomba de agua

que realiza el riego. Este parámetro es clave para la operatividad en tiempo real del

sistema, ya que cualquier retraso excesivo podría provocar riegos tardíos o

innecesarios, afectando la salud del cultivo y la eficiencia hídrica.

Capítulo 5. Resultados

146

El análisis del tiempo total de respuesta consideró las siguientes etapas

secuenciales:

 Adquisición y lectura de sensores (Raspberry Pi):

El proceso incluye la lectura física de sensores analógicos y digitales,

conversión de señales y preparación del paquete de datos. Este proceso

tomó en promedio 0.4 segundos por ciclo de muestreo.

 Publicación MQTT desde Raspberry Pi al bróker:

El envío del mensaje JSON con los datos sensados al bróker HiveMQ se

realizó con protocolo MQTT en QoS 1, garantizando la entrega. El tiempo

promedio de publicación fue de 0.05 segundos, reflejando la eficiencia del

protocolo y la conexión de red estable.

 Recepción y almacenamiento en backend:

El servidor Django suscribió a los tópicos MQTT, procesó los mensajes y

almacenó los datos en la base TimescaleDB. Esta operación tomó en

promedio 0.5 segundos, incluyendo la ejecución de consultas SQL para

insertar datos y la comunicación con la base.

 Ejecución de predicción por modelo de machine learning:

Una vez recibidos los datos más recientes, el backend realizó la inferencia

con el modelo serializado. La predicción se completó en aproximadamente

0.1 segundos, un tiempo reducido que garantiza rapidez en la toma de

decisiones.

 Publicación del comando de activación al actuador (MQTT):

En caso de decisión positiva para activar el riego, el backend publicó un

comando en el tópico /actuator/pump en menos de 0.05 segundos.

 Activación física de la bomba por Raspberry Pi:

El tiempo desde la recepción del comando hasta la activación del relé y

puesta en marcha de la bomba fue menor a 0.5 segundos.

Capítulo 5. Resultados

147

Tiempo total promedio:

Sumando las etapas, el sistema presenta un tiempo total medio de latencia entre la

captura de datos y la activación física del riego de aproximadamente 1.6 segundos.

Este resultado confirma que el sistema puede operar en tiempo casi real,

respondiendo rápidamente a condiciones que requieran intervención, lo cual es

esencial para la efectividad en el manejo del agua.

Las siguientes Tabla 5.3 y Tabla 5.4 presentan un resumen detallado de los tiempos

promedio que tarda el sistema en cada etapa crítica, desde la lectura de sensores

hasta la activación física del sistema de riego. Asimismo, muestra el consumo

promedio de recursos computacionales tanto en la Raspberry Pi como en el servidor

backend. Estos datos evidencian la capacidad del sistema para operar en tiempo

casi real y con eficiencia energética en hardware con recursos limitados, lo que es

esencial para aplicaciones embebidas y en campo.

Etapa Tiempo promedio
(segundos)

Descripción

Lectura y adquisición de

sensores

0.40 Captura y preparación de datos en

Raspberry Pi

Publicación MQTT 0.05 Envío de datos desde Raspberry Pi al

bróker MQTT

Recepción y

almacenamiento

0.50 Procesamiento y guardado en

TimescaleDB

Predicción ML 0.10 Inferencia del modelo de machine
learning

Publicación comando de

riego

0.05 Envío de señal para activar bomba a

través de MQTT

Activación física de la

bomba

0.50 Tiempo para encender la bomba tras

recibir comando

Tiempo total promedio 1.60 Desde lectura hasta activación física

Capítulo 5. Resultados

148

Tabla 6. Resumen de tiempos de respuesta.

Recurso Uso promedio (%) Descripción

CPU Raspberry Pi 25 Uso promedio durante adquisición y envío

RAM Raspberry Pi 30 Consumo durante operación normal

CPU Backend 12 - 15 Uso bajo durante recepción y predicción

RAM Backend 40 Memoria ocupada durante funcionamiento

Tabla 7 – Resumen de consumo de recursos

5.3.2. Consumo y utilización de recursos
computacionales

El rendimiento computacional fue monitoreado para evaluar la eficiencia y la

posibilidad de operar el sistema en hardware limitado, como la Raspberry Pi, y en

servidores con recursos moderados.

 Raspberry Pi (nodo IoT):

o Uso promedio de CPU: 25 %, con picos breves hasta 45 % durante la

lectura y publicación de datos.

o Uso promedio de memoria RAM: 30 % del total disponible (~1 GB).

o Consumo energético estimado: bajo, acorde con dispositivos

embebidos.

 Servidor Backend (Django + TimescaleDB):

o Uso promedio de CPU: 12–15 % en condiciones normales.

o Memoria RAM utilizada: aproximadamente 40 % de 8 GB disponibles.

o Base de datos TimescaleDB mostró alta eficiencia en consultas de

series temporales con índices especializados.

Capítulo 5. Resultados

149

Estos niveles indican que el sistema es capaz de funcionar en plataformas de

hardware con recursos limitados, y que existen márgenes para aumentar la carga

de trabajo o integrar nodos adicionales sin necesidad de infraestructura adicional

costosa.

La Imagen 18 ilustra la variación del uso de CPU y memoria RAM en la Raspberry

Pi durante dos horas de operación continua. Se observa que el consumo se

mantiene dentro de rangos adecuados para dispositivos embebidos, con picos

controlados durante la adquisición y publicación de datos. Esta estabilidad es

indicativa de que la Raspberry Pi puede soportar la carga de trabajo requerida sin

comprometer el desempeño ni la autonomía energética.

Imagen 18. Uso de CPU y Memoria RAM en Raspberry Pi durante operación.

5.3.3. Estabilidad y confiabilidad del sistema
Durante un período de prueba extendido (más de 12 horas continuas), el sistema

mantuvo:

 Conectividad MQTT estable, sin pérdidas significativas de mensajes ni

caídas del servicio.

Capítulo 5. Resultados

150

 Reconexión automática en la Raspberry Pi tras interrupciones breves de red,

con reanudación rápida de la publicación de datos.

 Robustez del backend, que procesó todas las solicitudes sin errores críticos

ni caídas.

 Sincronización adecuada entre backend y frontend, manteniendo

visualizaciones en tiempo real sin desfases apreciables.

Se implementaron logs detallados y mecanismos de validación de mensajes para

asegurar la integridad de la información.

5.3.4. Capacidad de escalabilidad y adaptabilidad
La arquitectura modular y distribuida del SIRCA-IoT fue diseñada para facilitar la

escalabilidad:

 Escalabilidad horizontal: permite agregar múltiples nodos Raspberry Pi, cada

uno monitoreando diferentes zonas o cultivos, sin modificar la arquitectura

básica.

 Aislamiento de componentes: la comunicación mediante MQTT desacopla

nodos IoT y backend, lo que facilita el mantenimiento y actualizaciones.

 Contenerización y despliegue flexible: el backend y base de datos pueden

desplegarse en contenedores Docker, permitiendo migraciones a servidores

locales o en la nube.

 Fácil extensión: la base de datos TimescaleDB y el modelo de machine

learning pueden manejar volúmenes crecientes de datos sin pérdidas

significativas en el rendimiento.

Estas características aseguran que el sistema pueda evolucionar para dar soporte

a cultivos mayores o múltiples instalaciones.

Capítulo 5. Resultados

151

5.3.5. Consideraciones y recomendaciones
 Para ambientes con alta latencia de red, se recomienda evaluar la

implementación de buffers o almacenamiento temporal en el nodo IoT para

evitar pérdida de datos.

 La optimización de consultas en TimescaleDB y el uso de índices

especializados son cruciales para mantener tiempos bajos en consultas

históricas conforme crece la base de datos.

 Se sugiere monitorear constantemente el consumo de recursos para prever

necesidades de escalamiento o actualización de hardware.

 Implementar mecanismos de seguridad adicionales, como TLS para MQTT,

es importante para entornos productivos.

5.4. Síntesis de resultados
La sección de síntesis de resultados representa un momento clave dentro del

capítulo, ya que agrupa, analiza y contextualiza de manera integral los hallazgos

derivados de las diversas pruebas y evaluaciones ejecutadas durante el desarrollo

del sistema de riego inteligente basado en tecnologías IoT y modelos predictivos de

machine learning. A continuación, se detalla el análisis exhaustivo y la interpretación

crítica de los resultados, destacando tanto los aspectos técnicos como las

implicaciones prácticas para el sector agrícola y la optimización de recursos.

5.4.1. Integración funcional completa y operación
sincronizada

Los resultados confirman que el sistema diseñado y desarrollado cumple

exitosamente con la integración completa de sus componentes fundamentales:

sensores físicos, protocolos de comunicación, backend de procesamiento y

almacenamiento, modelo de predicción inteligente, interfaz de usuario y actuadores

Capítulo 5. Resultados

152

físicos. Esta integración se traduce en un flujo continuo y coordinado de datos y

decisiones, capaz de:

 Capturar variables ambientales y de suelo con alta fidelidad a través de

sensores físicos instalados en el nodo IoT (Raspberry Pi).

 Transmitir y almacenar eficientemente esta información en tiempo real

mediante protocolos MQTT y bases de datos optimizadas para series

temporales (TimescaleDB).

 Analizar mediante un modelo de machine learning las condiciones actuales

y predecir tendencias futuras en la humedad del suelo, habilitando una toma

de decisiones proactiva.

 Visualizar los datos y recomendaciones de manera clara, intuitiva y en tiempo

real para el usuario, facilitando el monitoreo y control manual o automático.

 Activar efectivamente los sistemas físicos de riego para optimizar el uso del

agua.

La capacidad para operar con este nivel de sincronía y cohesión tecnológica no solo

demuestra la viabilidad técnica del sistema, sino que también refleja un diseño

sólido que puede servir como plataforma para futuras innovaciones y escalamiento

en ambientes agrícolas reales.

5.4.2. Precisión y utilidad del modelo predictivo
El modelo de machine learning entrenado con datos simulados evidenció un nivel

elevado de precisión al anticipar los niveles de humedad del suelo con un coeficiente

de determinación (R²) cercano a 0.91 y errores promedio reducidos (MAE ~1.43%).

Esta precisión se traduce en:

 Una capacidad robusta para distinguir entre condiciones que requieren riego

y aquellas en que el suelo mantiene humedad adecuada.

 La habilidad para emitir recomendaciones oportunas, anticipando caídas de

humedad con suficiente margen para ejecutar el riego preventivo.

Capítulo 5. Resultados

153

 La disminución de riegos innecesarios, con el consecuente ahorro de agua y

reducción del impacto ambiental.

La utilidad práctica de estas predicciones ha sido corroborada durante las pruebas

funcionales, en las que la integración entre el modelo predictivo y la lógica de control

permitió automatizar y optimizar el proceso de riego, aumentando la eficiencia

hídrica del sistema.

5.4.3. Rendimiento, estabilidad y escalabilidad del
sistema

El análisis del rendimiento computacional y la estabilidad operativa indica que el

sistema es capaz de funcionar en condiciones reales con:

 Tiempos de respuesta totales inferiores a 2 segundos desde la adquisición

hasta la activación, lo que es fundamental para la operación en tiempo casi

real.

 Consumo eficiente de recursos en dispositivos embebidos como la

Raspberry Pi, con utilización equilibrada de CPU y memoria, garantizando

autonomía y operatividad continua.

 Robustez en la comunicación gracias al uso del protocolo MQTT con QoS 1

y mecanismos de reconexión automática, permitiendo la continuidad

operativa ante fallos temporales de red.

 Un diseño modular que facilita la integración de múltiples nodos, sensores y

nuevas funcionalidades, posibilitando la expansión sin comprometer la

integridad del sistema.

Este conjunto de características posiciona al sistema como una solución tecnológica

madura, capaz de adaptarse a diferentes escalas productivas, desde pequeños

invernaderos hasta explotaciones agrícolas medianas o grandes.

Capítulo 5. Resultados

154

5.4.4. Limitaciones y áreas de oportunidad
Pese a los resultados positivos, es necesario reconocer las limitaciones detectadas

durante la etapa experimental, las cuales delinean líneas claras para mejora y

validación futura:

 El uso exclusivo de datos simulados para entrenamiento y validación del

modelo implica que su comportamiento en entornos reales aún debe ser

verificado y ajustado.

 La ausencia de ciertas variables ambientales críticas (precipitación, viento,

radiación solar externa) limita la precisión del modelo en escenarios

climáticos más complejos.

 La dependencia de umbrales estáticos para la toma de decisiones sugiere

que la implementación de lógica adaptable o aprendizaje en línea podría

aumentar la flexibilidad y efectividad.

 La validación funcional se realizó en un entorno controlado; pruebas en

campo abierto con condiciones heterogéneas y fluctuantes son necesarias

para asegurar la robustez.

Estas limitaciones no disminuyen la relevancia del sistema, sino que más bien

marcan un camino claro para el perfeccionamiento y adaptación a las exigencias

reales del sector agrícola.

5.4.5. Contribuciones y perspectivas de impacto
Este proyecto contribuye significativamente a la agricultura inteligente, proponiendo

un sistema integral que combina la recolección sensorial en tiempo real, la

inteligencia predictiva y el control automatizado del riego. Sus aportes incluyen:

 Demostrar la factibilidad técnica y operativa de sistemas embebidos IoT

aplicados a la gestión hídrica en cultivos protegidos.

 Proveer un modelo de predicción de humedad accesible y efectivo, que

puede evolucionar con datos reales.

Capítulo 5. Resultados

155

 Facilitar la adopción de tecnologías digitales en el sector agrícola, con un

enfoque en sostenibilidad y optimización de recursos.

 Sentar las bases para desarrollos futuros que incorporen nuevas variables,

modelos avanzados y ampliaciones a mayor escala.

El SIRCA-IoT no solo representa un avance tecnológico, sino una herramienta

potencialmente transformadora para mejorar la productividad agrícola y reducir el

impacto ambiental.

Capítulo 6. Conclusiones

Capítulo 6. Conclusiones

157

6. Conclusiones
Este capítulo presenta las conclusiones generales del trabajo de investigación y

desarrollo del SIRCA-IoT. Las conclusiones han sido estructuradas con base en el

cumplimiento de los objetivos específicos planteados al inicio del proyecto, así como

en los resultados obtenidos durante la implementación, validación y evaluación del

sistema propuesto.

En este cierre, se reflexiona críticamente sobre la viabilidad técnica, operativa y

funcional del sistema, su impacto potencial en el sector agrícola, y las contribuciones

académicas que derivan de esta experiencia. Además, se exponen de manera

detallada las limitaciones detectadas y las oportunidades de mejora identificadas a

lo largo del proceso.

Finalmente, se presentan dos secciones complementarias: Trabajos Futuros, donde

se describen las líneas de investigación y desarrollo que pueden derivarse de este

trabajo, y Recomendaciones Finales, que orientan la implementación práctica del

sistema en escenarios reales y sugieren buenas prácticas para su adopción efectiva

y sostenible.

Estas conclusiones buscan no solo sintetizar lo realizado, sino también proyectar el

alcance y la relevancia de la propuesta desarrollada, abriendo el camino hacia

futuras aplicaciones en el ámbito de la agricultura inteligente y la gestión sostenible

de los recursos hídricos.

6.1. Cumplimiento de los objetivos propuestos
El presente trabajo de tesis logró cumplir los objetivos propuestos a través del

desarrollo e implementación del SIRCA-IoT, evidenciando una correspondencia

directa entre los propósitos iniciales y los resultados alcanzados. A continuación, se

presenta la trazabilidad explícita entre cada objetivo y las evidencias obtenidas, con

referencia a las secciones donde se documenta su verificación.

Capítulo 6. Conclusiones

158

 Objetivo general (OG):
Desarrollar e implementar un sistema de riego inteligente basado en IoT que

permita optimizar el consumo de agua en cultivos protegidos en

Aguascalientes, México, mediante la recolección y análisis de datos

ambientales, la predicción del nivel de humedad del suelo y el control

automatizado del riego.
Cumplimiento:
Se desarrolló un prototipo funcional e integrado que combinó sensorización

IoT (Raspberry Pi + DHT22, DS18B20, BH1750, SCD30), backend en

Django/DRF con almacenamiento en TimescaleDB, frontend en Vue.js con

visualización y control, y un modelo de machine learning para predicción de

humedad. El sistema operó con latencia extremo a extremo promedio ≈ 1.6

s, estabilidad continuada > 12 h y desempeño predictivo R² ≈ 0.91 con MAE

≈ 1.43 %, habilitando la toma de decisiones de riego automatizadas y

fundamentadas en datos. (Véanse 4.2, 4.3, 4.4 y 4.2.5).

 Objetivo específico 1 (OE1): Integrar tecnología de IoT en el sistema de

riego para monitorear variables críticas del entorno.
Se logró porque:

 Se conectaron e integraron sensores DHT22, DS18B20, BH1750 y

SCD30 a Raspberry Pi mediante GPIO/I2C/1-Wire.

 Se estableció publicación/subscripción MQTT por tópicos
diferenciados y persistencia en TimescaleDB.

 Se verificó flujo continuo y estable de datos durante pruebas
prolongadas.

(Secciones 4.2.1–4.2.3; validación en 4.2.5).

 Objetivo específico 2 (OE2): Diseñar y desarrollar una aplicación web que

facilite el manejo del sistema de riego inteligente.

Se logró porque:

Capítulo 6. Conclusiones

159

 Se implementó backend Django/DRF con API REST y WebSockets

para actualización en tiempo real.

 Se desarrolló frontend en Vue.js/Vuetify con panel de control, gráficos

e histórico.

 Se habilitó control manual/supervisado de la bomba desde la interfaz.

(Secciones 4.3.1–4.3.3).

 Objetivo específico 3 (OE3): Incorporar un modelo predictivo de machine

learning que sugiera el momento óptimo para activar el riego.

Se logró porque:

 Se entrenó e integró un modelo de regresión (Random Forest) con

datos simulados de alta fidelidad.

 Se obtuvo R² ≈ 0.91 y MAE ≈ 1.43 %, con integración al backend para
emitir sugerencias/activaciones.

(Secciones 4.4.3–4.4.5).

 Objetivo específico 4 (OE4): Validar el sistema en un entorno de pruebas

controlado.

Se logró porque:

 Se midió latencia total ≈ 1.6 s (adquisición → visualización/acción).

 Se aseguró QoS 1, reconexión automática y heartbeat cada 5 min;

operación estable > 12 h.

 Se comprobó activación remota confiable de la bomba vía MQTT con

confirmación de eventos.

(Secciones 4.2.4–4.2.5).

 Objetivo específico 5 (OE5): Documentar detalladamente el proceso de

diseño, desarrollo y validación del sistema.
Se logró porque:

Capítulo 6. Conclusiones

160

 Se elaboraron diagramas de arquitectura y flujo, esquemas eléctricos,

bitácoras técnicas, código modular y reportes de pruebas con capturas

e indicadores.

(Sección 4.2.5 y Anexos A–B).

Objetivo Evidencias clave Dónde se demuestra

OG
Integración IoT + web + ML; latencia ≈ 1.6 s;

R² ≈ 0.91; MAE ≈ 1.43 %; operación > 12 h
4.2; 4.3; 4.4; 4.2.5

OE1
Sensores integrados; MQTT estable;

almacenamiento en TimescaleDB
4.2.1–4.2.3; 4.2.5

OE2
API REST + WebSockets; UI con control de

bomba e histórico
4.3.1–4.3.3

OE3
Random Forest integrado; métricas R²/MAE;

sugerencias/activaciones
4.4.3–4.4.5

OE4
Latencia total medida; QoS 1 y reconexión;

activación remota confiable
4.2.4–4.2.5

OE5
Diagramas, bitácoras, código y resultados

documentados
4.2.5; Anexos A–B

Tabla 8. Matriz de cumplimiento de objetivos.

6.2. Viabilidad técnica y operativa del sistema propuesto
La evaluación exhaustiva del sistema de riego inteligente desarrollado permitió

confirmar su viabilidad técnica y operativa en escenarios controlados, sentando una

base sólida para su futura implementación en entornos agrícolas reales. Esta

viabilidad se manifiesta en múltiples dimensiones del sistema, incluyendo su

arquitectura tecnológica, rendimiento funcional, estabilidad en el tiempo y capacidad

de adaptación.

a) Integración funcional y sincronización operativa

Capítulo 6. Conclusiones

161

Uno de los aspectos más relevantes que sustentan la viabilidad técnica es la

integración completa y sincronizada de todos los componentes clave: sensores,

nodos IoT, red de comunicación, backend de procesamiento, modelo predictivo de

machine learning, interfaz de usuario y sistema de actuación. Esta integración logró

establecer un flujo continuo de información desde la captura de datos en campo

hasta la ejecución de acciones automáticas de riego, con mínima latencia y sin

interrupciones operativas. El uso del protocolo MQTT con calidad de servicio (QoS)

nivel 1 garantizó una transmisión confiable de datos, mientras que la arquitectura

basada en microservicios y contenedores facilitó el despliegue distribuido de los

servicios.

b) Rendimiento en tiempo casi real

Las pruebas realizadas revelaron que el sistema puede operar en tiempo casi real,

con un tiempo promedio de respuesta total de aproximadamente 1.6 segundos

desde la adquisición de datos hasta la activación física de la bomba de riego. Este

rendimiento es adecuado para aplicaciones donde se requiere reaccionar

oportunamente a cambios en las condiciones del suelo, lo cual es esencial para

mantener la salud del cultivo y evitar el desperdicio de agua.

Además, el consumo de recursos computacionales fue bajo y constante, tanto en la

Raspberry Pi como en el backend, permitiendo una operación eficiente en hardware

de bajo costo y bajo consumo energético. Este aspecto es particularmente

importante para entornos agrícolas que requieren soluciones accesibles y

autónomas en términos energéticos.

c) Estabilidad y confiabilidad operativa

Durante pruebas extendidas de funcionamiento continuo, el sistema demostró una

alta estabilidad, manteniendo la conexión a la red, evitando pérdidas de mensajes,

y permitiendo la reconexión automática ante caídas breves de conexión. No se

presentaron errores críticos ni fallos de sincronización, lo cual indica que el sistema

puede sostener su operatividad durante largos períodos, incluso en condiciones

variables o con conectividad intermitente, como suele ocurrir en zonas rurales.

Capítulo 6. Conclusiones

162

d) Adaptabilidad y escalabilidad

El diseño modular y distribuido del sistema contribuye directamente a su viabilidad

operativa a mayor escala, ya que permite incorporar nuevos nodos de monitoreo o

módulos de control sin necesidad de rediseñar la arquitectura existente. La

contenerización de los servicios backend y la eficiencia de la base de datos

TimescaleDB en el manejo de series temporales facilitan la migración del sistema a

entornos más complejos o productivos, como granjas de mayor tamaño o cultivos

diversificados.

e) Interfaz de usuario y experiencia operativa

La interfaz gráfica desarrollada proporciona visualización clara y en tiempo real de

las variables clave y los estados del sistema. Esta característica permite a los

usuarios supervisar y entender fácilmente el funcionamiento del sistema, intervenir

manualmente cuando sea necesario y confiar en el sistema para decisiones

automatizadas fundamentadas en análisis predictivo.

En conjunto, todos estos factores demuestran que el sistema propuesto no solo es

técnicamente factible, sino también operativamente sólido y sustentable,

posicionándolo como una herramienta práctica, confiable y con un alto potencial

para mejorar la eficiencia hídrica y tecnológica en la agricultura. La implementación

futura en entornos reales requerirá adaptaciones menores, pero no compromete la

solidez de la solución desarrollada.

6.3. Desempeño y utilidad del modelo predictivo
El modelo de machine learning integrado en el sistema de riego inteligente

constituye uno de los componentes centrales para la automatización eficiente y el

uso racional del recurso hídrico. Su desempeño fue evaluado desde una perspectiva

cuantitativa (precisión estadística) y cualitativa (impacto en la toma de decisiones

de riego), y los resultados obtenidos reflejan una utilidad práctica significativa y un

comportamiento predictivo robusto, incluso en condiciones simuladas.

Capítulo 6. Conclusiones

163

a) Precisión y capacidad de generalización

Durante el entrenamiento y validación del modelo, se alcanzó un coeficiente de

determinación (R²) de aproximadamente 0.91 y un error absoluto medio (MAE)

cercano al 1.43 %, indicadores que evidencian una alta capacidad del modelo para

predecir los niveles de humedad del suelo con exactitud. Esta precisión permitió

identificar con fiabilidad situaciones críticas en las que el nivel de humedad

desciende por debajo de los umbrales establecidos, lo cual habilita la activación

preventiva del riego antes de que el déficit hídrico impacte negativamente en el

cultivo.

A pesar de haber sido entrenado con datos simulados, el modelo demostró una

consistencia interna robusta, lo cual valida su diseño algorítmico y lo posiciona como

una base confiable para su futura adaptación con datos reales de campo.

b) Aporte a la eficiencia hídrica y toma de decisiones

El valor agregado del modelo no reside solamente en su precisión matemática, sino

en su capacidad para influir positivamente en el proceso de toma de decisiones

automatizadas, reduciendo la dependencia de criterios fijos o decisiones empíricas

por parte de los operadores. En las pruebas funcionales, el modelo permitió:

 Reducir riegos innecesarios, evitando activaciones cuando la humedad del

suelo se encontraba en niveles óptimos.

 Optimizar el uso del agua, activando el sistema únicamente cuando las

condiciones reales y las predicciones futuras lo justificaban.

 Anticipar escenarios de déficit hídrico, con suficiente margen para responder

antes de que se generen daños o estrés en el cultivo.

Estas capacidades no solo contribuyen a mejorar la sostenibilidad del sistema

agrícola, sino que además posicionan el modelo como un elemento clave para una

agricultura de precisión orientada a la conservación de recursos naturales.

c) Limitaciones actuales y perspectivas de mejora

Capítulo 6. Conclusiones

164

Si bien el modelo demostró un desempeño notable, es importante subrayar ciertas

limitaciones actuales que afectan su aplicabilidad inmediata en condiciones de

campo:

 El entrenamiento con datos simulados, aunque útil en etapas iniciales,

requiere ser complementado con datos reales y diversos que reflejen

condiciones agroclimáticas locales.

 La ausencia de variables climáticas complementarias (precipitación, viento,

radiación solar, entre otras) restringe la capacidad del modelo para capturar

dinámicas complejas del entorno natural.

 La lógica de decisión se basa en umbrales estáticos, lo cual podría limitar la

adaptabilidad ante variaciones abruptas del clima o condiciones del cultivo.

No obstante, estas limitaciones no comprometen el valor del modelo desarrollado.

Más bien, ofrecen oportunidades claras para su evolución hacia esquemas más

complejos, como el aprendizaje en línea (online learning), la incorporación de redes

neuronales recurrentes (RNN) para modelar dependencias temporales, o el uso de

sistemas híbridos que combinen reglas expertas y aprendizaje automático.

d) Utilidad como herramienta tecnológica

Desde una perspectiva aplicada, el modelo se consolida como una herramienta

tecnológica útil, accesible y eficiente, capaz de integrarse en sistemas de bajo costo

y operar en tiempo real. Su diseño modular, su bajo requerimiento computacional y

su compatibilidad con sistemas embebidos como Raspberry Pi lo hacen apto para

ser utilizado en contextos rurales con limitaciones de infraestructura, sin sacrificar

precisión ni velocidad.

En resumen, el modelo predictivo no solo cumple su propósito técnico con un alto

grado de precisión y utilidad, sino que además aporta inteligencia y adaptabilidad al

sistema global, potenciando el impacto del riego automatizado y sentando las bases

para el desarrollo de soluciones aún más avanzadas en el marco de la agricultura

inteligente.

Capítulo 6. Conclusiones

165

6.4. Aportes del sistema al sector agrícola
El desarrollo e implementación del sistema de riego inteligente propuesto

representa una contribución significativa al proceso de modernización del sector

agrícola, particularmente en contextos donde el acceso a tecnologías avanzadas

aún es limitado. A través de una arquitectura integrada y modular que combina

Internet de las Cosas (IoT), análisis predictivo mediante machine learning y

automatización, el sistema aporta soluciones concretas a desafíos persistentes en

la gestión del recurso hídrico, la eficiencia operativa y la toma de decisiones

informadas.

a) Optimización del uso del agua

Uno de los aportes más relevantes del sistema es su capacidad para promover un

uso más eficiente y racional del recurso hídrico, que es crítico en la agricultura

moderna. Gracias a la monitorización en tiempo real de la humedad del suelo y a la

integración de un modelo predictivo preciso, el sistema permite:

 Reducir el desperdicio de agua, evitando riegos innecesarios.

 Aplicar el riego únicamente cuando es necesario, con base en datos y

pronósticos confiables.

 Mejorar la sostenibilidad de la producción agrícola, al minimizar el impacto

ambiental derivado de la sobreirrigación o de prácticas empíricas de manejo

del agua.

Este aporte es particularmente valioso en regiones con estrés hídrico, donde la

disponibilidad del agua es limitada y su manejo eficiente resulta crucial para la

seguridad alimentaria y la sostenibilidad económica.

b) Democratización del acceso a tecnologías digitales

El diseño del sistema, basado en hardware accesible como la Raspberry Pi,

sensores de bajo costo y software libre, permite su adopción en entornos de bajos

Capítulo 6. Conclusiones

166

recursos técnicos y económicos, eliminando barreras de entrada a la digitalización

del agro. En este sentido, el sistema:

 Reduce la brecha tecnológica entre pequeños productores y grandes

explotaciones agrícolas.

 Facilita la apropiación tecnológica por parte de usuarios sin formación técnica

especializada, gracias a una interfaz intuitiva y a la automatización de

procesos complejos.

 Incentiva la innovación local, al ser una plataforma abierta y escalable que

puede adaptarse a las necesidades específicas de cada comunidad agrícola.

Este enfoque inclusivo y adaptable es clave para impulsar una transformación digital

equitativa en el agro, especialmente en países en desarrollo.

c) Mejora en la toma de decisiones agronómicas

Al proporcionar información precisa, en tiempo real y visualmente accesible, el

sistema facilita un enfoque de agricultura basada en datos, lo cual fortalece la

capacidad de los productores para tomar decisiones más acertadas en cuanto al

riego, el manejo del cultivo y la planificación de recursos. Esto se traduce en:

 Menor dependencia de la intuición o experiencia subjetiva del agricultor.

 Mayor capacidad para anticipar problemas y aplicar soluciones proactivas.

 Base sólida para integrar otras prácticas de agricultura de precisión, como

fertilización localizada, monitoreo de plagas o análisis multivariable del

entorno.

Esta transformación en la cultura de toma de decisiones representa un salto

cualitativo hacia una gestión agrícola más científica, sostenible y productiva.

d) Plataforma para innovación y expansión

El sistema propuesto no solo resuelve una necesidad actual, sino que se proyecta

como una plataforma versátil para futuras ampliaciones e innovaciones. Gracias a

Capítulo 6. Conclusiones

167

su arquitectura modular y su compatibilidad con tecnologías modernas

(contenedores, protocolos abiertos, bases de datos escalables), es posible:

 Incorporar nuevas variables ambientales, como precipitación, radiación solar

o velocidad del viento.

 Ampliar el modelo predictivo a otras variables agronómicas, como el

crecimiento del cultivo o la detección de enfermedades.

 Integrar el sistema a plataformas mayores, como sistemas de gestión

agrícola (Farm Management Systems), redes de sensores distribuidos o

infraestructuras en la nube.

Esto habilita su adopción en explotaciones agrícolas de diversas escalas y

características, desde invernaderos familiares hasta grandes fincas tecnificadas,

adaptándose a los requerimientos específicos de cada contexto productivo.

e) Contribución al desarrollo sostenible

Finalmente, el sistema aporta de manera directa a los Objetivos de Desarrollo

Sostenible (ODS), especialmente en los siguientes puntos:

 ODS 2: Hambre cero, al contribuir a una producción agrícola más eficiente y

resiliente.

 ODS 6: Agua limpia y saneamiento, al promover el uso eficiente del agua.

 ODS 9: Industria, innovación e infraestructura, mediante la aplicación de

tecnologías emergentes en el entorno rural.

 ODS 13: Acción por el clima, al reducir el uso excesivo de agua y su impacto

ambiental.

En conjunto, estos aportes posicionan al sistema desarrollado como una

herramienta de alto valor estratégico para el sector agrícola, no solo por sus

capacidades técnicas inmediatas, sino también por su potencial transformador en

términos de sostenibilidad, equidad tecnológica e innovación continua.

Capítulo 6. Conclusiones

168

6.5. Limitaciones del trabajo
A pesar de los resultados satisfactorios alcanzados durante el desarrollo e

implementación del sistema de riego inteligente basado en tecnologías IoT y

modelos predictivos de machine learning, es fundamental reconocer una serie de

limitaciones que condicionan tanto la validez externa de los hallazgos como el

alcance práctico del sistema en entornos reales. Estas limitaciones no desmeritan

el valor del trabajo, sino que identifican con claridad los aspectos que deben ser

abordados en investigaciones o desarrollos futuros para robustecer la solución y

facilitar su adopción a gran escala.

a) Uso de datos simulados para el entrenamiento del modelo

Una de las principales restricciones metodológicas fue la dependencia de datos

simulados para entrenar y validar el modelo de predicción de humedad del suelo. Si

bien estos datos fueron diseñados para representar condiciones razonablemente

realistas, presentan las siguientes limitaciones:

 Falta de ruido e irregularidades típicas de los entornos reales, como lecturas

erráticas de sensores o condiciones climáticas imprevistas.

 Ausencia de estacionalidad y variabilidad geográfica, lo que limita la

capacidad del modelo para generalizar a otros contextos agroclimáticos.

En consecuencia, la eficacia del modelo en situaciones reales aún debe ser

verificada, ajustada y reentrenada con datos obtenidos directamente del campo.

b) Limitación en la variedad de variables ambientales

Durante el diseño y evaluación del sistema se consideraron principalmente variables

relacionadas con la humedad del suelo, temperatura y otros factores básicos. No

obstante, la exclusión de variables ambientales clave —como la precipitación,

radiación solar, velocidad del viento o evapotranspiración— reduce la capacidad del

modelo para capturar con mayor precisión la dinámica hídrica del suelo. Esta

omisión se traduce en:

Capítulo 6. Conclusiones

169

 Menor sensibilidad del sistema a eventos meteorológicos críticos, como

lluvias súbitas o periodos de sequía intensa.

 Riesgo de sobreestimación o subestimación de la necesidad de riego,

especialmente en escenarios climáticos complejos o de transición.

Para lograr un sistema más robusto y adaptable, será indispensable incorporar

sensores adicionales o conectividad con fuentes de datos meteorológicos externas.

c) Uso de lógica de control basada en umbrales fijos

La lógica actual de activación del sistema de riego se basa en umbrales estáticos

predefinidos, lo cual, aunque funcional en entornos controlados, presenta ciertas

limitaciones:

 Falta de adaptabilidad ante cambios contextuales, como el tipo de cultivo, la

fase fenológica o condiciones meteorológicas cambiantes.

 Riesgo de decisiones subóptimas, cuando los valores umbral no reflejan

adecuadamente la realidad específica del entorno productivo.

Una alternativa futura es implementar mecanismos de aprendizaje en línea o lógica

difusa, que permitan ajustar automáticamente los umbrales en función de patrones

de comportamiento histórico o de nuevas observaciones en campo.

d) Validación en un entorno controlado

Todas las pruebas funcionales y experimentales fueron realizadas en un entorno de

laboratorio o simulado, lo cual garantiza condiciones estables y repetibles, pero

limita la validez externa de los resultados. Específicamente:

 No se evaluó la respuesta del sistema ante condiciones impredecibles o

extremas, como desconexiones prolongadas, fallos eléctricos o eventos

climáticos abruptos.

 No se consideraron aspectos logísticos y operativos del uso en campo

abierto, como la exposición prolongada de los dispositivos, la interferencia

con actividades humanas o animales, o los desafíos de mantenimiento.

Capítulo 6. Conclusiones

170

La implementación en ambientes agrícolas reales será un paso imprescindible para

determinar la resiliencia, escalabilidad y adopción práctica del sistema.

e) Seguridad y protección de datos

Si bien se establecieron mecanismos básicos de comunicación confiable mediante

MQTT con calidad de servicio (QoS 1) y reconexión automática, no se

implementaron medidas avanzadas de seguridad como:

 Cifrado de extremo a extremo (por ejemplo, TLS/SSL) para asegurar la

privacidad de los datos transmitidos.

 Autenticación robusta para prevenir accesos no autorizados al sistema o a la

base de datos.

 Políticas de respaldo y recuperación ante fallos, que garanticen la

disponibilidad y consistencia de la información almacenada.

Estas omisiones pueden suponer riesgos significativos en contextos productivos

reales donde la integridad y confidencialidad de los datos son críticas.

En resumen, aunque el sistema ha demostrado su funcionalidad y potencial en

escenarios controlados, estas limitaciones constituyen áreas de mejora clave para

futuras versiones. Superarlas permitirá aumentar la confiabilidad, flexibilidad y

aplicabilidad del sistema en condiciones agrícolas reales, y fortalecerá su potencial

como herramienta de transformación tecnológica en el agro.

6.6. Escalabilidad y perspectivas de mejora
El sistema desarrollado no solo ha demostrado ser técnicamente viable y funcional

en un entorno controlado, sino que también presenta una arquitectura favorable

para su escalabilidad y evolución futura, tanto a nivel técnico como operativo. Esta

sección expone el potencial de crecimiento del sistema y plantea las principales

líneas de mejora que podrían fortalecer su utilidad y adopción en escenarios

agrícolas reales y de mayor complejidad.

Capítulo 6. Conclusiones

171

a) Escalabilidad horizontal del sistema

Uno de los pilares del diseño propuesto es su arquitectura modular y distribuida, lo

cual permite una escalabilidad horizontal efectiva. Específicamente:

 Se pueden agregar múltiples nodos IoT (Raspberry Pi) en distintas zonas de

un cultivo o en diferentes parcelas, sin necesidad de modificar la arquitectura

central del backend ni la lógica general del sistema.

 Cada nodo opera de forma autónoma y se comunica mediante MQTT con el

servidor central, lo que minimiza los acoplamientos y facilita el mantenimiento

o expansión del sistema.

 La base de datos TimescaleDB, optimizada para series temporales, puede

gestionar volúmenes crecientes de datos sin comprometer el rendimiento, lo

que posibilita la integración de cientos o miles de sensores en

implementaciones a gran escala.

Este enfoque distribuye la carga de trabajo, evita cuellos de botella y permite

adaptarse a explotaciones agrícolas de mayor tamaño o incluso a redes de cultivos

geográficamente dispersos.

b) Contenerización y portabilidad del sistema

El uso de tecnologías como Docker para contenerizar los servicios del backend

(API, base de datos y lógica de control) proporciona un entorno portátil y

reproducible, lo que facilita el despliegue en distintos escenarios, tales como:

 Servidores locales en granjas o invernaderos, aprovechando infraestructuras

existentes.

 Plataformas en la nube (AWS, Azure, Google Cloud, etc.), que permiten

escalar automáticamente según la carga y necesidades.

 Dispositivos edge con capacidades intermedias, para una computación más

cercana al origen de los datos.

Capítulo 6. Conclusiones

172

Esto reduce las barreras para la adopción del sistema en ambientes con distintas

capacidades técnicas y presupuestarias, y permite una rápida replicación del

entorno para pruebas, actualizaciones o mantenimiento.

c) Integración de nuevas funcionalidades y tecnologías

La arquitectura modular del sistema facilita la incorporación futura de nuevas

funcionalidades, tales como:

 Sensores adicionales para variables como radiación solar, velocidad del

viento, pH o salinidad del suelo.

 Modelos de machine learning más complejos, incluyendo redes neuronales

profundas o sistemas de aprendizaje en línea adaptativo.

 Lógica de control dinámica basada en pronósticos climáticos, modelos

agronómicos o algoritmos de optimización multiobjetivo.

 Sistemas de alerta inteligentes que notifiquen al usuario en tiempo real a

través de diferentes canales (SMS, correo, app móvil).

Asimismo, se puede considerar la incorporación de paneles solares y sistemas de

bajo consumo energético, que harían viable la operación continua del sistema en

zonas rurales con acceso eléctrico limitado.

d) Mejora de la robustez y seguridad del sistema

Desde el punto de vista operativo, existen oportunidades concretas para mejorar la

resiliencia y la seguridad, incluyendo:

 Implementación de protocolos de cifrado TLS/SSL en las comunicaciones

MQTT y REST para proteger la integridad y confidencialidad de los datos.

 Desarrollo de mecanismos de autenticación y control de acceso, que impidan

el uso indebido del sistema o la manipulación de datos sensibles.

 Incorporación de módulos de respaldo y recuperación, que aseguren la

continuidad operativa en caso de fallos o pérdida de conectividad.

Capítulo 6. Conclusiones

173

Estas mejoras fortalecerían la confianza en el sistema y permitirían su adopción en

ambientes productivos críticos donde la seguridad y disponibilidad de los datos son

esenciales.

e) Adaptabilidad a diferentes tipos de cultivos y contextos productivos

El sistema puede evolucionar para ser más flexible y configurable, permitiendo su

adaptación a distintos tipos de cultivo, condiciones edafoclimáticas y necesidades

productivas. Para ello, se plantean las siguientes perspectivas:

 Desarrollo de interfaces de configuración agronómica, donde el usuario

defina parámetros específicos según tipo de cultivo, fase fenológica o manejo

del agua.

 Inclusión de módulos de aprendizaje autónomo, que ajusten dinámicamente

los umbrales y comportamientos del sistema a partir de la experiencia

acumulada.

 Integración con servicios externos de predicción climática y monitoreo

satelital, ampliando el contexto de toma de decisiones.

Estas líneas de evolución permitirán que el sistema pase de una herramienta

funcional a una plataforma inteligente adaptable, capaz de optimizar la gestión

hídrica en diversas realidades agrícolas.

En síntesis, el sistema propuesto tiene un amplio potencial de escalabilidad y

mejora, sustentado en decisiones tecnológicas adecuadas y una arquitectura

preparada para el crecimiento. Estas características lo convierten en una solución

prometedora no solo para su implementación inmediata en cultivos controlados,

sino también para su transformación en una plataforma agrícola inteligente robusta,

adaptable y de gran alcance.

Capítulo 6. Conclusiones

174

6.7. Contribución académica y científica
El desarrollo de este sistema de riego inteligente basado en IoT y modelos

predictivos de machine learning constituye una contribución significativa tanto en el

ámbito académico como en el científico-tecnológico, al abordar de forma integral un

problema crítico para la agricultura moderna: la gestión eficiente del agua. Este

apartado presenta una reflexión detallada sobre los aportes generados en términos

de conocimiento, metodologías y potencial de transferencia a la práctica.

a) Integración multidisciplinaria de conocimientos

Uno de los aportes más relevantes de este trabajo es su enfoque interdisciplinario,

que articula conceptos y técnicas de diversas áreas del conocimiento, incluyendo:

 Ingeniería electrónica y de control, aplicada a la adquisición de datos

mediante sensores y actuadores embebidos.

 Ciencias de la computación y software, mediante la implementación de

arquitecturas backend, bases de datos temporales y protocolos de

comunicación (MQTT).

 Machine learning, con la formulación, entrenamiento y evaluación de un

modelo predictivo aplicado a variables ambientales.

 Agronomía y sostenibilidad, al orientar el sistema a la optimización del

recurso hídrico y el incremento de la eficiencia agrícola.

Este enfoque holístico favorece la formación de profesionales capaces de abordar

retos complejos desde múltiples dimensiones, y sienta un precedente para

proyectos de investigación que requieran combinar hardware, software e

inteligencia artificial con conocimientos del entorno productivo.

b) Generación de una metodología replicable

El trabajo propone y valida una metodología de desarrollo replicable para construir

soluciones tecnológicas aplicadas a la agricultura de precisión, que incluye:

Capítulo 6. Conclusiones

175

 La estructuración de un flujo completo desde la adquisición de datos hasta la

toma de decisiones automatizada.

 El uso de datos simulados como estrategia preliminar de validación, lo cual

permite iniciar desarrollos en ausencia de datos históricos reales, una

situación común en muchas regiones agrícolas.

 La implementación de herramientas open source y tecnologías accesibles

(Raspberry Pi, Django, Docker, Scikit-learn), que democratizan el acceso a

soluciones avanzadas incluso en contextos con recursos limitados.

Esta metodología puede ser reutilizada, adaptada o extendida por futuros

investigadores, tanto en el ámbito académico como en la industria tecnológica

enfocada en el agro.

c) Aporte al estado del arte en agricultura inteligente

El sistema diseñado y evaluado se enmarca dentro del campo emergente de la

agricultura inteligente (Smart Farming), y representa un avance en el estado del arte

al proponer:

 Una solución completa, de extremo a extremo, que incluye sensores, análisis

inteligente y actuadores.

 Un modelo predictivo funcional para la humedad del suelo, con resultados

cuantitativos que evidencian su utilidad práctica (R² ≈ 0.91 y MAE bajo 1.5

%).

 Una arquitectura tecnológica realista, adaptable y pensada para escenarios

reales de uso, incluyendo capacidades de escalamiento, portabilidad y

monitoreo remoto.

Estos elementos contribuyen a la literatura científica y técnica sobre sistemas

ciberfísicos aplicados a la gestión del riego, y pueden ser base para publicaciones

académicas, artículos científicos o desarrollos tecnológicos avanzados.

d) Potencial de transferencia y aplicación práctica

Capítulo 6. Conclusiones

176

Más allá del ámbito académico, el sistema presenta un potencial real de

transferencia tecnológica, al ofrecer una solución viable y adaptable para:

 Productores agrícolas medianos o pequeños que buscan mejorar la

eficiencia en el uso del agua y reducir costos.

 Instituciones de investigación y extensión rural, que pueden utilizar esta

plataforma como base para pruebas, capacitación y difusión tecnológica.

 Desarrolladores y startups agrotecnológicas, interesados en adaptar la

solución a contextos específicos o escalarla como producto comercial.

Este trabajo, por tanto, no solo genera conocimiento teórico, sino que acerca la

innovación tecnológica al terreno productivo, promoviendo una agricultura más

inteligente, precisa y sustentable.

En conclusión, la presente tesis representa una aportación académica sólida y

técnicamente fundamentada, que amplía las posibilidades de investigación,

desarrollo y aplicación en el campo de la agricultura digital. Su contribución radica

en haber construido y validado una solución concreta que, además de demostrar su

factibilidad, ofrece caminos claros para la mejora, adaptación y ampliación del

conocimiento en futuras iniciativas académicas, científicas y tecnológicas.

6.8. Reflexión final
La culminación de este trabajo representa no solo el cierre de una etapa académica,

sino también el punto de partida para nuevas líneas de desarrollo, investigación y

aplicación práctica en el ámbito de la agricultura inteligente. A lo largo del proceso

de diseño, implementación y validación del sistema de riego automatizado basado

en IoT y machine learning, fue posible constatar la capacidad de la tecnología para

ofrecer soluciones concretas y sostenibles a problemas reales como la gestión

eficiente del agua en la producción agrícola.

Esta experiencia puso de manifiesto la importancia de la innovación tecnológica

aplicada con un enfoque contextual y ético, donde el objetivo no sea únicamente

Capítulo 6. Conclusiones

177

optimizar procesos, sino también contribuir al bienestar de las comunidades, al

cuidado del medio ambiente y a la sostenibilidad de los recursos naturales. En ese

sentido, el sistema desarrollado no se limita a ser un ejercicio académico o un

prototipo funcional, sino que constituye una propuesta con proyección social,

económica y ecológica.

Desde una perspectiva formativa, este proyecto ha permitido fortalecer

competencias técnicas y metodológicas en áreas clave como el diseño de sistemas

embebidos, el manejo de bases de datos temporales, la analítica predictiva y la

integración de arquitecturas distribuidas. Pero más allá del dominio técnico, se ha

reafirmado también el valor de una visión integradora, crítica y propositiva, que

articule ciencia, tecnología y contexto local para generar impactos positivos.

Finalmente, este trabajo invita a continuar profundizando en el campo de la

agricultura de precisión, fomentando una mayor colaboración interdisciplinaria, el

uso responsable de los datos y la búsqueda de soluciones adaptadas a los desafíos

del presente y del futuro. La ruta hacia una agricultura más resiliente, eficiente y

sustentable no depende únicamente de avances tecnológicos, sino también de la

voluntad de aplicarlos con propósito y compromiso. En ese camino, esta tesis aspira

a ser una contribución valiosa y una base sólida para nuevas exploraciones e

innovaciones.

6.9. Trabajos Futuros
La culminación de este proyecto marca no solo un punto de cierre, sino también el

inicio de múltiples líneas de continuidad que permitirán profundizar, robustecer y

extender las capacidades del sistema de riego inteligente basado en IoT y machine

learning. A partir de las pruebas realizadas, las limitaciones identificadas y el

potencial tecnológico evidenciado, se proponen a continuación diversos frentes de

investigación y desarrollo a considerar en trabajos futuros:

1) Validación en condiciones reales de campo

Capítulo 6. Conclusiones

178

Uno de los pasos más relevantes hacia la consolidación del sistema es su validación

en contextos agrícolas reales, fuera del entorno controlado de pruebas. Esta fase

permitirá evaluar el comportamiento del sistema frente a condiciones ambientales

no ideales, ruido sensorial, variabilidad edafológica y topográfica, así como factores

operativos propios del trabajo agrícola. La implementación en campo abrirá la

posibilidad de ajustar el modelo predictivo, mejorar la robustez del hardware y afinar

los algoritmos de control, consolidando así su aplicabilidad práctica.

2) Inclusión de variables ambientales adicionales

El sistema actual se basa principalmente en mediciones de humedad del suelo,

temperatura y datos básicos ambientales. Sin embargo, variables como

precipitación pluvial, radiación solar, velocidad del viento, evapotranspiración y

humedad relativa del aire pueden tener un impacto significativo en la dinámica

hídrica del suelo. Su incorporación permitiría un análisis más completo y una mayor

precisión en las predicciones del modelo, haciéndolo más resiliente frente a

condiciones climáticas variables.

3) Desarrollo de modelos de aprendizaje adaptativo

El modelo actual opera sobre datos simulados y presenta un entrenamiento estático.

Para mejorar su adaptabilidad, se propone investigar enfoques de aprendizaje

automático en línea (online learning), que permitan al sistema actualizar sus

parámetros de manera continua a medida que recopila nuevos datos. Esto

incrementaría su capacidad de generalización y reduciría la necesidad de

reentrenamientos manuales, lo cual es especialmente valioso en sistemas

desplegados durante largos períodos o en entornos altamente dinámicos.

4) Integración con pronósticos meteorológicos

La conexión del sistema con servicios de pronóstico del clima, mediante APIs

abiertas o servicios especializados, podría enriquecer el proceso de toma de

decisiones. La combinación de datos sensoriales en tiempo real con predicciones

meteorológicas ofrecería una visión prospectiva del estado hídrico del suelo y

Capítulo 6. Conclusiones

179

permitiría anticipar necesidades de riego de forma más eficiente, evitando riegos

innecesarios o inadecuados.

5) Mejora de la interfaz de usuario y experiencia de uso

Si bien la interfaz actual permite la visualización y control básico del sistema, se

sugiere su rediseño bajo principios de experiencia de usuario (UX) para mejorar la

navegabilidad, accesibilidad e interacción. Asimismo, se recomienda el desarrollo

de una aplicación móvil multiplataforma con capacidades offline, que facilite el uso

por parte de agricultores con baja conectividad o limitado acceso a infraestructura

digital.

6) Expansión hacia arquitecturas multizona y multiusuario

La arquitectura del sistema es susceptible de ampliación para controlar múltiples

zonas de riego con condiciones y cultivos distintos. Explorar esta dirección permitiría

el desarrollo de soluciones escalables aplicables a fincas medianas o grandes.

Además, incorporar funcionalidades multiusuario (con distintos niveles de acceso y

control) facilitaría el uso en entornos colaborativos o empresariales.

7) Implementación de seguridad integral

En futuros desarrollos, se vuelve indispensable reforzar la seguridad del sistema

para su implementación en entornos reales. Esto incluye cifrado de datos (por

ejemplo, TLS en MQTT), autenticación robusta de dispositivos y usuarios, y

monitoreo de eventos de seguridad. Estos mecanismos garantizarán la integridad y

confidencialidad de los datos transmitidos y almacenados, reduciendo el riesgo de

vulnerabilidades.

8) Evaluación del impacto económico y ambiental

Una línea de investigación futura con enfoque interdisciplinario es la evaluación del

impacto económico y ambiental de la adopción del sistema. Estimar el ahorro de

agua, la reducción de costos de operación agrícola y los beneficios ambientales

podría aportar evidencia cuantitativa de su valor, facilitando su adopción por parte

de instituciones y políticas públicas orientadas a la agricultura sostenible.

Capítulo 6. Conclusiones

180

6.10. Recomendaciones Finales
Como cierre de esta investigación, se presentan una serie de recomendaciones

orientadas tanto a la mejora continua del sistema desarrollado como a su

implementación responsable en entornos agrícolas reales. Estas recomendaciones

recogen aprendizajes derivados del proceso de diseño, prueba y análisis del

sistema, y están dirigidas a investigadores, desarrolladores, técnicos agrícolas y

tomadores de decisiones interesados en tecnologías de agricultura inteligente.

Priorizar la validación con datos reales y en campo abierto

Si bien el modelo predictivo demostró alta precisión con datos simulados, su

aplicación en entornos reales requiere una fase de reentrenamiento y validación con

datos obtenidos en campo. Es recomendable iniciar campañas de recolección

sistemática de datos de humedad, temperatura, precipitaciones y otras variables en

distintos tipos de suelo, cultivos y regiones climáticas, para robustecer el modelo y

aumentar su capacidad de generalización.

Fortalecer la infraestructura de conectividad en zonas rurales

Para que la solución pueda ser adoptada ampliamente, es necesario garantizar la

conectividad de red en las zonas agrícolas donde se desea implementar. Se

recomienda explorar opciones de comunicación híbrida (Wi-Fi, redes móviles,

LoRaWAN, entre otras) que se adapten a las condiciones del terreno, así como

mecanismos de almacenamiento en caché en los nodos IoT ante interrupciones

temporales de red.

Adoptar buenas prácticas de seguridad desde el diseño

La seguridad debe integrarse de forma transversal en todo el sistema,

especialmente cuando se maneja información sensible o se actúa sobre

infraestructura física. Se recomienda implementar en versiones futuras:

 Cifrado TLS para el protocolo MQTT.

Capítulo 6. Conclusiones

181

 Autenticación segura de usuarios y dispositivos.

 Registros de auditoría y monitoreo de actividad del sistema.

Estas medidas son fundamentales para proteger el sistema ante accesos no

autorizados, sabotajes o vulnerabilidades.

Fomentar la capacitación técnica de los usuarios finales

Para asegurar el uso efectivo del sistema, es recomendable desarrollar materiales

educativos, guías técnicas y talleres dirigidos a los usuarios finales, especialmente

agricultores y técnicos rurales. Estos materiales deben cubrir aspectos como el

mantenimiento de sensores, interpretación de alertas y gestión de datos,

promoviendo la apropiación tecnológica desde una perspectiva práctica y accesible.

Promover la colaboración interdisciplinaria

El desarrollo y despliegue exitoso de sistemas agrícolas inteligentes requiere la

convergencia de múltiples disciplinas: ingeniería, agronomía, meteorología,

informática y economía. Se recomienda fomentar alianzas entre universidades,

centros de investigación, cooperativas agrícolas y organismos gubernamentales

para enriquecer el sistema con conocimiento contextual, garantizar su pertinencia y

facilitar su transferencia tecnológica.

Establecer mecanismos de monitoreo y mejora continua

Finalmente, es fundamental que cualquier implementación del sistema en un

entorno real esté acompañada de indicadores de desempeño técnico, impacto

económico, ahorro de recursos hídricos y nivel de adopción por parte de los

usuarios. Estos indicadores permitirán evaluar de forma continua la efectividad del

sistema y orientar decisiones sobre su mantenimiento, mejora o expansión.

Capítulo 7. Bibliografía

Capítulo 7. Bibliografía

183

7. Bibliografía
[1] O. S. Olivares, A. L. Burgos, J. S. Ramírez, and G. Bocco, “Valoración de la

seguridad hídrica con enfoque de cuenca hidrográfica: Aplicación en cuencas

rurales del Centro Occidente de México.,” Journal of Latin American

Geography, vol. 18, no. 2, pp. 88-88–119, 2019, doi: 10.1353/lag.2019.0035.

[2] P. Asghari, A. M. Rahmani, and H. H. S. Javadi, “Internet of Things

applications: A systematic review,” Computer Networks, vol. 148, pp. 241–261,

2019.

[3] Gobierno del Estado de Aguascalientes, “Plan de Desarrollo del Estado 2022-

2027,” 2023.

[4] Presidencia de la República, “Plan Nacional de Desarrollo 2025 - 2030,” Feb.

2025, [Online]. Available: https://www.gob.mx/presidencia/documentos/plan-

nacional-de-desarrollo-2025-2030-391771

[5] S. Khriji, D. El Houssaini, I. Kammoun, and O. Kanoun, “Precision Irrigation:

An IoT-Enabled Wireless Sensor Network for Smart Irrigation Systems,” in

Women in Precision Agriculture: Technological breakthroughs, Challenges

and Aspirations for a Prosperous and Sustainable Future, T. K. Hamrita, Ed.,

Cham: Springer International Publishing, 2021, pp. 107–129. doi:

10.1007/978-3-030-49244-1_6.

[6] F. M. Padilla, M. Farneselli, G. Gianquinto, F. Tei, and R. B. Thompson,

“Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen

management,” Agric Water Manag, vol. 241, p. 106356, 2020, doi:

https://doi.org/10.1016/j.agwat.2020.106356.

[7] R. Allan, L. Pereira, and M. Smith, Crop evapotranspiration-Guidelines for

computing crop water requirements-FAO Irrigation and drainage paper 56, vol.

56. 1998.

Capítulo 7. Bibliografía

184

[8] T. A. Howell, “Enhancing Water Use Efficiency in Irrigated Agriculture,” Agron

J, vol. 93, no. 2, pp. 281–289, 2001, doi:

https://doi.org/10.2134/agronj2001.932281x.

[9] S. Zhang, X. Wu, Z. You, and L. Zhang, “Leaf image based cucumber disease

recognition using sparse representation classification,” Comput Electron Agric,

vol. 134, pp. 135–141, Mar. 2017, doi: 10.1016/j.compag.2017.01.014.

[10] FAO, The State of Food and Agriculture 2024. Rome, Italy: FAO, 2024. doi:

10.4060/cd2616en.

[11] ITU-T, “ITU-T Rec. Y.2060 (06/2012) Overview of the Internet of things,” 2012.

[12] W. Tao, L. Zhao, G. Wang, and R. Liang, “Review of the internet of things

communication technologies in smart agriculture and challenges,” Oct. 2021,

Elsevier B.V. doi: 10.1016/j.compag.2021.106352.

[13] X. Ding and W. Du, “Optimizing Irrigation Efficiency using Deep Reinforcement

Learning in the Field,” 2023. [Online]. Available:

https://arxiv.org/abs/2304.01435

[14] R. A. Osman, “Optimizing IoT communication for enhanced data transmission

in smart farming ecosystems,” Expert Syst Appl, vol. 265, Mar. 2025, doi:

10.1016/j.eswa.2024.125879.

[15] J. Omara, E. Talavera, D. Otim, D. Turcza, E. Ofumbi, and G. Owomugisha,

“A field-based recommender system for crop disease detection using machine

learning,” Front Artif Intell, vol. 6, 2023, doi: 10.3389/FRAI.2023.1010804/PDF.

[16] R. Strong, J. T. Wynn, J. R. Lindner, and K. Palmer, “Evaluating Brazilian

Agriculturalists’ IoT Smart Agriculture Adoption Barriers: Understanding

Stakeholder Salience Prior to Launching an Innovation,” Sensors (Basel), vol.

22, no. 18, Sep. 2022, doi: 10.3390/S22186833.

[17] A. S. Albahri et al., “Based Multiple Heterogeneous Wearable Sensors: A

Smart Real-Time Health Monitoring Structured for Hospitals Distributor,” IEEE

Access, vol. 7, pp. 37269–37323, 2019, doi: 10.1109/ACCESS.2019.2898214.

Capítulo 7. Bibliografía

185

[18] L. Gałęzewski et al., “Analysis of the need for soil moisture, salinity and

temperature sensing in agriculture: a case study in Poland,” Sci Rep, vol. 11,

no. 1, Dec. 2021, doi: 10.1038/S41598-021-96182-1.

[19] V. Aliabadi, S. Gholamrezai, and P. Ataei, “Rural people’s intention to adopt

sustainable water management by rainwater harvesting practices: application

of TPB and HBM models,” Water supply, vol. 20, no. 5, pp. 1847–1861, Aug.

2020, doi: 10.2166/WS.2020.094.

[20] S. J. Van De Meene, R. R. Brown, and M. A. Farrelly, “Capacity attributes of

future urban water management regimes: projections from Australian

sustainability practitioners.,” Water Sci Technol, vol. 61 9, no. 9, pp. 2241–50,

2010, doi: 10.2166/WST.2010.154.

[21] D. R. Marlow, D. J. Beale, and S. Burn, “A pathway to a more sustainable water

sector: sustainability-based asset management.,” Water Sci Technol, vol. 61

5, no. 5, pp. 1245–55, 2010, doi: 10.2166/WST.2010.043.

[22] R. I. McDonald et al., “Global Urban Growth and the Geography of Water

Availability, Quality, and Delivery,” Ambio, vol. 40, no. 5, pp. 437–446, Jun.

2011, doi: 10.1007/S13280-011-0152-6.

[23] G. Salmoral et al., “Water-related challenges in nexus governance for

sustainable development: Insights from the city of Arequipa, Peru.,” Sci Total

Environ, vol. 747, Dec. 2020, doi: 10.1016/J.SCITOTENV.2020.141114.

[24] S. A. Noorhosseini, M. S. Allahyari, C. A. Damalas, and S. S. Moghaddam,

“Public environmental awareness of water pollution from urban growth: The

case of Zarjub and Goharrud rivers in Rasht, Iran.,” Sci Total Environ, vol. 599–

600, pp. 2019–2025, Dec. 2017, doi: 10.1016/J.SCITOTENV.2017.05.128.

[25] K. S. Fielding, A. Spinks, S. Russell, R. McCrea, R. Stewart, and J. Gardner,

“An experimental test of voluntary strategies to promote urban water demand

management.,” J Environ Manage, vol. 114, pp. 343–51, Jan. 2013, doi:

10.1016/J.JENVMAN.2012.10.027.

Capítulo 7. Bibliografía

186

[26] S. Jayashree, M. N. H. Reza, C. A. N. Malarvizhi, and M. Mohiuddin, “Industry

4.0 implementation and Triple Bottom Line sustainability: An empirical study

on small and medium manufacturing firms,” Heliyon, vol. 7, no. 8, Aug. 2021,

doi: 10.1016/J.HELIYON.2021.E07753.

[27] R. Črešnar, V. Potočan, and Z. Nedelko, “Speeding Up the Implementation of

Industry 4.0 with Management Tools: Empirical Investigations in

Manufacturing Organizations,” Sensors (Basel), vol. 20, no. 12, pp. 1–25, Jun.

2020, doi: 10.3390/S20123469.

[28] P. Strickland and K. M. Williams, “The adoption of smart industry 4.0 app

technology and harnessing e-WOM in the wine industry caused by a global

pandemic: a case study of the Yarra Valley in Australia,” Journal of Hospitality

and Tourism Insights, 2022, doi: 10.1108/JHTI-05-2022-0175.

[29] S. Khin and D. M. H. Kee, “Factors influencing Industry 4.0 adoption,” Journal

of Manufacturing Technology Management, vol. 33, no. 3, pp. 448–467, Mar.

2022, doi: 10.1108/JMTM-03-2021-0111.

[30] S. Chatterjee, R. Chaudhari, and R. Shams, “Applications of Industry 4.0 for

Pandemic Responses and Business Continuity: A TOE-DCV Integrated

Approach,” IEEE Trans Eng Manag, 2023, doi: 10.1109/TEM.2023.3250587.

[31] T. Christie, “Django REST Framework,” https://www.django-rest-

framework.org/.

[32] Django Software Foundation, “Django Channels,”

https://channels.readthedocs.io/en/latest/.

[33] Redis, “Redis - The Real-time Data Platform,” https://redis.io/.

[34] A. Solem, “Celery - Distributed Task Queue,”

https://docs.celeryq.dev/en/stable/.

[35] E. You, “Vue.js,” https://vuejs.org/.

[36] Vuetify, “Vuetify — A Vue Component Framework,” https://vuetifyjs.com/en/.

Capítulo 7. Bibliografía

187

[37] ApexCharts, “ApexCharts.js - Open Source JavaScript Charts for your

website,” https://apexcharts.com/.

[38] E. San Martin Morote, “PiniaThe intuitive store for Vue.js,”

https://pinia.vuejs.org/.

[39] The Axios Project, “AXIOS,” https://axios-http.com/es/.

[40] Timescale Inc., “PostgreSQL ++ for time series and events | Timescale,”

https://www.timescale.com/.

[41] The PostgreSQL Global Development Group, “PostgreSQL,”

https://www.postgresql.org/.

[42] L. V. S. Kumar and T. S. L. V Ayyarao, “Real Time Environmental Monitoring

with Raspberry Pi 3B+ and MATLAB for Enhanced Worker Safety Through

IoT,” Sep. 26, 2024, IEEE. doi: 10.1109/ICPEEV63032.2024.10931895.

[43] R. Zwetsloot, “Raspberry Pi 4 specs and benchmarks — Raspberry Pi Official

Magazine,” https://magazine.raspberrypi.com/articles/raspberry-pi-4-specs-

benchmarks.

[44] R. Shaik, F. Syed, K. Ratnam, and C. Bhargavi, “IoT based automated

irrigation system using Raspberry Pi,” International Journal of Electrical

Engineering and Technology, vol. 11, no. 3, 2020.

[45] A. Dawod, D. Georgakopoulos, P. P. Jayaraman, and A. Nirmalathas, “A

Survey of Techniques for Discovering, Using, and Paying for Third-Party IoT

Sensors.,” Sensors (14248220), vol. 24, no. 8, p. 2539, Apr. 2024, doi:

10.3390/s24082539.

[46] P. Cihan, “IoT Technology in Smart Agriculture,” International Conference on

Recent Academic Studies, vol. 1, pp. 185–192, May 2023, doi:

10.59287/icras.693.

Capítulo 7. Bibliografía

188

[47] Edited by Andrew Banks, Ed Briggs, Ken Borgendale, and and Rahul Gupta,

“MQTT Version 5.0,” Mar. 2019. [Online]. Available: https://docs.oasis-

open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

[48] HiveMQ, “HiveMQ – The Most Trusted MQTT platform to Transform Your

Business,” https://www.hivemq.com/.

[49] Django Software Foundation, “Django documentation,”

https://docs.djangoproject.com/en/5.2/.

[50] A. Saif Uddin and A. Solem, “django-celery-beat - Database-backed Periodic

Tasks,” https://django-celery-beat.readthedocs.io/en/latest/.

[51] N. Liyanage, C. Attanayaka, T. Perera, D. Neilkumara, I. S. Bandara, and L.

Chandrasiri, “IoT-Based Smart Beehive Monitoring System,” Dec. 12, 2024,

IEEE. doi: 10.1109/ICAC64487.2024.10851052.

[52] M. Del-Coco, M. Leo, and P. Carcagnì, “Machine Learning for Smart Irrigation

in Agriculture: How Far along Are We?,” Information, vol. 15, no. 6, 2024, doi:

10.3390/info15060306.

[53] L. Umutoni and V. Samadi, “Application of machine learning approaches in

supporting irrigation decision making: A review,” Agric Water Manag, vol. 294,

p. 108710, 2024, doi: https://doi.org/10.1016/j.agwat.2024.108710.

[54] R. Togneri et al., “Soil moisture forecast for smart irrigation: The primetime for

machine learning,” Expert Syst Appl, vol. 207, p. 117653, 2022, doi:

https://doi.org/10.1016/j.eswa.2022.117653.

[55] Y. Wang, L. Shi, Y. Hu, X. Hu, W. Song, and L. Wang, “A comprehensive study

of deep learning for soil moisture prediction,” Hydrol Earth Syst Sci, vol. 28,

no. 4, pp. 917–943, 2024, doi: 10.5194/hess-28-917-2024.

[56] L. P. Challa, C. D. Singh, K. V. R. Rao, A. Subeesh, and M. Srilakshmi,

“Prediction of soil moisture using machine learning techniques: A case study

of an IoT-based irrigation system in a naturally ventilated polyhouse,” Irrigation

Capítulo 7. Bibliografía

189

and Drainage, vol. 73, no. 3, pp. 1138–1150, Jul. 2024, doi:

https://doi.org/10.1002/ird.2933.

[57] M. Taheri, M. Bigdeli, H. Imanian, and A. Mohammadian, “An Overview of

Machine-Learning Methods for Soil Moisture Estimation,” Water (Basel), vol.

17, no. 11, 2025, doi: 10.3390/w17111638.

[58] N. Ghadiri, B. Javadi, O. Obst, and S. Pfautsch, “Data Optimisation of Machine

Learning Models for Smart Irrigation in Urban Parks,” in 2024 International

Conference on Ubiquitous Computing and Communications (IUCC), IEEE,

Dec. 2024, pp. 70–77. doi: 10.1109/iucc65928.2024.00012.

[59] scikit-learn, “Cross-validation: evaluating estimator performance,”

https://scikit-

learn.org/stable/modules/cross_validation.html?utm_source=chatgpt.com.

[60] M. Bhagat and B. Bakariya, “A Comprehensive Review of Cross-Validation

Techniques in Machine Learning,” Jan. 2025. doi:

10.71097/IJSAT.v16.i1.1305.

[61] X. Ding and W. Du, “Optimizing Irrigation Efficiency using Deep Reinforcement

Learning in the Field,” 2023. [Online]. Available:

https://arxiv.org/abs/2304.01435

[62] A. Vyas and S. Bandyopadhyay, “Dynamic Structure Learning through Graph

Neural Network for Forecasting Soil Moisture in Precision Agriculture,” 2022.

[Online]. Available: https://arxiv.org/abs/2012.03506

[63] Raspberry Pi Foundation, “Raspberry Pi Documentation,”

https://www.raspberrypi.com/documentation/.

[64] Python Software Foundation, “Paho MQTT Documentation.” [Online].

Available: https://www.eclipse.org/paho/

[65] I. Craggs, “Eclipse Paho | The Eclipse Foundation,” https://eclipse.dev/paho/.

[66] Lou. Hattersley, “The official Raspberry Pi handbook 2024,” p. 201, 2024.

Capítulo 7. Bibliografía

190

[67] Y. G. Kusuma, S. Parvathi, Y. Sirisha, and Ch. Lasya, “Gas Detection and

Environmental Monitoring Using Raspberry Pi Pico,” Jun. 21, 2024, IEEE. doi:

10.1109/SCES61914.2024.10652582.

Capítulo 9. Anexos

Capítulo 9. Anexos

192

8. Anexos

Anexo A. Configuraciones de hardware y software

A.1 Instalación del sistema operativo y entorno de
desarrollo

Instalación del Sistema Operativo y Actualización

Se recomienda utilizar Raspberry Pi OS (64-bit). Si aún no está instalado, se puede

descargar desde la página oficial de Raspberry Pi y flashear en una tarjeta microSD

utilizando Raspberry Pi Imager o balenaEtcher.

Actualizar el sistema operativo para garantizar que los paquetes están actualizados:

sudo apt update && sudo apt upgrade -y [63]

Instalación de Python y Configuración del Entorno Virtual

Python 3 viene preinstalado en Raspberry Pi OS, pero es recomendable asegurarse

de que se tenga la versión más reciente e instalar las bibliotecas necesarias.

Instalar Python y pip:

sudo apt install python3 python3-pip -y

Crear y activar un entorno virtual para aislar las dependencias:

python3 -m venv .venv

source .venv/bin/activate [63]

Instalación de Bibliotecas Necesarias

Instalar las bibliotecas específicas utilizadas en este proyecto:

Capítulo 9. Anexos

193

pip install Adafruit-Blinka adafruit-circuitpython-ads1x15 adafruit-

circuitpython-bh1750 \

adafruit-circuitpython-busdevice adafruit-circuitpython-connectionmanager

adafruit-circuitpython-dht \

adafruit-circuitpython-register adafruit-circuitpython-requests adafruit-

circuitpython-scd4x \

adafruit-circuitpython-typing adafruit-io Adafruit-PlatformDetect

Adafruit-PureIO binho-host-adapter \

certifi charset-normalizer click idna paho-mqtt pyftdi pyserial python-

dotenv pyusb requests RPi.GPIO \

rpi_ws281x smbus2 sysv_ipc typing_extensions urllib3 w1thermsensor

Configuración de Buses I²C Adicionales

En este proyecto, se han creado dos buses I²C adicionales para manejar los tres

sensores I²C utilizados. Para configurarlos, se debe modificar el archivo de

configuración:

sudo nano /boot/firmware/config.txt

Agregar las siguientes líneas al final del archivo:

dtoverlay=i2c-gpio,bus=3,i2c_gpio_sda=23,i2c_gpio_scl=24

dtoverlay=i2c-gpio,bus=4,i2c_gpio_sda=27,i2c_gpio_scl=22

Guardar los cambios y reiniciar la Raspberry Pi:

sudo reboot

Para verificar los buses creados:

ls /dev/i2c-*

Debe mostrar algo como:

Capítulo 9. Anexos

194

/dev/i2c-1 /dev/i2c-3 /dev/i2c-4 [44]

A.2 Verificación de sensores y configuración MQTT

Habilitación de Interfaces de Hardware

Para permitir la comunicación con los sensores, se deben habilitar las interfaces

necesarias:

sudo raspi-config

Dentro del menú de configuración, habilitar en Interfacing Options:

 I²C (para sensores BH1750, SCD41 y ADS1115)

 1-Wire (para el sensor DS18B20)

 SPI (si se requiere en futuras expansiones)

Después de realizar los cambios, reiniciar la Raspberry Pi:

sudo reboot [63]

Verificación de la Comunicación con los Sensores

Después de configurar los buses, se deben detectar los sensores conectados

ejecutando:

sudo i2cdetect -y 3

sudo i2cdetect -y 4

Esto listará las direcciones de los sensores conectados en cada bus [63].

Configuración del Cliente MQTT

Capítulo 9. Anexos

195

El sistema usa el protocolo MQTT para enviar y recibir datos de sensores y órdenes

para la bomba de agua. Se debe instalar la librería paho-mqtt y verificar la conexión

con el broker de HiveMQ.

Ejemplo de código para probar la conexión con HiveMQ:

Código 21. Ejemplo de código para probar la conexión con HiveMQ.

Si el mensaje "Conexión exitosa al broker MQTT" aparece en la terminal, la

configuración ha sido correcta.

Con esta configuración, la Raspberry Pi está lista para la adquisición de datos desde

los sensores, el control de la bomba de agua y la transmisión de información

mediante MQTT [64], [65].

A.3. Esquema de Conexión de Sensores y Actuadores
Conexión del DHT22 (Humedad y temperatura ambiental)

Capítulo 9. Anexos

196

 Alimentación: 3.3V o 5V

 Comunicación: Digital (protocolo de un solo cable)

 Pines de conexión:

- VCC → 3.3V o 5V de la Raspberry Pi

- GND → GND de la Raspberry Pi

- DATA → GPIO 4 (con resistencia pull-up de 10kΩ)

Diagrama 6. Conexión del sensor DHT22 con la Raspberry Pi.

Conexión del DS18B20 (Temperatura del suelo)

 Alimentación: 3.3V o 5V

 Comunicación: 1-Wire

 Pines de conexión:

Capítulo 9. Anexos

197

- VCC → 3.3V de la Raspberry Pi

- GND → GND de la Raspberry Pi

- DATA → GPIO 4 (compartido con el DHT22, requiere resistencia pull-

up de 4.7kΩ)

Diagrama 7. Conexión del sensor DS18B20 con la Raspberry Pi.

Conexión del BH1750 (Intensidad de luz ambiental) en el Bus I²C 3

 Alimentación: 3.3V o 5V

 Comunicación: I²C

 Pines de conexión:

- VCC → 3.3V de la Raspberry Pi

- GND → GND de la Raspberry Pi

Capítulo 9. Anexos

198

- SDA → GPIO 23 (SDA bus 3)

- SCL → GPIO 24 (SCL bus 3)

Diagrama 8. Conexión del sensor BH1750 con la Raspberry Pi.

Conexión del SCD41 (Sensor de CO₂) en el Bus I²C 4

 Alimentación: 3.3V o 5V

 Comunicación: I²C

 Pines de conexión:

o VCC → 3.3V de la Raspberry Pi

o GND → GND de la Raspberry Pi

o SDA → GPIO 27 (SDA bus 4)

Capítulo 9. Anexos

199

o SCL → GPIO 22 (SCL bus 4)

Diagrama 9. Conexión del sensor SCD41 con la Raspberry Pi.

Conexión del LM393 (Sensor de humedad del suelo con ADC ADS1115) en el
Bus I²C 3

Dado que la Raspberry Pi no cuenta con entradas analógicas, se utiliza el

convertidor ADC ADS1115 para leer la salida analógica del sensor LM393.

 Alimentación: 3.3V o 5V

 Conversión ADC: ADS1115 (16 bits)

 Conexión del LM393 al ADS1115:

o VCC → 3.3V de la Raspberry Pi

o GND → GND de la Raspberry Pi

o A0 (Salida Analógica) → A0 del ADS1115

Capítulo 9. Anexos

200

 Conexión del ADS1115 a la Raspberry Pi:

o VCC → 3.3V de la Raspberry Pi

o GND → GND de la Raspberry Pi

o SDA → GPIO 23 (SDA bus 3)

o SCL → GPIO 24 (SCL bus 3)

Diagrama 10. Conexión del LM393 con el ADS1115 y la Raspberry Pi.

Esta configuración de hardware permite que el sistema IoT maneje múltiples

sensores sin conflictos de dirección en el bus I²C, garantizando una comunicación

eficiente y estable con la Raspberry Pi [66].

Esquema de Conexión de la Bomba de Agua

La bomba de agua es el único actuador del sistema de riego inteligente basado en

IoT y es controlada mediante un módulo relé conectado a la Raspberry Pi. La

Capítulo 9. Anexos

201

activación de la bomba se basa en los valores obtenidos del sensor de humedad

del suelo (LM393), permitiendo una gestión eficiente del riego.

Componentes Utilizados

 Bomba de agua.

 Módulo relé de 1 canal.

 Fuente de alimentación de la bomba.

 Raspberry Pi 4 Model B.

Conexión del Módulo Relé con la Raspberry Pi

El módulo relé actúa como un interruptor controlado digitalmente por la Raspberry

Pi para encender o apagar la bomba de agua. La conexión se realiza de la siguiente

manera:

 VCC → 5V de la Raspberry Pi

 GND → GND de la Raspberry Pi

 IN → GPIO 17 (puede cambiarse según necesidad)

Cuando la Raspberry Pi envía un nivel lógico bajo al pin IN, el relé se activa y permite

el paso de corriente hacia la bomba de agua.

Conexión de la Bomba de Agua al Relé

La bomba de agua opera con una fuente de alimentación externa (3v – 6V), y su

circuito de control se establece a través del relé.

1. Conexión en el lado de control del relé:

 Un terminal de la fuente de alimentación se conecta a COM (común)

del relé.

Capítulo 9. Anexos

202

 El otro terminal de la fuente de alimentación se conecta directamente

a la bomba de agua.

 El pin NO (normalmente abierto) del relé se conecta al otro terminal

de la bomba.

2. Flujo de operación:

 Cuando el relé está inactivo, el circuito de la bomba está abierto y no

fluye corriente.

 Cuando el relé es activado por la Raspberry Pi, el circuito se cierra y

la bomba comienza a funcionar.

Diagrama 11. Conexión eléctrica de la bomba de agua con el relé y la Raspberry Pi.

Esta configuración garantiza un control preciso del riego, asegurando que el agua

se distribuya solo cuando el nivel de humedad del suelo lo requiera [44].

Capítulo 9. Anexos

203

A.4. Lectura de sensores
Código de Captura de Datos de Sensores

El sistema de riego inteligente recopila información de múltiples sensores

ambientales y del suelo, utilizando scripts individuales en Python para cada sensor.

Estos scripts son gestionados desde el script principal mqtt_client.py, el cual

importa y ejecuta las funciones de cada sensor.

Estructura del Código

El código se organiza de la siguiente manera:

Código 22. Estructura de carpetas de scripts de sensores.

Cada script de sensor define una función para leer los datos y retornarlos al cliente

MQTT para su publicación.

Código de Lectura del Sensor DHT22 (Temperatura y Humedad)

Capítulo 9. Anexos

204

Código 23. Código de Lectura del Sensor DHT22.

Código de Lectura del Sensor DS18B20 (Temperatura del Suelo)

Código 24. Código de Lectura del Sensor DS18B20.

Código de Lectura del Sensor BH1750 (Intensidad de Luz)

Capítulo 9. Anexos

205

Código 25. Código de Lectura del Sensor BH1750 (parte 1).

Capítulo 9. Anexos

206

Código 26. Código de Lectura del Sensor BH1750 (parte 2).

Código 27. Código de Lectura del Sensor BH1750 (parte 3).

Capítulo 9. Anexos

207

Código de Lectura del Sensor SCD41 (CO₂)

Código 28. Código de Lectura del Sensor SCD41 (parte 1).

Código 29. Código de Lectura del Sensor SCD41 (parte 2).

Capítulo 9. Anexos

208

Código 30. Código de Lectura del Sensor SCD41 (parte 3).

Código de Lectura del Sensor de Humedad del Suelo LM393 con ADS1115

Código 31. Lectura del Sensor de Humedad del Suelo LM393 con ADS1115 (parte 1).

Capítulo 9. Anexos

209

Código 32. Lectura del Sensor de Humedad del Suelo LM393 con ADS1115 (parte 2).

Con esta arquitectura modular, cada sensor tiene su propio script, lo que facilita la

escalabilidad y mantenimiento del sistema IoT. Scripts en Python para la lectura de

los sensores y procesamiento de los datos obtenidos.

A.5 Control de actuadores
Código de Control de la Bomba de Agua

El control de la bomba de agua en el sistema de riego inteligente se realiza a través

de un módulo relé conectado a la Raspberry Pi. La activación y desactivación de la

bomba dependen de los valores obtenidos por el sensor de humedad del suelo

LM393 con ADS1115.

Estructura del Código

El código sigue la misma estructura modular utilizada en los sensores y se

encuentra organizado de la siguiente manera:

Capítulo 9. Anexos

210

Código 33. Estructura de carpetas de scripts de actuadores.

Código de Control de la Bomba de Agua (relay_bomba.py)

Código 34. Código de Control de la Bomba de Agua.

Capítulo 9. Anexos

211

Este código garantiza que la bomba de agua se active solo cuando sea necesario,

optimizando el uso del recurso hídrico en el sistema de riego inteligente basado en

IoT.

A.6 Implementación del cliente MQTT
Código de Comunicación MQTT

La comunicación en el sistema de riego inteligente se realiza utilizando el protocolo

MQTT, un estándar ampliamente utilizado en IoT debido a su eficiencia y bajo

consumo de ancho de banda. Este protocolo permite que la Raspberry Pi envíe

datos de los sensores y reciba comandos para la activación y desactivación de la

bomba de agua a través del broker de HiveMQ [47].

Estructura de Comunicación MQTT

El sistema sigue una arquitectura publicador-suscriptor, donde la Raspberry Pi actúa

como:

 Publicador: Enviando datos de sensores a tópicos específicos en el broker.

 Suscriptor: Recibiendo comandos para activar o desactivar la bomba de agua

[47].

Los tópicos utilizados en este sistema son:

 iot/sensores → Publica los valores de temperatura, humedad, luz, CO₂ y

humedad del suelo.

 iot/control → Recibe comandos (ON u OFF) para el control de la bomba

de agua.

Instalación de la Biblioteca MQTT

Capítulo 9. Anexos

212

Para habilitar la comunicación MQTT en Python, es necesario instalar la biblioteca

paho-mqtt si no está instalada previamente:

pip install paho-mqtt

Código de Cliente MQTT en mqtt_client.py

El siguiente código implementa un cliente MQTT en la Raspberry Pi para gestionar

la comunicación con HiveMQ:

Capítulo 9. Anexos

213

Código 35. Cliente MQTT en mqtt_client.py (parte 1).

Capítulo 9. Anexos

214

Código 36. Cliente MQTT en mqtt_client.py (parte 2).

Capítulo 9. Anexos

215

Código 37. Cliente MQTT en mqtt_client.py (parte 3).

Capítulo 9. Anexos

216

Código 38. Cliente MQTT en mqtt_client.py (parte 4).

Explicación del Código

1. Conexión al broker MQTT: Se establece la conexión con HiveMQ y se

suscribe al tópico iot/control para recibir comandos.

2. Recepción de mensajes: La función on_message procesa los mensajes

recibidos y activa o desactiva la bomba según el comando.

3. Publicación de datos: Cada 10 segundos, la Raspberry Pi recopila los valores

de los sensores y los envía al tópico iot/sensores.

Capítulo 9. Anexos

217

Este código asegura una comunicación eficiente entre la Raspberry Pi y el broker

MQTT de HiveMQ, permitiendo la monitorización en tiempo real del sistema de riego

inteligente.

Publicación de Datos de Sensores

La Raspberry Pi adquiere información de los sensores y la envía al broker MQTT en

un formato estructurado. La publicación de estos datos se realiza en el tópico:

iot/sensores

Cada sensor genera datos que se publican periódicamente en el broker para su

monitoreo en tiempo real. Ejemplo de publicación de datos:

Código 39. Ejemplo de Publicación de Datos de Sensores.

Capítulo 9. Anexos

218

Recepción de Comandos para la Bomba de Agua

La Raspberry Pi se suscribe al tópico:

iot/control

En este tópico se reciben comandos para la activación (ON) o desactivación (OFF)

de la bomba de agua. El siguiente código muestra cómo se suscribe y gestiona los

mensajes recibidos:

Código 40. Recepción de Comandos para la Bomba de Agua.

Flujo de Comunicación

Capítulo 9. Anexos

219

1. Adquisición de Datos: Los sensores miden temperatura, humedad, luz, CO₂

y humedad del suelo.

2. Publicación de Datos: La Raspberry Pi publica estos valores en

iot/sensores.

3. Recepción de Comandos: Si un usuario o sistema externo publica ON u OFF

en iot/control, la Raspberry Pi procesa la orden y activa/desactiva la

bomba.

Capítulo 9. Anexos

220

Anexo B. Implementación del backend y frontend web

B.1 Configuración del backend
Instalación y Configuración de Celery

Para usar Celery, primero es necesario instalar la librería y configurar el backend de

tareas y el scheduler (programador de tareas). En este caso, utilizaremos Redis

como el broker de Celery, que es el intermediario encargado de gestionar las colas

de tareas.

Instalación de Celery y Redis:

Primero, instalamos Celery y Celery Beat (para programación de tareas periódicas)

junto con Redis como backend:

pip install celery

pip install celery[redis]

Configuración en settings.py:

En el archivo settings.py de Django, se configura el broker (Redis) y el backend de

Celery para que se comuniquen de manera eficiente.

Código 41. Configuración en settings.py.

Esto configura Redis como el broker para manejar las tareas de Celery y también

establece cómo se serializan los datos entre los componentes (en este caso, JSON)

[34].

Capítulo 9. Anexos

221

Configuración del Cliente MQTT en Django

El backend se conecta al bróker HiveMQ utilizando un cliente MQTT. Para ello, se

puede utilizar la librería paho-mqtt, que es una de las bibliotecas más utilizadas para

trabajar con MQTT en Python.

A continuación, se muestra cómo configurar el cliente MQTT en el backend de

Django para conectarse a HiveMQ, suscribirse a un tema y recibir los mensajes.

Código 42. Código de Conexión MQTT en Django.

Explicación del código:

1. Conexión al bróker: El cliente MQTT se conecta al bróker HiveMQ utilizando

las credenciales y el host configurado en los ajustes de Django.

Capítulo 9. Anexos

222

2. Suscripción a los temas: Una vez conectado, el cliente se suscribe al tema

iot/sensores, lo que le permite recibir todos los mensajes publicados en los

temas relacionados con los sensores.

3. Recepción de mensajes: Cuando el cliente recibe un mensaje, el callback

on_message es ejecutado. Los datos del mensaje (que generalmente estarán

en formato JSON o texto) se procesan y se almacenan en la base de datos.

4. Procesamiento de los datos: Los datos del sensor se procesan en la función

process_sensor_data, donde los mensajes recibidos se convierten a un

formato adecuado para ser almacenados en la base de datos [64].

Manejo de Conexiones y Reconexión Automática

Una de las características más importantes del protocolo MQTT es su capacidad de

manejar conexiones inestables o intermitentes, lo que es especialmente útil en

entornos como un cultivo, donde las conexiones pueden ser inestables. paho-mqtt

soporta la reconexión automática en caso de que el cliente pierda la conexión con

el bróker.

Código 43. Manejo de Reconexión Automática.

Explicación:

 En caso de desconexión inesperada, el cliente intentará reconectarse

automáticamente, asegurando que el backend reciba los datos de los

sensores de manera continua [64].

Capítulo 9. Anexos

223

Manejo de Errores en la Comunicación MQTT y WebSocket

Es importante implementar un manejo robusto de errores para asegurar la

estabilidad del sistema, ya que tanto en la comunicación MQTT (para recibir datos

de los sensores) como en los WebSockets (para la comunicación en tiempo real con

el frontend), pueden ocurrir problemas de conexión, pérdida de mensajes o errores

en la transmisión de datos.

Errores en MQTT:

La comunicación mediante MQTT puede fallar por diversas razones, como la

desconexión de la red o problemas con el bróker (HiveMQ). Para manejar estos

errores, es necesario configurar un sistema de reconexión automática y registrar los

errores para poder analizarlos.

1. Reconexión automática: Cuando la conexión con el bróker se pierde, el

cliente MQTT debe intentar reconectarse automáticamente.

2. Manejo de excepciones: Los errores en la recepción de mensajes deben ser

capturados y gestionados adecuadamente [64].

Código 44. Ejemplo de código para reconexión automática en MQTT.

Errores en WebSocket (Django Channels):

La comunicación en tiempo real mediante WebSockets también puede enfrentar

errores debido a desconexiones inesperadas o problemas con los datos recibidos.

Es crucial manejar estos errores para evitar que la aplicación se detenga.

Capítulo 9. Anexos

224

1. Reconexión automática: Si se pierde la conexión WebSocket, el cliente debe

intentar reconectarse.

2. Manejo de excepciones: Cuando se reciben datos que no son válidos o

cuando hay un error en el procesamiento de los mensajes, este debe ser

capturado y manejado adecuadamente [32].

Código 45. Ejemplo de código para manejar errores en Django Channels.

Validaciones de los Datos de los Sensores y las Configuraciones de los
Dispositivos

Las validaciones son fundamentales para asegurar que los datos recibidos de los

sensores sean correctos y que las configuraciones del sistema sean adecuadas. De

Capítulo 9. Anexos

225

lo contrario, el sistema podría tomar decisiones incorrectas, como activar la bomba

de agua en condiciones inadecuadas.

Validación de Datos de los Sensores:

Los datos de los sensores, como la temperatura o la humedad del suelo, deben

estar dentro de rangos predefinidos. Se debe verificar que los datos sean

consistentes y correctos [67].

Código 46. Ejemplo de validación de datos de sensores.

Validación de Configuraciones de Dispositivos:

Las configuraciones de los sensores, como los umbrales de activación de la bomba

de agua, deben ser validadas para asegurar que estén dentro de valores

razonables.

Código 47. Ejemplo de validación de configuraciones de dispositivos.

Estas validaciones permiten que el sistema funcione de manera robusta,

asegurando que solo se ejecuten acciones válidas y que los datos sean confiables

[42].

Capítulo 9. Anexos

226

B.2 Tareas automatizadas
Definición de Tareas Periódicas con Celery Beat

Una de las características de Celery Beat es que permite programar tareas que se

ejecutan de manera periódica. En el contexto de este sistema, podemos tener tareas

como la recolección periódica de datos de los sensores o la activación de

dispositivos (como la bomba de agua).

Definición de una tarea periódica:

Supongamos que queremos que el sistema recoja los datos de los sensores cada

10 minutos. Para ello, definimos una tarea en Celery que será ejecutada

periódicamente.

Código 48. Ejemplo de tarea Celery para la recolección de datos.

Esta tarea fetch_sensor_data se encarga de obtener los datos de los sensores (a

través de una función externa get_sensor_data) y almacenarlos en la base de datos.

Programación de la tarea con Celery Beat:

Para que esta tarea se ejecute cada 10 minutos, la configuramos en Celery Beat. A

continuación, se muestra cómo hacerlo:

Capítulo 9. Anexos

227

Código 49. Programación de una tarea con Celery Beat.

La línea crontab(minute='*/10') indica que la tarea se debe ejecutar cada 10

minutos [50].

Ejecución de Tareas Periódicas

Cuando se ejecuta el servidor de Celery con Celery Beat, el programador manejará

las tareas periódicas automáticamente. Aquí hay una forma básica de ejecutar

Celery y Celery Beat:

Ejecutando Celery con Celery Beat:

celery -A myproject worker --loglevel=info

celery -A myproject beat --loglevel=info

El comando worker se encarga de ejecutar las tareas, y beat gestiona la

programación de las tareas periódicas [50].

Monitoreo y Gestión de Tareas

Es importante monitorear y gestionar las tareas que se ejecutan en segundo plano.

Celery ofrece herramientas de monitoreo que permiten ver qué tareas se están

ejecutando, si alguna ha fallado o si hay tareas pendientes. Además, se pueden

configurar tareas de forma que se puedan ejecutar de manera más eficiente en

entornos de producción.

Capítulo 9. Anexos

228

Ejemplo de monitoreo de tareas:

Celery permite ver el estado de las tareas ejecutadas utilizando herramientas de

monitoreo, como Flower, una herramienta de monitoreo en tiempo real para Celery.

pip install flower

celery -A myproject flower

Esto abrirá una interfaz web para monitorear las tareas de Celery en tiempo real

[34].

Manejo de Errores en Tareas Periódicas

Como las tareas de Celery se ejecutan en segundo plano, es crucial gestionar los

errores que puedan ocurrir durante la ejecución. Algunos mecanismos de manejo

de errores incluyen:

 Reintentos automáticos: Si una tarea falla, Celery puede configurarse para

reintentarla automáticamente después de un cierto periodo.

 Notificación de errores: Se pueden configurar alertas para notificar a los

administradores si una tarea crítica falla.

Código 50. Ejemplo de reintentos automáticos en Celery.

En este caso, Celery intentará ejecutar la tarea hasta 3 veces si ocurre un error [34].

Capítulo 9. Anexos

229

B.3 API y comunicación en tiempo real
Implementación de WebSocket en Django Channels

Django Channels proporciona una manera sencilla de gestionar WebSockets

mediante el uso de consumers. Un consumer es responsable de recibir las

conexiones WebSocket y enviar/recibir mensajes entre el cliente y el servidor.

Configuración del WebSocket Consumer en Django

A continuación, se muestra cómo crear un consumer en Django Channels para

manejar las conexiones WebSocket, recibir mensajes y enviar actualizaciones a los

clientes.

1. Instalación de Django Channels:

Primero, es necesario instalar Django Channels si aún no se ha hecho:

pip install channels

2. Configuración del consumidor WebSocket:

Capítulo 9. Anexos

230

Código 51. Configuración del consumidor WebSocket.

Explicación:

 connect: Establece la conexión WebSocket y la añade a un grupo de canales

(en este caso, "sensor_data").

 disconnect: Cuando el cliente se desconecta, se elimina del grupo de

canales.

Capítulo 9. Anexos

231

 receive: Recibe los mensajes del cliente WebSocket (en este caso, los datos

de los sensores), y los transmite de vuelta al cliente a través de

send_sensor_data.

 send_sensor_data: Este método es utilizado para enviar datos al cliente. El

backend puede llamar a este método para enviar actualizaciones al frontend

en tiempo real [32].

Configuración de Channels Layer (Canal de Comunicación)

Django Channels utiliza un channel layer para gestionar la comunicación entre los

consumidores y distribuir los mensajes a través de grupos. Para configurarlo,

utilizamos Redis como un backend para el channel layer.

Instalación de Redis:

Para instalar Redis, ejecutamos el siguiente comando:

pip install channels_redis

Configuración en settings.py:

Código 52. Configuración en settings.py.

Con esta configuración, Django Channels utilizará Redis como backend para

gestionar las conexiones y las tareas asíncronas [32].

Envío de Datos de los Sensores en Tiempo Real

Capítulo 9. Anexos

232

Una vez que el backend recibe los datos de los sensores (por ejemplo, a través de

MQTT como se mostró en la sección anterior), puede enviar estos datos en tiempo

real al frontend a través de WebSockets.

Ejemplo de cómo enviar los datos de sensores al frontend:

Código 53. Ejemplo de cómo enviar los datos de sensores al frontend.

En este ejemplo, el backend consulta la base de datos para obtener los datos más

recientes de los sensores y los envía al frontend a través de la conexión WebSocket

en tiempo real [32].

Creación de Tablas en TimescaleDB

A continuación, se describe cómo crear las tablas en TimescaleDB, basadas en el

modelo de datos proporcionado:

Capítulo 9. Anexos

233

Código 54. Creación de Tablas en TimescaleDB.

Explicación:

 sensors_sensor_type almacena los tipos de sensores, como temperatura,

humedad, etc., con la unidad correspondiente.

 sensors_sensor almacena los sensores individuales, con información como

su nombre, ubicación, valores mínimos y máximos, y su tipo (relacionado con

la tabla sensors_sensor_type).

 sensors_sensordata almacena las mediciones de los sensores, incluyendo

la marca de tiempo y el valor medido.

Capítulo 9. Anexos

234

 sensors_notification almacena las notificaciones generadas por los

sensores (por ejemplo, cuando los valores de los sensores superan ciertos

umbrales) [40].

Creación de Hypertable para Datos de Sensores

Para aprovechar las capacidades de TimescaleDB y optimizar la consulta de series

temporales, convertimos la tabla sensors_sensordata en una hypertable. Las

hypertables permiten que los datos se particionen automáticamente en función del

tiempo, lo que mejora el rendimiento de las consultas sobre grandes volúmenes de

datos.

Código 55. Código SQL para convertir sensors_sensordata en una hypertable.

Esto convierte la tabla sensors_sensordata en una hypertable, lo que permite

manejar de manera eficiente grandes cantidades de datos que se generan con

frecuencia [40].

Inserción y Consulta de Datos

Ahora que las tablas están configuradas, podemos insertar y consultar los datos de

manera eficiente. A continuación, se muestran ejemplos de cómo insertar datos en

la base de datos y cómo realizar consultas sobre los datos almacenados.

Inserción de Datos:

Capítulo 9. Anexos

235

Código 56. Ejemplo de inserción de datos.

Consultas de Datos:

1. Obtener los últimos 10 registros de datos de sensores:

Código 57. Consulta SQL para obtener los últimos registros de datos sensados.

2. Obtener el promedio de las mediciones de un sensor en los últimos 30

minutos:

Código 58. Cálculo del promedio de lecturas de un sensor en los últimos 30 minutos.

Escalabilidad y Gestión del Almacenamiento

TimescaleDB permite gestionar grandes volúmenes de datos de manera eficiente,

y proporciona herramientas para implementar políticas de retención de datos. Esto

es útil para eliminar datos antiguos que ya no son relevantes, optimizando el

almacenamiento.

Política de Retención de Datos:

Capítulo 9. Anexos

236

Código 59. Configuración de la política de retención de datos.

Esto eliminará de forma automática los datos más antiguos de la tabla

sensors_sensordata, lo que ayuda a mantener el rendimiento de la base de datos a

medida que el volumen de datos crece [40].

	Portada
	Índice General
	Índice de Imágenes
	Índice de Diagramas
	Índice de Tablas
	Índice de Códigos
	Resumen
	Abstract
	1. Introducción
	1.1. Contexto
	1.2. Problema de Investigación
	1.3. Formulación de Objetivos
	1.3.1. Objetivo General
	1.3.2. Objetivos Específicos

	1.4. Justificación
	1.4.1. Pertinencia
	1.4.2. Valor Científico
	1.4.3. Valor Práctico

	1.5. Alcance y Limitaciones
	1.5.1. Alcance
	1.5.2. Limitaciones

	2. Marco Teórico
	2.1. Sistemas de Riego
	2.2. Internet de las Cosas (IoT)
	2.3. Fundamentos de IoT aplicados a la agricultura
	2.3.1. Conectividad y Monitoreo en Tiempo Real
	2.3.2. Automatización del Riego
	2.3.3. Agricultura de Precisión
	2.3.4. Sostenibilidad y Gestión de Recursos

	2.4. Gestión Sostenible del Agua
	2.4.1. Principios de la Gestión Sostenible del Agua
	2.4.2. Tecnologías y Prácticas para la Sostenibilidad Hídrica
	2.4.3. Impacto en la Agricultura y el Medio Ambiente
	2.4.4. Desafíos y Oportunidades

	2.5. Impacto del Crecimiento Urbano
	2.5.1. Presión sobre los Recursos Hídricos
	2.5.2. Cambios en el Uso del Suelo
	2.5.3. Contaminación del Agua
	2.5.4. Estrategias de Mitigación

	2.6. Industria 4.0 y su Aplicación en la Agricultura
	2.6.1. Cultivos Protegidos: Innovación y Sostenibilidad
	2.6.2. Internet de las Cosas (IoT) en la Agricultura
	2.6.3. Justificación del Uso de IoT en Cultivos Protegidos

	3. Metodología
	3.1. Fase 1: Análisis del problema y definición de requerimientos
	3.2. Fase 2: Diseño del Sistema
	3.2.1. Diseño de Software

	3.3. Fase 3: Implementación
	3.3.1. Desarrollo de Software
	3.3.2. Integración con Hardware
	3.3.3. Descripción de Sensores y Controlador
	3.3.3.1. Controlador Central: Raspberry Pi
	3.3.3.2. Sensor de Humedad del Suelo: DHT22
	3.3.3.3. Sensor de Temperatura del Aire y del Suelo: DS18B20
	3.3.3.4. Sensor de Niveles de Luz: BH1750
	3.3.3.5. Sensor de Concentraciones de CO2: SCD30
	3.3.3.6. Integración y Monitoreo

	3.4. Fase 4: Validación en entorno de laboratorio
	3.5. Fase 5: Documentación del proceso

	4. Desarrollo e Implementación
	4.1. Desarrollo del Sistema SIRCA-IoT
	4.1.1. Arquitectura General del Sistema
	4.1.1.1. Estructura de la Arquitectura Distribuida
	4.1.1.2. Comunicación y Flujo de Datos
	4.1.1.3. Principios de Diseño

	4.1.2. Subsistema IoT: Adquisición y Transmisión de Datos
	4.1.2.1. Controlador Central
	4.1.2.2. Sensores y Actuadores Implementados
	4.1.2.2.1. Sensores
	4.1.2.2.2. Actuadores

	4.1.2.3. Conectividad y Comunicación
	4.1.2.3.1. Protocolo MQTT
	4.1.2.3.2. Broker MQTT de HiveMQ
	4.1.2.3.3. Tópicos MQTT Utilizados en el Sistema
	4.1.2.3.4. Flujo de Datos y Procesamiento

	4.1.3. Subsistema Web: Backend y Frontend
	4.1.3.1. Backend del Sistema
	4.1.3.1.1. Stack Tecnológico
	4.1.3.1.2. Recepción de Datos desde HiveMQ
	4.1.3.1.3. Envío de Datos en Tiempo Real (WebSocket)
	4.1.3.1.4. Tareas Periódicas con Celery
	4.1.3.1.5. API REST para Configuración

	4.1.3.2. Estructura de la Base de Datos
	4.1.3.2.1. Modelo de Datos en TimescaleDB

	4.1.3.3. Frontend del Sistema
	4.1.3.3.1. Stack Tecnológico
	4.1.3.3.2. Arquitectura de la SPA

	4.1.3.4. Comunicación entre Backend y Frontend
	4.1.3.4.1. API REST con Axios
	4.1.3.4.2. WebSockets para Comunicación en Tiempo Real
	4.1.3.4.3. Integración entre WebSockets y API REST
	4.1.3.4.4. Componentes Principales

	4.1.3.5. Flujo de Datos Integrado
	4.1.3.5.1. Adquisición de Datos desde los Sensores
	4.1.3.5.2. Procesamiento y Almacenamiento de Datos
	4.1.3.5.3. Visualización en Tiempo Real (Frontend)
	4.1.3.5.4. Visualización de Datos Históricos (Frontend)
	4.1.3.5.5. Notificaciones y Alertas (Frontend)
	4.1.3.5.6. Resumen del Flujo de Datos

	4.1.3.6. Seguridad y Consideraciones Técnicas
	4.1.3.6.1. Seguridad
	4.1.3.6.2. Validaciones de Datos
	4.1.3.6.3. Control de Errores
	4.1.3.6.4. Rendimiento
	4.1.3.6.5. Escalabilidad

	4.1.4. Subsistema Predictivo
	4.1.4.1. Datos utilizados para el entrenamiento
	4.1.4.1.1. Características generales del conjunto de datos
	4.1.4.1.2. Justificación de las variables utilizadas
	4.1.4.1.3. Simulación de condiciones reales
	4.1.4.1.4. Ventajas del enfoque simulado
	4.1.4.1.5. Limitaciones

	4.1.4.2. Proceso de entrenamiento
	4.1.4.2.1. Herramientas utilizadas
	4.1.4.2.2. Preprocesamiento de los datos
	4.1.4.2.3. Selección del algoritmo
	4.1.4.2.4. Entrenamiento del modelo
	4.1.4.2.5. Validación cruzada
	4.1.4.2.6. Exportación del modelo

	4.1.4.3. Toma de decisiones basada en predicción
	4.1.4.3.1. Lógica de operación del sistema predictivo
	4.1.4.3.2. Estructura técnica de la integración
	4.1.4.3.3. Interfaz de usuario y experiencia
	4.1.4.3.4. Ventajas del enfoque predictivo
	4.1.4.3.5. Limitaciones actuales

	4.1.4.4. Limitaciones y perspectivas de mejora
	4.1.4.4.1. Limitaciones del modelo actual
	4.1.4.4.2. Perspectivas de mejora y líneas futuras de trabajo

	4.2. Implementación del Sistema SIRCA-IoT
	4.2.1. Integración del sistema
	4.2.1.1. Arquitectura general del sistema
	4.2.1.2. Flujo de funcionamiento del sistema
	4.2.1.3. Sincronización, control y monitoreo
	4.2.1.4. Modularidad y escalabilidad
	4.2.1.5. Seguridad y robustez del sistema

	5. Resultados
	5.1. Validación funcional del sistema
	5.1.1. Lectura y transmisión de datos sensoriales
	5.1.2. Estabilidad de comunicación y manejo de errores
	5.1.3. Visualización de datos en tiempo real
	5.1.4. Activación del sistema de riego
	5.1.5. Registro y trazabilidad de eventos

	5.2. Desempeño del modelo de Machine Learning
	5.2.1. Métricas de evaluación
	5.2.2. Resultados cuantitativos
	5.2.3. Evaluación cualitativa y funcional
	5.2.4. Robustez y limitaciones observadas
	5.2.5. Recomendaciones para mejora del modelo
	5.2.6. Impacto en la lógica del sistema

	5.3. Evaluación de rendimiento del SIRCA-IoT
	5.3.1. Tiempo de respuesta total del sistema
	5.3.2. Consumo y utilización de recursos computacionales
	5.3.3. Estabilidad y confiabilidad del sistema
	5.3.4. Capacidad de escalabilidad y adaptabilidad
	5.3.5. Consideraciones y recomendaciones

	5.4. Síntesis de resultados
	5.4.1. Integración funcional completa y operación sincronizada
	5.4.2. Precisión y utilidad del modelo predictivo
	5.4.3. Rendimiento, estabilidad y escalabilidad del sistema
	5.4.4. Limitaciones y áreas de oportunidad
	5.4.5. Contribuciones y perspectivas de impacto

	6. Conclusiones
	6.1. Cumplimiento de los objetivos propuestos
	6.2. Viabilidad técnica y operativa del sistema propuesto
	6.3. Desempeño y utilidad del modelo predictivo
	6.4. Aportes del sistema al sector agrícola
	6.5. Limitaciones del trabajo
	6.6. Escalabilidad y perspectivas de mejora
	6.7. Contribución académica y científica
	6.8. Reflexión final
	6.9. Trabajos Futuros
	6.10. Recomendaciones Finales

	7. Bibliografía
	8. Anexos
	Anexo A. Configuraciones de hardware y software
	A.1 Instalación del sistema operativo y entorno de desarrollo
	A.2 Verificación de sensores y configuración MQTT
	A.3. Esquema de Conexión de Sensores y Actuadores
	A.4. Lectura de sensores
	A.5 Control de actuadores
	A.6 Implementación del cliente MQTT

	Anexo B. Implementación del backend y frontend web
	B.1 Configuración del backend
	B.2 Tareas automatizadas
	B.3 API y comunicación en tiempo real

