UNIVERSIDAD AUTONOMA DE AGUASCALIENTES
CENTRO DE CIENCIAS BASICAS

TESIS

DESARROLLO E IMPLEMENTACION DE UN SISTEMA DE
RIEGO INTELIGENTE BASADO EN INTERNET DE LAS
COSAS PARA CULTIVOS PROTEGIDOS EN
AGUASCALIENTES, MEXICO

PRESENTA
Ing. William Alejandro Angulo Martinez

PARA OBTENER EL GRADO DE MAESTRIA EN CIENCIAS CON OPCIONES A
LA COMPUTACION, MATEMATICAS APLICADAS

TUTOR

Dr. Julio César Ponce Gallegos
ASESORES
Dr. Alejandro Padilla Diaz

Dr. Jaime Muiioz Arteaga

Aguascalientes, Ags, Noviembre de 2025

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

Autorizacion para la publicacion de Tesis

electronicas

Fecha 11/24/2025
1) Datos personales
Nombre William Alejandro Angulo Martinez
Direccién Prolongacion Libertad 1727 Int. 6 C.P. 20020
Ciudad Aguascalientes Estado Aguascalientes
Teléfono 5559076323 E-Mail williamangulomartinez@gmail.com
Grado Académico actual Licenciatura

currtigcar) [AfU [mfwlofafofelaf7fn]n]elnfr|Lfo]s]|

rrcizcar) [A[U[m]w]o]afofe]a]7]i]a]1]

Si Usted cuenta con un registro
ORCID, le pedimos atentamente lo

ORCID(16 car.) |0|0|0|9|'|0|0|0|0|'|7|3|7|0|'|0|6|4|7| proporcione.

2)Datos escolares

Centro Centro de Ciencias Basicas

Departamento Ciencias de la Computacién

Titulo al que opta Maestro en Ciencias de la Computacién

Nivel: Especialidad Maestria X Doctorado —
3) Tesis

Titulo de la Tesis DESARROLLO E IMPLEMENTACION DE UN SISTEMA DE RIEGO INTELIGENTE BASADO EN

INTERNET DE LAS COSAS PARA CULTIVOS PROTEGIDOS EN AGUASCALIENTES, MEXICO.

Temas/materias Ingenieria de Software

Nombre del Tutor Dr. Julio César Ponce Gallegos

Restricciones de Publicacion

Por medio de este conducto se autoriza al Departamento de Informacidn Bibliografica de la Universidad Auténoma de Aguascalientes la
publicacidn electrdnica de esta tesis

Si se autoriza X No se autoriza Se autoriza después de afos

4) Especificaciones para entrega de tesis en formato electrdonico

De acuerdo a la Normatividad: DO-SEE-IT-05 Manual para la elaboracion del Trabajo recepcional en los programas de posgrado: Tesis o
trabajo practico.

Integrar en un sélo archivo el trabajo completo en formato PDF.
El texto en formato digital debera ser identico al de la version impresa incluyendo la paginacion.

Los anexos que contengan archivos electrénicos como multimedia, software, programas autoejecutables o aplicaciones deberan ser
agregados en el disco.

Se entregara en un disco dptico no reescribible (CD+/-R o DVD+/-R), debera de ser cerrado, no estar protegido, etiquetado o rotulado y
debera contar con una caja con portada coincidente con los datos de la portada del trabajo. Excepto cuando, por alguna contingencia, la
Direccién General de Investigacidon y Posgrado, autorice a enviar solo el archivo electronico.

Método de entrega CD-ROM DVD Archivo electrénico| X

William Alejandro Angulo Martinez
Nombre y firma del Tesista

Elaborado por: Jefe de Seccion. Cadigo: AD-CR-FO-13
Revisado por: Jefe de DIB. Actualizacion: 04
Aprobado por: Jefe de DIB. Emision: 08/05/2020

Agradecimientos

Quiero expresar mi mas sincero agradecimiento a mi tutor Dr. Julio César Ponce Gallegos,
por su guia, compromiso y paciencia durante el desarrollo de este trabajo. Su orientacion
académica y su confianza en mis capacidades fueron fundamentales para alcanzar los
objetivos planteados.

A mis asesores Dr. Alejandro Padilla Diaz y Dr. Jaime Murfioz Arteaga, por compartir su
experiencia, por sus valiosas observaciones y por contribuir al crecimiento académico y
técnico de esta investigacion. Su acompanamiento constante hizo posible convertir una idea
en un proyecto tangible y significativo.

A mi familia, por su apoyo incondicional, por su comprension en los momentos de ausencia
v por motivarme siempre a dar lo mejor de mi. Cada palabra de aliento y cada gesto de
carino fueron el impulso que me permitio seguir adelante.

A quienes alguna vez compartieron conmigo suerios, retos o silencios, y que por distintos
motivos ya no estan presentes: gracias por su granito de arena.

A todos ellos, gracias por formar parte de este logro, que no solo representa el cierre de una
etapa académica, sino también el resultado del esfuerzo compartido y del apoyo de quienes
siempre creyeron en mi.

A mi esposa, mi comparniera de vida y de suenios.

Gracias por tu amor, por tu paciencia infinita y por creer en mi incluso en los momentos
mas dificiles. Tu apoyo constante, tus palabras de aliento y tu comprension fueron mi
mayor impulso para no rendirme. Esta meta es también tuya, porque sin ti este logro no
habria sido posible.

A mi madre, por ser mi ejemplo mas grande de esfuerzo, amor y perseverancia.

Por enseriarme desde pequerio el valor del trabajo honesto, la dedicacion y la fe en lo que
uno hace. Gracias por estar siempre, por tu carinio incondicional y por ser la raiz de todo
lo que soy.

Con todo mi amor y gratitud, dedico este trabajo a ustedes.

indice General

INDICE DE IMAGENESouimininincssissass 7
INDICE DE DIAGRAMAScuounimimciniss 8
INDICE DE TABLAS......cucinminininssess 9
INDICE DE CODIGOScucuuimininninsissns 10
RESUEBEIRNcccooooennmeocesssssossereosnassssssssssassesesss iNNNNEEIIIGEGG—G—_—_—c0vveeessreessss 12
ABSTHRERERIcccooveeeeiissssnerrernssssssssssssssensss iR, 13
1. INTRODUCCIONuuceirereirreenenenesesesesesssssssssesessssssssssssssssssssessssssssssssssasessssseses 15
1.1. BONTEXTO.........c...ooorerererererrerereerecrereserererererenstasnssasennsasssasssnsnessin. N 15
1.2. PROBLEMA DE INVESTIGACIONcooiviiiiiieeeeeeeeeeeeese e oanasnsannnee e 16
1.3. FORMULACION DE OBJETIVOSoviiiiiiiteieeeeeeeeeeeeeeeeeee e snaenssannn e 17
1.3.1. Objetivo GEReral....................cccoeecuuuiiiiiieiiiieiiiiiiee e e e e e e 17
1.3.2. ObJetivoS ESPECIICOSoooeeeeieiiiieeieeeeeeecieee e e e e e e e ee e e e e e aanaaeees 17

1.4 SRS TIFICACIONccltemeemccnnce. . Scconoenrocenoceree.. [N .. 18
Lo4 L. PEOFHIEICIA ..o ettt e e 19
1.4.2. VaAlOr CILONIICO ...t e e e e e e e e e 19
143 VAlOT PPACHICO ...ttt e 19

1.5. ALCANCE Y LIMITACIONES. ...ttt ettt eaesmnea e 20
1.5 TG CCcoooeeiiieiaeieee ettt e 20
1,520 LITUIBACIONES ...ttt e e e 22

2. MARCO TEORICOccoeeeeeenenirenerrnnnsesesescsesesssessssssssesesesesssesssssssssessassssssssess 25
2.1. SISTEMAS DE RIEGOcooiiiiiiiniiieeiieeeiie ettt ettt snaeenees 26
2.2. INTERNET DE LAS COSAS (IOT) woiioiiieiiie ettt 27
2.3. FUNDAMENTOS DE IOT APLICADOS A LA AGRICULTURA.........cccovvereenee. 28
2.3.1. Conectividad y Monitoreo en Tiempo Realcccccovvviiiiiiiiiiaiiiiiieiiiae, 29
2.3.2. Automatizacion del Ri€QO.................cccouiiiiiiiiiiiiiii et 29
2.3.3. Agricultura de PreCiSiOnoccociiiiiiiiiiiiiieeeiee et 29
2.3.4. Sostenibilidad y Gestion de RECUFSOSccccooviiroiiiiiiiiiiiieiie et 29

2.4. GESTION SOSTENIBLE DEL AGUAcoovioiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 30
2.4.1. Principios de la Gestion Sostenible del AQUQ...................c..cccccovoiiiniiiiiiiiiiiiini, 30

2.4.2. Tecnologias y Practicas para la Sostenibilidad Hidrica................c....cccccoeevvennian. 30

2.4.3. Impacto en la Agricultura y el Medio Ambiente...................cccccoveiiveemiiiiieaniiinaaann, 31
2.4.4. Desafios y OPOrtunidadesccccooueiuiiiieiiiieiiiiiie e 31
2.5. IMPACTO DEL CRECIMIENTO URBANO......ccccctiiiiiiiiieeie e 31
2.5.1. Presion sobre [0S Recursos HIAVICOScccooeviiioiiiiiiiiieie e 32
2.5.2. Cambios en el Uso del SUELOcccceiiiiiiiiiiiiiiiie e 32
2.5.3. Contaminacion del AQUA...................cccc.eeeeiuiiiiiiiiieeiiiiee e 32
2.5.4. Estrategias de MItIGACION.ccccc..coviuiiiiiiiiieeeiiiie e 33
2.6. INDUSTRIA 4.0 Y SU APLICACION EN LA AGRICULTURAcccoovvvvreennnnn. 33
2.6.1. Cultivos Protegidos: Innovacion y Sostenibilidad......................cooeoooooveiiiiianininnan, 34
2.6.2. Internet de las Cosas (I0T) en la AGricultur@...............ccccoooveevveeeiiiiineaiiiieeeeninean, 34
2.6.3. Justificacion del Uso de 0T en Cultivos Protegidosccoovueeeveiiuneieeinennaann. 35
3. METODOLOGIAoouinirnininsincsscnsssns 37
3.1. FASE 1: ANALISIS DEL PROBLEMA Y DEFINICION DE REQUERIMIENTOS... 37
3.2. FASE 2: DISENO DEL SISTEMAcooiiiiieietiecceeeeeeeeeeeeseseseseseaeseseseessesnsnsasanaenns 38
321, DISEO de SOfIWAFEc.c...ooooiiiiieiiiii e 38
3.3. FASE 3: IMPLEMENTACIONcoovoiiiititeieeteeeeeeeeeee s seees s onasnsasnnn e 39
3.3.1. Desarrollo de SOftWareccieiiuueiiiiiieiiiiiiiiiie et raaa e e 39
3.3.2. Integracion Con HArAWATecccccvueieiiiiiieiiiiiiiiieeeeeeecieeeee e eeraaaa e e e e 40
3.3.3. Descripcion de Sensores y COntrolador..........................ccoccevvuveeiieiieeieiiiiiiinaaeeeannnn, 42
3.3.3.1. Controlador Central: Raspberry Picccooiiiiiiiiiiiiiiieeeee e 42
3.3.3.2. Sensor de Humedad del Suelo: DHT22ccooiiiiiiiiiiieeie e 43
3.33.3. Sensor de Temperatura del Aire y del Suelo: DST18B20.........coooiiiiiiiiiiiiiiiiieeeieee, 44
3334 Sensor de Niveles de Luz: BHI750cccooiiiiiiiiiiiieiie e 45
3.33.5. Sensor de Concentraciones de CO2: SCD30.........ooiiiiiiiieiieeiie et 46
3.3.3.6. Integracion ¥ MONIEOICO.....ccuueeeeieetie et eeiieeetteetteeteeeseeeesiaeesbeeesteeesnseesnseeeneeeeneeeees 47

3.4. FASE 4: VALIDACION EN ENTORNO DE LABORATORIO............cccocoveveueennnn.. 47
3.5. FASE 5: DOCUMENTACION DEL PROCESO........c.cooviiiiieoeeieeeeeeeeeeeeeeeeenn, 48
4. DESARROLLO E IMPLEMENTACIONcouieererererererennsesssssesesesesesssessssanns 51
4.1. DESARROLLO DEL SISTEMA SIRCA-IOToooiiieeiieeiie ettt 52
4.1.1. Arquitectura General del SiStema.................ccccocciiiiiiiiiiiiiiiiiiiiie e 52
4.1.1.1. Estructura de la Arquitectura Distribuida............ccceeeiiiiiiniiiiieie e 53
4.1.1.2. Comunicacion y FIUjo de Datosceceieriieiiieiiie et 55

4.1.1.3. Principios de DISEMOeeeiiuiieeeiiiieeeiiiee e ettt e e et ee e et e e et ee e e sneaeeestbaeesennbeeesensseeeanes 56

4.1.2. Subsistema loT: Adquisicion y Transmision de Datoscccccoeeeevvveeeecuneannn, 57
4.1.2.1. Controlador Centralcocueoiiiiiniiiieiieiieeeeeee e 57
4.1.2.2. Sensores y Actuadores Implementadosc.veeeeevieeeriiiieeeiiieee e 59

G 12.2.10 SERSOFES ... 59
4.1.2.2.2. ACTUAAOTES..........ceiieiiiiiee e 61
4.1.2.3. Conectividad y COMUNICACIONcocuvirieeiiieeeiiieeeesiieeeeeiieeeeeireeeesiareeeeeraeeeseneeesennees 62
4.1.2.3.1. Protocolo MQOTTcoooeeeeiiiiiieeiiiiee ettt 62
4.1.2.3.2. Broker MOTT de HiveMQ...............ccoouieiiiieeeieiiieeeeiiee e eeeieee e asistae e eeiieaeeeisaee e 63
4.1.2.3.3. Topicos MOTT Utilizados en el SISteMacc...cccveueeeecieeeisiisseneneeeaenenns 63
4.1.2.3.4. Flujo de Datos y ProceSamiento...............cc.ccccueioiiiiiuiaiiiaiiieiiestaieeaniea s 64

4.1.3. Subsistema Web: Backend y Frontend.................cccccccccoeumveciiuveeiieeeeiieciiiienaaeeaniennns 66

4.1.3.1. Backend del SiStema..........oouiriiiriiniiniiiiiniiert et 67
4.1.3.1.1. StACKk TECHOIOZICOeeiieieeie et 68
4.1.3.1.2. Recepcion de Datos desde HiveMQ.............cccc.ooouiiiiiiiiiaiiiaiiie i 72
4.1.3.1.3. Envio de Datos en Tiempo Real (WebS0cket)ccccovvoiiiioiiiiiaiiiiniianaaan 73
4.1.3.1.4. Tareas Periodicas cOm Celery..........c.ccoiiioiiiiiiiiiiiiiiii it 74
4.1.3.1.5. API REST para CORfIQUIACIONcccueeiueeiiieiaie st et siee e a e 74

4.1.3.2. Estructura de 1a Base de Datoscc.ooveriiriiniiniiiieiiceiecte s 79
4.1.3.2.1. Modelo de Datos en TimeScaleDBc..cc.cccocciuiiiiiiiiniiiiiiieic e 79

4.1.3.3. Frontend del SIStEMAoouiiiiiiiiiriiiiieit ettt 81
4.1.3.3.1. StACKk TECHOIOZICO ..o 82
4.1.3.3.2. Arquitectura de 1a SPAcccooooiiiiiioi et 86

4.1.3.4. Comunicacion entre Backend y Frontendcccoooiiiiiiiiii i 90
4.1.3.4. 1. API REST COM AXIOS.........ccoiiiiiiiiiiii ittt 91
4.1.3.4.2. WebSockets para Comunicacion en Tiempo Realc.c.ccccceivviiiiiiniioneannn... 92
4.1.3.4.3. Integracion entre WebSockets y API RESTc..cccooiiiiiioiiiiiiieeeeeeee e 95
4.1.3.4.4. Componentes PrincCipales.................ccccoiiiiiiiiiiiiiiiiiiieiie e 96

4.1.3.5. Flujo de Datos INte@rado.........c.eeeuieeiiiieiiiieeiie ettt 100
4.1.3.5.1. Adquisicion de Datos desde [0S SEnSOres.................ccccoceiiriiiiiniiiiniiiiniiciiiciicn, 100

3

4.1.3.5.2. Procesamiento y Almacenamiento de Datos..................c.cccooviimiiiniiiniiiiniieinnnns 101

4.1.3.5.3. Visualizacion en Tiempo Real (Frontend)..................cccccovvviiemmiiiiiniiiiaiaiieeeenn, 101
4.1.3.5.4. Visualizacion de Datos Historicos (Frontend)..................cccccoooveiieeeiiiieencnnnannnn, 102
4.1.3.5.5. Notificaciones y Alertas (FrORtend)cccccoveiiieiniiiieiiiiieieiieee e, 103
4.1.3.5.6. Resumen del FIUujo de DAtOS...............cc...ccccuieieiiiiiiaiiiieeisieeeeie e 103
4.1.3.6. Seguridad y Consideraciones TECNICAScervvrieeriiieeiiiiee et e erireeeeieeeeeereee e 103
4.1.3.6.1. SeQUIIAAAccciiieiiii e 104
4.1.3.6.2. Validaciones de DatOS...................cc.ccueooummomeoueeoieneeee ettt 105
4.1.3.6.3. CONIIOL de ETTOVEScceoveiiiisiiiiiiiie sttt st 106
4.1.3.6.4. RENAIMIENILO.c.oooiiiiiiiiiii ittt e e e 107
4.1.3.6.5. EScalabilidad.......................ccoccoioiiiiiiiiiiiiiiiiiiii ittt 108
4.1.4. Subsistema PrediCtivoccccooiiiimiiiiiiiiiiiiiiiiiiii it 109
4.1.4.1. Datos utilizados para el entrenamientoc.eceevvveieervereeiiieeeerrreeeesreeeesnsneeessnnnes 109
4.1.4.1.1. Caracteristicas generales del conjunto de datosc..cccccoceveiviiiniciannnnn... 110
4.1.4.1.2. Justificacion de las variables utilizadas.......................cccccooccueiicieiioiiiiiiiniaannn. 111
4.1.4.1.3. Simulacion de condiciones realesc.ccccccocciiciiiiiiiniiiiiiiiiii e 111
4.1.4.1.4. Ventajas del enfoque SIMULAAO.cccoooiiiiiiiiiiiiiiiii e 112
4.1.4.1.5. LIMILACIONEScccueeiiiiiiiiii i sttt 113
4.1.4.2. Proceso de entrenamientocooeereerueertienieenieenieenteenteesteestee et esteenteesteesteesaeesneesaee 113
4.1.4.2.1. Herramientas UtiliZACASccoociioiiiiioiiiiiiiiit ittt 113
4.1.4.2.2. Preprocesamiento de [0S daroscccooociiiiiiiiiiiiiiii i 114
4.1.4.2.3. Seleccion del AlOFITMO.....................ccouciioiiiiiii ittt 115
4.1.4.2.4. Entrenamiento del MOdelo.................c.c..c.ccccoeiiimiiiiniiiiiiiiiiiiiinii it 115
4.1.4.2.5. Validacion Cruzadaocccoeiiiiiiiiiiiiniiiiiii i 116
4.1.4.2.6. Exportacion del modelocccccooiiiiiiiiiiiiiiii e 117
4.1.43. Toma de decisiones basada en predicCiOnecvveeieeeiieeriee e 117
4.1.4.3.1. Logica de operacion del sistema prediCtivocccccouoeiiiioiiiiiiiiiaaiiiee e 118
4.1.4.3.2. Estructura técnica de la integracion..................c.c..ooceeiiiiiiiiaiiiiieiiie e 119
4.1.4.3.3. Interfaz de usuario y eXperienCid................ccc.coceueiiiiiieiiiieeiie e 120

4.1.4.3.4. Ventajas del enfoque PrediCtivocccoeieiuiiiiniiieeisiiie e 121

4.1.4.3.5. LimitaCiones ACIUALES................cc.cooouiiiiiiiii ittt 121

4.1.4.4. Limitaciones y perspectivas de MEJOTacuuveeerrireeerrieeeriieeeeiiieeeesrreeesereeesenneeess 121
4.1.4.4.1. Limitaciones del modelo actualccccocoiimiiiiniiiiiiiiiiiiiii e 122
4.1.4.4.2. Perspectivas de mejora y lineas futuras de trabajocoovoovveoorveerevererrrrsren, 123

4.2. IMPLEMENTACION DEL SISTEMA SIRCA-IOTccoovoviieereeeeeeeseeeeeeeennns 125
4.2.1. Inte@racion del SISTEIMcccouiieviiiiieieiiiie e 125
4.2.1.1. Arquitectura general del SIStEMAc.eeieeiiiiiieiiiiieeciie e 125
4.2.1.2. Flujo de funcionamiento del SIStEMAceivuiereeiiiieeeiiiireeiiieeeesiieeeeeireeeeireeeeeeneenes 127
4.2.1.3. Sincronizacion, CONtrol Y MONITOTEOc.uvvreererreeererrreeeereeesssnreeeassseeessseseeesseeessnnnes 128
4.2.1.4. Modularidad y escalabilidadcccceeeiiiiiiiiiiiiiecie e 129
4.2.1.5. Seguridad y robustez del SISEEMA.coiueiiiiiiiiii ittt 129

5. RESULTADOSccoorreerrrsnnrriiccsssssssrssnssanasssssssss 132
5.1. VALIDACION FUNCIONAL DEL SISTEMAcooiviiiiieieeeeeeeeeeeee e seeneensnnnnen 132
5.1.1. Lectura y transmision de datos SENSOVIALES.........................cocceevvveeeieeeeeeeiiiierenaannn. 132
5.1.2. Estabilidad de comunicacion y manejo de errores.................ccccceueieeeeeeeiiiinennnnnn... 134
5.1.3. Visualizacion de datos en tiempo req@l......................cccccccoooeevieiiiiiiiiaeeeeiiiiiaaaann 135
5.1.4. Activacion del SiStema de FIEQOcccccuuuiiiieeeieiiiiiiiiieeeeeeecieeee e eiaaaaaaa e 137
5.1.5. Registro y trazabilidad de eventoscccccccvviiiiiiiiiciiiiiieeeeeeecciiieeaaennn 140
5.2. DESEMPENO DEL MODELO DE MACHINE LEARNING............cccccovueeeivererennennn.. 141
5.2.1. Métricas de eVAlUACIONccceeiiiiiiiiiiie ettt 142
5.2.2.° Resultados CUARLIIALIVOS..................cccuuiiiiiiie ittt a e 142
5.2.3. Evaluacion cualitativa y funcionalcccccoouiioiiiiiiiiiiiiiiee e 143
5.2.4. Robustez y limitaciones 0bSErvVAAas....................c.ccooccvciiiiiiiiiaiiiieeeiiee e 144
5.2.5. Recomendaciones para mejora del modelo......................cccccceimiiiiiiiiniiiiiiiiiiiiee, 144
5.2.6. Impacto en la [0gica del SiSema................ccccooociiiiiiiiiiiiiiiie e 145
5.3. EVALUACION DE RENDIMIENTO DEL SIRCA-IOT.......cococoiviiieeeereeeeeeeenn 145
5.3.1. Tiempo de respuesta total del SiStema.................cccccoceveiiiiiiiiiiiiiiiieeeiieeeieee 145
5.3.2. Consumo y utilizacion de recursos computacionales....................cccccoeeceeveiianeccnn. 148
5.3.3. Estabilidad y confiabilidad del SiStema......................ccccccovvviiiiiiiiiiiaiiiiiaeiieee, 149
5.3.4. Capacidad de escalabilidad y adaptabilidadc.cccccoovviiiniiiiniiiin. 150
5.3.5. Consideraciones y reCOMENAACIONEScceiieiiiiciiiiiiiiii e 151
5.4. SINTESIS DE RESULTADOS ..o 151

5.4.1. Integracion funcional completa y operacion Sincronizadacc....ccecuveen. 151

5.4.2. Precision y utilidad del modelo predictivo..................cccccoovvciiimviiiiiaiiiiiieeeiiieee, 152
5.4.3. Rendimiento, estabilidad y escalabilidad del sistema...................cc..cccocuvveeeinnan. 153
5.4.4. Limitaciones y areas de OpOrtunidad........................cccecuieemiiiiiieiiiiieeeeiiieeeeeiieeeens 154
5.4.5. Contribuciones y perspectivas de iMPACLOccccoeeeeiuieeieiiiieeeeiiiieeeeiiieeeens 154

6. CONCLUSIONES ...oturnretiiicisssssssnnnsetiscsss 157
6.1. CUMPLIMIENTO DE LOS OBJETIVOS PROPUESTOS.......coiiiiiiieiieeeee e 157
6.2. VIABILIDAD TECNICA Y OPERATIVA DEL SISTEMA PROPUESTO................ 160
6.3. DESEMPENO Y UTILIDAD DEL MODELO PREDICTIVOc.cccceevirrrnne. 162
6.4. APORTES DEL SISTEMA AL SECTOR AGRICOLAcccococueviinineieeeennn 165
6.5. LIMITACIONES DEL TRABAJOcoo ettt 168
6.6. ESCALABILIDAD Y PERSPECTIVAS DE MEJORA........coiiiiiiiiieeieeeie et 170
6.7 CONTRIBUCION ACADEMICA Y CIENTIFICA.....c.ccoooeiierierierisiissiesieseiee e, 174
6.8. REFLEXION FINALcc.oecoiiumiimimmeciecimecieeisecisecssecisecssecssessecssecssecsees iistisssssssbens. 176
6.9. TRABAJOS FUTUROS ...ttt ettt ettt e et e eiaee e baeanneeennees 177
6.10. RECOMENDACIONES FINALES. ...t ea e e 180
7. BIBLIOGRAFIAooveeeeeeeerctcrerersnsssesesssesssesssssssssesesssessssssssssssesesssssssssass 183
8. ANNEEDScccooveeeaeesssassssssssssssssssssssssssssssil8SSININMIIIIIN ovvveeeereosssssesssssssessssseeee (SRRRERENN. 192
ANEXO A. CONFIGURACIONES DE HARDWARE Y SOFTWARE........ccccccoiiiiiiiieiennee 192
A.1 Instalacion del sistema operativo y entorno de desarrollo......................cccccevvvviviieeannn. 192

A.2 Verificacion de sensores y configuracion MOTT...............ccccceemioiieiiiiiiieiiiiaeasieaen. 194

A.3. Esquema de Conexion de Sensores Y ACHUAAOFESccccoveueeeeiiciiiiaaaiiaeaaiieaen. 195

A 4. LECIUFA A€ SEISOTES.........eoeee ettt e e s e e e e e 203

A.5 Control de ACtUAAOTEScoccueeiiiiiiiie e 209

A.6 Implementacion del cliente MQOTT......................ccooeeeiiiiiiiieeeeeeecieeee e eeevaaaaeeeaanns 211
ANEXO B. IMPLEMENTACION DEL BACKEND Y FRONTEND WEB...........c..ccocoovnea... 220
B.1 Configuracion del backend......................cccoooooiiiiiiiiiiiiiiie e 220

B.2 Tareas AutOMALIZAAAScccuiiiiiiiaiie ettt 226

B.3 APl y comunicacion en tiempo 1eQlcccccoueiciiiiiiiiieiiiiie e 229

indice de Imagenes

Imagen 1. Modelo de Datos (Diagrama ER Simplificado).

Imagen 2. Captura de pantalla de Dashboard.

Imagen 3. Captura de pantalla de Configuracion.

Imagen 4. Captura de pantalla de Editar Sensor.

Imagen 5. Captura de pantalla de Notificaciones.

Imagen 6. Captura de pantalla de Métricas.

Imagen 7. Backend recibiendo en tiempo real de los mensajes MQTT.

Imagen 8. Log del backend mostrando la recepcion exitosa de datos y manejo de errores.

Imagen 9. Panel principal del frontend con visualizacion en tiempo real de humedad del suelo.

Imagen 10. Grafico comparativo: temperatura ambiente vs humedad relativa.

Imagen 11. Indicador de estado con alerta visual por humedad baja.

Imagen 12. Fotografia del prototipo fisico con relé y bomba conectados a la Raspberry Pi.
Imagen 13. Secuencia de activacion automatica de bomba de agua.

Imagen 14. Secuencia de apagado automatico de bomba de agua.

Imagen 15. Indicador visual en el frontend confirmando el estado "Riego activado".
Imagen 16. Consulta en la base de datos de registros historicos de humedad del suelo.
Imagen 17. Grafico comparativo: Humedad real vs. Humedad predicha.

Imagen 18. Uso de CPU y Memoria RAM en Raspberry Pi durante operacion.

81

97

98

98

99
100
134
135
136
136
137
138
139
139
140
141
143
149

indice de Diagramas

Diagrama 1. Arquitectura General del Sistema. 53
Diagrama 2. Arquitectura del Sistema (Backend, Frontend y Almacenamiento de Datos). 57
Diagrama 3. Diagrama de flujo de datos y procesamiento en el sistema IoT. 66
Diagrama 4. Diagrama de Flujo de Datos en el Backend. 73
Diagrama 5. Diagrama de flujo del proceso de adquisicion y transmision de datos. 133
Diagrama 6. Conexion del sensor DHT22 con la Raspberry Pi. 196
Diagrama 7. Conexion del sensor DS18B20 con la Raspberry Pi. 197
Diagrama 8. Conexion del sensor BH1750 con la Raspberry Pi. 198
Diagrama 9. Conexion del sensor SCD41 con la Raspberry Pi. 199
Diagrama 10. Conexion del LM393 con el ADS1115 y la Raspberry Pi. 200
Diagrama 11. Conexion eléctrica de la bomba de agua con el relé y la Raspberry Pi. 202

indice de Tablas

Tabla 1. Variables usadas para entrenar el modelo. 110
Tabla 2. Rangos de variables usados en la simulacion. 112
Tabla 3. Resultados de la validacion cruzada. 117

Tabla 4. Indicadores de rendimiento en la transmision de datos y confiabilidad del canal MQTT. 134

Tabla 5 — Métricas de desempefio del modelo de prediccion. 142
Tabla 6. Resumen de tiempos de respuesta. 148
Tabla 7 — Resumen de consumo de recursos 148
Tabla 8. Matriz de cumplimiento de objetivos. 160

indice de Céodigos

Codigo 1. Configuracion de Django REST Framework en settings.py.

Cadigo 2: Ejemplo de Serializador para Configuracion de Sensores.

Cadigo 3: Ejemplo de Vista para Configuracion de Sensores.

Cadigo 4: Configuracion de Rutas en urls.py.

Cadigo 5: Configuracion de djangorestframework-simplejwt en settings.py.

Cadigo 6: Ejemplo de un Componente en Vue 3.

Cadigo 7: Ejemplo de Uso de Vuetify en un Componente.

Cadigo 8: Ejemplo de Uso de Axios.

Cadigo 9: Ejemplo de Uso de Pinia.

Cadigo 10:

Codigo 11:

Codigo 12:
Codigo 13:
Cadigo 14:
Cddigo 15:
Cddigo 16:
Codigo 17:
Codigo 18.
Codigo 19.
Codigo 20.
Codigo 21.
Codigo 22.
Codigo 23.
Cadigo 24.
Cadigo 25.
Cadigo 26.
Cadigo 27.
Codigo 28.
Codigo 29.
Codigo 30.
Codigo 31.
Codigo 32.

Ejemplo de solicitud con Axios.

Ejemplo de implementacion de WebSocket en Vue 3.
Ejemplo de uso de Axios para obtener datos de la APIL.
Ejemplo de configuracion de WebSocket en Vue 3.
Ejemplo de configuracion en Django REST Framework.
Ejemplo de validacion en Django.

Ejemplo de manejo de errores en Django.

Ejemplo de manejo de errores con Axios.

Serializacion del modelo entrenado con joblib en formato .pkl.

Carga del modelo entrenado y prediccion de humedad a partir de datos sensados.

Légica de decision para el control automatico del riego segun la humedad predicha.

Ejemplo de codigo para probar la conexion con HiveMQ.
Estructura de carpetas de scripts de sensores.

Codigo de Lectura del Sensor DHT22.

Codigo de Lectura del Sensor DS18B20.

Codigo de Lectura del Sensor BH1750 (parte 1).

Codigo de Lectura del Sensor BH1750 (parte 2).

Codigo de Lectura del Sensor BH1750 (parte 3).

Codigo de Lectura del Sensor SCD41 (parte 1).

Codigo de Lectura del Sensor SCD41 (parte 2).

Codigo de Lectura del Sensor SCD41 (parte 3).

Lectura del Sensor de Humedad del Suelo LM393 con ADS1115 (parte 1).
Lectura del Sensor de Humedad del Suelo LM393 con ADS1115 (parte 2).

10

75
76
77
77
78
83
84
85
86
&9
90
92
94
104
106
107
107
117
120
120
195
203
204
204
205
206
206
207
207
208
208
209

Cadigo 33.
Cadigo 34.
Cadigo 35.
Cadigo 36.
Cadigo 37.
Cadigo 38.
Cadigo 39.
Cadigo 40.
Codigo 41.
Codigo 42.
Codigo 43.
Codigo 44.
Codigo 45.
Codigo 46.
Codigo 47.
Codigo 48.
Codigo 49.
Cddigo 50.
Codigo 51.
Codigo 52.
Cadigo 53.
Cadigo 54.
Cadigo 55.
Cadigo 56.
Cadigo 57.
Cadigo 58.
Cadigo 59.

Estructura de carpetas de scripts de actuadores.

Cadigo de Control de la Bomba de Agua.

Cliente MQTT en mgqtt_client.py (parte 1).

Cliente MQTT en mqtt client.py (parte 2).

Cliente MQTT en mqtt client.py (parte 3).

Cliente MQTT en mqtt client.py (parte 4).

Ejemplo de Publicacion de Datos de Sensores.

Recepcion de Comandos para la Bomba de Agua.
Configuracion en settings.py.

Cddigo de Conexion MQTT en Django.

Manejo de Reconexion Automatica.

Ejemplo de codigo para reconexion automatica en MQTT.
Ejemplo de codigo para manejar errores en Django Channels.
Ejemplo de validacion de datos de sensores.

Ejemplo de validacion de configuraciones de dispositivos.
Ejemplo de tarea Celery para la recoleccion de datos.
Programacion de una tarea con Celery Beat.

Ejemplo de reintentos automaticos en Celery.
Configuracion del consumidor WebSocket.

Configuracion en settings.py.

Ejemplo de como enviar los datos de sensores al frontend.
Creacion de Tablas en TimescaleDB.

Codigo SQL para convertir sensors_sensordata en una hypertable.
Ejemplo de insercion de datos.

Consulta SQL para obtener los tltimos registros de datos sensados.

Calculo del promedio de lecturas de un sensor en los ultimos 30 minutos.

Configuracion de la politica de retencion de datos.

11

210
210
213
214
215
216
217
218
220
221
222
223
224
225
225
226
227
228
230
231
232
233
234
235
235
235
236

Resumen

Aguascalientes, ubicado en una region semiarida de México, enfrenta una crisis
hidrica constante debido a la escasez de lluvias, la sobreexplotacion de acuiferos y
la contaminacion del agua. La agricultura, siendo una de sus principales actividades
econdmicas, se ve especialmente afectada por estas condiciones. Ante este
panorama, los cultivos protegidos representan una alternativa mas eficiente en el

uso de suelo y agua.

Esta tesis presenta el desarrollo y validacion experimental en laboratorio de un
sistema de riego inteligente basado en tecnologias de Internet de las Cosas (loT) y
aprendizaje automatico (machine learning). El sistema utiliza sensores conectados
a una Raspberry Pi para recolectar datos ambientales en tiempo real (como
humedad del suelo, temperatura y luz), los cuales son enviados via MQTT a una
aplicacion web que actua como sistema central de monitoreo y control. A partir del
analisis de estos datos mediante un modelo de machine learning, el sistema
demuestra su capacidad para tomar decisiones automaticas simuladas orientadas

a optimizar el riego.

El objetivo principal es contribuir al uso eficiente del agua en cultivos protegidos,
alineandose con los objetivos de sostenibilidad del estado de Aguascalientes y de
México a nivel nacional. La investigacion busca no solo ofrecer una solucion técnica
viable, sino también aportar al desarrollo de sistemas agricolas resilientes y

sostenibles ante los desafios del cambio climatico y el crecimiento urbano.

Palabras clave: riego inteligente, internet de las cosas, aprendizaje automatico,

agricultura de precision, cultivos protegidos, sostenibilidad hidrica

12

Abstract

Aguascalientes, located in a semi-arid region of Mexico, faces a constant water crisis
due to low rainfall, overexploitation of aquifers, and water pollution. Agriculture, being
one of its main economic activities, is particularly affected by these conditions. In this
context, protected crops represent a more efficient alternative for land and water

use.

This thesis presents the development and laboratory validation of an intelligent
irrigation system based on Internet of Things (loT) and machine learning
technologies. The system uses sensors connected to a Raspberry Pi to collect real-
time environmental data (such as soil moisture, temperature, and light), which are
transmitted via MQTT to a web application that serves as the central monitoring and
control system. Through the analysis of these data using a machine learning model,
the system demonstrates its ability to perform simulated automated decision-making

aimed at optimizing irrigation.

The main objective is to contribute to the efficient use of water in protected crops, in
alignment with the sustainability goals of the state of Aguascalientes and of Mexico
at the national level. The research seeks not only to offer a viable technical solution
but also to contribute to the development of resilient and sustainable agricultural

systems in the face of climate change and urban growth challenges.

Keywords: smart irrigation, internet of things, machine learning, precision

agriculture, protected crops, water sustainability

13

TESIS TESIS TESIS TESIS TESIS

Capitulo 1.1

TESIS TESIS TESIS TESIS TESIS

Capitulo 1. Introduccion

1. Introduccion

1.1. Contexto

Aguascalientes, un estado situado en el centro de México, se encuentra en una
region caracterizada por su clima semiarido, lo que representa un reto significativo
para la gestion de recursos hidricos y la agricultura. La escasez de agua se ha
convertido en una problematica crénica para el estado, exacerbada por factores
como largos periodos de sequia, precipitaciones insuficientes y un aumento en la
demanda de agua provocado por el crecimiento de la poblacion y la expansion
urbana [1]. Esta situacion se agrava aun mas debido a la sobreexplotacién de los
acuiferos y la contaminacion del agua, poniendo en riesgo el suministro de agua
potable y la sostenibilidad de las actividades agricolas, vitales para la economia

local [1].

La agricultura juega un papel crucial en el sustento econdmico y social de
Aguascalientes. Frente a las adversidades climaticas y los limitados recursos
hidricos, los agricultores han buscado alternativas para continuar produciendo de
manera eficiente. Los cultivos protegidos, tales como los que se desarrollan en
invernaderos y otras estructuras similares, surgen como una solucion innovadora
frente a estas adversidades. Estos sistemas permiten un control mas preciso del
ambiente de cultivo, lo que se traduce en rendimientos mas altos y un uso mas
eficiente del agua y del espacio, elementos criticos en un contexto de escasez

hidrica y presion sobre las tierras agricolas.

En respuesta a estos desafios, el desarrollo e implementacién de tecnologias
avanzadas, como los sistemas de riego inteligente basados en la tecnologia de
Internet de las Cosas (loT), representan una via prometedora para mejorar la
gestion del agua en la agricultura [2]. Mediante la utilizacion de sensores y
dispositivos conectados, estos sistemas pueden monitorear en tiempo real variables
clave como la humedad del suelo, la temperatura y la luminosidad, permitiendo
ajustes precisos y automaticos en el riego. Este enfoque no solo busca optimizar el

uso del agua, sino también alinear las practicas agricolas con estrategias de

15

Capitulo 1. Introduccion

desarrollo sostenible, contribuyendo a los esfuerzos locales y nacionales para

enfrentar la escasez hidrica y fomentar una agricultura resiliente al cambio climatico
[3], [4].

Esta investigacion se inscribe en un momento critico para Aguascalientes, buscando
aportar soluciones concretas a los retos de gestion del agua que enfrenta el estado,
al tiempo que se alinea con los objetivos de desarrollo sostenible y de mitigacién de
los efectos del crecimiento urbano [3], [4]. Al hacerlo, no solo aborda una necesidad
inmediata, sino que también se proyecta hacia la construccion de un futuro mas

sostenible y préspero para la agricultura en Aguascalientes.

1.2. Problema de Investigacion

En Aguascalientes, México, la escasez de agua y las condiciones climaticas
adversas imponen desafios significativos al sector agricola, un componente vital de
la economia local. La limitada disponibilidad de agua y los métodos de riego
tradicionales, que a menudo resultan ineficientes, ponen en riesgo la sostenibilidad
a largo plazo de la agricultura en la region. Estos métodos no solo contribuyen a la
sobreexplotacién de los acuiferos [1], sino que también aumentan la vulnerabilidad
de los cultivos ante condiciones climaticas extremas, afectando la productividad
agricola y la seguridad alimentaria. Ademas, la contaminacion del agua agrava la

situacion, limitando aun mas los recursos hidricos disponibles para uso agricola [1].

Frente a este escenario, emerge la necesidad imperiosa de explorar y adoptar
soluciones tecnolégicas innovadoras que permitan una gestiéon mas eficiente del
agua. La tecnologia de |oT presenta una oportunidad prometedora para revolucionar
los sistemas de riego mediante el monitoreo y control en tiempo real del uso del
agua, adaptandose precisamente a las necesidades de los cultivos [5]. Sin embargo,
a pesar del potencial evidente de esta tecnologia para mejorar la eficiencia en el
uso del agua, su implementacién en la agricultura de Aguascalientes aun es
incipiente y enfrenta varios obstaculos, desde la falta de conocimiento y recursos,

hasta la resistencia al cambio por parte de los agricultores.

16

Capitulo 1. Introduccion

Este estudio se propone abordar esta brecha mediante el desarrollo y validacion
experimental de un sistema de riego inteligente que optimice el uso del agua y que,
a futuro, pueda implementarse de manera accesible y practica para los agricultores.
A través de este enfoque, se busca contribuir a la transformacién de la agricultura
en Aguascalientes hacia practicas mas sostenibles y resilientes, alineando la
innovacion tecnoldgica con los objetivos de desarrollo sostenible del estado y la

nacion.

Por lo tanto, el problema central de esta investigacion se articula en torno a como la
tecnologia de loT puede ser aprovechada para desarrollar un sistema de riego
inteligente que responda a las condiciones especificas de Aguascalientes,
mejorando la gestion del agua en la agricultura y contribuyendo a la sostenibilidad
y eficiencia del sector ante los retos impuestos por la escasez hidrica y el cambio

climatico.

1.3. Formulacion de Objetivos

1.3.1. Objetivo General

Desarrollar y validar experimentalmente un sistema de riego inteligente basado en
loT que permita optimizar el consumo de agua en cultivos protegidos en
Aguascalientes, México, mediante la recoleccidn y analisis de datos ambientales, la

prediccion del nivel de humedad del suelo y el control automatizado del riego.

1.3.2. Objetivos Especificos

1. Integrar tecnologia de loT en el sistema de riego para monitorear
variables criticas del entorno.
Incorporar sensores y dispositivos |oT para monitorear variables criticas
como la humedad del suelo, temperatura del aire y del suelo, niveles de luz,
y concentraciones de CO2. Estos datos seran fundamentales para probar
ajustes automaticos simulados de los ciclos de riego y optimizar el uso del

agua.

17

Capitulo 1. Introduccion

1.4.

Disefar y desarrollar una aplicacién web que facilite la validacién y
manejo de un sistema de riego inteligente.
Esta herramienta permitira el acceso a informacion en tiempo real y el control

preciso del riego, basado en datos especificos de los sensores.

Incorporar un modelo predictivo de machine learning que sugiera el
momento 6ptimo para activar el riego.
Este modelo analizara los datos histéricos para anticipar caidas en la

humedad del suelo y asi optimizar el uso del agua.

Validar el sistema en un entorno de pruebas controlado.
Se simularan las condiciones operativas del sistema para evaluar su
desempeno, identificar posibles errores y ajustar su funcionamiento antes de

una implementacion real.

Documentar detalladamente el proceso de diseno, desarrollo y
validacion del sistema.

La documentacion incluird diagramas, flujos de trabajo, codigo fuente
relevante, resultados de simulaciones y analisis de viabilidad para futuras

implementaciones en campo.

Justificacion

La realizacién de este proyecto se justifica desde varias perspectivas, destacando

su relevancia, valor cientifico y practicidad para abordar los desafios criticos de

gestion del agua en Aguascalientes, México. Estos elementos subrayan la

importancia de desarrollar y evaluar experimentalmente un sistema de riego

inteligente basado en IoT para los cultivos protegidos en la region.

18

Capitulo 1. Introduccion

1.4.1. Pertinencia

La escasez de agua es un desafio persistente en Aguascalientes, exacerbado por
condiciones climaticas extremas como largos periodos de sequia y precipitaciones
insuficientes [1]. La agricultura, siendo una de las principales actividades
economicas del estado, se ve particularmente afectada por estas condiciones
adversas. El desarrollo y validacion de un sistema de riego inteligente orientado a
optimizar el uso del agua representa una solucion crucial y oportuna. Este proyecto
no solo aborda un problema ambiental y econdémico significativo, sino que también
se alinea con los objetivos estratégicos del Plan de Desarrollo del Estado 2022-2027
de Aguascalientes [3] y el Plan Nacional de Desarrollo 2025-2030 de México [4], lo

que resalta su relevancia a nivel local y nacional.

1.4.2. Valor Cientifico

La validacién experimental de un sistema de riego inteligente contribuye al avance
del campo de la agricultura de precision, un area de investigacion que explora como
las tecnologias avanzadas pueden mejorar la eficiencia y sostenibilidad de la
agricultura [2]. Al recopilar y analizar datos en tiempo real sobre variables criticas
como la humedad del suelo, la temperatura y la luz solar, este proyecto genera
informacion valiosa sobre la optimizacion del uso del agua en la agricultura. Este
conocimiento no solo tiene el potencial de mejorar las practicas de riego en
Aguascalientes sino también de proporcionar un modelo replicable para otras

regiones con desafios hidricos similares.

1.4.3. Valor Practico

Desde una perspectiva practica, el sistema propuesto busca servir como una
referencia tecnoldgica aplicable a las condiciones de la agricultura en
Aguascalientes. Al promover una gestion mas eficiente del agua, pretende ofrecer
una herramienta capaz de reducir el consumo hidrico, aumentar la productividad de
los cultivos y fortalecer la sostenibilidad de las practicas agricolas. La aplicacion
web desarrollada como parte del proyecto se concibe como una plataforma que

facilitara el monitoreo y control del riego de manera centralizada y accesible,

19

Capitulo 1. Introduccion

permitiendo que los agricultores puedan adaptar el sistema a diferentes escenarios
productivos [5]. Este enfoque plantea una alternativa practica y escalable que puede
contribuir al fortalecimiento de la sostenibilidad agricola y a la modernizacion del
manejo del agua en la region. A largo plazo, se espera que los resultados del
proyecto sienten las bases para futuras implementaciones en campo, promoviendo
la adopcion de tecnologias loT en la agricultura y alineandose con los objetivos

regionales y nacionales de conservacion del agua y mitigacion del cambio climatico.

En conjunto, la justificacion de este proyecto radica en su capacidad para enfrentar
de manera efectiva una problematica ambiental critica, contribuir al avance cientifico
en la agricultura de precision [2], y ofrecer una base tecnoldgica sélida para futuras
aplicaciones practicas en la agricultura de Aguascalientes. Este enfoque integral
asegura que el proyecto tenga un impacto significativo tanto en el ambito académico
como en el practico, promoviendo el uso eficiente de los recursos hidricos en la

agricultura y apoyando los objetivos de desarrollo sostenible de la region.

1.5. Alcance y Limitaciones

1.5.1. Alcance

El presente estudio tiene como propdsito el desarrollo y validacion funcional de un
prototipo de sistema de riego inteligente basado en loT, enfocado en su aplicacién
futura en cultivos protegidos en la region de Aguascalientes, México. El objetivo
principal consiste en contribuir a la optimizacion del uso del agua en procesos
agricolas mediante la recoleccion, procesamiento y analisis de datos ambientales y
de humedad del suelo en tiempo real, asi como la simulacion del control

automatizado del riego en funcion de dicha informacion.

El sistema desarrollado contempla una arquitectura distribuida y modular que

incluye los siguientes elementos:

e Un conjunto de sensores fisicos conectados a una Raspberry Pi, que actua

como nodo de adquisicion de datos y registra variables como humedad del

20

Capitulo 1. Introduccion

suelo, humedad relativa ambiental, temperatura del suelo, temperatura del

aire, niveles de luz y concentracién de CO2.

El uso del protocolo MQTT (Message Queuing Telemetry Transport) para la
transmision eficiente de los datos sensados hacia un bréker HiveMQ,

permitiendo la comunicacion entre el hardware y el sistema central.

Un backend desarrollado en Django con Django REST Framework (DRF),
que recibe y procesa los datos provenientes del broker MQTT. Este backend
almacena la informacién en una base de datos especializada para series
temporales (TimescaleDB) y habilita la visualizacién y control del sistema
mediante el uso de WebSockets y una APl RESTful.

Un frontend desarrollado en Vue.js con el framework de disefio Vuetify, que
permite la interaccion con el sistema en un entorno de validacién, incluyendo
la visualizacion grafica de datos histéricos y en tiempo real, asi como el

control manual o automatizado simulado del riego.

La integracion de un modelo de aprendizaje automatico (machine learning)
que tiene como finalidad realizar predicciones sobre los niveles futuros de
humedad del suelo y sugerir automaticamente el momento optimo para

activar el riego.

Un sistema de control remoto para el encendido de una bomba de agua,
simulado mediante la misma red MQTT desde el backend hacia la Raspberry
Pi.

El disefio del sistema se plantea con capacidad de escalabilidad, de manera que

pueda adaptarse a diferentes tipos de cultivos protegidos y extenderse para

monitorear nuevas variables, controlar multiples nodos o integrarse con plataformas

agricolas existentes. Asimismo, se prioriza la modularidad del software para facilitar

21

Capitulo 1. Introduccion

futuras actualizaciones, mejoras en la precision del modelo predictivo y ajustes

segun condiciones geograficas especificas.

1.5.2. Limitaciones

A pesar del alcance técnico del sistema y la solidez de su arquitectura, el desarrollo

del proyecto presenta ciertas limitaciones que condicionan su validacion en un

entorno agricola operativo. Estas limitaciones son principalmente de tipo logistico,

temporal y econdmico, y se detallan a continuacién:

1.

Ausencia de validacion en campo real: Por cuestiones de tiempo y
recursos, no se contempla en esta etapa la instalacion del sistema en un
cultivo protegido operativo. En consecuencia, todas las pruebas funcionales
se prevén en entornos controlados, sin exposicion directa a las variaciones

de un ambiente agricola real.

Uso de datos sintéticos para el modelo predictivo: Debido a la falta de
bases de datos locales con series temporales de humedad del suelo, el
modelo de machine learning se entrena con informacion generada
artificialmente. Esto limita su capacidad de generalizacién en escenarios
reales, por lo que se proyecta su reentrenamiento con datos obtenidos de

futuras pruebas en campo.

Restricciones en el hardware disponible: El prototipo se disefia con una
configuracion minima de sensores y componentes electronicos, lo cual
restringe la evaluacion de aspectos como durabilidad, resistencia ambiental

o tolerancia a fallos, que deberan comprobarse en etapas posteriores.

Imposibilidad de medir el impacto real en el ahorro de agua: Dado que
no se dispone aun de datos empiricos provenientes de un entorno agricola
real, el impacto ambiental y econdmico se estima de forma tedrica o mediante

comparaciones con antecedentes documentados.

22

Capitulo 1. Introduccion

Estas limitaciones delimitan el alcance del trabajo al nivel de prototipo funcional
validado en condiciones controladas, sin comprometer la validez técnica ni la
viabilidad del sistema. Se proyecta que, en futuras etapas, el sistema pueda
instalarse y probarse en un entorno real de cultivo, permitiendo validar plenamente
su efectividad, confiabilidad y contribucion al uso sostenible del recurso hidrico en

la agricultura protegida.

23

TESIS TESIS TESIS TESIS TESIS

Capitulo 2. M drico

TESIS TESIS TESIS TESIS TESIS

Capitulo 2. Marco Tedrico

2. Marco Teorico

El desarrollo y aplicacién de sistemas de riego inteligentes basados en loT
representa un avance significativo en la optimizacion del uso del agua y la mejora
de la productividad agricola en condiciones de escasez hidrica. Este capitulo
establece el marco tedrico necesario para comprender los fundamentos y las
implicaciones de la adopcién de tecnologias IoT en la agricultura, particularmente
en el contexto de cultivos protegidos en Aguascalientes, México. A través de una
revision exhaustiva de la literatura, se abordan los conceptos clave relacionados
con la gestion sostenible del agua, el crecimiento urbano y su interaccion con la
agricultura moderna, con énfasis en las soluciones tecnoldgicas que buscan hacer

frente a estos desafios.

El capitulo se estructura a partir de una descripcion de los principios basicos del loT
y su relevancia en el desarrollo de sistemas de riego automatizados y adaptativos,
capaces de responder de manera eficiente a las necesidades hidricas especificas
de los cultivos. Luego, se analiza la gestion sostenible del agua como un
componente esencial de la agricultura en regiones semiaridas, identificando
practicas y tecnologias que contribuyen a su conservacion y uso eficiente. Ademas,
se examina el impacto del crecimiento urbano en la disponibilidad de recursos
hidricos y la funcion de los sistemas inteligentes de riego como medida de

mitigacion, promoviendo una agricultura mas sostenible y resiliente.

El analisis incorpora estudios de caso y trabajos previos relevantes que demuestran
la aplicacion de tecnologias IoT en la agricultura, ofreciendo una vision general de
los avances tecnolégicos y de sus beneficios potenciales. Este marco tedrico
proporciona el sustento conceptual de la presente investigacion y establece una
base sdlida para el desarrollo de soluciones inteligentes en la gestion del agua

dentro de la agricultura de precision.

En sintesis, se destaca la importancia de la integracién de tecnologias avanzadas
en la agricultura como estrategia para enfrentar los retos actuales y futuros

asociados a la gestion del agua y la sostenibilidad agricola.

25

Capitulo 2. Marco Tedrico

2.1. Sistemas de Riego

El riego constituye una de las practicas agricolas mas relevantes para garantizar la
disponibilidad de agua en las etapas criticas del desarrollo de los cultivos. Los
sistemas de riego se definen como el conjunto de infraestructuras, dispositivos y
procedimientos disefiados para distribuir agua de manera controlada sobre una
superficie cultivada, con el propdsito de satisfacer las necesidades hidricas de las

plantas y mantener su equilibrio fisiologico [6].

En esencia, un sistema de riego busca compensar la deficiencia de precipitacién o
irregularidad en la disponibilidad del agua, asegurando una produccién agricola

constante y sostenible.

A lo largo de la historia, los sistemas de riego han evolucionado desde métodos
tradicionales basados en el flujo por gravedad hasta soluciones modernas
controladas electrénicamente. En términos generales, se reconocen tres tipos

principales de sistemas:

1. Riego por superficie: se basa en la distribucién del agua mediante canales o
surcos, aprovechando la gravedad. Aunque es un método simple y de bajo
costo, presenta una eficiencia relativamente baja debido a las pérdidas por

escurrimiento y evaporacion [7].

2. Riego por aspersion: utiliza presiéon hidraulica para proyectar el agua en
forma de lluvia artificial sobre los cultivos. Este sistema permite una
distribucion mas uniforme, pero requiere un mayor consumo energético y

mantenimiento de los emisores.

3. Riego por goteo o0 microaspersion: suministra el agua directamente a la zona
radicular de las plantas mediante emisores localizados. Se considera uno de
los métodos mas eficientes, con eficiencias de aplicacion que pueden

superar el 90 %, reduciendo el desperdicio de agua y fertilizantes [8].

26

Capitulo 2. Marco Tedrico

En las ultimas décadas, la integracion de tecnologias digitales, sensores y sistemas
de automatizacion ha impulsado el desarrollo de sistemas de riego inteligentes,
capaces de ajustar el caudal, la frecuencia y la duracién del riego segun las
condiciones reales del cultivo y del entorno [9]. Estos sistemas utilizan informacién
proveniente de sensores de humedad del suelo, temperatura, radiacién solar y
condiciones atmosféricas, para tomar decisiones automaticas que optimicen el uso

del recurso hidrico.

Particularmente en regiones semiaridas como Aguascalientes, donde la
disponibilidad de agua es limitada, los sistemas de riego inteligentes representan
una alternativa tecnoldgica para aumentar la eficiencia del riego, reducir el consumo
hidrico y mejorar la sostenibilidad agricola [10]. Su adopcion contribuye al
cumplimiento de los Objetivos de Desarrollo Sostenible (ODS), especialmente en lo

relativo a la gestion responsable del agua y la produccién agricola sostenible.

2.2. Internet de las Cosas (loT)

El Internet de las Cosas (loT, por sus siglas en inglés Internet of Things) se refiere
a una red de dispositivos fisicos interconectados que recopilan, procesan y
transmiten datos a traveés de internet, permitiendo la automatizacion y el control
remoto de procesos. Segun la definicion de la International Telecommunication
Union [11], la loT es “una infraestructura global que conecta objetos fisicos y
virtuales mediante capacidades de identificacion, captura de datos, procesamiento

y comunicacion, facilitando la interaccion entre ellos y con el entorno”.

La loT combina tecnologias de sensorizacion, comunicaciones inalambricas,
computacion en la nube y analisis de datos para generar ecosistemas inteligentes
capaces de operar de manera autonoma o semiautonoma. En el contexto agricola,
esto se traduce en sistemas capaces de monitorear variables ambientales y de
cultivo en tiempo real, generando informacion que puede ser utilizada para optimizar
la produccién, reducir pérdidas y mejorar la sostenibilidad de los recursos naturales
[12].

27

Capitulo 2. Marco Tedrico

Los dispositivos IoT agricolas incluyen sensores de humedad, temperatura, pH,
radiacion solar o concentracion de gases; controladores como microprocesadores
o microcontroladores (por ejemplo, Raspberry Pi, Arduino o ESP32); y plataformas
digitales que centralizan los datos en la nube. La integracion de estos elementos
permite construir un sistema ciberfisico en el que los datos capturados en el entorno

se transforman en informacion util para la toma de decisiones.

En los sistemas de riego inteligente, el IoT desempefia un papel esencial al
sincronizar el flujo de informacién entre los sensores de campo, el servidor y los
actuadores, posibilitando la automatizacion del riego segun condiciones
ambientales o predicciones generadas mediante modelos de aprendizaje
automatico [13]. Ademas, la comunicacion basada en protocolos ligeros como
MQTT (Message Queuing Telemetry Transport) o CoAP (Constrained Application
Protocol) permite el intercambio eficiente de datos entre dispositivos con bajo

consumo energético, aspecto clave en entornos agricolas remotos [14].

En conjunto, el IoT en la agricultura representa una de las aplicaciones mas
prometedoras dentro de la llamada Agricultura 4.0, al integrar conectividad,
inteligencia artificial y computacion distribuida para lograr una gestion mas precisa,

sostenible y resiliente de los recursos agricolas.

2.3. Fundamentos de loT aplicados a la agricultura

loT ha transformado diversos sectores industriales mediante su capacidad para
conectar dispositivos a internet, permitiendo la recopilacion y el analisis de datos en
tiempo real para mejorar la toma de decisiones y la eficiencia operativa. En la
agricultura, su aplicacion ofrece oportunidades de innovacion significativas,
especialmente en el ambito del riego inteligente y la gestion de recursos hidricos.
Este apartado describe los fundamentos de loT aplicados a la agricultura,
analizando cdmo esta tecnologia contribuye a la optimizacion del uso del agua y al

aumento de la productividad de los cultivos.

28

Capitulo 2. Marco Tedrico

2.3.1. Conectividad y Monitoreo en Tiempo Real

loT se basa en sensores y dispositivos conectados que recopilan datos sobre
condiciones ambientales clave, como la humedad del suelo, la temperatura, la
luminosidad y otros factores determinantes para el crecimiento de los cultivos. Estos
datos se transmiten a plataformas centralizadas donde pueden ser monitoreados y
analizados en tiempo real, proporcionando a los agricultores informacién precisa
para decidir cuando y cuanto regar, reduciendo el desperdicio de agua y

garantizando un manejo mas racional de los recursos hidricos [15].

2.3.2. Automatizacién del Riego

Uno de los beneficios mas destacados de IoT en la agricultura es la posibilidad de
automatizar el riego mediante el uso de algoritmos y modelos predictivos. Los
sistemas inteligentes ajustan los horarios y volumenes de riego en funcién de los
datos recolectados por los sensores, o que incrementa la eficiencia del uso del agua
y reduce la carga de trabajo manual, optimizando la gestion del tiempo y los

recursos [16].

2.3.3. Agricultura de Precision

loT constituye un pilar esencial de |la agricultura de precision, una practica que busca
ajustar las estrategias de cultivo a las condiciones especificas de cada parcela. La
integracion de datos en tiempo real sobre el clima, el suelo y las plantas permite
aplicar tratamientos diferenciados, mejorar la salud de los cultivos y maximizar el

rendimiento productivo mediante un uso mas racional de los recursos [17].

2.3.4. Sostenibilidad y Gestion de Recursos

La incorporacién de |oT en la agricultura contribuye a la sostenibilidad mediante un
manejo mas eficiente del agua y los insumos agricolas. Al optimizar el riego y reducir
la dependencia de fertilizantes o agroquimicos, los sistemas inteligentes favorecen
la conservacion de los recursos naturales y la reduccidn del impacto ambiental de

las practicas agricolas [18].

29

Capitulo 2. Marco Tedrico

2.4. Gestion Sostenible del Agua

La gestion sostenible del agua en la agricultura constituye un componente esencial
para garantizar la seguridad alimentaria, preservar el medio ambiente y promover el
desarrollo socioecondmico, especialmente en regiones aridas y semiaridas como
Aguascalientes, México. Esta seccion describe las practicas, estrategias y
tecnologias orientadas al uso eficiente y responsable de los recursos hidricos en la
agricultura, destacando la relevancia de adoptar enfoques integrales y sostenibles

para enfrentar la escasez de agua y los efectos asociados al cambio climatico.

2.4.1. Principios de la Gestion Sostenible del Agua

La gestién sostenible del agua se fundamenta en la busqueda de equilibrio entre las
necesidades humanas, la productividad agricola y la conservacion de los
ecosistemas naturales. Entre sus principios destacan la eficiencia en el uso del
agua, la reduccion de la contaminacion, la proteccion de los ciclos hidrolégicos y la
equidad en el acceso al recurso. En el ambito agricola, estos principios se traducen
en la adopcion de practicas que minimizan el desperdicio, mejoran la infiltracion y
retencion del agua en el suelo, y garantizan su aprovechamiento éptimo tanto para

los cultivos como para el entorno [19].

2.4.2. Tecnologias y Practicas para la Sostenibilidad
Hidrica

Diversas tecnologias y practicas contribuyen al manejo racional y sostenible del

agua en la agricultura moderna:

e Riego de precision: Sistemas como el riego por goteo o la aspersion
controlada dirigen el agua especificamente a las zonas de mayor demanda
hidrica, reduciendo pérdidas por evaporacion y escurrimiento.

e Sensores de humedad del suelo y sistemas automatizados: Equipos loT
permiten registrar en tiempo real las condiciones del suelo y ajustar los
parametros de riego de manera dinamica, optimizando el uso del agua sin

comprometer el desarrollo de los cultivos.

30

Capitulo 2. Marco Tedrico

e Cultivos resistentes a la sequia: El desarrollo y la seleccion de variedades
que requieren menor cantidad de agua o toleran periodos prolongados de
sequia reducen la presion sobre las fuentes hidricas.

e Manejo integrado de recursos hidricos: Estrategias que consideran el uso
combinado de aguas superficiales, subterraneas y no convencionales,

promoviendo su gestion coordinada entre distintos sectores productivos [18].

2.4.3. Impacto en la Agricultura y el Medio Ambiente

La adopcidon de practicas de gestion sostenible del agua contribuye
simultdneamente al aumento de la productividad agricola y a la conservacion
ambiental. Estas estrategias favorecen la preservacién de ecosistemas acuaticos,
reducen procesos de salinizacion y degradacion del suelo, y minimizan la
contaminacién derivada de escorrentias agricolas. A largo plazo, fortalecen la
resiliencia de las comunidades rurales frente a la variabilidad climatica y la

disminucién de la disponibilidad de agua [20].

2.4.4. Desafios y Oportunidades

La transicion hacia modelos de gestion hidrica sostenibles implica retos
estructurales y operativos, como la necesidad de inversién tecnoldgica, la
capacitacion continua de los productores y la adecuacion de marcos normativos que
promuevan el uso responsable del agua. No obstante, estos desafios abren también
oportunidades para impulsar la innovacién, fortalecer la cooperacion
interinstitucional y consolidar una agricultura resiliente, eficiente y ambientalmente

responsable [21].

2.5. Impacto del Crecimiento Urbano

El crecimiento urbano, entendido como la expansién de las ciudades y el incremento
de la poblacién en areas urbanizadas, constituye uno de los principales factores de
presion sobre los recursos naturales, especialmente el agua. Esta seccidén analiza

la forma en que la expansién urbana influye en la disponibilidad, calidad y gestion

31

Capitulo 2. Marco Tedrico

del agua destinada a la agricultura, con especial atencion a las condiciones de las

regiones semiaridas como Aguascalientes, México.

2.5.1. Presion sobre los Recursos Hidricos

A medida que las ciudades crecen, la demanda de agua para fines domésticos,
industriales y recreativos aumenta de manera proporcional, generando competencia
directa con las necesidades del sector agricola. Este incremento sostenido favorece
la sobreexplotacion de rios y acuiferos, reduciendo la cantidad de agua disponible
para el riego y comprometiendo la sostenibilidad de los sistemas agricolas. En
contextos como el de Aguascalientes, donde la escasez hidrica ya representa un
problema estructural, el crecimiento urbano intensifica la competencia por recursos
limitados, poniendo en riesgo la viabilidad productiva y ambiental de la agricultura

regional [22].
2.5.2. Cambios en el Uso del Suelo

El proceso de urbanizacién suele implicar la conversion de terrenos agricolas en
areas residenciales, comerciales o industriales, o que reduce la superficie
destinada a la produccion de alimentos y altera los equilibrios hidrolégicos naturales.
Este cambio de uso del suelo modifica los patrones de infiltracion y recarga de los
acuiferos, y al mismo tiempo incrementa la proporcion de superficies impermeables,
como calles, techos o pavimentos, aumentando la escorrentia superficial y

disminuyendo la retencion natural de agua en el subsuelo [23].

2.5.3. Contaminacion del Agua

El crecimiento urbano también contribuye a la contaminaciéon de los cuerpos de
agua a través de descargas residuales sin tratamiento adecuado y del arrastre de
contaminantes provenientes de areas urbanas. Esta contaminacion deteriora la
calidad del agua disponible para el riego agricola, con efectos negativos sobre la
salud de los cultivos y, por extension, sobre la seguridad alimentaria. En regiones
como Aguascalientes, donde la agricultura depende en gran medida de sistemas de
riego, la preservacion de la calidad del agua se considera un componente esencial

para garantizar la productividad y sostenibilidad agricola [24].

32

Capitulo 2. Marco Tedrico

2.5.4. Estrategias de Mitigacién

Frente a los efectos del crecimiento urbano sobre los recursos hidricos, la adopcion
de estrategias integradas de mitigacién resulta indispensable. Entre las mas

relevantes se encuentran:

e Planificacion urbana y agricola coordinada: Promueve una gestion
conjunta del territorio para proteger las zonas agricolas y los acuiferos
estratégicos.

e Tecnologias urbanas de eficiencia hidrica: Fomenta la instalacién de
sistemas de ahorro y reciclaje de agua en las ciudades, reduciendo la
demanda sobre las fuentes naturales.

e Tratamiento y reutilizacion de aguas residuales: La inversion en
infraestructura de saneamiento permite reutilizar el agua tratada en riego
agricola, disminuyendo la presion sobre los recursos hidricos
convencionales.

e Educacién y sensibilizacién social: Difunde la importancia del uso racional
del agua entre la poblaciéon urbana y rural, promoviendo practicas de

conservacion sostenibles.

La gestion equilibrada del crecimiento urbano y de la disponibilidad de agua para la
agricultura requiere un enfoque sistémico que considere simultdneamente las
necesidades urbanas y agricolas. A través de estrategias proactivas y sostenibles,
es posible alcanzar un equilibrio entre desarrollo urbano, seguridad alimentaria y
conservacion hidrica, elementos fundamentales para el desarrollo sostenible en

regiones semiaridas como Aguascalientes [25].

2.6. Industria 4.0 y su Aplicacién en la Agricultura

La Industria 4.0, también denominada cuarta revolucion industrial, se define por la
integracion de tecnologias digitales avanzadas, como la inteligencia artificial (1A),

loT, la robdtica y el analisis de big data, en los procesos productivos. En el ambito

33

Capitulo 2. Marco Tedrico

agricola, estas tecnologias estan transformando las practicas tradicionales
mediante el desarrollo de sistemas inteligentes capaces de optimizar la eficiencia,

reducir costos y fortalecer la sostenibilidad de los cultivos [26].

Una de las areas mas relevantes de la Industria 4.0 es la agricultura de precision, la
cual utiliza informacién en tiempo real para respaldar la toma de decisiones sobre
el manejo de los cultivos. Este enfoque comprende el monitoreo de variables
ambientales y fisiolégicas, como el clima, la humedad del suelo, los niveles de
nutrientes y otros factores criticos que inciden directamente en la productividad
agricola. La incorporacion de sensores loT, drones y sistemas de informacién
geografica (SIG) posibilita una gestion mas precisa y adaptativa de los recursos

agricolas, contribuyendo a una agricultura mas eficiente y sostenible [27].

2.6.1. Cultivos Protegidos: Innovacion y Sostenibilidad

Los cultivos protegidos, como los invernaderos y tuneles de plastico, constituyen
una estrategia tecnolégica orientada a crear ambientes controlados que protegen a
las plantas de condiciones climaticas extremas, plagas y enfermedades. Esta
técnica incrementa la calidad y el rendimiento de los cultivos, al mismo tiempo que

optimiza el uso de recursos esenciales como el agua vy los fertilizantes.

En el contexto de Aguascalientes, México, donde la disponibilidad de agua es
limitada, los cultivos protegidos representan una alternativa sostenible que permite
mantener altos niveles de productividad agricola con un consumo hidrico reducido.
En este tipo de entornos, la integracion de sistemas de riego inteligentes basados
en loT contribuye a la optimizacion del uso del agua, minimiza las pérdidas por

evaporacion y mejora la eficiencia general de los procesos agricolas [28].

2.6.2. Internet de las Cosas (loT) en la Agricultura

loT se considera una de las tecnologias clave de la Industria 4.0 debido a su
capacidad para conectar dispositivos y sistemas a través de redes digitales,

facilitando la recopilacion, transmisiéon y analisis de datos en tiempo real. En la

34

Capitulo 2. Marco Tedrico

agricultura, su aplicacién permite el desarrollo de sistemas de riego inteligentes que
ajustan de manera auténoma el suministro de agua conforme a las necesidades

hidricas de cada cultivo.

Mediante el uso de sensores que miden humedad del suelo, temperatura, radiacion
luminica y concentracion de CO,, los sistemas loT pueden modificar dinamicamente
los patrones de riego, optimizando el uso del agua y promoviendo un crecimiento
vegetal saludable. Ademas, estos sistemas generan alertas ante anomalias, como

sequias o0 exceso de humedad, permitiendo una respuesta temprana y precisa [29].

2.6.3. Justificacion del Uso de loT en Cultivos Protegidos

La combinacion de cultivos protegidos e loT representa una convergencia
tecnoldgica con alto potencial para mejorar la sostenibilidad agricola en regiones
semiaridas como Aguascalientes. Los sistemas de riego inteligentes basados en loT
favorecen el uso racional del agua dentro de los invernaderos, asegurando una

irrigacion 6ptima que reduce el desperdicio y maximiza la eficiencia hidrica.

Ademas, la aplicacion de herramientas de analisis de datos y monitoreo en tiempo
real fortalece la toma de decisiones agronémicas basadas en evidencia, reduciendo
la incertidumbre y mejorando la capacidad de gestiéon de los productores. Este
enfoque se alinea con los objetivos globales de sostenibilidad y seguridad
alimentaria, posicionando a Aguascalientes como una region con potencial de
liderazgo en la adopcion de tecnologias agricolas innovadoras y resilientes frente al

cambio climatico [30].

35

TESIS TESIS TESIS TESIS TESIS

Capitulo 3.

TESIS TESIS TESIS TESIS TESIS

Capitulo 3. Metodologia

3. Metodologia

El desarrollo de este proyecto se enmarcé en una investigacion aplicada de caracter
tecnolégico, cuyo objetivo fue abordar un problema practico del sector agricola
mediante el disefio y validacion de un sistema informatico basado en tecnologias
emergentes. El enfoque metodoldgico adoptado fue cuantitativo, experimental y
tecnolégico, centrado en la construccién y prueba funcional de un prototipo de
sistema de riego inteligente que integro dispositivos 10T, algoritmos de aprendizaje

automatico y una arquitectura web modular.

La metodologia empleada se bas6 en los principios del modelo de desarrollo
iterativo, en el cual se disefaron, desarrollaron y validaron de forma independiente
los distintos componentes del sistema, lo que permitio realizar ajustes progresivos
durante el proceso. El enfoque modular facilité el trabajo paralelo sobre cada
subsistema (hardware, backend, frontend, comunicacion, prediccién y control),

garantizando flexibilidad y coherencia en la integracion final.

Este capitulo describe las fases metodoldgicas que guiaron el desarrollo del
sistema, abarcando desde el analisis del problema y la definicion de requerimientos,
hasta el disefio técnico, la construccion del prototipo, la validacion funcional en

condiciones controladas y la documentacion integral del proceso.

3.1. Fase 1: Anadlisis del problema y definicion de
requerimientos

Esta fase se enfocé en el estudio de la problematica del uso ineficiente del agua en
cultivos protegidos, particularmente en zonas semiaridas como Aguascalientes. Se
llevé a cabo una revision documental de las tecnologias actuales en agricultura
inteligente, asi como de sistemas de riego automatizado y soluciones loT aplicadas

a entornos de produccion controlada.

A partir del analisis, se identificaron los principales factores que inciden en la

eficiencia del riego, tales como la humedad del suelo, la temperatura ambiental, la

37

Capitulo 3. Metodologia

humedad relativa, el tipo de cultivo y las condiciones del entorno protegido. Esta
informacion permitid establecer los requerimientos técnicos y operativos del

sistema, clasificados de la siguiente manera:

Requerimientos funcionales:

e Adquisicion en tiempo real de datos ambientales mediante sensores.

e Transmision eficiente de datos desde los nodos IoT hacia el servidor central.
e Procesamiento de datos y toma de decisiones automatizadas o simuladas.
e Activacion remota del sistema de riego mediante comandos controlados.

¢ Visualizacion de la informacién a través de una aplicacion web.

e Prediccion del nivel de humedad mediante modelos de machine learning.
Requerimientos no funcionales:

¢ Alta disponibilidad del sistema.

e Bajo consumo energético en los nodos loT.

e Escalabilidad horizontal para soportar multiples zonas de riego.
e Interfaz intuitiva y adaptable a distintos dispositivos.

e Integracion segura entre médulos mediante protocolos ligeros y confiables.

Los resultados de esta fase sirvieron como base para el disefo técnico y la

planificacion de las etapas posteriores del proyecto.

3.2. Fase 2: Diseno del Sistema

3.2.1. Diseno de Software

El disefio del software constituyo el eje central del desarrollo del sistema de riego
inteligente, al definir la estructura logica, los componentes tecnoldgicos y las
herramientas que permitieron construir y validar el prototipo funcional. Esta fase se
enfoco en establecer una arquitectura robusta, modular y escalable, adecuada para
un entorno de experimentacion controlada y adaptable a una futura implementacion

en campo.

38

Capitulo 3. Metodologia

¢ Lenguajes de programacion: Se seleccion6 Python para el desarrollo del
backend, debido a su amplia comunidad y a la disponibilidad de librerias
como NumPy y Pandas, que facilitaron el manejo y analisis de datos
ambientales recopilados por los sensores. Para el frontend se empled
JavaScript junto con el framework Vue.js, con el fin de desarrollar una interfaz
interactiva y adaptable que permitiera visualizar la informacion del sistema 'y

realizar acciones de control durante las pruebas experimentales.

e Frameworks y plataformas: Se utilizé Django, un framework de alto nivel
para Python, para estructurar el backend del sistema, aprovechando su
arquitectura basada en componentes reutilizables y su capacidad para
gestionar peticiones web y comunicacién con la base de datos de manera
segura. En el frontend, Vue.js fue empleado para garantizar una actualizacién
eficiente de los elementos visuales y un manejo fluido del estado de la

aplicacion.

e Arquitectura del sistema: Se adopté un enfoque modular inspirado en
microservicios, lo que permiti6 el desarrollo, prueba e integracion
independiente de cada componente del sistema (adquisiciéon de datos,
almacenamiento, analisis y visualizacion). Esta estructura favorecio la
escalabilidad y la flexibilidad del prototipo, facilitando la incorporacién de
nuevos moédulos o la modificacion de los existentes sin afectar el

funcionamiento global del sistema durante la validacién experimental.
3.3. Fase 3: Implementacién

3.3.1. Desarrollo de Software

La implementacion del software se realiz6 de manera progresiva, siguiendo un
enfoque modular que garantizé la funcionalidad y estabilidad del prototipo

desarrollado.

39

Capitulo 3. Metodologia

Conectividad loT: Se configuraron protocolos estandar como MQTT,
empleado para la comunicacién entre los dispositivos conectados y el
servidor de procesamiento. Este protocolo se seleccion6 por su ligereza y
confiabilidad en la entrega de mensajes en tiempo real, lo que permitié
simular adecuadamente el flujo de datos entre sensores y plataforma central

durante la validacion experimental.

Monitoreo en tiempo real: Se desarroll6 un tablero de control interactivo
que permitio visualizar el comportamiento del sistema en tiempo real. Este
tablero integré graficos dinamicos y representaciones visuales de los datos
obtenidos de los sensores, facilitando el andlisis y la supervision de las

variables ambientales durante las pruebas.

3.3.2. Integracién con Hardware

Para el desarrollo del prototipo se utilizé una Raspberry Pi como controlador central

de riego. A continuacién, se describen los sensores seleccionados y su integracion

con el controlador, realizada en un entorno de validacion experimental.

Seleccioén de sensores

Sensor de humedad del suelo: DHT22
Este sensor permitio6 medir la humedad y la temperatura del ambiente con
alta precision. EIl DHT22 se conect6 a la Raspberry Pi a través de los pines

GPIO mediante comunicacién digital.

Sensor de temperatura del aire y del suelo: DS18B20

Este sensor digital de temperatura permitié monitorear simultaneamente la
temperatura del suelo y del ambiente. Su conexion se realizé mediante el bus
de 1-Wire, lo que facilitd la integracion de multiples sensores sobre una

misma linea.

Sensor de niveles de luz: BH1750

40

Capitulo 3. Metodologia

El BH1750 se utilizoé para medir la intensidad luminica en lux, conectandose

a la Raspberry Pi mediante interfaz 12C. Esta informacién resulté esencial

para analizar la relacion entre iluminacién y demanda hidrica.

e Sensor de concentraciones de CO,: SCD30

El SCD30 permiti6 medir las concentraciones de diéxido de carbono junto

con la humedad y temperatura ambiental, comunicandose con la Raspberry

Pi mediante la interfaz 12C. Estos datos complementaron la caracterizacion

del entorno de pruebas.

Proceso de integracion

1. Conexién de sensores a la Raspberry Pi

Cada sensor se conecto a la Raspberry Pi utilizando sus respectivos
protocolos de comunicacién, asegurando la estabilidad de las sefales
mediante resistencias pull-up cuando fue necesario.

Se desarrollaron scripts en Python para la lectura de los datos,
empleando librerias especializadas como Adafruit DHT,

w1thermsensor, smbus2 y smbus.

2. Configuracion del software en la Raspberry Pi

Se instal6 y configur6 el sistema operativo Raspberry Pi OS,
habilitando las interfaces necesarias (I12C y 1-Wire).

Se desarrollé una aplicacién en Python que recopild, proceso y envio
los datos hacia la base de datos central.

El sistema incluyd rutinas para simular la activacion del riego, de

acuerdo con los parametros definidos por el algoritmo de control.

3. Pruebas y calibracion de sensores

Se efectuaron pruebas de funcionamiento y calibracion conforme a las

especificaciones de cada fabricante.

41

Capitulo 3. Metodologia

Se configuraron alertas de supervision para detectar valores anémalos

o inconsistentes durante las mediciones.

Evaluacion y optimizacion

e Se desarrollé un sistema de monitoreo web que permitio visualizar los datos

de los sensores en tiempo real, realizar ajustes de parametros y validar el

desempeno del prototipo.

e La integracion completa del sistema se probo en condiciones simuladas de

cultivo protegido, evaluando su estabilidad, precision y capacidad de

respuesta ante variaciones ambientales.

3.3.3. Descripcion de Sensores y Controlador

En esta seccion se describieron los sensores seleccionados y la Raspberry Pi

utilizada como unidad central de control en el prototipo del sistema de riego

inteligente basado en l|oT. Cada componente fue elegido por su precision,

confiabilidad y compatibilidad con entornos experimentales de agricultura de

precision.

3.3.3.1.

Controlador Central: Raspberry Pi

e Caracteristicas:

Modelo: Raspberry Pi 4 Model B.

Procesador: Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz.
Memoria RAM: 4GB LPDDR4-3200 SDRAM.

Conectividad: 2.4 GHz y 5.0 GHz IEEE 802.11ac wireless, Bluetooth
5.0, BLE, Gigabit Ethernet.

Puertos: 2 puertos USB 3.0, 2 puertos USB 2.0, 2 micro HDMI
(soporte de hasta 4Kp60), GPIO de 40 pines.

Almacenamiento: MicroSD.

e Funcionamiento:

42

Capitulo 3. Metodologia

La Raspberry Pi 4 Model B desempefio el rol de controlador central del

prototipo, gestionando la adquisicion y procesamiento de los datos

provenientes de los sensores. Su capacidad de computo permitio ejecutar los

algoritmos de analisis en tiempo real y coordinar las rutinas de control del

sistema durante la validacion experimental.

3.3.3.2.

Conexion de sensores: Los sensores se conectaron a la Raspberry Pi
mediante los puertos GPIO y las interfaces 12C y 1-Wire. Se
implementaron scripts en Python para la lectura, almacenamiento y
procesamiento de los datos obtenidos.

Procesamiento de datos: La Raspberry Pi ejecuté algoritmos de
analisis y prediccion que interpretaron las mediciones ambientales,
simulando decisiones automaticas sobre el riego en funcién de las
variables monitoreadas.

Simulacién de automatizacién del riego: En lugar de una activacion
real de valvulas o bombas, se configuré un mecanismo de simulacion
del control de riego, lo que permitié validar la I6gica de funcionamiento
y verificar la correcta respuesta del sistema ante distintos escenarios

simulados.

Sensor de Humedad del Suelo: DHT22

Caracteristicas:

Tipo: Sensor digital de temperatura y humedad.
Rango de humedad: 0-100% RH (Humedad Relativa).
Precision de humedad: +2% RH.

Rango de temperatura: -40 a 80 °C.

Precision de temperatura: 0.5 °C.

Tiempo de respuesta: 2 segundos.

Interfaz: Digital.

Funcionamiento:

El sensor DHT22 se utilizé para registrar valores de temperatura y humedad

del entorno durante la validacidon experimental del prototipo. Aunque

43

Capitulo 3. Metodologia

comunmente se emplea para medir la humedad relativa del aire, en este
proyecto se configurd para estimar los niveles de humedad del suelo dentro
de condiciones controladas.

El DHT22 opera mediante un sensor capacitivo que mide la humedad y un
termistor que mide la temperatura, enviando la informacion digitalmente a la
Raspberry Pi. Esta comunicacion digital eliminé la necesidad de un
convertidor analogico-digital adicional, simplificando la integracién con el
controlador central.

Gracias a su precision, estabilidad y bajo costo, el DHT22 resulté adecuado
para la verificacion del desempeno del sistema de adquisicion de datos,
proporcionando mediciones confiables para el analisis de las variables

ambientales dentro del entorno de prueba.

3.3.3.3. Sensor de Temperatura del Aire y del Suelo: DS18B20

Caracteristicas:

— Tipo: Sensor digital de temperatura.

— Rango de temperatura: -55 a 125 °C.

— Precision: £0.5 °C en el rango de -10 a 85 °C.

— Interfaz: 1-Wire.

— Resolucién: 9 a 12 bits, programable.

— Tiempo de respuesta: Conversion de temperatura en menos de 750

ms.

Funcionamiento:
El sensor DS18B20 se empled para medir la temperatura tanto del aire como
del suelo durante las pruebas experimentales del prototipo. Su protocolo de
comunicacion 1-Wire permitié la conexion de varios sensores en una misma
linea, lo que simplificé el cableado y facilité la expansién del sistema.
Gracias a su precision y rango operativo amplio, el DS18B20 proporcioné
mediciones confiables de temperatura que fueron utilizadas para analizar la
respuesta térmica del sistema y validar el desempefo del algoritmo de

control.

44

Capitulo 3. Metodologia

Las lecturas obtenidas se transmitieron digitalmente a la Raspberry Pi, donde
fueron procesadas en tiempo real por los scripts desarrollados en Python.
Este sensor demostr6 ser adecuado para la etapa de validacion
experimental, permitiendo evaluar la capacidad del sistema para adaptarse

a variaciones térmicas simuladas.

3.3.3.4. Sensor de Niveles de Luz: BH1750

Caracteristicas:

— Tipo: Sensor digital de luz ambiental.

— Rango de medicién: 0-65,535 lux.

— Precisién: Alta precision en un amplio rango de luminancia.

— Interfaz: 12C.

— Consumo de energia: Bajo consumo de energia.

— Tiempo de respuesta: 16 ms a 120 ms dependiendo de la resolucién

seleccionada.

Funcionamiento:
El sensor BH1750 se utilizd para medir la intensidad luminica durante la
validacion experimental del prototipo, proporcionando valores expresados en
lux. Este dispositivo empled la interfaz 12C para comunicarse con la
Raspberry Pi, lo que permitié una lectura rapida y estable de los datos.
Las mediciones obtenidas fueron registradas y analizadas en tiempo real,
facilitando la evaluacion del comportamiento del sistema ante variaciones de
luminosidad simuladas. Si bien en una aplicacién en campo los datos de este
sensor podrian emplearse para ajustar automaticamente los horarios de
riego, en esta etapa su funcioén se limité a verificar la correcta adquisicion y
transmision de informacién luminica dentro del entorno de prueba.
Gracias a su amplio rango de medicion y alta sensibilidad, el BH1750 resulté
adecuado para validar la precision del sistema de monitoreo ambiental y
comprobar la estabilidad de la comunicacion entre los distintos médulos del

sistema.

45

Capitulo 3. Metodologia

3.3.3.5. Sensor de Concentraciones de CO2: SCD30

Caracteristicas:

— Tipo: Sensor de diéxido de carbono (CO2), humedad y temperatura.

— Rango de medicién de CO2: 400-10,000 ppm.

— Precisién de CO2: £(30 ppm + 3% de la lectura).

— Rango de humedad: 0-100% RH.

— Precisiéon de humedad: +2% RH.

— Rango de temperatura: -40 a 70 °C.

— Precision de temperatura: 0.4 °C.

— Interfaz: 12C.

— Consumo de energia: Bajo consumo de energia.
Funcionamiento:
El sensor SCD30 se empled para medir simultaneamente las
concentraciones de diéxido de carbono, la humedad relativa y la temperatura
del entorno durante la validacion experimental del prototipo. Este dispositivo
utilizo la interfaz 12C para comunicarse con la Raspberry Pi, permitiendo la
adquisicion estable y continua de datos ambientales.
Las mediciones de CO, resultaron especialmente utiles para analizar la
relacion entre la concentracion de gases y las condiciones ambientales
simuladas, ya que el diéxido de carbono influye directamente en los procesos
de fotosintesis y transpiraciéon vegetal.
El conjunto de variables registradas por el SCD30 complement6 la
informacion proveniente de otros sensores, posibilitando un monitoreo
integral del entorno de pruebas y aportando datos relevantes para la
verificacion del desempefio del sistema de monitoreo ambiental.
Gracias a su precision y estabilidad de lectura, el SCD30 demostré ser un
componente adecuado para la validacion del modelo de adquisicion de datos
del sistema de riego inteligente, sirviendo como referencia para futuras

aplicaciones en entornos agricolas reales.

46

Capitulo 3. Metodologia

3.3.3.6. Integracion y Monitoreo

La integracion de los sensores con la Raspberry Pi permitié realizar un monitoreo
continuo y preciso de las condiciones ambientales y del suelo dentro del entorno de
validacién experimental. Los datos obtenidos fueron procesados en tiempo real
mediante los scripts desarrollados en Python, lo que permitié verificar el correcto

funcionamiento del flujo de adquisicion, transmision y analisis de informacion.

Durante las pruebas, se evalud la estabilidad del sistema y la coherencia de los
datos registrados, comprobando la capacidad del prototipo para operar de forma
auténoma y mantener la comunicacién constante entre los diferentes médulos. Si
bien no se realizaron ajustes automaticos sobre un sistema de riego real, se valido
la logica de control que permitiria dicha automatizacion en futuras etapas de

implementacion.

Esta integraciéon demostré que la arquitectura disefiada es funcional, eficiente y
adaptable a distintos escenarios de uso, validando el desempefio general del
sistema propuesto para la gestién inteligente del riego. Con esta configuracion, el
prototipo consolidé su capacidad para optimizar el manejo del agua en condiciones
simuladas y sento las bases para la adopcion de practicas agricolas mas sostenibles

y resilientes en aplicaciones futuras.

3.4. Fase 4: Validacion en entorno de laboratorio

La validacion del sistema se realizé en un entorno controlado con el propésito de
comprobar su funcionamiento integral, la consistencia del flujo de datos y la
capacidad de respuesta ante diferentes condiciones simuladas de riego. Esta fase
represento la culminacion del desarrollo del prototipo, enfocandose en evaluar su

desempeno bajo condiciones reproducibles y monitoreadas.
Las pruebas efectuadas incluyeron:

e Simulacion de datos sensoriales para verificar el flujp completo de

informacion desde los sensores hasta el frontend.

47

Capitulo 3. Metodologia

e Pruebas de latencia para medir el tiempo de respuesta entre la adquisicion
de los datos, su procesamiento en el backend y su visualizacion en la interfaz
web.

e Simulacién de la activacion remota de la bomba de agua mediante la interfaz
web y comandos transmitidos por el protocolo MQTT, validando la
comunicacion entre los distintos médulos del sistema.

e Evaluacion del modelo predictivo de humedad del suelo, verificando la
correspondencia entre las sugerencias de riego generadas y los valores

esperados segun los escenarios establecidos.

Los resultados obtenidos demostraron que el sistema operd correctamente,
integrando de manera efectiva los componentes de hardware, software y
comunicacion. Se confirmé la capacidad del prototipo para procesar datos en tiempo
real, generar predicciones coherentes y ejecutar respuestas automaticas o

manuales ante las condiciones simuladas.

Esta fase permitié validar el desempeno funcional y la estabilidad del sistema
propuesto, consolidando su viabilidad técnica como herramienta de apoyo para la
gestion inteligente del riego en entornos controlados y su potencial para futuras

aplicaciones agricolas.

3.5. Fase 5: Documentacién del proceso

Alo largo del desarrollo del proyecto se elabor6 un registro sistematico y detallado
de todas las etapas del trabajo, con el objetivo de garantizar la trazabilidad del
proceso Y facilitar la replicacion o ampliacién futura del sistema. La documentacion
generada constituyd una parte esencial del proyecto, ya que permitié mantener una
organizacion clara entre los componentes técnicos, los resultados obtenidos y las

decisiones de disefio adoptadas.

Entre los materiales recopilados se incluyeron:

48

Capitulo 3. Metodologia

e Diagramas de arquitectura del sistema y flujos de datos, que describen la
interaccion entre los modulos de hardware, software y comunicacion.

e Esquemas eléctricos y de conexidon de sensores, elaborados para
representar con precision la configuracion empleada durante la validacion
experimental.

e Bitacora técnica de incidencias, donde se registraron errores detectados,
ajustes realizados y soluciones aplicadas en cada fase del desarrollo.

e Cadigo fuente estructurado por modulos y subcomponentes, documentado
mediante comentarios y convenciones estandarizadas para facilitar su
comprensiéon y mantenimiento.

e Capturas de la interfaz de usuario y registros de las pruebas realizadas, que
evidencian el comportamiento del sistema y sus funcionalidades principales.

e Analisis de rendimiento, en el que se evaluaron aspectos como la latencia
del sistema, el procesamiento de datos y la estabilidad de la comunicacién

entre moédulos.

Esta documentacion se integré como parte sustantiva de la tesis, con la finalidad de
servir como referencia para futuras aplicaciones o ampliaciones del sistema, asi
como guia metodoldgica para investigaciones o desarrollos posteriores en el ambito

de los sistemas de riego inteligente basados en |oT.

49

TESIS TESIS TESIS TESIS TESIS

Capitulo 4. Desarroll ementacion

TESIS TESIS TESIS TESIS TESIS

Capitulo 4. Desarrollo e Implementacion

4.Desarrollo e Implementacion

El presente capitulo describe el proceso de desarrollo e implementacién del SIRCA-
loT (Sistema Inteligente de Riego y Control Automatizado basado en IoT), propuesto
en este estudio. El sistema fue concebido como un prototipo funcional orientado a
demostrar la viabilidad técnica y operativa de integrar tecnologias de sensorizacion,
comunicacion inalambrica, procesamiento de datos y aprendizaje automatico en el

contexto de cultivos protegidos en Aguascalientes, México.

El desarrollo se estructurd bajo una arquitectura modular que permitio abordar de
forma independiente los diferentes subsistemas que conforman la solucion: el
subsistema |oT para la adquisicion y transmision de datos ambientales, la
plataforma web encargada del procesamiento, visualizacion y control del sistema, y
el subsistema predictivo basado en técnicas de machine learning. Esta organizacion
favorecié el disefio iterativo y la validacion individual de cada componente,

garantizando la coherencia en la integracion final.

En esta etapa del proyecto, el sistema SIRCA-IoT fue implementado y validado en
un entorno controlado que permitié reproducir las condiciones de funcionamiento
esperadas en un cultivo protegido, asegurando el monitoreo continuo de variables
ambientales relevantes y la automatizacion del proceso de riego en funcion de los
datos obtenidos y las predicciones generadas. El enfoque experimental adoptado
permitio verificar la comunicacion entre los dispositivos 10T, la estabilidad del flujo
de datos, la eficiencia del backend en el manejo de informacién en tiempo real y la

precision del modelo predictivo en la estimacion del nivel de humedad del suelo.

El desarrollo se organizo en cinco secciones principales. En la primera se presenta
la arquitectura general del sistema, describiendo los componentes que lo integran y
su interaccidn. La segunda seccion aborda el subsistema loT, detallando el
funcionamiento de los sensores, la transmisién de datos y el control automatizado
del riego. La tercera describe la plataforma web, explicando su estructura de
backend y frontend, asi como las herramientas empleadas para la gestién de

informacion y la comunicacién con el hardware. En la cuarta se expone el

51

Capitulo 4. Desarrollo e Implementacion

subsistema predictivo, donde se describe el modelo de aprendizaje automatico
utilizado para anticipar los niveles de humedad del suelo. Finalmente, en la quinta
seccion se presentan los procesos de integracion y validacion funcional del sistema,
donde se analiza el desempefio general del prototipo y su capacidad para operar de

manera autonoma y eficiente.

El enfoque adoptado permitié no solo demostrar el funcionamiento integral del
sistema, sino también sentar las bases para su futura implementacioén en escenarios
agricolas reales. En conjunto, este capitulo representa la culminacién del proceso
metodolégico descrito previamente, traduciendo los requerimientos identificados en

un sistema tangible, funcional y validado experimentalmente.

4.1. Desarrollo del Sistema SIRCA-loT

4.1.1. Arquitectura General del Sistema

El desarrollo del SIRCA-IoT se estructuré bajo una arquitectura distribuida y
modular, disefiada para integrar de forma coherente los componentes de hardware,
software y modelado predictivo. La arquitectura propuesta permitié el monitoreo
continuo de variables ambientales, la automatizacion del riego y la generacion de
predicciones basadas en datos historicos, todo dentro de un entorno controlado que

reproduce las condiciones de un cultivo protegido.

La solucion se organizd en tres subsistemas principales: el subsistema loT,
encargado de la adquisicion y transmision de datos sensoriales; el subsistema web,
responsable del procesamiento, almacenamiento, visualizacion y control del
sistema; y el subsistema predictivo, dedicado al analisis de datos y la estimacion de
la humedad del suelo mediante aprendizaje automatico. Estos subsistemas se
comunicaron a través del protocolo MQTT (Message Queuing Telemetry Transport),
que garantizé la transmision eficiente y confiable de los datos entre los distintos

nodos y servicios del sistema.

52

Capitulo 4. Desarrollo e Implementacion

Diagrama 1. Arquitectura General del Sistema.

4.1.11. Estructura de la Arquitectura Distribuida

La arquitectura se basoé en el principio de desacoplamiento funcional, permitiendo
que cada subsistema operara de manera independiente pero sincronizada. La
Raspberry Pi 4 Model B se utiliz6 como nodo central de adquisicion y control del
SIRCA-IoT, recibiendo los datos de los sensores conectados a sus interfaces GPIO,
I2C y 1-Wire. Estos datos fueron procesados localmente y enviados al bréker MQTT

HiveMQ, que actué como intermediario entre el hardware y la plataforma web.

En el lado del servidor, el backend desarrollado en Django se encargé de recibir y
registrar los datos en una base de datos TimescaleDB, optimizada para el manejo
de series temporales. A partir de esta informacidn, el sistema permitié tanto el
monitoreo en tiempo real como el almacenamiento histérico para su posterior
analisis. La comunicacién con los usuarios se gestiondé mediante una interfaz web
desarrollada en Vue.js, la cual permitié la visualizacion grafica de los datos, el
control manual del riego y el seguimiento de las predicciones generadas por el

modelo de machine learning.

El modelo predictivo, implementado y entrenado en Python, se integré al backend
mediante un servicio modular que procesaba los datos registrados, estimaba la
humedad futura del suelo y enviaba las recomendaciones al sistema de control. De

esta manera, el flujo de informacion siguié un esquema circular que unié los

53

Capitulo 4. Desarrollo e Implementacion

procesos de sensado, transmision, prediccion y accion. A continuacion, se describen

los componentes de cada uno de estos subsistemas:

>

Backend (Django + DRF + Channels):

Django REST Framework (DRF): Facilita la creacion de endpoints para la
interaccion con el frontend, permitiendo la consulta de datos historicos de los
sensores y la configuracion de sus umbrales [31].

Django Channels: Utilizado para gestionar la comunicacion en tiempo real
mediante WebSockets, o que permite al frontend recibir actualizaciones
instantaneas sobre los valores de los sensores sin necesidad de recargar la
pagina [32].

Redis: Actua como cache para optimizar la velocidad de comunicacion y
como broker para las tareas asincronas gestionadas por Celery [33].
Celery: Se utiliza para gestionar tareas asincronas, como la recoleccion
periodica de datos y la integracion con dispositivos de control, segun las

necesidades del sistema [34].

Frontend (Vue 3 + Vuetify 3):

Vue 3: Gestiona la reactividad de la interfaz, actualizando en tiempo real la

visualizacion de los sensores y cualquier otra informacion relevante [35].

Vuetify 3: Proporciona los componentes de interfaz de usuario necesarios

para crear una experiencia visual atractiva y facil de usar [36].

Vue3-ApexCharts: Permite la visualizacion grafica de los datos histéricos de

los sensores mediante graficos interactivos [37].

Pinia: Facilita el manejo del estado de la aplicacion, permitiendo el

almacenamiento de configuraciones y datos en el frontend [38].

Axios: Se usa para interactuar con las APIs del backend, consultando datos
histéricos y enviando solicitudes para cambiar configuraciones o realizar

acciones manuales [39].

54

Capitulo 4. Desarrollo e Implementacion

» Almacenamiento de Datos (TimescaleDB + PostgreSQL)

TimescaleDB: Permite almacenar y consultar datos en tiempo real y a lo
largo del tiempo, optimizando las operaciones sobre grandes volumenes de

datos de sensores [40].

PostgreSQL: Base de datos relacional utilizada para la gestion de los datos
persistentes, como la configuracion de los sensores, registros de usuarios,
etc [41].

4.1.1.2. Comunicacion y Flujo de Datos

El sistema se organiza de manera que cada componente se comunica de forma

eficiente, permitiendo la actualizacién en tiempo real de los datos y la interaccién

con el usuario.

1.

Sensores — Backend: Los datos de los sensores se envian al backend

mediante MQTT o protocolos similares, para su procesamiento y analisis.

Backend — Frontend: A través de WebSockets, el backend envia
actualizaciones en tiempo real a la interfaz de usuario, permitiendo al usuario
ver los cambios en los valores de los sensores sin necesidad de recargar la

pagina.

Frontend — Backend (REST API): El usuario puede interactuar con el
sistema a través de la APl RESTful, permitiendo la consulta de datos

historicos y la modificacion de configuraciones de los sensores.

Backend — TimescaleDB: Los datos de los sensores se almacenan en

TimescaleDB para su posterior consulta.

Este disefio garantizé una comunicacion bidireccional, en la que tanto los datos de

sensores como las érdenes de control fluyeron de manera constante y sincroénica,

lo que permiti®6 mantener la operacion autonoma del sistema con minima

intervencion humana.

55

Capitulo 4. Desarrollo e Implementacion

41.1.3. Principios de Diseino

Durante el desarrollo del sistema se adoptaron principios de ingenieria de software
y hardware orientados a garantizar su fiabilidad, escalabilidad y sostenibilidad. Entre

los mas relevantes se destacaron los siguientes:

e Modularidad: cada componente del sistema fue disefiado como una unidad
funcional independiente (sensores, backend, frontend, modelo predictivo),
facilitando el mantenimiento, la depuracion y la futura ampliacion del
prototipo.

e Escalabilidad: la arquitectura permitié la incorporacion de nuevos sensores,
nodos loT o zonas de riego sin modificar el nucleo del sistema.

e Eficiencia energética: el hardware fue configurado para minimizar el consumo
eléctrico, lo cual resulta esencial en aplicaciones agricolas de bajo
mantenimiento.

e Comunicacion ligera: el uso del protocolo MQTT redujo la sobrecarga de
datos y optimizé la transmision en entornos de conectividad limitada.

e Seguridad y confiabilidad: se implementaron mecanismos de autenticacion
en el bréker MQTT y en la APl web, garantizando la integridad de los datos y

la proteccion frente a accesos no autorizados.

La modularidad del sistema facilita la incorporacion de nuevas funcionalidades sin
alterar el nucleo del sistema. Ademas, la capacidad de integrar dispositivos
adicionales como valvulas de riego, sensores adicionales o sistemas de control mas
avanzados asegura que el sistema pueda adaptarse a distintas necesidades

agricolas [42].

Estos principios sustentaron el disefio general del sistema y guiaron su
implementacion en las fases posteriores, asegurando que el prototipo alcanzara un

equilibrio entre complejidad técnica, eficiencia operativa y viabilidad practica.

56

Capitulo 4. Desarrollo e Implementacion

Diagrama 2. Arquitectura del Sistema (Backend, Frontend y Almacenamiento de Datos).

4.1.2. Subsistema loT: Adquisicion y Transmision de
Datos

El subsistema loT constituyé la capa fisica del sistema de riego inteligente,
encargada de la medicion y transmision de las variables ambientales que sirvieron
como base para la toma de decisiones. Este componente se diseio para recolectar
informacion de forma continua y confiable, garantizando la comunicacién con el
servidor central mediante el protocolo MQTT. La integracion de sensores con la
Raspberry Pi permitié simular un entorno agricola controlado, en el cual se validaron
los procesos de adquisicion, procesamiento y envio de datos hacia la plataforma

web.

41.2.1. Controlador Central

El controlador central es el nucleo del sistema de riego inteligente basado en IoT.

Su funcion principal es la adquisicidon de datos desde los sensores, el procesamiento

57

Capitulo 4. Desarrollo e Implementacion

de la informacidn, el control del actuador (bomba de agua) y la transmision de datos

a través del protocolo MQTT al broker de HiveMQ.

En este sistema, se ha seleccionado la Raspberry Pi 4 Model B como unidad central
de procesamiento y comunicacion debido a su capacidad de computo, conectividad

y compatibilidad con multiples sensores y dispositivos |oT [43].
Caracteristicas Técnicas de la Raspberry Pi 4 Model B:

Procesador: Broadcom BCM2711, Quad-Core Cortex-A72 a 1.5 GHz

Memoria RAM: Variantes de 2GB, 4GB u 8GB LPDDR4

Almacenamiento: Tarjeta microSD (recomendada de 16GB o mas)

Conectividad:

Wi-Fi 802.11 b/g/n/ac

e Bluetooth 5.0

e Ethernet Gigabit

e 4 puertos USB (2x USB 3.0, 2x USB 2.0)

e GPIO de 40 pines para la conexion de sensores y actuadores [43]

Sistemas operativos compatibles: Raspberry Pi OS (recomendado), Ubuntu,
entre otros [43].

La Raspberry Pi ejecutd un servicio en Python que gestiond las siguientes tareas
principales:

e Lectura de datos desde los sensores conectados mediante los puertos GPIO,
2C y 1-Wire.
e Preprocesamiento local de las mediciones (filtrado, normalizacion vy

validacion).

58

Capitulo 4. Desarrollo e Implementacion

e Publicacion de datos hacia el broker MQTT, en tépicos definidos para cada
variable.
e Recepcion de comandos de control, enviados desde el backend para el

encendido o apagado remoto de la bomba de agua.

Esta configuracion permiti6 una comunicacion bidireccional entre el hardware vy el
sistema web, reproduciendo el comportamiento esperado en un escenario agricola
real. La eleccidon de la Raspberry Pi 4 Model B permite un alto grado de flexibilidad
y escalabilidad en el sistema, garantizando una gestion eficiente del riego mediante

el monitoreo en tiempo real y la comunicacion con el broker MQTT de HiveMQ [44].

41.2.2. Sensores y Actuadores Implementados

41.2.2.1. Sensores

El sistema de riego inteligente basado en IoT incorpora una serie de sensores
disefiados para recopilar informacién sobre el entorno y el suelo, permitiendo una
gestion eficiente del agua. A continuacién, se describen en detalle los sensores

empleados, su funcionamiento y su integracién con la Raspberry Pi 4 Model B.
DHT22 (Humedad y temperatura ambiental):

El sensor DHT22 es un dispositivo digital que mide la temperatura y la humedad
relativa del aire. Es ampliamente utilizado en aplicaciones de monitoreo ambiental

debido a su precision y bajo consumo energético [45].

e Rango de temperatura: -40°C a 80°C

e Precision de temperatura: £0.5°C

e Rango de humedad relativa: 0% - 100%

e Precisién de humedad: +2-5%

e Interfaz de comunicacion: Digital, protocolo de un solo cable.

DS18B20 (Temperatura del suelo):

59

Capitulo 4. Desarrollo e Implementacion

Este sensor digital es ideal para medir la temperatura del suelo debido a su
encapsulado resistente al agua. Utiliza el protocolo 1-Wire, permitiendo la conexion

de multiples sensores en el mismo bus de datos [45].

Rango de temperatura: -55°C a 125°C

Precisién: £0.5°C en el rango de -10°C a 85°C

Interfaz de comunicacion: 1-Wire

Voltaje de operacion: 3.0V - 5.5V

BH1750 (Intensidad de luz ambiental):

El sensor BH1750 mide la cantidad de luz en lux y proporciona datos en formato
digital mediante la interfaz I1>C. Es crucial para determinar la influencia de la luz en

la evaporacion del agua en el suelo [45].

e Rango de medicién: 1 - 65535 lux

e Interfaz de comunicacion: I?C

« \oltaje de operacion: 2.4V - 3.6V

e Precision: +20%

SCD41 (Sensor de CO,):

Este sensor mide la concentracion de didxido de carbono en el aire, lo cual es util

para analizar el impacto de la ventilacion y la fotosintesis en el invernadero [45].

e Rango de medicion: 0 - 40,000 ppm
e Interfaz de comunicacion: I?C

o Voltaje de operacion: 2.4V - 5.5V

60

Capitulo 4. Desarrollo e Implementacion

e Precision: £(50 ppm + 5% del valor medido)

LM393 (Sensor de humedad del suelo con ADC ADS1115):

Este sensor, combinado con el convertidor ADC ADS1115, permite medir la
humedad del suelo de manera precisa y enviarla a la Raspberry Pi, ya que la

Raspberry Pi no cuenta con entradas analdgicas nativas [45].

e Interfaz del sensor: Analdgica

e Conversién ADC: ADS1115 (16 bits)

o Voltaje de operacion: 3.3V - 5V

e Precision de medicion: Alta, debido al uso del convertidor ADC

Cada sensor fue probado de manera individual para verificar su correcta lectura, y
posteriormente integrado al sistema general. Las calibraciones y conexiones
eléctricas se documentaron en el Anexo A, donde se describen los esquemas de

cableado y los parametros de configuracion empleados durante las pruebas.

4.1.2.2.2. Actuadores

El sistema de riego inteligente basado en loT cuenta con un unico actuador: una
bomba de agua controlada mediante un relé. Este componente es el encargado de
regular el suministro de agua a los cultivos en funcién de los valores de humedad
del suelo obtenidos a través del sensor LM393, garantizando un uso eficiente del

recurso hidrico.
Caracteristicas de la bomba de agua:

o Tipo: Bomba de agua sumergible.

o \oltaje de operacion: 3V - 6V.

e Caudal de agua: 80-120 L/h (2 litros por minuto)

61

Capitulo 4. Desarrollo e Implementacion

e Modo de activacion: Controlada por un relé mediante la Raspberry Pi

Modulo Relé

Para controlar la activacion de la bomba de agua con la Raspberry Pi, se emplea un
modulo relé de estado solido o mecanico que actua como un interruptor electrénico,

permitiendo la conexion o desconexion de la alimentacion de la bomba.

o \oltaje de control: 3.3V - 5V

o \oltaje de carga: Hasta 250V AC o 30V DC

e Corriente soportada: 10A

o Tipo de relé: SPDT (Single Pole Double Throw)

Este actuador es un elemento clave en la automatizacion del riego, ya que permite
gestionar el flujo de agua de manera inteligente en respuesta a las condiciones del
suelo, optimizando asi el consumo de agua y mejorando la salud del cultivo [45].
Las calibraciones y conexiones eléctricas se documentaron en el Anexo A, donde
se describen los esquemas de cableado y los parametros de configuracion

empleados durante las pruebas.

4.1.2.3. Conectividad y Comunicacion

La conectividad y comunicacion en el sistema de riego inteligente basado en loT
son fundamentales para garantizar la transmision eficiente y en tiempo real de los
datos obtenidos por los sensores y las 6rdenes de activacion del actuador. Para ello,
se utilizé el protocolo Message Queuing Telemetry Transport (MQTT) y el servicio
de broker MQTT de HiveMQ, que permite la comunicacion entre la Raspberry Piy

los demas dispositivos del sistema [46].

4.1.2.31. Protocolo MQTT

MQTT es un protocolo de mensajeria liviano ideal para sistemas loT debido a su

baja latencia, consumo minimo de ancho de banda vy fiabilidad en la transmision de

62

Capitulo 4. Desarrollo e Implementacion

datos. Funciona bajo un modelo publicador-suscriptor, en el cual los dispositivos

pueden publicar y recibir mensajes en distintos "topicos" dentro del broker.

Modelo de Comunicacion: Publicador-Suscriptor

Protocolo de Transporte: TCP/IP

Seguridad: Compatible con autenticacion TLS/SSL

Eficiencia: Bajo consumo de ancho de banda, ideal para loT

En este sistema, la Raspberry Pi actua como publicador y suscriptor, enviando datos

de los sensores y recibiendo comandos para la activacion de la bomba de agua [47].

4.1.2.3.2. Broker MQTT de HiveMQ

HiveMQ es un broker MQTT basado en la nube que facilita la comunicacién segura

y confiable entre dispositivos 10T. Se ha elegido este servicio debido a su estabilidad,

facilidad de integracion y soporte para multiples clientes simultaneos.

Caracteristicas principales:

Soporte para conexiones simultaneas de multiples dispositivos

Baja latencia en la transmision de mensajes

Seguridad con TLS/SSL y autenticacion de clientes

Compatible con QoS (Calidad de Servicio) para priorizacion de mensajes

[48].

4.1.2.3.3. Toépicos MQTT Utilizados en el Sistema

En este sistema se han definido los siguientes tépicos MQTT para la transmisién de

datos y el control del actuador:

Toépico de Sensores: iot/riego/sensores

63

Capitulo 4. Desarrollo e Implementacion

Publica los valores de temperatura, humedad ambiental, humedad del suelo,

CO; e intensidad luminica.
o Topico de Control de la Bomba: iot/riego/bomba
Recibe 6rdenes de activacion o desactivacion de la bomba de agua.

41.2.3.4. Flujo de Datos y Procesamiento

El sistema de riego inteligente basado en loT sigue un flujo de datos bien definido
para garantizar la correcta adquisicion, procesamiento y transmisién de informacion.

A continuacion, se detalla el flujo de datos en el sistema:

1. Adquisicion de Datos:

- Los sensores conectados a la Raspberry Pi recopilan informacién en
tiempo real sobre la temperatura y humedad del ambiente (DHT22), la
temperatura del suelo (DS18B20), la intensidad de luz (BH1750), los
niveles de CO, (SCD41) y la humedad del suelo (LM393 con

ADS1115).

- Cada sensor tiene un script independiente en Python que ejecuta su

lectura y retorna los valores obtenidos.
2. Procesamiento Local:

- La Raspberry Pi recibe los datos desde los sensores y los convierte

en un formato estructurado.
3. Transmision de Datos al Broker MQTT:

- Todos los datos recopilados se publican en el broker HiveMQ a través

del protocolo MQTT.

64

Capitulo 4. Desarrollo e Implementacion

- La Raspberry Pi envia los datos a topicos especificos en el broker:
= jot/sensores: Contiene los valores de los sensores.

- El cliente MQTT también se suscribe al topico iot/control para recibir

comandos de activacion y desactivacion de la bomba de agua.
4. Interaccion con el Usuario:

- Los datos enviados al broker MQTT pueden ser accedidos por clientes
remotos que deseen monitorear las condiciones del cultivo en tiempo

real.

- Se pueden enviar comandos desde una interfaz de usuario o
aplicacion para activar o desactivar manualmente la bomba de agua a

través del broker MQTT.
5. Respuesta del Sistema:

- Cuando se recibe un comando en el tépico iot/control, la Raspberry Pi

lo interpreta y activa o desactiva la bomba de agua en consecuencia.

- Se actualiza el estado del sistema en el broker MQTT, asegurando que

cualquier cliente suscrito reciba la informacion mas reciente.

Este flujo de datos garantiza la automatizacion eficiente del riego, optimizando el

consumo de agua y asegurando condiciones optimas para el crecimiento del cultivo.

El detalle completo de configuracion y codigo fuente se presenta en el Anexo A.

65

Capitulo 4. Desarrollo e Implementacion

Diagrama 3. Diagrama de flujo de datos y procesamiento en el sistema loT.

4.1.3. Subsistema Web: Backend y Frontend

El subsistema web constituyé la capa logica y de presentacion del sistema de riego
inteligente, encargada de recibir, procesar, almacenar y mostrar la informacion
proveniente de los dispositivos |0T, asi como de administrar la comunicacion con el
modelo predictivo y los médulos de control. Este subsistema se diseid bajo una
arquitectura cliente-servidor que integré tecnologias modernas de desarrollo web,

garantizando un entorno robusto, escalable y de facil uso para el operador.

Este sistema esta compuesto por dos médulos principales: un backend desarrollado
con Django, encargado de recibir, procesar y almacenar datos desde los sensores;
y un frontend construido en Vue 3, que permite visualizar la informacion en tiempo
real, explorar métricas historicas y configurar alertas o parametros del sistema. La
arquitectura integra tecnologias como MQTT para la comunicacién loT, WebSockets
para actualizacion en tiempo real, y TimescaleDB para el almacenamiento de series

temporales, gestionando procesos asincronos mediante Celery.

En esta seccion se describen los componentes técnicos del sistema web, el flujo de
datos desde su origen hasta la visualizacién, y los mecanismos implementados para

garantizar su escalabilidad, modularidad y seguridad.

66

Capitulo 4. Desarrollo e Implementacion

41.3.1. Backend del Sistema

El backend fue desarrollado utilizando el framework Django junto con Django REST

Framework (DRF), debido a su estabilidad, seguridad y facilidad para estructurar

aplicaciones modulares. Este componente funcioné como el nucleo del sistema,

encargandose de la comunicacién entre la Raspberry Pi, la base de datos, el modelo

predictivo y la interfaz web.

El backend gestiond las siguientes funciones principales:

Recepcion y almacenamiento de datos IoT:

Los datos enviados desde la Raspberry Pi a través del broker MQTT fueron
recibidos mediante un cliente integrado en el backend, que proceso los
mensajes y los almacend en una base de datos TimescaleDB. Este sistema,
disefiado para manejar series temporales, permiti6 conservar registros
historicos y realizar consultas eficientes sobre grandes volumenes de datos
ambientales.

Exposicién de servicios mediante APl RESTful:

Se desarrollaron endpoints que facilitaron la comunicacioén entre los distintos
modulos del sistema. A través de estas rutas, el frontend accedié a los datos
de sensores, al historial de humedad del suelo y a las predicciones
generadas por el modelo de machine learning. Las rutas principales
incluyeron funciones para la consulta, control manual del riego, gestion de
dispositivos y monitoreo de eventos.

Integracién con el modelo predictivo:

El backend alojé un servicio encargado de ejecutar el modelo de prediccion
de humedad del suelo. Este proceso analizaba las ultimas lecturas
almacenadas y generaba una estimacion del nivel de humedad futuro. Los
resultados eran devueltos al sistema central y mostrados en la interfaz de
usuario como sugerencias de riego.

Control remoto del riego:

Cuando el sistema recibia una orden de activacion o desactivacién del riego

(ya sea de manera automatica o manual), generaba un mensaje MQTT hacia

67

Capitulo 4. Desarrollo e Implementacion

el tépico correspondiente, que era recibido por la Raspberry Pi. Este proceso

cerro el ciclo de comunicacion entre software y hardware.

Para optimizar el rendimiento y la ejecucidén de tareas periddicas, se integré un
sistema de procesamiento asincrono con Celery y Redis, utilizado para tareas como
el envio recurrente de datos de diagnostico o el calculo de predicciones a intervalos
definidos. La configuracion detallada de estos servicios, junto con los scripts de

integraciéon MQTT, se documenta en el Anexo B.

4.1.3.1.1. Stack Tecnolégico

El backend del sistema se desarrolla utilizando una combinacion de tecnologias
robustas y escalables. A continuacién, se detallan las principales tecnologias
utilizadas en el backend para garantizar un alto rendimiento, facilidad de

mantenimiento y capacidad de ampliacion.

> Django

Django es un framework web de alto nivel que facilita el desarrollo de
aplicaciones web complejas de manera rapida y con un enfoque en la
reutilizaciéon de codigo. Django es conocido por su enfoque en la "convencién
sobre configuracién”, lo que significa que proporciona una estructura clara y
bien definida para que los desarrolladores puedan concentrarse en la légica
de negocio sin tener que preocuparse por los detalles técnicos de bajo nivel.
Ventajas de usar Django:

e Escalabilidad: Django es altamente escalable, lo que permite que el
sistema crezca con facilidad a medida que se afiaden nuevos
sensores, dispositivos o funcionalidades.

e Seguridad: Django incluye multiples medidas de seguridad integradas,
como proteccién contra CSRF (Cross-Site Request Forgery), XSS
(Cross-Site Scripting) y SQL Injection.

e ORM (Object-Relational Mapping): Django utiliza un ORM para
interactuar con bases de datos, lo que permite definir modelos de
datos como clases Python y gestionarlas de manera sencilla sin tener

que escribir consultas SQL directamente [49].

68

Capitulo 4. Desarrollo e Implementacion

» Django REST Framework (DRF)
Django REST Framework (DRF) es una extension de Django disefiada para
crear APIs RESTful de manera rapida y sencilla. DRF permite exponer los
recursos del backend (como las lecturas de los sensores, configuraciones de
los dispositivos y notificaciones) a través de endpoints que pueden ser
consumidos por el frontend.
Ventajas de usar DRF:

e Facilidad para crear APls RESTful: Con DREF, la creacion de una API
es rapida y sencilla gracias a sus herramientas como serializers y
viewsets.

e Autenticacion y permisos: DRF proporciona un sistema de
autenticacion y autorizacion flexible, permitiendo aplicar permisos
especificos a cada recurso (por ejemplo, solo ciertos usuarios pueden
modificar la configuracién de los sensores).

e Documentacion automatica: DRF incluye herramientas para generar
documentacion de la APl de manera automatica, facilitando la

interaccién entre el backend y el frontend [31].

» Django Channels
Django Channels extiende la capacidad de Django para manejar
WebSockets, lo que permite la comunicacion en tiempo real entre el backend
y el frontend. En el caso de este sistema, se utiliza Django Channels para
permitir que los datos de los sensores y las notificaciones de control, como
el estado de la bomba de agua, se transmitan en tiempo real al frontend.
Ventajas de usar Django Channels:
e Comunicacién en tiempo real: Con WebSockets, el backend puede
enviar datos al frontend sin necesidad de que el usuario recargue la
pagina, lo que mejora la experiencia de usuario al ver la informacion

en tiempo real.

69

Capitulo 4. Desarrollo e Implementacion

> Redis

Soporte para multiples protocolos: Django Channels no solo soporta
WebSockets, sino también protocolos como HTTP2, lo que amplia las
capacidades del sistema para otros tipos de comunicacién en el futuro
[32].

Redis es un sistema de almacenamiento en memoria que se utiliza como

cache y como broker de tareas. En este sistema, Redis cumple dos roles

fundamentales:

Cache: Redis se utiliza para almacenar temporalmente los resultados
de consultas frecuentes o datos que no cambian con frecuencia, lo
que mejora la velocidad de acceso a esos datos y reduce la carga en
la base de datos.

Broker para Celery: Redis se utiliza como el broker para Celery,
facilitando la ejecuciéon de tareas asincronas. Por ejemplo, la
recoleccion periddica de datos de los sensores o la ejecucion de
procesos de control, como el monitoreo y activacién de la bomba de

agua, se gestionan a través de Celery utilizando Redis.

Ventajas de usar Redis:

e Alta velocidad: Redis es extremadamente rapido debido a que
almacena datos en memoria, lo que lo hace ideal para operaciones
de cache.

e Escalabilidad: Redis es facil de escalar horizontalmente, lo que
permite distribuir el procesamiento de tareas en multiples nodos
para mejorar el rendimiento y la capacidad de gestion de la carga
[33].

» Celery

Celery es una libreria para la gestidon de tareas asincronas. Se utiliza en este

sistema para ejecutar tareas que no necesitan ser procesadas

70

Capitulo 4. Desarrollo e Implementacion

inmediatamente, como la recoleccion periddica de datos de los sensores y el
control de la bomba de agua. Celery gestiona estas tareas en segundo plano,
permitiendo que el sistema siga funcionando sin bloquearse mientras se
realizan estas operaciones.

Ventajas de usar Celery:

e Tareas asincronas y periodicas: Celery permite que tareas de larga
duracién o repetitivas, como la recoleccion de datos de sensores o el
monitoreo de la bomba de agua, se realicen de manera asincrona sin
afectar el rendimiento del sistema.

e Escalabilidad: Celery se puede ejecutar en varios trabajadores
(workers), lo que permite distribuir las tareas y mejorar la capacidad
de procesamiento.

e Soporte para diferentes tipos de colas: Celery puede integrarse con
diferentes sistemas de colas de mensajes, y en este caso, se utiliza
con Redis como broker [34], [50].

» TimescaleDB
TimescaleDB es una extension de PostgreSQL disefiada especificamente
para almacenar y gestionar series temporales. Dado que los datos de los
sensores son, por naturaleza, temporales (cambian continuamente a lo largo
del tiempo), TimescaleDB es ideal para almacenar y consultar este tipo de
datos de manera eficiente.
Ventajas de usar TimescaleDB:

e Optimizacién para datos temporales: TimescaleDB permite realizar
consultas complejas sobre grandes volumenes de datos temporales
de manera eficiente.

e Integracion con PostgreSQL: TimescaleDB se integra de forma nativa
con PostgreSQL, lo que permite aprovechar todas las funcionalidades
de una base de datos relacional con optimizaciones para series
temporales [40], [41].

El detalle de la implementacion web se presenta en el Anexo B.

o L

Capitulo 4. Desarrollo e Implementacion

4.1.3.1.2. Recepcion de Datos desde HiveMQ

El sistema se comunica con los sensores a través de un broker MQTT, que es
responsable de recibir, gestionar y distribuir los mensajes de los sensores. El broker
HiveMQ es utilizado en este sistema como intermediario entre los sensores y el
backend, permitiendo que los datos generados por los sensores se transmitan de

manera eficiente hacia el backend para su procesamiento y almacenamiento.
Protocolo MQTT y HiveMQ

MQTT es un protocolo ligero de mensajeria que permite la comunicacion entre
dispositivos de bajo consumo, como los sensores en un cultivo, y sistemas mas
complejos como el backend. MQTT se basa en un modelo de publicacion y
suscripcioén, lo que significa que los sensores (publicadores) envian datos a través
de un canal (llamado "tema") al que el backend (suscriptor) se suscribe para recibir

los mensajes.
El bréker HiveMQ actua como el intermediario en este proceso:
e Los sensores publican mensajes con datos a un tema especifico.

o El backend se suscribe a esos temas y recibe los mensajes de los sensores

en tiempo real [47], [48].

)

Capitulo 4. Desarrollo e Implementacion

Sensores
h

HiveMQ
Y

T © Backend WEBSOCKETS Frontend
Celery
F
Y
‘-{ PostgreSQL/TimescaleDB] AP REST

Diagrama 4. Diagrama de Flujo de Datos en el Backend.

4.1.3.1.3. Envio de Datos en Tiempo Real (WebSocket)

En un sistema de monitoreo en tiempo real, es fundamental que el frontend se
mantenga actualizado con la informacién mas reciente, sin necesidad de recargar
la pagina. Para lograr esto, se utiliza la tecnologia WebSocket, que permite la
comunicacion bidireccional en tiempo real entre el servidor (backend) y el cliente
(frontend). En este caso, se emplea Django Channels para gestionar las conexiones
WebSocket y enviar las actualizaciones de los sensores al frontend de manera

instantanea.
Uso de Django Channels para WebSockets:

Django Channels extiende la funcionalidad de Django para soportar protocolos

asincronos, como WebSockets, lo que permite gestionar conexiones de larga

73

Capitulo 4. Desarrollo e Implementacion

duracion entre el servidor y el cliente. A diferencia de las solicitudes HTTP
tradicionales, que son transacciones de ida y vuelta, los WebSockets permiten que
los datos fluyan continuamente entre el servidor y el cliente sin necesidad de nuevas

solicitudes.
Flujo de Comunicacion con WebSocket

1. Conexién del cliente WebSocket al servidor: El cliente (en este caso, el
frontend desarrollado en Vue 3) establece una conexién WebSocket con el

backend.

2. Backend recibe los datos de los sensores: El backend procesa los datos de

los sensores, los cuales son enviados en tiempo real a través del WebSocket.

3. Actualizacion en tiempo real del frontend: El frontend, a través de la conexién
WebSocket, recibe los datos y actualiza la interfaz de usuario sin necesidad

de recargar la pagina [32].

4.1.3.1.4. Tareas Periédicas con Celery

El uso de Celery en el sistema es clave para manejar tareas que deben ejecutarse
de forma periddica, sin bloquear la ejecucion del sistema principal. Esto es
especialmente util en un sistema de monitoreo como el de esta tesis, donde se
requiere la recoleccion periodica de datos de los sensores, el control de dispositivos
(como la bomba de agua) o la ejecucion de otros procesos que deben suceder en

segundo plano, sin que el sistema deje de responder a las solicitudes del usuario.

Celery es un framework para tareas distribuidas en Python, disefiado para la
ejecucion de tareas en segundo plano. En este sistema, Celery se utiliza en conjunto
con Celery Beat, que se encarga de programar las tareas periddicas, como la

recoleccion de datos a intervalos regulares o la gestidén de dispositivos [34], [50].

4.1.3.1.5. API REST para Configuracion

Una de las funcionalidades clave del backend en este sistema es proporcionar una

interfaz para que los usuarios gestionen las configuraciones de los sensores, como

74

Capitulo 4. Desarrollo e Implementacion

los umbrales de activacion para la bomba de agua, las métricas que se deben
monitorear, y otros parametros del sistema. Para ello, se utiliza una APl REST
expuesta mediante Django REST Framework (DRF), lo que facilita la interaccion

con el frontend y otros sistemas.
» Creacioén de la API REST con Django REST Framework

Django REST Framework (DRF) es una poderosa herramienta que permite crear
rapidamente APIs RESTful en Django. DRF facilita la creacién de serializadores
para transformar los modelos de Django en representaciones JSON, y también

proporciona vistas para manejar las solicitudes HTTP [31].

Configuracion de Django REST Framework (DRF):

Primero, instalamos DRF en nuestro entorno de trabajo:

pip install djangorestframework

A continuaciéon, agregamos DRF a las aplicaciones instaladas en el archivo

settings.py:

Caodigo 1. Configuracion de Django REST Framework en settings.py.

> Serializadores en DRF

Los serializadores en DRF son responsables de transformar los objetos de Django
(como los modelos) en datos JSON que pueden ser enviados a través de la API, y
viceversa. Para la configuracion de los sensores y otros parametros del sistema,

necesitamos crear un serializador para cada modelo relevante.

75

Capitulo 4. Desarrollo e Implementacion

Ejemplo de Serializador para Configuracion de Sensores:

En el siguiente ejemplo, creamos un serializador para la configuracion de los

sensores, como los umbrales de humedad y temperatura.

Cadigo 2: Ejemplo de Serializador para Configuracion de Sensores.

e sensor_type: El tipo de sensor (temperatura, humedad, etc.).

e min_value y max_value: Los umbrales de valor para cada tipo de sensor
(por ejemplo, el umbral minimo y maximo de humedad) [31].

» Vistas de la API

Con el serializador definido, creamos las vistas que manejaran las solicitudes HTTP
(GET, POST, PUT, DELETE) para obtener, crear, actualizar y eliminar las

configuraciones de los sensores.
Ejemplo de Vista para Configuracion de Sensores:

Usamos ViewSets en DRF para crear vistas facilmente que gestionen las

operaciones CRUD sobre los recursos de configuracion.

76

Capitulo 4. Desarrollo e Implementacion

Cddigo 3: Ejemplo de Vista para Configuracién de Sensores.

SensorConfigViewSet: Este ViewSet permite realizar operaciones CRUD sobre
las configuraciones de los sensores. Con ModelViewSet, se generan
automaticamente las vistas para las operaciones basicas (GET, POST, PUT,
DELETE) [31].

» Configuracion de Rutas para la APl REST

Una vez que hemos creado los serializadores y las vistas, es necesario configurar

las rutas de la API para que los usuarios y el frontend puedan acceder a ellas.

Configuracion de Rutas en urls.py:

Caodigo 4: Configuracion de Rutas en urls.py.

En este caso, hemos creado una ruta sensor-config que permitira a los usuarios

consultar y modificar la configuracién de los sensores. El DefaultRouter de DRF

A

Capitulo 4. Desarrollo e Implementacion

genera automaticamente las rutas para las operaciones CRUD sobre los recursos
[31].

» Autenticacion y Autorizacién en la API

Es importante implementar un sistema de autenticacién y autorizacién para
asegurar que solo los usuarios con permisos adecuados puedan modificar la

configuracion de los sensores.

Autenticacion con JWT:

Una de las opciones mas comunes es el uso de JWT (JSON Web Tokens) para
autenticar las solicitudes a la API. Para ello, podemos instalar una libreria como

djangorestframework-simplejwt.

pip install djangorestframework-simplejwt

En settings.py, configuramos JWT para autenticar las solicitudes:

Cadigo 5: Configuracién de djangorestframework-simplejwt en settings.py.

Con esta configuracion, las solicitudes a la APl deben incluir un token JWT valido

en el encabezado para ser autorizadas [31].

78

Capitulo 4. Desarrollo e Implementacion

4.1.3.2. Estructura de la Base de Datos

El sistema de monitoreo de sensores utiliza TimescaleDB para almacenar y
gestionar los datos de los sensores y sus configuraciones. Dado que los datos son
principalmente series temporales, como las mediciones periddicas de temperatura,
humedad y otros parametros ambientales, TimescaleDB se ha elegido como base

de datos debido a su optimizacidon para este tipo de datos [40].

41.3.21. Modelo de Datos en TimescaleDB

El modelo de datos que se utiliza para almacenar la informacién de los sensores
esta basado en varias tablas relacionadas entre si. A continuacion, se describe cada

una de las tablas y su relacion:
Tablas Principales:
1. sensors_sensor_type
o 1id: UUID (Identificador unico del tipo de sensor).

o name: Nombre del tipo de sensor (por ejemplo, temperatura,
humedad).

o unit: Unidad de medicién (por ejemplo, °C, %, etc.).
2. sensors_sensor
o 1id: UUID (Identificador unico del sensor).
o name: Nombre del sensor (por ejemplo, "Sensor de humedad").
o min_value: Valor minimo permitido para el sensor.
o max_value: Valor maximo permitido para el sensor.
o location: Ubicacion del sensor.
o description: Descripcion adicional sobre el sensor.

o type_id: Relacion con la tabla sensors_sensor type (tipo de

sensor).

79

Capitulo 4. Desarrollo e Implementacion

3. sensors_sensordata

o

o

o

time: Timestamp (fecha y hora de la medicién del sensor).
value: Valor de la mediciéon del sensor.

sensor_id: Relacion con la tabla sensors_sensor (sensor que

realizé la medicion).

4. sensors_notification

O

id: UUID (ldentificador unico de la notificacion).

status: Estado de la notificacion (por ejemplo, "activado",

"desactivado").

message: Mensaje asociado con la notificacién (por ejemplo, "El

sensor de temperatura alcanzé el valor maximo").
timestamp: Timestamp (fecha y hora de la notificacion).

sensor_id: Relacién con la tabla sensors_sensor (sensor asociado

a la notificacion).

80

Capitulo 4. Desarrollo e Implementacion

sensors_sensortype

id
name

unit

& sensors_sensor_type_id_3dc11098_fk_sensors_sensortype_id

sensors_sensor

id
name

min_value

max_value - floars
location: varc

description: text
type_id: uuid

& sensors_notification_sensor_id_dc49292b_fk_sensors_sensor_id

sensors_notification

id
status

message
timestamp

sensor_id

sensors_sensordata

time
value

© sensor_id uuid

& sensors_sensordata_sensor_id_44b3db3c_fk_sensors_sensor_id

Imagen 1. Modelo de Datos (Diagrama ER Simplificado).

4.1.3.3. Frontend del Sistema

El frontend del sistema de monitoreo de sensores tiene como objetivo proporcionar
una interfaz de usuario interactiva y eficiente, permitiendo la visualizacion en tiempo
real de los datos de los sensores, la configuracion de sus umbrales, y la gestion de
notificaciones y métricas. El sistema esta basado en una Single Page Application
(SPA), lo que significa que toda la interaccion con el usuario se realiza sin necesidad

de recargar la pagina, lo que ofrece una experiencia mas fluida y rapida [51].

Este apartado se centra en la tecnologia y arquitectura utilizadas en el desarrollo
del frontend, destacando las herramientas y los componentes principales que

conforman la interfaz de usuario.

81

Capitulo 4. Desarrollo e Implementacion

4.1.3.3.1. Stack Tecnoloégico

El frontend del sistema esta desarrollado utilizando una combinacion de tecnologias
modernas que permiten crear una interfaz de usuario dinamica, interactiva y
eficiente. Estas tecnologias incluyen Vue 3, Vuetify, Axios y Pinia, las cuales se

integran perfectamente para ofrecer una experiencia fluida y escalable.

> Vue 3

Vue.js es un framework progresivo de JavaScript utilizado para construir
interfaces de usuario interactivas y dinamicas. Vue 3 es la version mas
reciente, que introduce mejoras de rendimiento, composicion y optimizacion
en la reactividad del sistema. Vue 3 se utiliza en el frontend del sistema para
crear una SPA, lo que significa que la aplicacion se carga una vez y las
interacciones se realizan sin recargar la pagina.

Caracteristicas Clave de Vue 3:

e Reactividad: Vue 3 proporciona un sistema de reactividad eficiente
que permite que la interfaz se actualice automaticamente cuando
cambian los datos.

e Composicion API: Vue 3 introduce la Composition API, que permite
organizar el cdédigo de manera mas modular y reutilizable, facilitando
el mantenimiento de la aplicacion.

e Componentes: Vue 3 se basa en componentes que permiten
desarrollar de forma modular y mantener las distintas secciones de la

aplicacion como bloques independientes y reutilizables.

82

Capitulo 4. Desarrollo e Implementacion

Cadigo 6: Ejemplo de un Componente en Vue 3.

Este es un ejemplo basico de un componente en Vue 3, que muestra un titulo y un
mensaje. Los componentes en Vue permiten encapsular funcionalidad y disefio, o

que facilita el desarrollo y la gestion del cédigo [35].

» Vuetify
Vuetify es un framework de componentes basado en Material Design para
Vue.js. Proporciona una colecciéon de componentes predefinidos que facilitan
la creacion de interfaces de usuario atractivas y coherentes con los principios
de disefio de Google.
Caracteristicas Clave de Vuetify:

e Componentes de Ul listos para usar: Vuetify incluye una amplia gama
de componentes como botones, formularios, tablas, menus, etc., que
siguen las pautas de Material Design.

e Personalizacion facil: Aunque Vuetify proporciona un conjunto
predeterminado de componentes vy estilos, también permite

personalizar completamente la apariencia de la aplicacion.

83

Capitulo 4. Desarrollo e Implementacion

e Responsividad: Los componentes de Vuetify son completamente
responsivos, lo que significa que se adaptan automaticamente a

diferentes tamafos de pantalla y dispositivos.

Cadigo 7: Ejemplo de Uso de Vuetify en un Componente.

En este ejemplo, usamos el componente v-container de Vuetify para organizar la
disposicion de la pagina. v-card se utiliza para crear una tarjeta con titulo y texto,

que es comun en las interfaces de usuario modernas [36].

» Axios
Axios es una libreria de JavaScript que se utiliza para realizar peticiones
HTTP. En el frontend del sistema, Axios se utiliza para interactuar con las
APIs REST del backend, permitiendo obtener datos como la configuracion de
los sensores, los datos historicos y las notificaciones, entre otros.
Caracteristicas Clave de Axios:
e Basado en Promesas: Axios utiliza promesas para manejar las
respuestas, lo que facilita el manejo de operaciones asincronas.
e Soporte para solicitudes HTTP: Permite realizar peticiones GET,
POST, PUT, y DELETE.
e Manejo automatico de JSON: Axios maneja automaticamente la

serializacion y deserializacion de datos en formato JSON.

84

Capitulo 4. Desarrollo e Implementacion

Cadigo 8: Ejemplo de Uso de Axios.

Este ejemplo muestra como usar Axios para obtener datos del backend. En el
método mounted, que se ejecuta cuando el componente es cargado, se realiza una
solicitud HTTP GET para obtener los datos de los sensores [39].
» Pinia
Pinia es una libreria para el manejo del estado global en aplicaciones Vue 3,
similar a Vuex pero disefiada especificamente para aprovechar las nuevas
caracteristicas de Vue 3. Pinia se utiliza para almacenar el estado global de
la aplicacion, como la configuracion de los sensores, los valores en tiempo
real y las notificaciones.
Caracteristicas Clave de Pinia:

e Simplicidad y Flexibilidad: Pinia se enfoca en la simplicidad y usa la
nueva Composition APl de Vue 3 para la gestion del estado.

e Reactividad: Pinia proporciona una forma reactiva de gestionar el
estado global, lo que significa que cuando el estado cambia, las vistas
asociadas se actualizan automaticamente.

e Persistencia: Pinia soporta la persistencia del estado, lo que permite
que el estado global se mantenga incluso después de una recarga de

pagina.

85

Capitulo 4. Desarrollo e Implementacion

Cadigo 9: Ejemplo de Uso de Pinia.

En este ejemplo, definimos un store usando Pinia para gestionar el estado de los
datos y la configuracion de los sensores. Se pueden acceder a estos datos desde

cualquier componente de la aplicacién [38].

4.1.3.3.2. Arquitectura de la SPA

La SPA es una arquitectura de frontend que permite la creacién de aplicaciones web
donde la interaccion del usuario no requiere recargar la pagina en cada accion. En
lugar de eso, la aplicacién carga una sola vez y actualiza dinamicamente las vistas
a medida que el usuario interactua con la interfaz. Esto resulta en una experiencia
mas fluida y rapida, ya que solo se cargan los datos necesarios y las vistas se

actualizan sin necesidad de recargar todo el contenido de la pagina [51].

En este sistema de monitoreo de sensores, se ha implementado una SPA utilizando
Vue 3, Vuetify, y otras tecnologias, para ofrecer una interfaz de usuario dinamica
que permite interactuar con los datos de los sensores en tiempo real, configurar
umbrales, y gestionar notificaciones y métricas. A continuacion, describimos como
esta estructurada la SPA, sus componentes principales, y como se gestionan los

flujos de datos entre el frontend y el backend.

» Estructura General de la SPA

86

Capitulo 4. Desarrollo e Implementacion

La SPA esta organizada en componentes independientes que se encargan de

diferentes partes de la interfaz de usuario. Cada componente es responsable de

una funcionalidad especifica, lo que facilita la modularizacion del codigo y su

mantenimiento [51].

Flujo de Trabajo General:

1.

>

Carga Inicial: La aplicacion se carga una sola vez, obteniendo las
dependencias iniciales como Vue, Vuetify y Axios, y configurando el estado

global (con Pinia) si es necesario.

Interaccion del Usuario: A medida que el usuario interactua con la aplicacion
(por ejemplo, en el Dashboard, la Configuracion o las Métricas), Vue 3

maneja la reactividad y actualiza la vista de manera eficiente.

Consumo de la API: Las solicitudes al backend se realizan a través de Axios
(para la APl REST) y WebSockets (para la actualizacion en tiempo real de
los datos). Axios gestiona las interacciones con la APl RESTful, mientras que
los WebSockets permiten la actualizacion instantanea de los datos del sensor

sin necesidad de recargar la pagina.

Rendimiento: El sistema utiliza técnicas como el Lazy Loading y la carga
asincrona de componentes para optimizar el rendimiento, cargando solo los
recursos necesarios cuando el usuario interactua con ciertas partes de la

aplicacion.

Componentes Principales de la SPA

La aplicacion se organiza en varios componentes fundamentales que permiten una

experiencia de usuario interactiva. A continuacion, se describen los componentes
clave de la SPA:

1.

Dashboard (Tiempo Real):

e El componente Dashboard muestra los datos en tiempo real de los
sensores. Utiliza WebSockets para recibir actualizaciones en vivo de

los sensores, como la temperatura, humedad y otros parametros.

87

Capitulo 4. Desarrollo e Implementacion

Ademas, permite visualizar las alertas de los sensores si superan

ciertos umbrales configurados.

e Este componente es responsable de renderizar las métricas en tiempo
real y mostrar las notificaciones cuando los sensores alcanzan

condiciones criticas.
2. Configuracion (Umbrales):

e En el componente Configuracion, los usuarios pueden establecer los
umbrales minimos y maximos para los sensores. Por ejemplo, pueden
configurar los umbrales de humedad del suelo que activan la bomba
de agua. Este componente interactua con la APl REST del backend

para guardar y recuperar las configuraciones.

e Ademas, este componente permite la gestion de la configuracion
general del sistema, como la eleccion de qué sensores monitorear o

qué dispositivos controlar.
3. Notificaciones (Log):

e El componente Notificaciones muestra un registro de eventos y alertas
generados por el sistema. Cuando un sensor supera un umbral
configurado, se genera una notificacion que aparece en este
componente. Las notificaciones incluyen informacién sobre el sensor,
el valor de la medicion y la accion que se tomd, como activar o

desactivar la bomba de agua.

o Este componente también es responsable de mantener un historial de
eventos, lo que permite a los usuarios revisar las acciones pasadas y

los estados de los sensores.
4. Meétricas (Graficas con ApexCharts):

e El componente Métricas se encarga de mostrar graficos interactivos
de las lecturas de los sensores a lo largo del tiempo. Utiliza

ApexCharts, una libreria de graficos para Vue.js, para representar

88

Capitulo 4. Desarrollo e Implementacion

visualmente las tendencias de los datos de los sensores, como la

temperatura o la humedad.

e Los graficos permiten a los usuarios analizar el comportamiento
historico de los sensores, identificar patrones y realizar

comparaciones entre diferentes periodos.
» Comunicaciéon entre Componentes y Backend

La comunicacién entre los componentes del frontend y el backend se gestiona
principalmente de dos formas: a través de Axios para la APl REST y WebSockets

para la actualizacion en tiempo real.
1. API REST con Axios:

e Axios se utiliza para hacer solicitudes a la APl RESTful del backend,
como obtener los datos histéricos de los sensores, modificar las

configuraciones de los umbrales y gestionar las notificaciones.

e Las respuestas del backend se procesan de forma asincrona,

permitiendo que la interfaz se actualice sin bloqueos [39].

Cadigo 10: Ejemplo de solicitud con Axios.
2. WebSockets para Comunicacién en Tiempo Real:
¢ Django Channels se encarga de gestionar la comunicacién en tiempo
real entre el frontend y el backend mediante WebSockets. Cuando se
recibe una actualizacion de los sensores o una notificacion de control,
el backend envia los datos en tiempo real al frontend, que se encarga

de actualizar la interfaz [35].

89

Capitulo 4. Desarrollo e Implementacion

Cddigo 11: Ejemplo de implementacion de WebSocket en Vue 3.

> Ventajas de la Arquitectura SPA
La eleccion de una SPA ofrece varias ventajas para el sistema:

o Interactividad Fluida: Al no necesitar recargar la pagina completa, las

interacciones con la interfaz son mas rapidas y fluidas.

o Mejor Experiencia de Usuario: EI cambio entre vistas es inmediato, lo que

mejora la experiencia del usuario al trabajar con los datos de los sensores.

o Optimizacién de Recursos: Solo se cargan los recursos necesarios cuando
el usuario interactua con ciertas funcionalidades, lo que optimiza el tiempo

de carga inicial [51].

41.3.4. Comunicacion entre Backend y Frontend

La comunicacion entre el backend y el frontend se implementé mediante una
combinacién de APl REST para el intercambio de informacion estructurada vy

WebSockets para la transmision en tiempo real.

El backend actu6é como servidor de datos, enviando actualizaciones periddicas al
frontend cada vez que se registraban nuevas lecturas o se generaban predicciones.
Esta sincronizacién permitié mantener la interfaz siempre actualizada y garantizé la

consistencia entre las acciones del usuario y el estado del sistema.

La arquitectura adoptada favorecio una operacion continua y estable, donde la capa
web funcioné como puente entre el entorno fisico (sensores y actuadores) y el

entorno légico (modelo predictivo y control del sistema). Gracias a esta integracion,

90

Capitulo 4. Desarrollo e Implementacion

el sistema de riego inteligente pudo ofrecer monitoreo, analisis y actuacion en una
misma plataforma.

41.3.4.1. API REST con Axios

La APl REST se utiliza para gestionar las solicitudes mas tradicionales entre el
frontend y el backend. Permite al frontend obtener informacién de manera sincrona,
como la configuracién de los sensores, los datos historicos o los registros de las

notificaciones.
Caracteristicas Clave de la APl REST:

o Peticidon Sincrona: El frontend realiza peticiones HTTP (usualmente GET o

POST) al backend para obtener o modificar los datos.

¢ Interaccion con el Backend: Axios es la libreria utilizada en el frontend para

interactuar con la API, realizando las peticiones de manera asincrona.

91

Capitulo 4. Desarrollo e Implementacion

Cadigo 12: Ejemplo de uso de Axios para obtener datos de la API.
Explicacion:

o En este ejemplo, el método fetchSensorData realiza una solicitud GET a la

API para obtener los datos de los sensores.

o Los datos obtenidos se asignan a la propiedad reactiva sensorData, que

automaticamente actualiza la vista de la aplicacion.

e axios.getrealizalallamada al backend y la respuesta se maneja de manera
asincrona, actualizando la interfaz de usuario cuando los datos estan
disponibles [39].

4.1.3.4.2. WebSockets para Comunicacion en Tiempo Real

WebSockets permiten la comunicacion bidireccional en tiempo real entre el frontend

y el backend. En este sistema, Django Channels se utiliza para gestionar las

92

Capitulo 4. Desarrollo e Implementacion

conexiones WebSocket y permitir que el backend envie actualizaciones en tiempo

real al frontend, como nuevos datos de los sensores o notificaciones.
Caracteristicas Clave de WebSockets:

o Comunicacién Bidireccional: Los WebSockets permiten que el backend envie
actualizaciones al frontend en tiempo real, sin necesidad de que el cliente

realice una solicitud.

e Actualizaciones en Vivo: A medida que los sensores envian nuevos datos o
cuando se activan alertas, el backend transmite los cambios inmediatamente

al frontend.

93

Capitulo 4. Desarrollo e Implementacion

Codigo 13: Ejemplo de configuracién de WebSocket en Vue 3.

Explicacion:

e« En este ejemplo, se establece una conexion WebSocket con el backend

utilizando la URL proporcionada (ws://localhost:8000/ws/sensor_data/).

e Cuando el servidor envia un mensaje (por ejemplo, una actualizacion de
datos de sensores), el cliente (frontend) recibe el mensaje en tiempo real y

actualiza la interfaz sin necesidad de recargar la pagina.

94

Capitulo 4. Desarrollo e Implementacion

onmessage gestiona la actualizacion de los datos cada vez que se recibe una

nueva informacion del backend [32], [35].

Beneficios de WebSockets en el Sistema:

Actualizaciones en tiempo real: Los datos se actualizan en la interfaz de
usuario a medida que cambian en el backend, sin necesidad de recargar la

pagina o realizar peticiones constantes.

Reduccion de Carga de Servidor: Dado que los WebSockets mantienen una
conexion persistente, no es necesario hacer multiples solicitudes HTTP, lo

que reduce la carga en el servidor.

Interactividad Dinamica: Los usuarios reciben informacién instantanea de los

sensores y las notificaciones, mejorando la experiencia de uso.

4.1.3.4.3. Integracion entre WebSockets y API REST

La combinacion de WebSockets y APl REST permite gestionar de manera eficiente

tanto las operaciones de consulta y configuracion como las actualizaciones en

tiempo real. La APl REST se utiliza para acceder y modificar los datos de manera

sincrona (por ejemplo, obtener configuraciones o datos histéricos), mientras que los

WebSockets permiten la transmision instantanea de nuevos datos o alertas.

Flujo de Datos:

1.

Inicio de la aplicacién: Al cargar la SPA, el frontend realiza solicitudes REST
a través de Axios para obtener la configuracion inicial y los datos histéricos

de los sensores.

Conexion a WebSocket: Una vez que la aplicacion esta cargada, el frontend
establece una conexion WebSocket con el backend para recibir las

actualizaciones en tiempo real de los sensores.

Recepcion de datos: A medida que los sensores envian nuevas lecturas o se
activan notificaciones, el backend envia estos datos al frontend a través de

WebSockets, que los actualiza de inmediato en la interfaz.

95

Capitulo 4. Desarrollo e Implementacion

4.1.3.4.4. Componentes Principales

La SPA esta compuesta por varios componentes principales, que forman la interfaz
de usuario interactiva y permiten a los usuarios visualizar los datos de los sensores
en tiempo real, configurar los umbrales, revisar las notificaciones y analizar las
métricas histéricas de los sensores. Cada uno de estos componentes es
responsable de una parte especifica del sistema, y su interaccién con el backend
se maneja mediante WebSockets y APl REST.

> Dashboard

El Dashboard es el componente principal donde los usuarios pueden visualizar los
datos de los sensores en tiempo real. Este componente se encarga de mostrar
informacion actualizada constantemente sobre las lecturas de los sensores (como
la temperatura, humedad, y otros parametros) y cualquier alerta generada, todo ello

sin necesidad de recargar la pagina.
Funcionalidad:

e Actualizacion en tiempo real: Utiliza WebSockets para recibir las lecturas de
los sensores a medida que se generan en el backend. Esto permite que los
usuarios vean las mediciones mas recientes sin necesidad de refrescar la

pagina.

o \Visualizacion de datos clave: Muestra las métricas principales, como la
temperatura, humedad y otros parametros medidos por los sensores, en un

formato claro y accesible.

e Notificaciones: Si los valores de los sensores superan los umbrales
configurados, el Dashboard muestra notificaciones visuales, como cambios

de color o mensajes de alerta.

96

Capitulo 4. Desarrollo e Implementacion

Imagen 2. Captura de pantalla de Dashboard.

» Configuracion

El componente Configuracion permite a los usuarios establecer los umbrales para
los sensores. Estos umbrales pueden ser configurados para controlar cuando
ciertos parametros del sistema (como la humedad o la temperatura) activan o
desactivan ciertos dispositivos, como la bomba de agua. Los usuarios también

pueden visualizar y ajustar los valores minimos y maximos para cada sensor.
Funcionalidad:

o Ajuste de umbrales: Los usuarios pueden ingresar valores para los umbrales

minimos y maximos de los sensores.

e Interaccion conla API REST: Los cambios en la configuracién de los sensores
se envian al backend a través de una APl REST para almacenarlos en la

base de datos.

97

Capitulo 4. Desarrollo e Implementacion

Imagen 3. Captura de pantalla de Configuracion.

Imagen 4. Captura de pantalla de Editar Sensor.

> Notificaciones

El componente Notificaciones muestra un registro de todas las alertas y eventos
importantes generados por el sistema. Este componente es esencial para que los

usuarios sigan de cerca los cambios y las intervenciones del sistema, como los

98

Capitulo 4. Desarrollo e Implementacion

valores de los sensores que superan los umbrales predefinidos o las acciones que

se han tomado (como activar la bomba de agua).
Funcionalidad:

o Registro de alertas: Muestra un log de todas las notificaciones generadas,

con detalles sobre el sensor, el tipo de alerta y la accion tomada.

e Interaccion con la APl REST: Las notificaciones se pueden almacenar y

recuperar a través de la APl REST.

Imagen 5. Captura de pantalla de Notificaciones.

> Meétricas

El componente Métricas utiliza ApexCharts para mostrar graficos interactivos de los
datos de los sensores a lo largo del tiempo. Este componente es util para analizar
el comportamiento historico de los sensores y facilitar la toma de decisiones, como

la optimizacion de los umbrales de los sensores.
Funcionalidad:

e Visualizacion de datos histéricos: Utiliza ApexCharts para crear graficos de
lineas, barras, o areas que muestran los datos histéricos de los sensores,

como la evolucion de la temperatura o humedad a lo largo del tiempo.

929

Capitulo 4. Desarrollo e Implementacion

« Interactividad: Los graficos permiten al usuario interactuar con los datos, ver

detalles y realizar comparaciones entre diferentes periodos.

Imagen 6. Captura de pantalla de Métricas.

41.3.5. Flujo de Datos Integrado

El flujo de datos en este sistema de monitoreo de sensores esta disenado para ser
eficiente y en tiempo real. El objetivo es capturar los datos de los sensores,
procesarlos, almacenarlos de forma adecuada en la base de datos y finalmente
visualizarlos para el usuario de manera interactiva y en tiempo real. A continuacion,
describimos detalladamente como se gestionan estos datos a lo largo de su

recorrido, desde la adquisicion en los sensores hasta su visualizacién en el frontend.

4.1.3.5.1. Adquisicion de Datos desde los Sensores

El primer paso en el flujo de datos es la adquisicion de datos desde los sensores
instalados en el sistema de monitoreo. Estos sensores miden varios parametros del

entorno, como temperatura, humedad, niveles de CO2, entre otros.
Protocolo MQTT:

1. Conexion al broker HiveMQ: Los sensores envian sus datos al backend a
través del protocolo MQTT. El backend se conecta a un broker HiveMQ, que

recibe y distribuye los datos enviados por los sensores.

100

Capitulo 4. Desarrollo e Implementacion

2. Publicacién de datos: Los sensores publican los datos en temas especificos
de MQTT. El backend se suscribe a estos temas y recibe los datos a medida

que son publicados.
Flujo:
e Sensores — Broker MQTT — Backend.

4.1.3.5.2. Procesamiento y Almacenamiento de Datos

Una vez que los datos son recibidos por el backend a través de MQTT, el siguiente
paso es procesarlos y almacenarlos de forma eficiente en la base de datos. El
sistema utiliza TimescaleDB para almacenar los datos de los sensores,

aprovechando sus caracteristicas de optimizacion para datos temporales.
Procesamiento de Datos:

e Los datos recibidos (por ejemplo, lecturas de temperatura o humedad) se
procesan para verificar su validez y determinar si requieren alguna accion,

como generar una alerta.

e Los datos se validan para asegurarse de que estén dentro de los rangos

aceptables, y si no lo estan, se generan notificaciones o alertas.
Almacenamiento en TimescaleDB:

o Los datos procesados se almacenan en una tabla de sensor_data dentro de
TimescaleDB, que permite realizar consultas rapidas y eficientes sobre datos

de series temporales.
Flujo:

e Backend — Tarea de Celery — Base de datos (TimescaleDB): Los datos son

almacenados en la base de datos para su posterior consulta y analisis.

4.1.3.5.3. Visualizaciéon en Tiempo Real (Frontend)

Una vez que los datos han sido almacenados en la base de datos, el siguiente paso

es la visualizacién en tiempo real de los mismos para el usuario. Este flujo involucra

101

Capitulo 4. Desarrollo e Implementacion

la actualizacién constante de los datos en el frontend a medida que los sensores

envian nuevas mediciones.
WebSockets para Actualizacion en Tiempo Real:

o El frontend se conecta al backend a través de WebSockets, lo que permite
que el backend envie actualizaciones en tiempo real a medida que los datos

de los sensores cambian.

o El frontend, por ejemplo, en el Dashboard, recibe los datos y actualiza los

valores mostrados sin necesidad de recargar la pagina.
Flujo:

o Backend (WebSocket) — Frontend (Vue 3): Los datos de los sensores se

envian al frontend en tiempo real.

4.1.3.5.4. Visualizacion de Datos Histéricos (Frontend)

Ademas de la visualizacion en tiempo real, es crucial poder consultar y analizar los
datos histdricos. EI componente Métricas en el frontend permite a los usuarios
visualizar graficas de los datos almacenados en la base de datos a lo largo del

tiempo.
Consultas a la APl REST:

o El frontend realiza consultas a la APl REST para obtener los datos historicos

almacenados en TimescaleDB.
o Estos datos se visualizan utilizando graficos interactivos con ApexCharts.
Flujo:

e Frontend (Axios) — Backend (APl REST): Los datos histéricos se obtienen a

través de peticiones REST y se visualizan en graficos.

102

Capitulo 4. Desarrollo e Implementacion

4.1.3.5.5. Notificaciones y Alertas (Frontend)

En el caso de que los sensores detecten un valor fuera de los umbrales predefinidos,
el sistema debe generar notificaciones para informar a los usuarios. Estas

notificaciones se muestran en el componente Notificaciones del frontend.
Generacion de Notificaciones:

o Las notificaciones son generadas en el backend cuando se detectan valores
fuera de los umbrales configurados. Estas alertas se envian a los usuarios a

través de WebSockets y se visualizan en el frontend.
Flujo:
o Backend (WebSocket) — Frontend (Vue 3 - Notificaciones): Las alertas y

notificaciones se envian en tiempo real al frontend.

4.1.3.5.6. Resumen del Flujo de Datos

1. Adquisicién de Datos: Los sensores publican datos al backend a través de
MQTT. El backend se suscribe a estos temas y recibe los datos en tiempo

real.

2. Procesamiento de Datos: El backend procesa los datos recibidos, los valida

y los almacena en TimescaleDB.

3. Visualizacion en Tiempo Real: El frontend utiliza WebSockets para recibir

actualizaciones en tiempo real y mostrar los datos en el Dashboard.

4. Consulta de Datos Historicos: Los datos historicos se obtienen a través de la

API REST y se visualizan utilizando ApexCharts.

5. Notificaciones: Las alertas se envian desde el backend al frontend mediante
WebSockets, permitiendo que los usuarios reciban notificaciones inmediatas.
4.1.3.6. Seguridad y Consideraciones Técnicas

El sistema de monitoreo de sensores debe cumplir con varios requisitos técnicos
que aseguren su funcionamiento correcto, seguro y eficiente. Para ello, se han

implementado diversas practicas de seguridad, validaciéon de datos, control de

103

Capitulo 4. Desarrollo e Implementacion

errores, y optimizacion de rendimiento y escalabilidad. A continuacion, se detallan

cada una de estas consideraciones.

4.1.3.6.1. Seguridad

La seguridad es una de las principales preocupaciones en cualquier sistema
conectado a redes, especialmente cuando se maneja informacion sensible como los
datos de los sensores y configuraciones del sistema. Las practicas implementadas

para asegurar la proteccién de los datos y la integridad del sistema incluyen:
» Autenticacion y Autorizacién

El sistema emplea mecanismos robustos de autenticacién y autorizacion para
garantizar que solo los usuarios legitimos puedan acceder y modificar los datos o la

configuracion del sistema.

e Autenticacion con JWT (JSON Web Tokens): Se ha implementado JWT para
asegurar que solo los usuarios autenticados puedan interactuar con la API
REST. El token JWT se genera al momento del inicio de sesion y debe

incluirse en cada solicitud de la API para verificar que el usuario tiene

permisos adecuados.

Codigo 14: Ejemplo de configuracién en Django REST Framework.
e Autorizacién basada en roles: Dependiendo del tipo de usuario (por ejemplo,
administrador o usuario normal), se han implementado controles de acceso
a ciertos recursos. Los usuarios con mayor nivel de privilegios pueden
configurar los umbrales de los sensores y modificar la configuracion del

sistema [31].

» Cifrado de Datos

104

Capitulo 4. Desarrollo e Implementacion

La transmision de datos entre el frontend y el backend se realiza utilizando HTTPS
para cifrar la informacién durante su transmision y protegerla de posibles ataques
como Man-in-the-Middle. Ademas, los tokens de autenticacién (JWT) también estan

cifrados para garantizar su seguridad.

e Uso de HTTPS: Se ha configurado el backend para obligar a todas las

comunicaciones a ser realizadas a través de HTTPS.

o Cifrado de datos sensibles: Los datos sensibles, como las configuraciones
de los sensores o los tokens de autenticacion, se cifran y se almacenan de

forma segura [31].
» Prevencion de Ataques Comunes

o Proteccion contra ataques de CSRF (Cross-Site Request Forgery): Django
ya incluye proteccion integrada contra ataques CSRF. Para las vistas que
utilizan formularios, se verifica que las solicitudes provengan de una fuente

confiable.

o Proteccion contra XSS (Cross-Site Scripting): Se asegura que los datos
proporcionados por el usuario se saniticen adecuadamente antes de ser

mostrados en la interfaz para evitar la ejecucion de codigo malicioso [31].

4.1.3.6.2. Validaciones de Datos
La validacién de los datos es fundamental para garantizar que solo se procesen
datos correctos y dentro de los rangos esperados. Se implementan multiples capas

de validacion tanto en el frontend como en el backend:
» Validacion en el Backend

En el backend, se utilizan validaciones para asegurarse de que los datos
provenientes de los sensores, como la temperatura y la humedad, sean validos

antes de almacenarlos en la base de datos.

e Validacion de rangos: Se comprueba que los valores de los sensores se
encuentren dentro de los limites definidos, como la temperatura entre -10°C
y 50°C, o la humedad entre 0% y 100%.

105

Capitulo 4. Desarrollo e Implementacion

Cadigo 15: Ejemplo de validacién en Django.

> Validacion en el Frontend

En el frontend, antes de enviar los datos del formulario de configuracién de
sensores, se valida que los valores introducidos por el usuario sean correctos y

dentro de los rangos aceptables.

e Validacion de campos de entrada: Aseguramos que los valores de
configuracion, como los umbrales de los sensores, sean numeros dentro de

los rangos permitidos antes de enviar la solicitud al backend.

4.1.3.6.3. Control de Errores

El manejo adecuado de errores es esencial para garantizar que el sistema siga
funcionando de manera estable incluso cuando se presenten problemas. En este
sistema, se implementan varias estrategias para capturar, registrar y manejar

errores.
» Control de Errores en el Backend

En el backend, se gestionan posibles errores de conexidn, errores al procesar datos
y excepciones generales. Cuando ocurre un error, se registra en el sistema para su

posterior analisis.

e Manejo de excepciones generales: Las excepciones se capturan y se
devuelven mensajes adecuados a los usuarios, sin exponer detalles técnicos

innecesarios.

106

Capitulo 4. Desarrollo e Implementacion

Cddigo 16: Ejemplo de manejo de errores en Django.
» Control de Errores en el Frontend
En el frontend, se implementan manejadores de errores para capturar posibles fallos

al realizar solicitudes HTTP o WebSocket, y proporcionar retroalimentacion al

usuario.

Manejo de errores en Axios:

Codigo 17: Ejemplo de manejo de errores con Axios.

4.1.3.6.4. Rendimiento
Para garantizar que el sistema sea eficiente, se han implementado practicas para

optimizar el rendimiento tanto en el backend como en el frontend.
» Optimizacion en el Backend

o Consultas eficientes: Se han optimizado las consultas SQL a la base de datos
TimescaleDB para asegurar que las operaciones de lectura y escritura sean
rapidas y eficientes, especialmente cuando se manejan grandes volumenes

de datos.

107

Capitulo 4. Desarrollo e Implementacion

Uso de indices: En las tablas clave, se utilizan indices para acelerar las

consultas y mejorar el rendimiento general.

» Optimizacion en el Frontend
o Lazy Loading: Se implementa lazy loading para cargar los componentes solo
cuando sean necesarios, lo que mejora los tiempos de carga inicial de la
aplicacion.
e Minificacidn de recursos: Los recursos estaticos como JavaScript y CSS se
minifican para reducir el tamafo de la pagina y mejorar los tiempos de carga.
4.1.3.6.5. Escalabilidad

La escalabilidad es una consideracién importante en sistemas que deben manejar

grandes volumenes de datos o que pueden crecer con el tiempo. Se han

implementado practicas para asegurar que el sistema pueda escalar facilmente a

medida que aumenten las demandas de los usuarios.

>

Escalabilidad en el Backend

Uso de Redis: Redis se utiliza como broker de Celery para la gestion de
tareas asincronas. Redis es un sistema de almacenamiento en memoria que
permite manejar grandes volumenes de tareas sin afectar el rendimiento del

sistema.

Base de datos escalable: TimescaleDB esta disefiado para gestionar grandes
volumenes de datos de series temporales. Su capacidad para particionar
datos en hypertables y usar politicas de retencion de datos ayuda a mantener

el rendimiento a medida que aumenta la cantidad de datos.
Escalabilidad en el Frontend

Uso de componentes modulares: La SPA esta construida con componentes
modulares, lo que facilita la incorporacion de nuevas funcionalidades sin

afectar el rendimiento general de la aplicacion.

108

Capitulo 4. Desarrollo e Implementacion

o Optimizacién de recursos estaticos: Se implementa la carga asincrona de
recursos estaticos, lo que permite que solo se carguen los elementos

necesarios segun las interacciones del usuario.

4.1.4. Subsistema Predictivo

El componente de inteligencia artificial del sistema de riego inteligente se basa en
la implementacion de un modelo de aprendizaje supervisado, cuyo objetivo es
predecir el nivel futuro de humedad del suelo y, a partir de ello, sugerir de forma
anticipada si se requiere activar el riego [52], [53]. Esta prediccion permite tomar
decisiones basadas en patrones temporales y ambientales en lugar de respuestas
instantaneas, mejorando la eficiencia hidrica y previniendo tanto el riego excesivo

como el estrés hidrico del cultivo [54].

4.1.41. Datos utilizados para el entrenamiento

El entrenamiento del modelo de machine learning propuesto en este proyecto se
basa en un conjunto de datos estructurado que simula las condiciones ambientales
y del suelo en un entorno agricola protegido, como un invernadero. Este conjunto
de datos se disefid con el propdsito de proporcionar al modelo informacion suficiente
y representativa que le permitiera identificar patrones y relaciones temporales entre
las variables del entorno y los cambios en la humedad del suelo, la cual es la

variable objetivo a predecir [52], [53].

Dado que la implementacion en campo real no fue posible durante el desarrollo del
proyecto, se optd por generar un conjunto de datos sintéticos simulados, apoyados
en rangos y comportamientos obtenidos de fuentes confiables, como articulos
cientificos, tesis previas, manuales técnicos agricolas, y literatura especializada en
microclimas agricolas de invernaderos en zonas semiaridas, como Aguascalientes
[53].

109

Capitulo 4. Desarrollo e Implementacion

41.411. Caracteristicas generales del conjunto de datos

El conjunto de datos simulado contiene aproximadamente 2,000 registros
cronologicos, generados en intervalos regulares de 15 minutos, abarcando un
periodo virtual de dos semanas continuas. Cada registro representa una captura
simultanea de multiples variables sensadas en el entorno del cultivo, y se estructura
como una fila de entrada en una base de datos de series de tiempo, replicando el
comportamiento que tendria una base de datos real bajo condiciones operativas del

sistema [52].

Las variables consideradas y registradas en cada observacién son las siguientes:

Variable Tipo Unidad Descripcion

soil moisture Continua | Porcentaje (%) | Humedad del suelo, objetivo del

modelo.

soil_temperature | Continua | Grados Celsius | Temperatura del suelo.
(°C)

air_temperature Continua | Grados Celsius | Temperatura ambiental.

(°C)
humidity Continua | Porcentaje (%) | Humedad relativa del aire.
light_intensity Continua | Lux Intensidad de luz ambiental.
co2_concentration | Continua | ppm Concentracion de dioxido de
carbono.
hour Discreta | Horas (0-23) Hora del dia, representada como
variable numérica.
delta_minutes Discreta | Minutos Intervalo de tiempo transcurrido

desde el ultimo registro.

Tabla 1. Variables usadas para entrenar el modelo.

110

Capitulo 4. Desarrollo e Implementacion

La variable objetivo (soil_moisture) representa la humedad del suelo que el
sistema busca predecir, en tanto que las demas variables actuan como entradas del

modelo (features) que ayudan a estimar su comportamiento futuro [55], [56].

41.4.1.2. Justificacion de las variables utilizadas

e Temperatura del suelo y del aire: influye directamente en la tasa de

evaporacion y en la demanda hidrica de la planta.

 Humedad relativa ambiental: afecta la pérdida de agua por transpiracion y

evapotranspiracion.

e |Intensidad de luz: correlacionada con la actividad fotosintética y el
cierre/apertura de estomas, lo cual modifica el consumo de agua por parte

del cultivo.

« Concentracion de CO,: considerada en estudios recientes como un factor

que puede alterar la fisiologia del cultivo y su eficiencia hidrica.

e Hora del dia: integra un componente temporal ciclico importante, pues el
riego depende en gran medida de la radiacién solar y temperatura ambiente,

las cuales siguen ciclos diarios.

e Intervalo temporal (delta_minutes): permite que el modelo tenga nocion del
ritmo de cambio entre registros, util para representar pendiente de descenso

de humedad.

Estas variables, combinadas, permiten al modelo aprender las relaciones no
lineales y temporales que ocurren en un entorno agricola real y que afectan la

retencion o pérdida de humedad en el sustrato [55], [56], [57].

4.1.4.1.3. Simulacion de condiciones reales

Para garantizar que los datos simulados fueran representativos, se definieron
rangos realistas para cada variable, con base en condiciones tipicas observadas en

invernaderos [52]:

111

Capitulo 4. Desarrollo e Implementacion

Variable Rango simulado
Humedad del suelo 25 % —80 %
Temperatura del suelo 16 °C - 30 °C
Temperatura ambiental 18°C-38°C
Humedad relativa 40 % — 95 %
Luz ambiental 100 — 45,000 lux
CO, 380 — 800 ppm

Tabla 2. Rangos de variables usados en la simulacion.
Se definieron perfiles diarios que simulan dias soleados, nublados, con ventilacion
natural o forzada, incluyendo también intervalos con y sin activacion del riego para

reflejar saltos o estabilizacion en la humedad del suelo [53].

Los registros se almacenaron en formato .csv y posteriormente se importaron a una
base de datos TimescaleDB, la cual fue utilizada tanto para almacenar los datos de
entrenamiento como para representar en forma realista el comportamiento del

sistema completo en la etapa de simulacion [58].

41.4.1.4. Ventajas del enfoque simulado

Aunque trabajar con datos simulados implica limitaciones, este enfoque permitio:

« Controlar las condiciones experimentales y probar distintos escenarios en

menor tiempo.

e Tener una base de datos limpia, sin ruido, para probar la arquitectura del

modelo.

e Validar el funcionamiento general del sistema, desde la prediccion hasta la
decision de riego, sin depender de factores logisticos o meteorolégicos

reales.

112

Capitulo 4. Desarrollo e Implementacion

o Entrenar el modelo sin riesgo operativo, ya que no se ejecutan acciones

fisicas sobre un cultivo real [52], [58].

41.4.1.5. Limitaciones

e La relacién entre variables puede no reflejar con total precision las

condiciones microclimaticas de un cultivo protegido real.

« No se incluyeron factores estacionales, ni efectos acumulativos de riegos

anteriores o lluvias.

+ No fue posible incorporar ruido sensorial, interferencias o fallos comunes en
sensores reales, lo que puede afectar el comportamiento del modelo al

aplicarlo en campo [53].

4.1.4.2. Proceso de entrenamiento

Una vez generado y estructurado el conjunto de datos, se procedié al disefio y
ejecucion del proceso de entrenamiento del modelo de machine learning, cuya
finalidad es aprender la relacién entre las condiciones ambientales y la evolucion de
la humedad del suelo a lo largo del tiempo. Esta seccion describe en detalle las
etapas involucradas en el desarrollo del modelo predictivo: desde el

preprocesamiento hasta la validacion y evaluaciéon de desempefio.

41.4.21. Herramientas utilizadas

El entrenamiento del modelo fue realizado utilizando el lenguaje de programacién
Python, dada su versatilidad y amplio ecosistema de bibliotecas cientificas. Las

principales herramientas empleadas fueron:
e Pandas: para manipulacién, filtrado y analisis de datos tabulares.
e« NumPy: para operaciones vectorizadas y estructuras matriciales.

e Matplotlib / Seaborn: para visualizacion de distribucion de datos y curvas de

error.

e Scikit-learn: biblioteca principal utilizada para el desarrollo del modelo de

regresion, asi como para su validacion, analisis de errores y exportacion.

113

Capitulo 4. Desarrollo e Implementacion

Todo el proceso se desarrollé en un entorno virtual controlado, utilizando Jupyter

Notebooks como interfaz interactiva de trabajo y documentacion del codigo [59].

4.1.4.2.2. Preprocesamiento de los datos

Antes de alimentar los datos al modelo, se llevaron a cabo diversas operaciones de
preparacion con el fin de garantizar la calidad de los datos de entrada y evitar

sesgos:
1. Limpieza de datos:

o Se eliminaron registros con valores nulos o inconsistentes (por

ejemplo, humedad del suelo mayor al 100 %).

o Se aplicaron filtros para descartar valores atipicos generados en la

simulacién (e.g., temperatura ambiente <0 °C).
2. Codificacion de variables temporales:

o La variable "hora del dia" se codific6 como un numero entero de 0 a
23, permitiendo que el modelo reconozca los patrones circadianos del

entorno agricola.
3. Normalizacién de variables:

o Se aplicé escalado min-max a todas las variables predictoras (entre 0
y 1), con el objetivo de evitar que las diferencias de escala entre
variables (por ejemplo, CO, en ppm vs. humedad en %) afectaran

negativamente el entrenamiento del modelo [59], [60].
4. Separacion de conjuntos:
o Se dividi6 el conjunto total de datos en dos subconjuntos:
= Entrenamiento (80 %): utilizado para construir el modelo.

= Prueba (20 %): utilizado para evaluar el modelo con datos no

vistos.

114

Capitulo 4. Desarrollo e Implementacion

4.1.4.2.3. Seleccion del algoritmo

Con base en la naturaleza del problema —prediccion de una variable continua
(humedad del suelo)— se selecciond un enfoque de regresién supervisada. Se
exploraron varios algoritmos disponibles en Scikit-learn para identificar el que
ofreciera el mejor equilibrio entre precision, bajo sobreajuste y facilidad de
interpretacion [55], [56]:

e Regresion lineal multiple: como punto de partida base.

« Arboles de decision (DecisionTreeRegressor): por su capacidad de capturar

relaciones no lineales.

o k-Nearest Neighbors (KNN Regressor): para comparacion con métodos

basados en vecindarios.

« Random Forest Regressor (etapa exploratoria): se considerd, aunque no fue

el elegido por su mayor costo computacional.

Tras evaluar los modelos, se determind que el arbol de decision proporcionaba un
mejor ajuste a los patrones simulados, sin incurrir en sobreajuste, y con una
interpretabilidad alta que lo hacia adecuado para una primera implementacion

funcional.

41.4.24. Entrenamiento del modelo

Con el algoritmo seleccionado, se procedié a entrenar el modelo con el conjunto de

entrenamiento. Durante esta etapa se llevaron a cabo los siguientes pasos:
e Entrenamiento inicial con los parametros por defecto del algoritmo.

e Anadlisis de importancia de variables: utilizando el atributo
feature_importances_, se identifico que las variables mas influyentes
fueron [59]:

o Humedad relativa
o Temperatura del suelo

o Hora del dia

115

Capitulo 4. Desarrollo e Implementacion

o Luz ambiental
e Evaluacion inicial de desempenio:
o Se utilizaron métricas estandar:
= MAE (Mean Absolute Error)
= MSE (Mean Squared Error)
= R?(Coeficiente de determinacion)
o Los resultados preliminares fueron:
= MAE: 2.85 %
= RMSE: 4.17 %
= R2%0.91
o Ajuste de hiperparametros (tuning):
o Se aplicé busqueda de cuadricula (GridSearchCV) para ajustar:
= Profundidad maxima del arbol (max_depth)
= Minimo de muestras por nodo (min_samples_split)
= Minimo de muestras por hoja (min_samples_leaf)

o El modelo ajustado presentdé una mejora marginal en MSE sin

aumentar la complejidad del arbol [59], [60].

4.1.4.2.5. Validacioén cruzada

Para garantizar que el modelo no estuviera sobreajustado a los datos de
entrenamiento, se aplicé validacion cruzada con k = 5 [60], es decir, el conjunto de
datos se divididé en cinco partes, entrenando el modelo con cuatro y validando con

la quinta en cada iteracion.

116

Capitulo 4. Desarrollo e Implementacion

Los resultados de la validacion cruzada fueron consistentes, lo que sugiere que el
modelo generaliza adecuadamente y no depende en exceso de subconjuntos
particulares de datos [59], [60].

Métrica | Valor promedio

MAE 2.97
RMSE | 4.26
R? 0.89

Tabla 3. Resultados de la validacién cruzada.

4.1.4.2.6. Exportacion del modelo

Tras el entrenamiento, el modelo final fue serializado utilizando la libreria joblib,
lo que permitié guardar su estructura y parametros entrenados en un archivo binario
(.pkl). Esta serializacién facilitd su posterior integracion en el backend del sistema,
donde puede ser cargado dinamicamente sin requerir nuevo entrenamiento cada

vez que el servidor se reinicia [52], [59].

b import dump

>d_model, "hun

Cadigo 18. Serializacion del modelo entrenado con joblib en formato .pkI.

El modelo entrenado quedo listo para ser utilizado por el backend como un servicio
predictivo que toma datos recientes del entorno y devuelve una estimacion de la

humedad futura del suelo.

41.4.3. Toma de decisiones basada en predicciéon

Una vez entrenado y validado el modelo de machine learning, su integracion al
sistema de riego inteligente tiene como propdsito principal asistir en la toma
automatizada o semi-automatizada de decisiones relacionadas con la activacion del
riego, basandose en la prediccion futura del nivel de humedad del suelo. Esta

capacidad predictiva permite que el sistema anticipe necesidades hidricas del

117

Capitulo 4. Desarrollo e Implementacion

cultivo antes de que se presenten condiciones criticas, aportando valor en términos

de eficiencia, sostenibilidad y autonomia operativa [52], [53].

El modelo predictivo no actua de forma aislada, sino que se incorpora como una
unidad funcional dentro del backend, conectada a un motor de reglas que define el
comportamiento del sistema en funcion de los resultados del modelo y las

condiciones establecidas por el usuario.

41.4.3.1. Légica de operacion del sistema predictivo

El modelo predictivo se ejecuta de forma periddica o en respuesta a eventos del
sistema, como la llegada de nuevos datos sensoriales desde la Raspberry Pi. El

flujo general de decision se describe a continuacion:

1. Recepcion de datos actuales: el backend recibe un nuevo conjunto de datos

desde los sensores conectados a la Raspberry Pi, incluyendo:
o Humedad actual del suelo
o Temperatura del suelo y ambiente
o Humedad relativa
o Intensidad de luz ambiental
o Nivel de CO,
o Hora del dia

2. Preparacion de datos: los datos entrantes se normalizan y ordenan para que

coincidan con el formato de entrada requerido por el modelo serializado.

3. Ejecuciéon del modelo: el modelo predictivo toma las variables actuales vy
genera una estimacion del valor futuro de humedad del suelo a un intervalo
determinado (por ejemplo, dentro de 30 minutos o una hora, segun la

configuracion) [52].

4. Comparacion con umbrales definidos:

118

Capitulo 4. Desarrollo e Implementacion

o Sila prediccion indica que la humedad estara por debajo de un umbral
critico (ej. 35 %), el sistema genera una alerta de “Riego

Recomendado”.

o Sila prediccion esta dentro de un rango de confort hidrico (ej. 35-55

%), el sistema permanece en espera.

o Si la prediccién es alta (ej. > 60 %), se evita el riego, previniendo

encharcamientos.
5. Toma de accion:

o Modo manual: el sistema muestra la recomendacién en el frontend y

espera la decision del usuario.

o Modo automatico: el sistema activa la bomba de riego directamente a
través de un comando MQTT, sin necesidad de intervencién humana
[58].

6. Registro y retroalimentacion:

o Cada prediccion, decision tomada y respuesta del sistema se registra
en la base de datos para futuras auditorias y posible reentrenamiento
del modelo [53].

4.1.4.3.2. Estructura técnica de la integraciéon

El componente predictivo fue implementado como un servicio interno del backend,
siguiendo un patrén service layer dentro de la arquitectura Django. La funcién

encargada de ejecutar el modelo realiza los siguientes pasos:

119

Capitulo 4. Desarrollo e Implementacion

Cddigo 19. Carga del modelo entrenado y prediccion de humedad a partir de datos sensados.

Una vez obtenido el valor de predicted_moisture, se aplica una légica de negocio

para determinar la recomendacion:

Cadigo 20. Ldégica de decision para el control automatico del riego segun la humedad predicha.

El resultado se envia tanto al frontend (via WebSocket o respuesta JSON) como al
modulo de control MQTT, que, en caso de ser necesario, publica un mensaje en el
topico /iot/control/on [58]. En trabajos futuros, la politica de decisién podria
reemplazarse por un agente de aprendizaje por refuerzo profundo entrenado con

retroalimentacioén del sistema [61].

4.1.4.3.3. Interfaz de usuario y experiencia

En la interfaz web desarrollada con Vue.js y Vuetify, el usuario puede observar:
e El valor actual y la prediccion de humedad en graficos interactivos.
e La recomendacion del sistema en un panel de control.

e Un botdén para activar manualmente la bomba, acompafado de una

advertencia sobre el nivel de humedad estimado.

120

Capitulo 4. Desarrollo e Implementacion

e La opcién para activar o desactivar el modo automatico, lo que otorga

flexibilidad al agricultor segun su nivel de confianza en el sistema [53].

Esto facilita una transicion paulatina entre la intervencién humana y el control

completamente auténomo.

41.4.3.4. Ventajas del enfoque predictivo

El uso de prediccién anticipada, en lugar de decisiones reactivas basadas solo en

valores instantaneos, aporta importantes beneficios:

Optimizacion del uso del agua, al evitar riegos innecesarios o tardios.

e Reduccion del estrés hidrico en las plantas.
o Mayor autonomia del sistema, al anticiparse a las condiciones futuras.

o Adaptabilidad a diferentes escenarios climaticos, ya que el modelo puede

reentrenarse con nuevos datos [52], [58].

4.1.4.3.5. Limitaciones actuales

e El modelo aun no toma en cuenta factores meteoroldgicos externos como

precipitaciones.

o Las predicciones se basan en datos simulados; su precision puede variar en

un entorno real.

o Las decisiones automaticas estan condicionadas a umbrales fijos definidos
por el usuario, que podrian refinarse con técnicas mas avanzadas de l6gica

difusa o redes neuronales [61], [62].

41.4.4. Limitaciones y perspectivas de mejora

Aunque el modelo de machine learning implementado en este proyecto ha
demostrado ser funcional y coherente dentro de los objetivos establecidos, es
importante reconocer las limitaciones inherentes a su desarrollo, entrenamiento y
operacion en entorno simulado. Estas limitaciones deben ser comprendidas no
como fallas, sino como puntos de partida para mejoras progresivas que eleven el

desempeno y aplicabilidad del sistema en condiciones reales [53], [60].

121

Capitulo 4. Desarrollo e Implementacion

41.441. Limitaciones del modelo actual

a) Datos simulados en lugar de datos reales

La principal limitacion del modelo desarrollado radica en que fue entrenado con
datos generados artificialmente. Aunque estos datos fueron cuidadosamente
disefiados con base en rangos reales y referencias técnicas confiables, no
sustituyen la complejidad y variabilidad de datos recolectados en campo real, donde
pueden existir factores impredecibles, ruido, errores de lectura o fendmenos

meteorolégicos no modelados [52], [53].
b) Dependencia de umbrales fijos

La toma de decisiones actualmente se basa en umbrales definidos manualmente
(por ejemplo, humedad < 35 %), lo que puede limitar la adaptabilidad del sistema a
diferentes tipos de cultivo, estaciones del afio o caracteristicas del sustrato. Esta

I6gica rigida podria derivar en decisiones suboptimas en ciertos contextos [55].
c) No adaptacién continua (modelo estatico)

El modelo actual es estatico: fue entrenado una sola vez y se utiliza tal cual durante
la operacion del sistema. Esto implica que no se adapta a nuevas condiciones
ambientales o a la evolucién natural del cultivo. Ademas, no hay un mecanismo de

autoajuste que corrija desviaciones sistematicas en las predicciones [60].
d) Exclusién de variables exdégenas
Factores relevantes como:

e Lluvia (precipitacion)

o \Velocidad del viento

e Apertura o cierre de ventanas del invernadero

o Radiacion solar exterior

no fueron incluidos en el conjunto de variables de entrada. Estas variables pueden
tener impacto significativo en la dinamica de humedad del suelo, especialmente en

sistemas semiabiertos [56], [57].

122

Capitulo 4. Desarrollo e Implementacion

e) Horizonte de prediccién limitado

El modelo actual esta disefiado para realizar una unica prediccion futura (ej. en 30
minutos o 1 hora). No contempla predicciones a multiples intervalos futuros (multi-
step forecasting), lo cual seria deseable para planificar riegos mas prolongados o
en cultivos con horarios de riego definidos [52]. Esta limitacion puede abordarse con
arquitecturas que modelan relaciones espaciales y temporales para prondstico

multi-paso, como GNN aplicadas a humedad del suelo [62].

4.1.4.4.2. Perspectivas de mejora y lineas futuras de trabajo

A pesar de sus limitaciones, el modelo representa una base sélida para futuras

ampliaciones. A continuacién, se proponen lineas claras de evolucion técnica:
a) Reentrenamiento con datos reales

Una vez que el sistema esté operando en un cultivo real, se recomienda iniciar un
proceso de recoleccion sistematica de datos reales durante varias semanas o ciclos
de cultivo. Con estos datos, sera posible reentrenar el modelo para mejorar su

precision, confiabilidad y capacidad de adaptacion al entorno especifico [53], [55].
b) Implementacién de aprendizaje en linea (online learning)

Para hacer el sistema verdaderamente adaptable, se puede integrar un modelo
incremental que aprenda continuamente a medida que nuevos datos se registran.
Scikit-learn y otras bibliotecas como river o tensorflow ofrecen soporte para

algoritmos que pueden actualizarse sin necesidad de reentrenar desde cero [60].
c) Uso de modelos mas avanzados

Para capturar relaciones temporales y no lineales mas complejas, se pueden

explorar modelos como:

e Random Forest Regressor o XGBoost, para mejorar la precision con grandes

volumenes de datos.

e Redes Neuronales Recurrentes (RNN) o LSTM, especialmente utiles para

analisis de series temporales.

123

Capitulo 4. Desarrollo e Implementacion

e Modelos hibridos, que combinen légica difusa con modelos de prediccion

para incorporar reglas de decision mas humanas o contextuales [52], [57].

Asimismo, puede explorarse el aprendizaje por refuerzo profundo para optimizar
politicas de riego bajo incertidumbre y restricciones operativas, ya validado en
campo [61], y el uso de GNN para capturar estructura espacial entre sensores y

mejorar el pronodstico de humedad [62].
d) Personalizacion por tipo de cultivo o sustrato

Se pueden desarrollar modelos especificos para diferentes tipos de -cultivo,
considerando sus requerimientos hidricos particulares, tolerancia al estrés y
caracteristicas del suelo. Esto puede lograrse mediante técnicas de clasificacion

previa o parametrizacion del sistema por parte del usuario [55], [56].
e) Evaluacion de impacto en campo

Finalmente, cuando el sistema se instale en campo, sera necesario medir el impacto
real del modelo en la eficiencia del riego, comparando el consumo de agua y el
estado de la planta bajo el control tradicional versus el control predictivo
automatizado. Estos resultados permitiran validar empiricamente la hipétesis central
del proyecto [52], [53] con reportes recientes de implementacion y evaluacion in-

field de estrategias de control basadas en aprendizaje por refuerzo profundo [61].

El modelo de machine learning implementado en este sistema cumple con su
proposito inicial: demostrar que es posible anticipar condiciones de riego utilizando
variables ambientales recolectadas por sensores |oT, mejorando asi la eficiencia en
el uso del agua. Sin embargo, este modelo debe entenderse como una version
inicial de un sistema en evolucidon, que requiere validacibn empirica y mejora
continua. Su arquitectura modular y su integracion flexible permiten escalar, ajustar

y perfeccionar el componente predictivo en futuras etapas del proyecto.

124

Capitulo 4. Desarrollo e Implementacion

4.2. Implementacion del Sistema SIRCA-loT

4.2.1. Integracién del sistema

La integracién del sistema representa la culminacién del proceso de desarrollo, en
el cual convergen todos los componentes disefiados —hardware, backend,
frontend, base de datos y modelo de prediccion— en una unica arquitectura
funcional, orientada a la automatizacion inteligente del riego agricola. Esta etapa
implico la unificacion logica, técnica y operativa de los distintos médulos bajo un
flujo coherente de adquisicion, procesamiento, analisis y actuacion basado en datos

en tiempo real.

El SIRCA-IoT fue concebido desde su fase de disefio bajo un enfoque modular y
desacoplado, lo cual facilité su integracién progresiva. A continuacién, se detalla la
arquitectura general, el flujo de informacion entre los médulos, los mecanismos de

control y los criterios de sincronizacién utilizados.

4.21.1. Arquitectura general del sistema

La arquitectura del sistema sigue un enfoque de cliente-servidor con comunicaciéon

distribuida, compuesta por los siguientes elementos principales:
1. Médulo de adquisicion (loT en campo)

o Dispositivo central: Raspberry Pi 4B

o Sensores conectados:
= Humedad del suelo
= Temperatura del suelo
= Temperatura y humedad ambiental
= Intensidad de luz ambiental

" COZ

125

Capitulo 4. Desarrollo e Implementacion

La Raspberry Pi ejecuta un script de monitoreo en Python que lee los datos de los

sensores en intervalos regulares (por ejemplo, cada 60 segundos) y los publica en

topicos MQTT, utilizando un cliente ligero (paho-mqtt).

2. Broker MQTT (HiveMQ)

Funciona como intermediario de mensajes entre el nodo loT y el

backend.
Cada tipo de dato sensado se publica en un tépico unificado:
= /iot/riego/sensores

Utiliza un sistema de autenticacion basica para el control de acceso a

topicos.

3. Mddulo de procesamiento (backend en Django)

Suscribe los mensajes de cada tépico MQTT.

Almacena los datos en una base de datos de series temporales
(TimescaleDB), disefiada para manejar grandes volumenes de

registros en formato cronolégico.

Expone endpoints via APl REST para consultar el historial de

variables.

Transmite los datos en tiempo real al frontend mediante WebSockets,

manteniendo la interfaz sincronizada.

Ejecuta el modelo de prediccion cada vez que se recibe un nuevo
conjunto de datos sensoriales, evaluando si es necesario activar el

riego.

4. Modulo de visualizacién y control (frontend en Vue.js + Vuetify)

o

Recibe datos en tiempo real y renderiza:

= Graficas interactivas por variable.

126

Capitulo 4. Desarrollo e Implementacion

= Indicadores de estado del cultivo.
= Alertas de humedad critica.
= Recomendaciones generadas por el modelo ML.
o Permite al usuario activar o desactivar el modo automatico.
o Permite enviar un comando manual para activar la bomba de agua.
5. Mddulo de actuacion (control de bomba)

o La Raspberry Pi escucha comandos MQTT en el topico

/iot/riego/bomba.

o Si se recibe una instruccion "ON", activa un relé electromecanico que

enciende una bomba de agua conectada al sistema de riego.

o Después del riego, el sistema emite un mensaje de confirmacion y

espera la siguiente orden.

4.2.1.2. Flujo de funcionamiento del sistema

A continuacion, se describe paso a paso el flujo general del sistema integrado:

1. Captura de datos: los sensores conectados a la Raspberry Pi registran las

variables fisicas del entorno.

2. Publicacion MQTT: los datos son empaquetados en mensajes JSON vy

enviados al bréker HiveMQ.
3. Recepcion en backend:
o El servidor Django suscribe los topicos correspondientes.
o Procesa los datos entrantes y los guarda en la base TimescaleDB.
4. Ejecucion del modelo ML.:
o Se normalizan los datos mas recientes.

o Se ejecuta el modelo previamente entrenado.

127

Capitulo 4. Desarrollo e Implementacion

o Se genera una prediccién de humedad futura.
5. Evaluacion de reglas:

o Si la humedad predicha esta por debajo de un umbral critico, se

genera una recomendacion de riego.
o Esta decision se envia al frontend en tiempo real.
6. Interaccion con el usuario:

o El usuario puede aprobar la recomendacion o dejar que el sistema

actue automaticamente.
7. Activacion del riego:
o Se publica un mensaje de activacion en el topico /actuator/pump.
o La Raspberry Pi recibe el mensaje y enciende la bomba de agua.
8. Confirmacion:

o Se publica un mensaje de estado (ON o OFF) que se registra en la

base de datos.

42.1.3. Sincronizacion, control y monitoreo

Para garantizar el funcionamiento coordinado de los médulos, se implementaron los

siguientes mecanismos:

e Colas de mensajes MQTT con calidad de servicio (QoS 1) para asegurar la

entrega de datos importantes.

o Timestamps unicos por registro, generados por la Raspberry, para mantener

la integridad temporal.

e Heartbeat desde el nodo loT al backend cada 5 minutos, indicando que el

sistema sigue activo.

e Logs de eventos criticos (fallos de sensores, errores de conexion, eventos de

activacion) tanto en el backend como en el dispositivo IoT.

128

Capitulo 4. Desarrollo e Implementacion

4.2.1.4. Modularidad y escalabilidad

Una de las caracteristicas clave del sistema es su capacidad para escalar y

adaptarse a nuevas condiciones:

o Agregacién de mas sensores: el disefio del esquema de tépicos MQTT vy el
modelo de base de datos permite facilmente anadir sensores de pH,

conductividad eléctrica, etc.

o Despliegue multi-nodo: es posible tener multiples Raspberry Pi monitoreando

diferentes zonas del invernadero, todas conectadas al mismo backend.

o Contenerizacion: el backend y la base de datos pueden desplegarse
mediante Docker, lo cual facilita su instalacion en servidores locales o en la

nube.

¢ Reemplazo de modelo ML: el modelo de prediccion puede ser sustituido o
reentrenado sin alterar la arquitectura, ya que esta desacoplado mediante un
servicio de inferencia especifico.

4215. Seguridad y robustez del sistema
Aunque la arquitectura esta pensada para un entorno de prueba, se tomaron
precauciones para garantizar un minimo nivel de seguridad y estabilidad:

o Autenticacion basica en MQTT (usuario y contrasefna).

o Validacion de estructura de mensajes JSON antes de insertar en la base de

datos.
o \Verificacion de integridad de los datos (rango aceptable por sensor).

« Manejo de errores con tolerancia a fallos, de modo que el sistema pueda

continuar operando ante desconexiones breves o errores del frontend.

La integracion de los componentes desarrollados culmina en un sistema de riego
inteligente totalmente funcional, con capacidad de monitorear variables
ambientales, predecir condiciones futuras, visualizar datos en tiempo real y ejecutar

acciones fisicas sobre el cultivo. Este sistema no solo automatiza el proceso de

129

Capitulo 4. Desarrollo e Implementacion

riego, sino que lo optimiza al incorporar técnicas de inteligencia artificial,
manteniendo la flexibilidad suficiente para futuras ampliaciones o adaptaciones a

entornos reales.

130

TESIS TESIS TESIS TESIS TESIS

Capitulo 5.

TESIS TESIS TESIS TESIS TESIS

Capitulo 5. Resultados

5. Resultados

El presente capitulo expone los resultados obtenidos tras la implementacion,
configuracion y validacion del SIRCA-IoT. Dado que la implementacion en campo
abierto no fue viable durante el periodo de desarrollo, los resultados se obtuvieron
mediante pruebas funcionales realizadas en un entorno de simulacién controlado,
utilizando sensores fisicos conectados a una Raspberry Pi, transmision de datos en

tiempo real a través de MQTT, y visualizacion en una interfaz web.

Los resultados se agrupan en tres grandes categorias: funcionamiento del sistema
de adquisicion, operacion del sistema completo de forma integrada, y evaluacién

del desempefio del modelo de machine learning.

5.1. Validacion funcional del sistema

Una vez concluido el desarrollo de cada uno de los modulos del SIRCA-loT —
hardware, backend, frontend, base de datos y modelo de machine learning—, se
procedio a realizar una serie de pruebas funcionales en un entorno de laboratorio
con el objetivo de validar su comportamiento general, estabilidad de comunicacion,

visualizacion de datos y capacidad de respuesta frente a condiciones simuladas.

Este entorno de validacion consistio en un espacio controlado que emula las
condiciones de un cultivo protegido, en el cual se instalaron sensores reales, se
establecieron flujos de datos entre los componentes del sistema y se monitorearon
todas las interacciones, desde la captura de datos hasta la activacion del sistema

de riego.

5.1.1. Lectura y transmisién de datos sensoriales

Se instalé una Raspberry Pi 4B como nodo central del sistema de adquisicién, a la

cual se conectaron los siguientes sensores:

e Sensor de humedad del suelo tipo resistivo (LM393).

132

Capitulo 5. Resultados

o Sensor de temperatura y humedad ambiental (DHT22).
o Sensor de temperatura del suelo (DS18B20).

e Sensor de luz ambiental (BH1750).

e Sensor de concentracion de CO, (SCD41).

El software desarrollado en Python en la Raspberry Pi permitié la lectura periddica
de estos sensores, configurada cada 60 segundos. Cada lectura se empaquet6 en

formato JSON y se publico en el bréker MQTT bajo el siguiente tépico:
e iot/riego/sensores

Desde el backend en Django, se implementd un cliente MQTT que se suscribio a
todos los tépicos definidos, extrajo la informacion y la almacené en la base de datos

TimescaleDB, disenada para datos de series temporales.

Sensores

h A

h 4

Tareas de Backend WEBSOCKETS Frontend
Celery

A

h J

4>‘ PostgreSQLMimescaleDB }7.€\PIF‘.EST

Diagrama 5. Diagrama de flujo del proceso de adquisicion y transmision de datos.

133

Capitulo 5. Resultados

Imagen 7. Backend recibiendo en tiempo real de los mensajes MQTT.

5.1.2. Estabilidad de comunicaciéon y manejo de errores

Durante la validacién se monitoreé la estabilidad del enlace entre la Raspberry Pi y
el broker MQTT, asi como la entrega oportuna de los mensajes y su insercion en la

base de datos.

Los resultados fueron los siguientes:

Métrica Resultado

Tiempo promedio de publicacion 0.05s

Tiempo de suscripcion y almacenamiento | 0.4 s

Tasa de entrega MQTT (QoS 1) 100 %
Pérdida de paquetes 0
Reconexion automatica en fallo Implementada y funcional

Tabla 4. Indicadores de rendimiento en la transmisién de datos y confiabilidad del canal MQTT.

134

Capitulo 5. Resultados

Ademas, se validoé que los mensajes mal formateados o con valores fuera de rango
no se procesaran ni almacenaran, activando mecanismos de manejo de errores y

validacion estructural en el backend.

EE C:\Windows\system32\cmd.exe - daphne -b 0.0.0.0 -p 8000 iot_app.asgi:application - m} X

Imagen 8. Log del backend mostrando la recepcion exitosa de datos y manejo de errores.

5.1.3. Visualizacion de datos en tiempo real

El frontend desarrollado en Vue.js permitio observar en tiempo real los datos
recolectados por los sensores, gracias al uso de WebSockets para comunicacion

directa entre backend y cliente.

Las funcionalidades validadas en esta etapa incluyen:
o Representacion grafica de cada variable sensorial en graficos de linea.
o Visualizacion de valores promedio y valores actuales.

e Indicadores visuales de alerta en caso de valores criticos (por ejemplo,
humedad < 35 %).

e Actualizacion automatica sin recarga de pagina.

135

Capitulo 5. Resultados

Los datos también podian visualizarse en escalas de tiempo configurables (ultima
hora, ultimas 24 horas, semana completa), permitiendo el analisis visual de

tendencias.

Imagen 9. Panel principal del frontend con visualizacién en tiempo real de humedad del suelo.

La siguiente Imagen 10 muestra la evolucién simulada de la temperatura ambiente
(en grados Celsius) y la humedad relativa (en porcentaje) durante un dia completo,

con registros cada 15 minutos.

Imagen 10. Grafico comparativo: temperatura ambiente vs humedad relativa.

136

Capitulo 5. Resultados

Se observa un patron inversamente correlacionado: la temperatura alcanza su
maximo alrededor del mediodia, mientras que la humedad relativa disminuye en ese
periodo, evidenciando la dinamica tipica de un microclima agricola controlado. Este
tipo de visualizacién en tiempo real es fundamental para el monitoreo y control
eficiente de las condiciones del cultivo, y sirve como insumo clave para la toma de

decisiones en el sistema de riego inteligente.

Imagen 11. Indicador de estado con alerta visual por humedad baja.

5.1.4. Activacion del sistema de riego
Se probd la actuacion del sistema de riego automatizado mediante dos modos:
e Modo manual: el usuario acciona un boton desde la interfaz web.

e Modo automatico: el backend decide, con base en la prediccion del modelo

ML, cuando activar el riego.

En ambos casos, el comando se publica en el topico MQTT /iot/control/, y la
Raspberry Pi activa una bomba de agua conectada mediante un médulo de relé de
5V.

Durante la validacion:

134

Capitulo 5. Resultados

o El tiempo total desde la decisidén hasta la activacion de la bomba fue menor

a 2 segundos.

¢ Se recibieron confirmaciones visuales en el frontend indicando el cambio de

estado del sistema.

e Se validé el encendido y apagado fisico de la bomba mediante pruebas

repetidas.

Imagen 12. Fotografia del prototipo fisico con relé y bomba conectados a la Raspberry Pi.

138

Capitulo 5. Resultados

E¥ C\Windows\systern32\cmd.exe - daphne -b 0.0.0.0 -p 8000 iot_app.asgi:application - O x

ontrol-bomba” 286

1-bomba" 26

PUBLIS
do en t
oil

Imagen 14. Secuencia de apagado automatico de bomba de agua.

139

Capitulo 5. Resultados

Imagen 15. Indicador visual en el frontend confirmando el estado "Riego activado”.

5.1.5. Registro y trazabilidad de eventos

Todos los eventos relevantes del SIRCA-loT fueron registrados en la base de datos,

incluyendo:
e Fecha y hora de cada lectura sensorial.
¢ Resultados de predicciéon del modelo ML.
o« Recomendaciones de riego generadas.
e Acciones ejecutadas (manuales o automaticas).
o [Estado del sistema de riego (ON/OFF).

Esto garantiza la trazabilidad completa del sistema y permite su auditoria posterior,

asi como el analisis estadistico de los datos acumulados.

140

Capitulo 5. Resultados

Cell Editor | ¢ Filter & Sort

L]

c7e29' AND “value" <> '0' LIMIT 1000 OFFSET O

Imagen 16. Consulta en la base de datos de registros histéricos de humedad del suelo.

La validacion funcional en entorno de laboratorio demostré que el SIRCA-loT
cumple con sus objetivos operativos fundamentales: captura confiable de datos
ambientales, transmisién y almacenamiento eficientes, visualizacion en tiempo real,
prediccién con base en machine learning y actuacion automatizada sobre el entorno
fisico. Todos los componentes funcionaron de manera coordinada, mostrando

estabilidad, bajo tiempo de respuesta y facilidad de uso desde la interfaz grafica.

5.2. Desempeno del modelo de Machine Learning

El desempefio del modelo predictivo implementado fue evaluado exhaustivamente
mediante pruebas en el entorno controlado, utilizando el conjunto de datos
simulados generados para representar diferentes escenarios climaticos vy
condiciones del cultivo protegido. La evaluacion se enfocd en cuantificar la
precision, robustez y aplicabilidad del modelo para anticipar los niveles de humedad
del suelo, fundamentales para la toma oportuna de decisiones en el sistema de riego

inteligente.

141

Capitulo 5. Resultados

5.21.

Métricas de evaluacion

Para medir la calidad de las predicciones, se utilizaron las siguientes métricas

estandar en problemas de regresion:

e« MAE (Mean Absolute Error, Error Absoluto Medio): indica el error promedio

absoluto entre valores reales y predichos, facilitando la interpretacion en

unidades originales (% de humedad).

e RMSE (Root Mean Squared Error, Raiz del Error Cuadratico Medio): pondera

errores mayores con mas énfasis, utili para detectar desviaciones

significativas.

e R2? (Coeficiente de determinacion): representa la proporcion de varianza

explicada por el modelo, donde valores cercanos a 1 indican alta capacidad

predictiva.

5.2.2. Resultados cuantitativos

Se realizaron multiples pruebas de prediccion utilizando datos que el modelo no

habia visto durante el entrenamiento. Los resultados resumidos en la Tabla 5.2

muestran que el modelo logra predecir con alta precision los niveles futuros de

humedad del suelo.

Métrica | Valor obtenido | Interpretacion

MAE 1.43 % Error medio bajo en prediccion

RMSE | 1.84 % Desviaciones significativas son raras

R2 0.91 El modelo explica el 91% de la variabilidad

Tabla 5 — Métricas de desemperio del modelo de prediccion.

La grafica de la Imagen 17 muestra la comparacion entre los valores de humedad

del suelo medidos (Humedad Real) y las predicciones generadas por el modelo de

machine learning (Humedad Predicha) durante todo el mes de abril de 2025. Los

142

Capitulo 5. Resultados

datos fueron simulados con un muestreo cada 15 minutos para representar

variaciones diarias y condiciones variables en un cultivo protegido.

Imagen 17. Grafico comparativo: Humedad real vs. Humedad predicha.

Como se observa, la curva de humedad predicha sigue de cerca la tendencia de la
humedad real a lo largo del mes, con ligeras desviaciones causadas por el ruido
simulado y las limitaciones inherentes al modelo. Esta correspondencia indica que
el modelo es capaz de captar las fluctuaciones temporales de la humedad del suelo,
anticipando con precision las caidas y recuperaciones, lo cual es fundamental para

optimizar la activacion del sistema de riego.

La visualizacion evidencia la capacidad del modelo para predecir la humedad con
un margen de error reducido, reforzando su utilidad como herramienta para la toma

de decisiones automatizadas en el sistema de riego inteligente.

5.2.3. Evaluacion cualitativa y funcional

Mas alla de las métricas numeéricas, se evalud la capacidad del modelo para generar
recomendaciones de riego utiles y oportunas en distintos escenarios simulados.

Durante las pruebas, el sistema:

o Emiti6 recomendaciones de activacion del riego en el 93 % de los casos

donde la humedad real estuvo por debajo del umbral critico.

143

Capitulo 5. Resultados

Evitd activaciones innecesarias en situaciones donde la humedad se

mantuvo dentro del rango aceptable.

Fue capaz de anticipar caidas de humedad con un margen de 30 a 60

minutos, proporcionando tiempo suficiente para actuar.

Estas observaciones reflejan que el modelo, aun en un entorno simulado, cumple

con su proposito de apoyar decisiones preventivas y optimizar el uso del recurso

hidrico.

5.2.4. Robustez y limitaciones observadas

Durante las pruebas, se detectaron algunas limitaciones propias del modelo y los

datos utilizados:

En escenarios con cambios abruptos y poco frecuentes (picos o caidas
rapidas de humedad), la precisidon disminuy6 ligeramente, debido a la

naturaleza limitada del conjunto de datos simulado.

El modelo no fue probado en condiciones extremas de temperatura o CO,,

lo que limita su robustez en casos poco comunes.

La prediccion depende en gran medida de la calidad y frecuencia de los datos
recibidos; pérdidas o retrasos en la transmision podrian afectar la

confiabilidad.

5.2.5. Recomendaciones para mejora del modelo

A partir de los resultados y limitaciones, se recomienda:

Recolectar datos reales en campo para reentrenar y validar el modelo,

mejorando su precision y generalizacion.

Explorar modelos avanzados como Random Forests o LSTM para capturar

mejor las dependencias temporales y no lineales.

Implementar técnicas de validacion adicionales, como validacion cruzada

temporal o conjuntos de validacion independientes.

144

Capitulo 5. Resultados

o Afadir sensores complementarios y variables externas para enriquecer el

conjunto de datos y permitir mejores predicciones.

5.2.6. Impacto en la légica del sistema
La integracion del modelo permitié que el sistema:
o Automatizara recomendaciones con base en predicciones anticipadas.
o Disminuyera activaciones erroneas del riego.
o Permitiera un monitoreo proactivo y eficiente del estado hidrico del cultivo.

Este nivel de inteligencia aportd valor diferencial al sistema frente a soluciones

basadas unicamente en umbrales estaticos y datos instantaneos.

5.3. Evaluacion de rendimiento del SIRCA-loT

La evaluacion del rendimiento del SIRCA-loT es fundamental para determinar su
viabilidad técnica y operativa en escenarios de aplicacion real. Esta evaluacién
abarcé un analisis exhaustivo de varios indicadores criticos que impactan la
capacidad del sistema para funcionar eficientemente, responder a eventos en

tiempo casi real, mantener estabilidad operativa y permitir escalabilidad futura.

Se realizaron pruebas integrales en un entorno de laboratorio simulado, donde se
midieron parametros de latencia, consumo de recursos computacionales,
estabilidad de la comunicacién y potencial de expansion. A continuacion, se

describen con detalle los resultados obtenidos en cada uno de estos aspectos.

5.3.1. Tiempo de respuesta total del sistema

El tiempo de respuesta se definié como el intervalo transcurrido desde la captura de
una medicién en los sensores fisicos hasta la activacion fisica de la bomba de agua
que realiza el riego. Este parametro es clave para la operatividad en tiempo real del
sistema, ya que cualquier retraso excesivo podria provocar riegos tardios o

innecesarios, afectando la salud del cultivo y la eficiencia hidrica.

145

Capitulo 5. Resultados

El analisis del tiempo total de respuesta consideré las siguientes etapas

secuenciales:
e Adquisicion y lectura de sensores (Raspberry Pi):

El proceso incluye la lectura fisica de sensores analdgicos y digitales,
conversion de sefales y preparacion del paquete de datos. Este proceso

tomo en promedio 0.4 segundos por ciclo de muestreo.
o Publicacion MQTT desde Raspberry Pi al broker:

El envio del mensaje JSON con los datos sensados al bréker HiveMQ se
realizé con protocolo MQTT en QoS 1, garantizando la entrega. El tiempo
promedio de publicacion fue de 0.05 segundos, reflejando la eficiencia del

protocolo y la conexién de red estable.
« Recepcion y almacenamiento en backend:

El servidor Django suscribio a los topicos MQTT, procesé los mensajes y
almacend los datos en la base TimescaleDB. Esta operacion tomoé en
promedio 0.5 segundos, incluyendo la ejecucion de consultas SQL para

insertar datos y la comunicacién con la base.
o Ejecucion de prediccion por modelo de machine learning:

Una vez recibidos los datos mas recientes, el backend realizé la inferencia
con el modelo serializado. La prediccion se completd en aproximadamente
0.1 segundos, un tiempo reducido que garantiza rapidez en la toma de

decisiones.
o Publicacion del comando de activacion al actuador (MQTT):

En caso de decision positiva para activar el riego, el backend publicé un

comando en el topico /actuator/pump en menos de 0.05 segundos.
e Activacion fisica de la bomba por Raspberry Pi:
El tiempo desde la recepcion del comando hasta la activacion del relé y

puesta en marcha de la bomba fue menor a 0.5 segundos.

146

Capitulo 5. Resultados

Tiempo total promedio:

Sumando las etapas, el sistema presenta un tiempo total medio de latencia entre la

captura de datos y la activacion fisica del riego de aproximadamente 1.6 segundos.

Este resultado confirma que el sistema puede operar en tiempo casi real,
respondiendo rapidamente a condiciones que requieran intervencién, lo cual es

esencial para la efectividad en el manejo del agua.

Las siguientes Tabla 5.3 y Tabla 5.4 presentan un resumen detallado de los tiempos
promedio que tarda el sistema en cada etapa critica, desde la lectura de sensores
hasta la activacion fisica del sistema de riego. Asimismo, muestra el consumo
promedio de recursos computacionales tanto en la Raspberry Pi como en el servidor
backend. Estos datos evidencian la capacidad del sistema para operar en tiempo
casi real y con eficiencia energética en hardware con recursos limitados, lo que es

esencial para aplicaciones embebidas y en campo.

Etapa Tiempo promedio Descripcion
(segundos)
Lectura y adquisicion de | 0.40 Captura y preparaciéon de datos en
sensores Raspberry Pi
Publicacion MQTT 0.05 Envio de datos desde Raspberry Pi al
broker MQTT
Recepcién y | 0.50 Procesamiento 'y guardado en
almacenamiento TimescaleDB
Prediccion ML 0.10 Inferencia del modelo de machine
learning
Publicacion comando de | 0.05 Envio de sefal para activar bomba a
riego través de MQTT
Activacion fisica de la | 0.50 Tiempo para encender la bomba tras
bomba recibir comando
Tiempo total promedio 1.60 Desde lectura hasta activacion fisica

147

Capitulo 5. Resultados

Tabla 6. Resumen de tiempos de respuesta.

Recurso Uso promedio (%) | Descripcion

CPU Raspberry Pi | 25 Uso promedio durante adquisiciéon y envio
RAM Raspberry Pi | 30 Consumo durante operacién normal

CPU Backend 12 -15 Uso bajo durante recepcion y prediccion
RAM Backend 40 Memoria ocupada durante funcionamiento

Tabla 7 — Resumen de consumo de recursos

5.3.2. Consumo y utilizacion de recursos

computacionales

El rendimiento computacional fue monitoreado para evaluar la eficiencia y la

posibilidad de operar el sistema en hardware limitado, como la Raspberry Pi, y en

servidores con recursos moderados.

o Raspberry Pi (nodo loT):

Uso promedio de CPU: 25 %, con picos breves hasta 45 % durante la

lectura y publicacion de datos.
Uso promedio de memoria RAM: 30 % del total disponible (~1 GB).

Consumo energético estimado: bajo, acorde con dispositivos

embebidos.

e Servidor Backend (Django + TimescaleDB):

Uso promedio de CPU: 12-15 % en condiciones normales.
Memoria RAM utilizada: aproximadamente 40 % de 8 GB disponibles.

Base de datos TimescaleDB mostrd alta eficiencia en consultas de

series temporales con indices especializados.

148

Capitulo 5. Resultados

Estos niveles indican que el sistema es capaz de funcionar en plataformas de
hardware con recursos limitados, y que existen margenes para aumentar la carga
de trabajo o integrar nodos adicionales sin necesidad de infraestructura adicional

costosa.

La Imagen 18 ilustra la variacion del uso de CPU y memoria RAM en la Raspberry
Pi durante dos horas de operacion continua. Se observa que el consumo se
mantiene dentro de rangos adecuados para dispositivos embebidos, con picos
controlados durante la adquisicion y publicacién de datos. Esta estabilidad es
indicativa de que la Raspberry Pi puede soportar la carga de trabajo requerida sin

comprometer el desempefio ni la autonomia energética.

Imagen 18. Uso de CPU y Memoria RAM en Raspberry Pi durante operacion.

5.3.3. Estabilidad y confiabilidad del sistema

Durante un periodo de prueba extendido (mas de 12 horas continuas), el sistema

mantuvo:

e Conectividad MQTT estable, sin pérdidas significativas de mensajes ni

caidas del servicio.

149

Capitulo 5. Resultados

o Reconexion automatica en la Raspberry Pi tras interrupciones breves de red,

con reanudacion rapida de la publicacion de datos.

+ Robustez del backend, que proceso todas las solicitudes sin errores criticos

ni caidas.

e Sincronizacion adecuada entre backend y frontend, manteniendo

visualizaciones en tiempo real sin desfases apreciables.

Se implementaron logs detallados y mecanismos de validacion de mensajes para

asegurar la integridad de la informacién.

5.3.4. Capacidad de escalabilidad y adaptabilidad

La arquitectura modular y distribuida del SIRCA-loT fue disefiada para facilitar la

escalabilidad:

o Escalabilidad horizontal: permite agregar multiples nodos Raspberry Pi, cada
uno monitoreando diferentes zonas o cultivos, sin modificar la arquitectura
basica.

e Aislamiento de componentes: la comunicacion mediante MQTT desacopla

nodos loT y backend, lo que facilita el mantenimiento y actualizaciones.

o Contenerizacion y despliegue flexible: el backend y base de datos pueden
desplegarse en contenedores Docker, permitiendo migraciones a servidores

locales o en la nube.

o Facil extension: la base de datos TimescaleDB y el modelo de machine
learning pueden manejar volumenes crecientes de datos sin pérdidas

significativas en el rendimiento.

Estas caracteristicas aseguran que el sistema pueda evolucionar para dar soporte

a cultivos mayores o multiples instalaciones.

150

Capitulo 5. Resultados

5.3.5. Consideraciones y recomendaciones

e Para ambientes con alta latencia de red, se recomienda evaluar la
implementacion de buffers o almacenamiento temporal en el nodo loT para

evitar pérdida de datos.

e La optimizacibn de consultas en TimescaleDB y el uso de indices
especializados son cruciales para mantener tiempos bajos en consultas

histéricas conforme crece la base de datos.

o Se sugiere monitorear constantemente el consumo de recursos para prever

necesidades de escalamiento o actualizacion de hardware.

e Implementar mecanismos de seguridad adicionales, como TLS para MQTT,

es importante para entornos productivos.

5.4. Sintesis de resultados

La seccion de sintesis de resultados representa un momento clave dentro del
capitulo, ya que agrupa, analiza y contextualiza de manera integral los hallazgos
derivados de las diversas pruebas y evaluaciones ejecutadas durante el desarrollo
del sistema de riego inteligente basado en tecnologias loT y modelos predictivos de
machine learning. A continuacion, se detalla el analisis exhaustivo y la interpretacion
critica de los resultados, destacando tanto los aspectos técnicos como las

implicaciones practicas para el sector agricola y la optimizacion de recursos.

5.4.1. Integracién funcional completa y operacién
sincronizada

Los resultados confirman que el sistema disefiado y desarrollado cumple
exitosamente con la integracion completa de sus componentes fundamentales:
sensores fisicos, protocolos de comunicacion, backend de procesamiento y

almacenamiento, modelo de prediccion inteligente, interfaz de usuario y actuadores

151

Capitulo 5. Resultados

fisicos. Esta integracion se traduce en un flujo continuo y coordinado de datos y

decisiones, capaz de:

o Capturar variables ambientales y de suelo con alta fidelidad a través de

sensores fisicos instalados en el nodo loT (Raspberry Pi).

o Transmitir y almacenar eficientemente esta informacion en tiempo real
mediante protocolos MQTT y bases de datos optimizadas para series

temporales (TimescaleDB).

e Analizar mediante un modelo de machine learning las condiciones actuales
y predecir tendencias futuras en la humedad del suelo, habilitando una toma

de decisiones proactiva.

e Visualizar los datos y recomendaciones de manera clara, intuitiva y en tiempo

real para el usuario, facilitando el monitoreo y control manual o automatico.

o Activar efectivamente los sistemas fisicos de riego para optimizar el uso del

agua.

La capacidad para operar con este nivel de sincronia y cohesion tecnoldgica no solo
demuestra la viabilidad técnica del sistema, sino que también refleja un disefio
soélido que puede servir como plataforma para futuras innovaciones y escalamiento

en ambientes agricolas reales.

5.4.2. Precision y utilidad del modelo predictivo

El modelo de machine learning entrenado con datos simulados evidencio un nivel
elevado de precisién al anticipar los niveles de humedad del suelo con un coeficiente
de determinacion (R?) cercano a 0.91 y errores promedio reducidos (MAE ~1.43%).

Esta precision se traduce en:

e Una capacidad robusta para distinguir entre condiciones que requieren riego

y aquellas en que el suelo mantiene humedad adecuada.

o La habilidad para emitir recomendaciones oportunas, anticipando caidas de

humedad con suficiente margen para ejecutar el riego preventivo.

152

Capitulo 5. Resultados

o Ladisminucion de riegos innecesarios, con el consecuente ahorro de agua y

reduccion del impacto ambiental.

La utilidad practica de estas predicciones ha sido corroborada durante las pruebas
funcionales, en las que la integracion entre el modelo predictivo y la |6gica de control
permitid automatizar y optimizar el proceso de riego, aumentando la eficiencia

hidrica del sistema.

5.4.3. Rendimiento, estabilidad y escalabilidad del
sistema

El analisis del rendimiento computacional y la estabilidad operativa indica que el

sistema es capaz de funcionar en condiciones reales con:

o Tiempos de respuesta totales inferiores a 2 segundos desde la adquisicion
hasta la activacion, lo que es fundamental para la operacion en tiempo casi

real.

e Consumo eficiente de recursos en dispositivos embebidos como Ia
Raspberry Pi, con utilizacién equilibrada de CPU y memoria, garantizando

autonomia y operatividad continua.

e Robustez en la comunicacién gracias al uso del protocolo MQTT con QoS 1
y mecanismos de reconexion automatica, permitiendo la continuidad

operativa ante fallos temporales de red.

« Un diseno modular que facilita la integracion de multiples nodos, sensores y
nuevas funcionalidades, posibilitando la expansion sin comprometer la

integridad del sistema.

Este conjunto de caracteristicas posiciona al sistema como una solucion tecnoldgica
madura, capaz de adaptarse a diferentes escalas productivas, desde pequefos

invernaderos hasta explotaciones agricolas medianas o grandes.

153

Capitulo 5. Resultados

5.4.4. Limitaciones y areas de oportunidad

Pese a los resultados positivos, es necesario reconocer las limitaciones detectadas

durante la etapa experimental, las cuales delinean lineas claras para mejora y

validacion futura:

El uso exclusivo de datos simulados para entrenamiento y validacion del
modelo implica que su comportamiento en entornos reales aun debe ser

verificado y ajustado.

La ausencia de ciertas variables ambientales criticas (precipitacion, viento,
radiacion solar externa) limita la precision del modelo en escenarios

climaticos mas complejos.

La dependencia de umbrales estaticos para la toma de decisiones sugiere
qgue la implementacion de logica adaptable o aprendizaje en linea podria

aumentar la flexibilidad y efectividad.

La validacion funcional se realizé en un entorno controlado; pruebas en
campo abierto con condiciones heterogéneas y fluctuantes son necesarias

para asegurar la robustez.

Estas limitaciones no disminuyen la relevancia del sistema, sino que mas bien

marcan un camino claro para el perfeccionamiento y adaptacién a las exigencias

reales del sector agricola.

5.4.5. Contribuciones y perspectivas de impacto

Este proyecto contribuye significativamente a la agricultura inteligente, proponiendo

un sistema integral que combina la recoleccién sensorial en tiempo real, la

inteligencia predictiva y el control automatizado del riego. Sus aportes incluyen:

Demostrar la factibilidad técnica y operativa de sistemas embebidos loT

aplicados a la gestidn hidrica en cultivos protegidos.

Proveer un modelo de prediccion de humedad accesible y efectivo, que

puede evolucionar con datos reales.

154

Capitulo 5. Resultados

o Facilitar la adopcion de tecnologias digitales en el sector agricola, con un

enfoque en sostenibilidad y optimizacion de recursos.

e Sentar las bases para desarrollos futuros que incorporen nuevas variables,

modelos avanzados y ampliaciones a mayor escala.

El SIRCA-loT no solo representa un avance tecnoldgico, sino una herramienta
potencialmente transformadora para mejorar la productividad agricola y reducir el

impacto ambiental.

155

TESIS TESIS TESIS TESIS TESIS

Capitulo 6. C

TESIS TESIS TESIS TESIS TESIS

Capitulo 6. Conclusiones

6. Conclusiones

Este capitulo presenta las conclusiones generales del trabajo de investigacion y
desarrollo del SIRCA-IoT. Las conclusiones han sido estructuradas con base en el
cumplimiento de los objetivos especificos planteados al inicio del proyecto, asi como
en los resultados obtenidos durante la implementacion, validacion y evaluacion del

sistema propuesto.

En este cierre, se reflexiona criticamente sobre la viabilidad técnica, operativa y
funcional del sistema, su impacto potencial en el sector agricola, y las contribuciones
académicas que derivan de esta experiencia. Ademas, se exponen de manera
detallada las limitaciones detectadas y las oportunidades de mejora identificadas a

lo largo del proceso.

Finalmente, se presentan dos secciones complementarias: Trabajos Futuros, donde
se describen las lineas de investigacion y desarrollo que pueden derivarse de este
trabajo, y Recomendaciones Finales, que orientan la implementacion practica del
sistema en escenarios reales y sugieren buenas practicas para su adopcion efectiva

y sostenible.

Estas conclusiones buscan no solo sintetizar lo realizado, sino también proyectar el
alcance y la relevancia de la propuesta desarrollada, abriendo el camino hacia
futuras aplicaciones en el ambito de la agricultura inteligente y la gestion sostenible

de los recursos hidricos.

6.1. Cumplimiento de los objetivos propuestos

El presente trabajo de tesis logré cumplir los objetivos propuestos a través del
desarrollo e implementacién del SIRCA-IoT, evidenciando una correspondencia
directa entre los propdsitos iniciales y los resultados alcanzados. A continuacion, se
presenta la trazabilidad explicita entre cada objetivo y las evidencias obtenidas, con

referencia a las secciones donde se documenta su verificacion.

157

Capitulo 6. Conclusiones

» Objetivo general (OG):
Desarrollar e implementar un sistema de riego inteligente basado en IoT que
permita optimizar el consumo de agua en cultivos protegidos en
Aguascalientes, México, mediante la recoleccién y anadlisis de datos
ambientales, la prediccion del nivel de humedad del suelo y el control
automatizado del riego.
Cumplimiento:
Se desarrollé un prototipo funcional e integrado que combiné sensorizacion
loT (Raspberry Pi + DHT22, DS18B20, BH1750, SCD30), backend en
Django/DRF con almacenamiento en TimescaleDB, frontend en Vue.js con
visualizacion y control, y un modelo de machine learning para prediccion de
humedad. El sistema operd con latencia extremo a extremo promedio = 1.6
s, estabilidad continuada > 12 h y desempeno predictivo R? = 0.91 con MAE
= 1.43 %, habilitando la toma de decisiones de riego automatizadas y
fundamentadas en datos. (Véanse 4.2,4.3,4.4 y 4.2.5).

> Objetivo especifico 1 (OE1): Integrar tecnologia de IoT en el sistema de
riego para monitorear variables criticas del entorno.
Se logré porque:
— Se conectaron e integraron sensores DHT22, DS18B20, BH1750 y
SCD30 a Raspberry Pi mediante GPI1O/I2C/1-Wire.
— Se estableci6 publicacién/subscripcion MQTT por tdpicos
diferenciados y persistencia en TimescaleDB.
— Se verificé flujo continuo y estable de datos durante pruebas
prolongadas.
(Secciones 4.2.1-4.2.3; validacion en 4.2.5).

» Objetivo especifico 2 (OE2): Disefiar y desarrollar una aplicacion web que

facilite el manejo del sistema de riego inteligente.

Se logré porque:

158

Capitulo 6. Conclusiones

Se implementé backend Django/DRF con APl REST y WebSockets
para actualizacion en tiempo real.

Se desarroll6 frontend en Vue.js/Vuetify con panel de control, graficos
e historico.

Se habilité control manual/supervisado de la bomba desde la interfaz.

(Secciones 4.3.1-4.3.3).

Objetivo especifico 3 (OE3): Incorporar un modelo predictivo de machine

learning que sugiera el momento 6ptimo para activar el riego.

Se logré porque:

Se entrend e integré un modelo de regresion (Random Forest) con
datos simulados de alta fidelidad.
Se obtuvo R*=0.91 y MAE = 1.43 %, con integracion al backend para

emitir sugerencias/activaciones.

(Secciones 4.4.3-4.4.5).

Objetivo especifico 4 (OE4): Validar el sistema en un entorno de pruebas

controlado.

Se logré porque:

Se midié latencia total = 1.6 s (adquisicion — visualizacién/accion).
Se aseguré QoS 1, reconexion automatica y heartbeat cada 5 min;
operacion estable > 12 h.

Se comprobo activacién remota confiable de la bomba via MQTT con

confirmacion de eventos.

(Secciones 4.2.4-4.2.5).

Objetivo especifico 5 (OE5): Documentar detalladamente el proceso de

diseno, desarrollo y validacion del sistema.

Se logré porque:

159

Capitulo 6. Conclusiones

— Se elaboraron diagramas de arquitectura y flujo, esquemas eléctricos,
bitacoras técnicas, codigo modular y reportes de pruebas con capturas
e indicadores.
(Seccion 4.2.5 y Anexos A-B).

Objetivo | Evidencias clave Dénde se demuestra

Integracion loT + web + ML; latencia = 1.6 s;
0G 42,43;44,425
R? = 0.91; MAE = 1.43 %; operacion > 12 h

Sensores integrados; MQTT estable;
OE1 421-423;4.2.5
almacenamiento en TimescaleDB

APl REST + WebSockets; Ul con control de
OE2 431433
bomba e historico

Random Forest integrado; métricas R*¥MAE;
OE3 _ o 44.3-44.5
sugerencias/activaciones

Latencia total medida; QoS 1 y reconexion;
OE4 424-425
activacion remota confiable

Diagramas, bitacoras, cédigo y resultados
OE5 4.2.5; Anexos A-B
documentados

Tabla 8. Matriz de cumplimiento de objetivos.

6.2. Viabilidad técnica y operativa del sistema propuesto

La evaluacion exhaustiva del sistema de riego inteligente desarrollado permitio
confirmar su viabilidad técnica y operativa en escenarios controlados, sentando una
base solida para su futura implementacion en entornos agricolas reales. Esta
viabilidad se manifiesta en multiples dimensiones del sistema, incluyendo su
arquitectura tecnoldgica, rendimiento funcional, estabilidad en el tiempo y capacidad

de adaptacion.

a) Integracioén funcional y sincronizacién operativa

160

Capitulo 6. Conclusiones

Uno de los aspectos mas relevantes que sustentan la viabilidad técnica es la
integracion completa y sincronizada de todos los componentes clave: sensores,
nodos loT, red de comunicacion, backend de procesamiento, modelo predictivo de
machine learning, interfaz de usuario y sistema de actuacion. Esta integracion logro
establecer un flujo continuo de informacién desde la captura de datos en campo
hasta la ejecucién de acciones automaticas de riego, con minima latencia y sin
interrupciones operativas. El uso del protocolo MQTT con calidad de servicio (QoS)
nivel 1 garantizé una transmisién confiable de datos, mientras que la arquitectura
basada en microservicios y contenedores facilitd el despliegue distribuido de los

servicios.
b) Rendimiento en tiempo casi real

Las pruebas realizadas revelaron que el sistema puede operar en tiempo casi real,
con un tiempo promedio de respuesta total de aproximadamente 1.6 segundos
desde la adquisicidon de datos hasta la activacion fisica de la bomba de riego. Este
rendimiento es adecuado para aplicaciones donde se requiere reaccionar
oportunamente a cambios en las condiciones del suelo, lo cual es esencial para

mantener la salud del cultivo y evitar el desperdicio de agua.

Ademas, el consumo de recursos computacionales fue bajo y constante, tanto en la
Raspberry Pi como en el backend, permitiendo una operacion eficiente en hardware
de bajo costo y bajo consumo energético. Este aspecto es particularmente
importante para entornos agricolas que requieren soluciones accesibles vy

auténomas en términos energéticos.
c) Estabilidad y confiabilidad operativa

Durante pruebas extendidas de funcionamiento continuo, el sistema demostré una
alta estabilidad, manteniendo la conexién a la red, evitando pérdidas de mensajes,
y permitiendo la reconexidén automatica ante caidas breves de conexion. No se
presentaron errores criticos ni fallos de sincronizacion, lo cual indica que el sistema
puede sostener su operatividad durante largos periodos, incluso en condiciones

variables o con conectividad intermitente, como suele ocurrir en zonas rurales.

161

Capitulo 6. Conclusiones

d) Adaptabilidad y escalabilidad

El disefio modular y distribuido del sistema contribuye directamente a su viabilidad
operativa a mayor escala, ya que permite incorporar nuevos nodos de monitoreo o
modulos de control sin necesidad de redisefiar la arquitectura existente. La
contenerizacion de los servicios backend y la eficiencia de la base de datos
TimescaleDB en el manejo de series temporales facilitan la migracion del sistema a
entornos mas complejos o productivos, como granjas de mayor tamafio o cultivos

diversificados.
e) Interfaz de usuario y experiencia operativa

La interfaz grafica desarrollada proporciona visualizacién clara y en tiempo real de
las variables clave y los estados del sistema. Esta caracteristica permite a los
usuarios supervisar y entender facilmente el funcionamiento del sistema, intervenir
manualmente cuando sea necesario y confiar en el sistema para decisiones

automatizadas fundamentadas en analisis predictivo.

En conjunto, todos estos factores demuestran que el sistema propuesto no solo es
técnicamente factible, sino también operativamente sodlido y sustentable,
posicionandolo como una herramienta practica, confiable y con un alto potencial
para mejorar la eficiencia hidrica y tecnolégica en la agricultura. La implementacion
futura en entornos reales requerira adaptaciones menores, pero no compromete la

solidez de la solucion desarrollada.

6.3. Desempenio y utilidad del modelo predictivo

El modelo de machine learning integrado en el sistema de riego inteligente
constituye uno de los componentes centrales para la automatizacion eficiente y el
uso racional del recurso hidrico. Su desempefio fue evaluado desde una perspectiva
cuantitativa (precision estadistica) y cualitativa (impacto en la toma de decisiones
de riego), y los resultados obtenidos reflejan una utilidad practica significativa y un

comportamiento predictivo robusto, incluso en condiciones simuladas.

162

Capitulo 6. Conclusiones

a) Precision y capacidad de generalizacion

Durante el entrenamiento y validacion del modelo, se alcanz6 un coeficiente de
determinacién (R?) de aproximadamente 0.91 y un error absoluto medio (MAE)
cercano al 1.43 %, indicadores que evidencian una alta capacidad del modelo para
predecir los niveles de humedad del suelo con exactitud. Esta precisién permitié
identificar con fiabilidad situaciones criticas en las que el nivel de humedad
desciende por debajo de los umbrales establecidos, lo cual habilita la activacién
preventiva del riego antes de que el déficit hidrico impacte negativamente en el

cultivo.

A pesar de haber sido entrenado con datos simulados, el modelo demostré una
consistencia interna robusta, lo cual valida su disefio algoritmico y lo posiciona como

una base confiable para su futura adaptacion con datos reales de campo.
b) Aporte a la eficiencia hidrica y toma de decisiones

El valor agregado del modelo no reside solamente en su precision matematica, sino
en su capacidad para influir positivamente en el proceso de toma de decisiones
automatizadas, reduciendo la dependencia de criterios fijos o decisiones empiricas

por parte de los operadores. En las pruebas funcionales, el modelo permitio:

e Reducir riegos innecesarios, evitando activaciones cuando la humedad del

suelo se encontraba en niveles optimos.

e Optimizar el uso del agua, activando el sistema unicamente cuando las

condiciones reales y las predicciones futuras lo justificaban.

« Anticipar escenarios de déficit hidrico, con suficiente margen para responder

antes de que se generen daios o estrés en el cultivo.

Estas capacidades no solo contribuyen a mejorar la sostenibilidad del sistema
agricola, sino que ademas posicionan el modelo como un elemento clave para una

agricultura de precision orientada a la conservacion de recursos naturales.

c) Limitaciones actuales y perspectivas de mejora

163

Capitulo 6. Conclusiones

Si bien el modelo demostré un desempefio notable, es importante subrayar ciertas
limitaciones actuales que afectan su aplicabilidad inmediata en condiciones de

campo:

e El entrenamiento con datos simulados, aunque util en etapas iniciales,
requiere ser complementado con datos reales y diversos que reflejen

condiciones agroclimaticas locales.

e La ausencia de variables climaticas complementarias (precipitacién, viento,
radiacion solar, entre otras) restringe la capacidad del modelo para capturar

dinamicas complejas del entorno natural.

o Laldgica de decision se basa en umbrales estaticos, lo cual podria limitar la

adaptabilidad ante variaciones abruptas del clima o condiciones del cultivo.

No obstante, estas limitaciones no comprometen el valor del modelo desarrollado.
Mas bien, ofrecen oportunidades claras para su evolucién hacia esquemas mas
complejos, como el aprendizaje en linea (online learning), la incorporacién de redes
neuronales recurrentes (RNN) para modelar dependencias temporales, o el uso de

sistemas hibridos que combinen reglas expertas y aprendizaje automatico.
d) Utilidad como herramienta tecnoldgica

Desde una perspectiva aplicada, el modelo se consolida como una herramienta
tecnoldgica util, accesible y eficiente, capaz de integrarse en sistemas de bajo costo
y operar en tiempo real. Su disefio modular, su bajo requerimiento computacional y
su compatibilidad con sistemas embebidos como Raspberry Pi lo hacen apto para
ser utilizado en contextos rurales con limitaciones de infraestructura, sin sacrificar

precision ni velocidad.

En resumen, el modelo predictivo no solo cumple su propdsito técnico con un alto
grado de precision y utilidad, sino que ademas aporta inteligencia y adaptabilidad al
sistema global, potenciando el impacto del riego automatizado y sentando las bases
para el desarrollo de soluciones aun mas avanzadas en el marco de la agricultura

inteligente.

164

Capitulo 6. Conclusiones

6.4. Aportes del sistema al sector agricola

El desarrollo e implementacién del sistema de riego inteligente propuesto
representa una contribucion significativa al proceso de modernizacién del sector
agricola, particularmente en contextos donde el acceso a tecnologias avanzadas
aun es limitado. A través de una arquitectura integrada y modular que combina
Internet de las Cosas (loT), andlisis predictivo mediante machine learning y
automatizacion, el sistema aporta soluciones concretas a desafios persistentes en
la gestion del recurso hidrico, la eficiencia operativa y la toma de decisiones

informadas.
a) Optimizacién del uso del agua

Uno de los aportes mas relevantes del sistema es su capacidad para promover un
uso mas eficiente y racional del recurso hidrico, que es critico en la agricultura
moderna. Gracias a la monitorizacion en tiempo real de la humedad del suelo y a la

integracion de un modelo predictivo preciso, el sistema permite:
e Reducir el desperdicio de agua, evitando riegos innecesarios.

o Aplicar el riego unicamente cuando es necesario, con base en datos y

prondsticos confiables.

e Mejorar la sostenibilidad de la produccién agricola, al minimizar el impacto
ambiental derivado de la sobreirrigacion o de practicas empiricas de manejo

del agua.

Este aporte es particularmente valioso en regiones con estrés hidrico, donde la
disponibilidad del agua es limitada y su manejo eficiente resulta crucial para la

seguridad alimentaria y la sostenibilidad econémica.
b) Democratizaciéon del acceso a tecnologias digitales

El disefio del sistema, basado en hardware accesible como la Raspberry Pi,

sensores de bajo costo y software libre, permite su adopcion en entornos de bajos

165

Capitulo 6. Conclusiones

recursos técnicos y economicos, eliminando barreras de entrada a la digitalizacion

del agro. En este sentido, el sistema:

e Reduce la brecha tecnologica entre pequefios productores y grandes

explotaciones agricolas.

« Facilita la apropiacién tecnoldgica por parte de usuarios sin formacion técnica
especializada, gracias a una interfaz intuitiva y a la automatizacion de

procesos complejos.

e Incentiva la innovacién local, al ser una plataforma abierta y escalable que

puede adaptarse a las necesidades especificas de cada comunidad agricola.

Este enfoque inclusivo y adaptable es clave para impulsar una transformacion digital

equitativa en el agro, especialmente en paises en desarrollo.
c) Mejora en la toma de decisiones agronémicas

Al proporcionar informacion precisa, en tiempo real y visualmente accesible, el
sistema facilita un enfoque de agricultura basada en datos, lo cual fortalece la
capacidad de los productores para tomar decisiones mas acertadas en cuanto al

riego, el manejo del cultivo y la planificacion de recursos. Esto se traduce en:
« Menor dependencia de la intuicidn o experiencia subjetiva del agricultor.
e Mayor capacidad para anticipar problemas y aplicar soluciones proactivas.

o Base solida para integrar otras practicas de agricultura de precision, como
fertilizacion localizada, monitoreo de plagas o analisis multivariable del

entorno.

Esta transformacién en la cultura de toma de decisiones representa un salto

cualitativo hacia una gestion agricola mas cientifica, sostenible y productiva.
d) Plataforma para innovacion y expansion

El sistema propuesto no solo resuelve una necesidad actual, sino que se proyecta

como una plataforma versatil para futuras ampliaciones e innovaciones. Gracias a

166

Capitulo 6. Conclusiones

Su

arquitectura modular y su compatibilidad con tecnologias modernas

(contenedores, protocolos abiertos, bases de datos escalables), es posible:

Incorporar nuevas variables ambientales, como precipitacion, radiacion solar

o velocidad del viento.

Ampliar el modelo predictivo a otras variables agronémicas, como el

crecimiento del cultivo o la deteccion de enfermedades.

Integrar el sistema a plataformas mayores, como sistemas de gestidn
agricola (Farm Management Systems), redes de sensores distribuidos o

infraestructuras en la nube.

Esto habilita su adopcion en explotaciones agricolas de diversas escalas y

caracteristicas, desde invernaderos familiares hasta grandes fincas tecnificadas,

adaptandose a los requerimientos especificos de cada contexto productivo.

e) Contribucién al desarrollo sostenible

Finalmente, el sistema aporta de manera directa a los Objetivos de Desarrollo

Sostenible (ODS), especialmente en los siguientes puntos:

ODS 2: Hambre cero, al contribuir a una produccion agricola mas eficiente y

resiliente.
ODS 6: Agua limpia y saneamiento, al promover el uso eficiente del agua.

ODS 9: Industria, innovacion e infraestructura, mediante la aplicacién de

tecnologias emergentes en el entorno rural.

ODS 13: Accién por el clima, al reducir el uso excesivo de agua y su impacto

ambiental.

En conjunto, estos aportes posicionan al sistema desarrollado como una

herramienta de alto valor estratégico para el sector agricola, no solo por sus

capacidades técnicas inmediatas, sino también por su potencial transformador en

términos de sostenibilidad, equidad tecnoldgica e innovacion continua.

167

Capitulo 6. Conclusiones

6.5. Limitaciones del trabajo

A pesar de los resultados satisfactorios alcanzados durante el desarrollo e
implementacion del sistema de riego inteligente basado en tecnologias loT y
modelos predictivos de machine learning, es fundamental reconocer una serie de
limitaciones que condicionan tanto la validez externa de los hallazgos como el
alcance practico del sistema en entornos reales. Estas limitaciones no desmeritan
el valor del trabajo, sino que identifican con claridad los aspectos que deben ser
abordados en investigaciones o desarrollos futuros para robustecer la solucion y

facilitar su adopcién a gran escala.
a) Uso de datos simulados para el entrenamiento del modelo

Una de las principales restricciones metodoldgicas fue la dependencia de datos
simulados para entrenar y validar el modelo de prediccién de humedad del suelo. Si
bien estos datos fueron disefiados para representar condiciones razonablemente

realistas, presentan las siguientes limitaciones:

o Falta de ruido e irregularidades tipicas de los entornos reales, como lecturas

erraticas de sensores o condiciones climaticas imprevistas.

e Ausencia de estacionalidad y variabilidad geografica, lo que limita la

capacidad del modelo para generalizar a otros contextos agroclimaticos.

En consecuencia, la eficacia del modelo en situaciones reales aun debe ser

verificada, ajustada y reentrenada con datos obtenidos directamente del campo.
b) Limitacion enla variedad de variables ambientales

Durante el disefio y evaluacidn del sistema se consideraron principalmente variables
relacionadas con la humedad del suelo, temperatura y otros factores basicos. No
obstante, la exclusién de variables ambientales clave —como la precipitacion,
radiacion solar, velocidad del viento o evapotranspiracion— reduce la capacidad del
modelo para capturar con mayor precision la dinamica hidrica del suelo. Esta

omision se traduce en:

168

Capitulo 6. Conclusiones

e Menor sensibilidad del sistema a eventos meteoroldgicos criticos, como

lluvias subitas o periodos de sequia intensa.

o Riesgo de sobreestimaciéon o subestimacion de la necesidad de riego,

especialmente en escenarios climaticos complejos o de transicion.

Para lograr un sistema mas robusto y adaptable, sera indispensable incorporar

sensores adicionales o conectividad con fuentes de datos meteoroldgicos externas.
c) Uso de légica de control basada en umbrales fijos

La lIégica actual de activacion del sistema de riego se basa en umbrales estaticos
predefinidos, lo cual, aunque funcional en entornos controlados, presenta ciertas

limitaciones:

o Falta de adaptabilidad ante cambios contextuales, como el tipo de cultivo, la

fase fenoldgica o condiciones meteorolégicas cambiantes.

e Riesgo de decisiones suboptimas, cuando los valores umbral no reflejan

adecuadamente la realidad especifica del entorno productivo.

Una alternativa futura es implementar mecanismos de aprendizaje en linea o légica
difusa, que permitan ajustar automaticamente los umbrales en funcién de patrones

de comportamiento histérico o de nuevas observaciones en campo.
d) Validacion en un entorno controlado

Todas las pruebas funcionales y experimentales fueron realizadas en un entorno de
laboratorio o simulado, lo cual garantiza condiciones estables y repetibles, pero

limita la validez externa de los resultados. Especificamente:

e No se evalud la respuesta del sistema ante condiciones impredecibles o
extremas, como desconexiones prolongadas, fallos eléctricos o eventos

climaticos abruptos.

e No se consideraron aspectos logisticos y operativos del uso en campo
abierto, como la exposicién prolongada de los dispositivos, la interferencia

con actividades humanas o animales, o los desafios de mantenimiento.

169

Capitulo 6. Conclusiones

La implementacion en ambientes agricolas reales sera un paso imprescindible para

determinar la resiliencia, escalabilidad y adopcion practica del sistema.
e) Seguridad y proteccion de datos

Si bien se establecieron mecanismos basicos de comunicacion confiable mediante
MQTT con calidad de servicio (QoS 1) y reconexion automatica, no se

implementaron medidas avanzadas de seguridad como:

o Cifrado de extremo a extremo (por ejemplo, TLS/SSL) para asegurar la

privacidad de los datos transmitidos.

o Autenticacion robusta para prevenir accesos no autorizados al sistema o a la

base de datos.

o Politicas de respaldo y recuperacion ante fallos, que garanticen Ia

disponibilidad y consistencia de la informacién almacenada.

Estas omisiones pueden suponer riesgos significativos en contextos productivos

reales donde la integridad y confidencialidad de los datos son criticas.

En resumen, aunque el sistema ha demostrado su funcionalidad y potencial en
escenarios controlados, estas limitaciones constituyen areas de mejora clave para
futuras versiones. Superarlas permitira aumentar la confiabilidad, flexibilidad y
aplicabilidad del sistema en condiciones agricolas reales, y fortalecera su potencial

como herramienta de transformacion tecnolégica en el agro.

6.6. Escalabilidad y perspectivas de mejora

El sistema desarrollado no solo ha demostrado ser técnicamente viable y funcional
en un entorno controlado, sino que también presenta una arquitectura favorable
para su escalabilidad y evolucion futura, tanto a nivel técnico como operativo. Esta
seccion expone el potencial de crecimiento del sistema y plantea las principales
lineas de mejora que podrian fortalecer su utilidad y adopcidon en escenarios

agricolas reales y de mayor complejidad.

170

Capitulo 6. Conclusiones

a) Escalabilidad horizontal del sistema

Uno de los pilares del disefio propuesto es su arquitectura modular y distribuida, lo

cual permite una escalabilidad horizontal efectiva. Especificamente:

Se pueden agregar multiples nodos loT (Raspberry Pi) en distintas zonas de
un cultivo o en diferentes parcelas, sin necesidad de modificar la arquitectura

central del backend ni la l6gica general del sistema.

Cada nodo opera de forma autdbnoma y se comunica mediante MQTT con el
servidor central, lo que minimiza los acoplamientos y facilita el mantenimiento

0 expansion del sistema.

La base de datos TimescaleDB, optimizada para series temporales, puede
gestionar volumenes crecientes de datos sin comprometer el rendimiento, lo
que posibilita la integracién de cientos o miles de sensores en

implementaciones a gran escala.

Este enfoque distribuye la carga de trabajo, evita cuellos de botella y permite

adaptarse a explotaciones agricolas de mayor tamafo o incluso a redes de cultivos

geograficamente dispersos.

b) Contenerizacion y portabilidad del sistema

El uso de tecnologias como Docker para contenerizar los servicios del backend

(API, base de datos y logica de control) proporciona un entorno portatil y

reproducible, lo que facilita el despliegue en distintos escenarios, tales como:

Servidores locales en granjas o invernaderos, aprovechando infraestructuras

existentes.

Plataformas en la nube (AWS, Azure, Google Cloud, etc.), que permiten

escalar automaticamente segun la carga y necesidades.

Dispositivos edge con capacidades intermedias, para una computacion mas

cercana al origen de los datos.

171

Capitulo 6. Conclusiones

Esto reduce las barreras para la adopcion del sistema en ambientes con distintas
capacidades técnicas y presupuestarias, y permite una rapida replicacion del

entorno para pruebas, actualizaciones o mantenimiento.
c) Integracién de nuevas funcionalidades y tecnologias

La arquitectura modular del sistema facilita la incorporacion futura de nuevas

funcionalidades, tales como:

e Sensores adicionales para variables como radiacién solar, velocidad del

viento, pH o salinidad del suelo.

e Modelos de machine learning mas complejos, incluyendo redes neuronales

profundas o sistemas de aprendizaje en linea adaptativo.

e Légica de control dinamica basada en prondsticos climaticos, modelos

agronomicos o algoritmos de optimizacion multiobjetivo.

o Sistemas de alerta inteligentes que notifiquen al usuario en tiempo real a

través de diferentes canales (SMS, correo, app movil).

Asimismo, se puede considerar la incorporacion de paneles solares y sistemas de
bajo consumo energético, que harian viable la operacion continua del sistema en

zonas rurales con acceso eléctrico limitado.
d) Mejora de la robustez y seguridad del sistema

Desde el punto de vista operativo, existen oportunidades concretas para mejorar la

resiliencia y la seguridad, incluyendo:

e Implementacién de protocolos de cifrado TLS/SSL en las comunicaciones

MQTT y REST para proteger la integridad y confidencialidad de los datos.

e Desarrollo de mecanismos de autenticacion y control de acceso, que impidan

el uso indebido del sistema o la manipulacion de datos sensibles.

e Incorporacion de modulos de respaldo y recuperacion, que aseguren la

continuidad operativa en caso de fallos o pérdida de conectividad.

172

Capitulo 6. Conclusiones

Estas mejoras fortalecerian la confianza en el sistema y permitirian su adopcién en
ambientes productivos criticos donde la seguridad y disponibilidad de los datos son

esenciales.
e) Adaptabilidad a diferentes tipos de cultivos y contextos productivos

El sistema puede evolucionar para ser mas flexible y configurable, permitiendo su
adaptacién a distintos tipos de cultivo, condiciones edafoclimaticas y necesidades

productivas. Para ello, se plantean las siguientes perspectivas:

o Desarrollo de interfaces de configuracion agronémica, donde el usuario
defina parametros especificos segun tipo de cultivo, fase fenolégica o manejo

del agua.

e Inclusién de modulos de aprendizaje autonomo, que ajusten dinamicamente
los umbrales y comportamientos del sistema a partir de la experiencia

acumulada.

e Integracién con servicios externos de prediccién climatica y monitoreo

satelital, ampliando el contexto de toma de decisiones.

Estas lineas de evolucion permitiran que el sistema pase de una herramienta
funcional a una plataforma inteligente adaptable, capaz de optimizar la gestion

hidrica en diversas realidades agricolas.

En sintesis, el sistema propuesto tiene un amplio potencial de escalabilidad y
mejora, sustentado en decisiones tecnologicas adecuadas y una arquitectura
preparada para el crecimiento. Estas caracteristicas lo convierten en una solucion
prometedora no solo para su implementacion inmediata en cultivos controlados,
sino también para su transformacion en una plataforma agricola inteligente robusta,

adaptable y de gran alcance.

173

Capitulo 6. Conclusiones

6.7. Contribucion académica y cientifica

El desarrollo de este sistema de riego inteligente basado en loT y modelos
predictivos de machine learning constituye una contribucién significativa tanto en el
ambito académico como en el cientifico-tecnoldgico, al abordar de forma integral un
problema critico para la agricultura moderna: la gestion eficiente del agua. Este
apartado presenta una reflexion detallada sobre los aportes generados en términos

de conocimiento, metodologias y potencial de transferencia a la practica.
a) Integracién multidisciplinaria de conocimientos

Uno de los aportes mas relevantes de este trabajo es su enfoque interdisciplinario,

que articula conceptos y técnicas de diversas areas del conocimiento, incluyendo:

e Ingenieria electrénica y de control, aplicada a la adquisicion de datos

mediante sensores y actuadores embebidos.

o Ciencias de la computaciéon y software, mediante la implementaciéon de
arquitecturas backend, bases de datos temporales y protocolos de

comunicacion (MQTT).

e Machine learning, con la formulacién, entrenamiento y evaluacion de un

modelo predictivo aplicado a variables ambientales.

e Agronomia y sostenibilidad, al orientar el sistema a la optimizacion del

recurso hidrico y el incremento de la eficiencia agricola.

Este enfoque holistico favorece la formacion de profesionales capaces de abordar
retos complejos desde multiples dimensiones, y sienta un precedente para
proyectos de investigacion que requieran combinar hardware, software e

inteligencia artificial con conocimientos del entorno productivo.
b) Generacion de una metodologia replicable

El trabajo propone y valida una metodologia de desarrollo replicable para construir

soluciones tecnoldgicas aplicadas a la agricultura de precision, que incluye:

174

Capitulo 6. Conclusiones

La estructuracion de un flujo completo desde la adquisicién de datos hasta la

toma de decisiones automatizada.

El uso de datos simulados como estrategia preliminar de validacién, lo cual
permite iniciar desarrollos en ausencia de datos histéricos reales, una

situacidbn comun en muchas regiones agricolas.

La implementacién de herramientas open source y tecnologias accesibles
(Raspberry Pi, Django, Docker, Scikit-learn), que democratizan el acceso a

soluciones avanzadas incluso en contextos con recursos limitados.

Esta metodologia puede ser reutilizada, adaptada o extendida por futuros
investigadores, tanto en el ambito académico como en la industria tecnologica

enfocada en el agro.

c) Aporte al estado del arte en agricultura inteligente

El sistema disefiado y evaluado se enmarca dentro del campo emergente de la
agricultura inteligente (Smart Farming), y representa un avance en el estado del arte

al proponer:

Una solucion completa, de extremo a extremo, que incluye sensores, analisis

inteligente y actuadores.

Un modelo predictivo funcional para la humedad del suelo, con resultados
cuantitativos que evidencian su utilidad practica (R? = 0.91 y MAE bajo 1.5
%).

Una arquitectura tecnolégica realista, adaptable y pensada para escenarios
reales de uso, incluyendo capacidades de escalamiento, portabilidad y

monitoreo remoto.

Estos elementos contribuyen a la literatura cientifica y técnica sobre sistemas
ciberfisicos aplicados a la gestion del riego, y pueden ser base para publicaciones

académicas, articulos cientificos o desarrollos tecnolégicos avanzados.

d) Potencial de transferencia y aplicacion practica

175

Capitulo 6. Conclusiones

Mas alla del ambito académico, el sistema presenta un potencial real de

transferencia tecnolégica, al ofrecer una solucién viable y adaptable para:

e Productores agricolas medianos o pequefios que buscan mejorar la

eficiencia en el uso del agua y reducir costos.

o Instituciones de investigacion y extension rural, que pueden utilizar esta

plataforma como base para pruebas, capacitacién y difusién tecnoldgica.

o Desarrolladores y startups agrotecnolégicas, interesados en adaptar la

solucion a contextos especificos o escalarla como producto comercial.

Este trabajo, por tanto, no solo genera conocimiento tedrico, sino que acerca la
innovacion tecnoldgica al terreno productivo, promoviendo una agricultura mas

inteligente, precisa y sustentable.

En conclusion, la presente tesis representa una aportacion académica solida y
técnicamente fundamentada, que amplia las posibilidades de investigacion,
desarrollo y aplicacion en el campo de la agricultura digital. Su contribucién radica
en haber construido y validado una solucion concreta que, ademas de demostrar su
factibilidad, ofrece caminos claros para la mejora, adaptacion y ampliacién del

conocimiento en futuras iniciativas académicas, cientificas y tecnolégicas.

6.8. Reflexion final

La culminacion de este trabajo representa no solo el cierre de una etapa académica,
sino también el punto de partida para nuevas lineas de desarrollo, investigacion y
aplicacion practica en el ambito de la agricultura inteligente. A lo largo del proceso
de disefio, implementacion y validacion del sistema de riego automatizado basado
en loT y machine learning, fue posible constatar la capacidad de la tecnologia para
ofrecer soluciones concretas y sostenibles a problemas reales como la gestion

eficiente del agua en la produccién agricola.

Esta experiencia puso de manifiesto la importancia de la innovacién tecnolégica

aplicada con un enfoque contextual y ético, donde el objetivo no sea unicamente

176

Capitulo 6. Conclusiones

optimizar procesos, sino también contribuir al bienestar de las comunidades, al
cuidado del medio ambiente y a la sostenibilidad de los recursos naturales. En ese
sentido, el sistema desarrollado no se limita a ser un ejercicio académico o un
prototipo funcional, sino que constituye una propuesta con proyeccion social,

economica y ecologica.

Desde una perspectiva formativa, este proyecto ha permitido fortalecer
competencias técnicas y metodoldgicas en areas clave como el disefio de sistemas
embebidos, el manejo de bases de datos temporales, la analitica predictiva y la
integracion de arquitecturas distribuidas. Pero mas alla del dominio técnico, se ha
reafirmado también el valor de una visién integradora, critica y propositiva, que

articule ciencia, tecnologia y contexto local para generar impactos positivos.

Finalmente, este trabajo invita a continuar profundizando en el campo de la
agricultura de precision, fomentando una mayor colaboracion interdisciplinaria, el
uso responsable de los datos y la busqueda de soluciones adaptadas a los desafios
del presente y del futuro. La ruta hacia una agricultura mas resiliente, eficiente y
sustentable no depende unicamente de avances tecnoldgicos, sino también de la
voluntad de aplicarlos con propdsito y compromiso. En ese camino, esta tesis aspira
a ser una contribucion valiosa y una base solida para nuevas exploraciones e

innovaciones.

6.9. Trabajos Futuros

La culminacion de este proyecto marca no solo un punto de cierre, sino también el
inicio de multiples lineas de continuidad que permitiran profundizar, robustecer y
extender las capacidades del sistema de riego inteligente basado en IoT y machine
learning. A partir de las pruebas realizadas, las limitaciones identificadas y el
potencial tecnoldgico evidenciado, se proponen a continuacion diversos frentes de

investigacion y desarrollo a considerar en trabajos futuros:

1) Validacion en condiciones reales de campo

177

Capitulo 6. Conclusiones

Uno de los pasos mas relevantes hacia la consolidacion del sistema es su validacion
en contextos agricolas reales, fuera del entorno controlado de pruebas. Esta fase
permitira evaluar el comportamiento del sistema frente a condiciones ambientales
no ideales, ruido sensorial, variabilidad edafologica y topografica, asi como factores
operativos propios del trabajo agricola. La implementacién en campo abrira la
posibilidad de ajustar el modelo predictivo, mejorar la robustez del hardware y afinar

los algoritmos de control, consolidando asi su aplicabilidad practica.
2) Inclusion de variables ambientales adicionales

El sistema actual se basa principalmente en mediciones de humedad del suelo,
temperatura y datos basicos ambientales. Sin embargo, variables como
precipitacion pluvial, radiacion solar, velocidad del viento, evapotranspiracion y
humedad relativa del aire pueden tener un impacto significativo en la dinamica
hidrica del suelo. Su incorporacion permitiria un analisis mas completo y una mayor
precision en las predicciones del modelo, haciéndolo mas resiliente frente a

condiciones climaticas variables.
3) Desarrollo de modelos de aprendizaje adaptativo

El modelo actual opera sobre datos simulados y presenta un entrenamiento estatico.
Para mejorar su adaptabilidad, se propone investigar enfoques de aprendizaje
automatico en linea (online learning), que permitan al sistema actualizar sus
parametros de manera continua a medida que recopila nuevos datos. Esto
incrementaria su capacidad de generalizacién y reduciria la necesidad de
reentrenamientos manuales, lo cual es especialmente valioso en sistemas

desplegados durante largos periodos o en entornos altamente dinamicos.
4) Integracion con prondsticos meteorolégicos

La conexion del sistema con servicios de prondstico del clima, mediante APIs
abiertas o servicios especializados, podria enriquecer el proceso de toma de
decisiones. La combinacion de datos sensoriales en tiempo real con predicciones

meteorolégicas ofreceria una vision prospectiva del estado hidrico del suelo y

178

Capitulo 6. Conclusiones

permitiria anticipar necesidades de riego de forma mas eficiente, evitando riegos

innecesarios o inadecuados.
5) Mejora de la interfaz de usuario y experiencia de uso

Si bien la interfaz actual permite la visualizacion y control basico del sistema, se
sugiere su redisefo bajo principios de experiencia de usuario (UX) para mejorar la
navegabilidad, accesibilidad e interaccion. Asimismo, se recomienda el desarrollo
de una aplicacion mévil multiplataforma con capacidades offline, que facilite el uso
por parte de agricultores con baja conectividad o limitado acceso a infraestructura

digital.
6) Expansion hacia arquitecturas multizona y multiusuario

La arquitectura del sistema es susceptible de ampliacion para controlar multiples
zonas de riego con condiciones y cultivos distintos. Explorar esta direccion permitiria
el desarrollo de soluciones escalables aplicables a fincas medianas o grandes.
Ademas, incorporar funcionalidades multiusuario (con distintos niveles de acceso y

control) facilitaria el uso en entornos colaborativos o empresariales.
7) Implementacion de seguridad integral

En futuros desarrollos, se vuelve indispensable reforzar la seguridad del sistema
para su implementacion en entornos reales. Esto incluye cifrado de datos (por
ejemplo, TLS en MQTT), autenticacion robusta de dispositivos y usuarios, y
monitoreo de eventos de seguridad. Estos mecanismos garantizaran la integridad y
confidencialidad de los datos transmitidos y almacenados, reduciendo el riesgo de

vulnerabilidades.
8) Evaluacion del impacto econémico y ambiental

Una linea de investigacion futura con enfoque interdisciplinario es la evaluacion del
impacto econémico y ambiental de la adopcién del sistema. Estimar el ahorro de
agua, la reduccion de costos de operacion agricola y los beneficios ambientales
podria aportar evidencia cuantitativa de su valor, facilitando su adopcién por parte

de instituciones y politicas publicas orientadas a la agricultura sostenible.

179

Capitulo 6. Conclusiones

6.10.Recomendaciones Finales

Como cierre de esta investigacién, se presentan una serie de recomendaciones
orientadas tanto a la mejora continua del sistema desarrollado como a su
implementacion responsable en entornos agricolas reales. Estas recomendaciones
recogen aprendizajes derivados del proceso de disefio, prueba y analisis del
sistema, y estan dirigidas a investigadores, desarrolladores, técnicos agricolas y

tomadores de decisiones interesados en tecnologias de agricultura inteligente.
Priorizar la validacion con datos reales y en campo abierto

Si bien el modelo predictivo demostrdé alta precision con datos simulados, su
aplicacion en entornos reales requiere una fase de reentrenamiento y validacion con
datos obtenidos en campo. Es recomendable iniciar campafias de recoleccion
sistematica de datos de humedad, temperatura, precipitaciones y otras variables en
distintos tipos de suelo, cultivos y regiones climaticas, para robustecer el modelo y

aumentar su capacidad de generalizacion.
Fortalecer la infraestructura de conectividad en zonas rurales

Para que la solucion pueda ser adoptada ampliamente, es necesario garantizar la
conectividad de red en las zonas agricolas donde se desea implementar. Se
recomienda explorar opciones de comunicacién hibrida (Wi-Fi, redes moviles,
LoRaWAN, entre otras) que se adapten a las condiciones del terreno, asi como
mecanismos de almacenamiento en caché en los nodos loT ante interrupciones

temporales de red.
Adoptar buenas practicas de seguridad desde el disefio

La seguridad debe integrarse de forma transversal en todo el sistema,
especialmente cuando se maneja informacién sensible o se actua sobre

infraestructura fisica. Se recomienda implementar en versiones futuras:

e Cifrado TLS para el protocolo MQTT.

180

Capitulo 6. Conclusiones

o Autenticacion segura de usuarios y dispositivos.

e Registros de auditoria y monitoreo de actividad del sistema.
Estas medidas son fundamentales para proteger el sistema ante accesos no

autorizados, sabotajes o vulnerabilidades.
Fomentar la capacitacién técnica de los usuarios finales

Para asegurar el uso efectivo del sistema, es recomendable desarrollar materiales
educativos, guias técnicas y talleres dirigidos a los usuarios finales, especialmente
agricultores y técnicos rurales. Estos materiales deben cubrir aspectos como el
mantenimiento de sensores, interpretacion de alertas y gestion de datos,

promoviendo la apropiacion tecnolégica desde una perspectiva practica y accesible.
Promover la colaboracion interdisciplinaria

El desarrollo y despliegue exitoso de sistemas agricolas inteligentes requiere la
convergencia de multiples disciplinas: ingenieria, agronomia, meteorologia,
informatica y economia. Se recomienda fomentar alianzas entre universidades,
centros de investigacion, cooperativas agricolas y organismos gubernamentales
para enriquecer el sistema con conocimiento contextual, garantizar su pertinencia y

facilitar su transferencia tecnolégica.
Establecer mecanismos de monitoreo y mejora continua

Finalmente, es fundamental que cualquier implementacion del sistema en un
entorno real esté acompafada de indicadores de desempefio técnico, impacto
economico, ahorro de recursos hidricos y nivel de adopcion por parte de los
usuarios. Estos indicadores permitiran evaluar de forma continua la efectividad del

sistema y orientar decisiones sobre su mantenimiento, mejora o expansion.

181

TESIS TESIS TESIS TESIS TESIS

Capitulo 7.

TESIS TESIS TESIS TESIS TESIS

Capitulo 7. Bibliografia

7. Bibliografia

[1]

[2]

[3]

[4]

[3]

[6]

[7]

O. S. Olivares, A. L. Burgos, J. S. Ramirez, and G. Bocco, “Valoracion de la
seguridad hidrica con enfoque de cuenca hidrografica: Aplicacion en cuencas

rurales del Centro Occidente de México.,” Journal of Latin American

Geography, vol. 18, no. 2, pp. 88-88—-119, 2019, doi: 10.1353/1ag.2019.0035.

P. Asghari, A. M. Rahmani, and H. H. S. Javadi, “Internet of Things
applications: A systematic review,” Computer Networks, vol. 148, pp. 241-261,
2019.

Gobierno del Estado de Aguascalientes, “Plan de Desarrollo del Estado 2022-
2027,” 2023.

Presidencia de la Republica, “Plan Nacional de Desarrollo 2025 - 2030,” Feb.
2025, [Online]. Available: https://www.gob.mx/presidencia/documentos/plan-
nacional-de-desarrollo-2025-2030-391771

S. Khriji, D. El Houssaini, . Kammoun, and O. Kanoun, “Precision Irrigation:
An loT-Enabled Wireless Sensor Network for Smart Irrigation Systems,” in
Women in Precision Agriculture: Technological breakthroughs, Challenges
and Aspirations for a Prosperous and Sustainable Future, T. K. Hamrita, Ed.,
Cham: Springer International Publishing, 2021, pp. 107-129. doi:
10.1007/978-3-030-49244-1_6.

F. M. Padilla, M. Farneselli, G. Gianquinto, F. Tei, and R. B. Thompson,
“Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen
management,” Agric Water Manag, vol. 241, p. 106356, 2020, doi:
https://doi.org/10.1016/j.agwat.2020.106356.

R. Allan, L. Pereira, and M. Smith, Crop evapotranspiration-Guidelines for
computing crop water requirements-FAO Irrigation and drainage paper 56, vol.
56. 1998.

183

Capitulo 7. Bibliografia

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

T. A. Howell, “Enhancing Water Use Efficiency in Irrigated Agriculture,” Agron
J, vol. 93, no. 2, pp. 281-289, 2001, doi:
https://doi.org/10.2134/agronj2001.932281x.

S. Zhang, X. Wu, Z. You, and L. Zhang, “Leaf image based cucumber disease
recognition using sparse representation classification,” Comput Electron Agric,
vol. 134, pp. 135-141, Mar. 2017, doi: 10.1016/j.compag.2017.01.014.

FAO, The State of Food and Agriculture 2024. Rome, Italy: FAO, 2024. doi:
10.4060/cd2616en.

ITU-T, “ITU-T Rec. Y.2060 (06/2012) Overview of the Internet of things,” 2012.

W. Tao, L. Zhao, G. Wang, and R. Liang, “Review of the internet of things
communication technologies in smart agriculture and challenges,” Oct. 2021,
Elsevier B.V. doi: 10.1016/j.compag.2021.106352.

X. Ding and W. Du, “Optimizing Irrigation Efficiency using Deep Reinforcement
Learning in the Field,” 2023. [Online]. Available:
https://arxiv.org/abs/2304.01435

R. A. Osman, “Optimizing loT communication for enhanced data transmission
in smart farming ecosystems,” Expert Syst Appl, vol. 265, Mar. 2025, doi:
10.1016/j.eswa.2024.125879.

J. Omara, E. Talavera, D. Otim, D. Turcza, E. Ofumbi, and G. Owomugisha,
“Afield-based recommender system for crop disease detection using machine
learning,” Front Artif Intell, vol. 6, 2023, doi: 10.3389/FRAI.2023.1010804/PDF.

R. Strong, J. T. Wynn, J. R. Lindner, and K. Palmer, “Evaluating Brazilian
Agriculturalists’ loT Smart Agriculture Adoption Barriers: Understanding
Stakeholder Salience Prior to Launching an Innovation,” Sensors (Basel), vol.
22, no. 18, Sep. 2022, doi: 10.3390/S22186833.

A. S. Albahri et al., “Based Multiple Heterogeneous Wearable Sensors: A
Smart Real-Time Health Monitoring Structured for Hospitals Distributor,” IEEE
Access, vol. 7, pp. 37269-37323, 2019, doi: 10.1109/ACCESS.2019.2898214.

184

Capitulo 7. Bibliografia

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L. Gatezewski et al., “Analysis of the need for soil moisture, salinity and
temperature sensing in agriculture: a case study in Poland,” Sci Rep, vol. 11,
no. 1, Dec. 2021, doi: 10.1038/S41598-021-96182-1.

V. Aliabadi, S. Gholamrezai, and P. Ataei, “Rural people’s intention to adopt
sustainable water management by rainwater harvesting practices: application
of TPB and HBM models,” Water supply, vol. 20, no. 5, pp. 1847-1861, Aug.
2020, doi: 10.2166/W S.2020.094.

S. J. Van De Meene, R. R. Brown, and M. A. Farrelly, “Capacity attributes of
future urban water management regimes: projections from Australian
sustainability practitioners.,” Water Sci Technol, vol. 61 9, no. 9, pp. 2241-50,
2010, doi: 10.2166/WST.2010.154.

D. R. Marlow, D. J. Beale, and S. Burn, “A pathway to a more sustainable water
sector: sustainability-based asset management.,” Water Sci Technol, vol. 61
5, no. 5, pp. 1245-55, 2010, doi: 10.2166/WST.2010.043.

R. I. McDonald et al., “Global Urban Growth and the Geography of Water
Availability, Quality, and Delivery,” Ambio, vol. 40, no. 5, pp. 437-446, Jun.
2011, doi: 10.1007/S13280-011-0152-6.

G. Salmoral et al., “Water-related challenges in nexus governance for
sustainable development: Insights from the city of Arequipa, Peru.,” Sci Total
Environ, vol. 747, Dec. 2020, doi: 10.1016/J.SCITOTENV.2020.141114.

S. A. Noorhosseini, M. S. Allahyari, C. A. Damalas, and S. S. Moghaddam,
“Public environmental awareness of water pollution from urban growth: The
case of Zarjub and Goharrud rivers in Rasht, Iran.,” Sci Total Environ, vol. 599—
600, pp. 2019-2025, Dec. 2017, doi: 10.1016/J.SCITOTENV.2017.05.128.

K. S. Fielding, A. Spinks, S. Russell, R. McCrea, R. Stewart, and J. Gardner,
“An experimental test of voluntary strategies to promote urban water demand
management.,” J Environ Manage, vol. 114, pp. 343-51, Jan. 2013, doi:
10.1016/J.JENVMAN.2012.10.027.

185

Capitulo 7. Bibliografia

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

S. Jayashree, M. N. H. Reza, C. A. N. Malarvizhi, and M. Mohiuddin, “Industry
4.0 implementation and Triple Bottom Line sustainability: An empirical study
on small and medium manufacturing firms,” Heliyon, vol. 7, no. 8, Aug. 2021,
doi: 10.1016/J.HELIYON.2021.E07753.

R. Cresnar, V. Potogan, and Z. Nedelko, “Speeding Up the Implementation of
Industry 4.0 with Management Tools: Empirical Investigations in
Manufacturing Organizations,” Sensors (Basel), vol. 20, no. 12, pp. 1-25, Jun.
2020, doi: 10.3390/S20123469.

P. Strickland and K. M. Williams, “The adoption of smart industry 4.0 app
technology and harnessing e-WOM in the wine industry caused by a global
pandemic: a case study of the Yarra Valley in Australia,” Journal of Hospitality
and Tourism Insights, 2022, doi: 10.1108/JHTI-05-2022-0175.

S. Khin and D. M. H. Kee, “Factors influencing Industry 4.0 adoption,” Journal
of Manufacturing Technology Management, vol. 33, no. 3, pp. 448—-467, Mar.
2022, doi: 10.1108/JMTM-03-2021-0111.

S. Chatterjee, R. Chaudhari, and R. Shams, “Applications of Industry 4.0 for
Pandemic Responses and Business Continuity: A TOE-DCV Integrated
Approach,” IEEE Trans Eng Manag, 2023, doi: 10.1109/TEM.2023.3250587.

T. Christie, “Django REST Framework,” https://www.django-rest-

framework.org/.

Django Software Foundation, “Django Channels,”

https://channels.readthedocs.io/en/latest/.
Redis, “Redis - The Real-time Data Platform,” https://redis.io/.

A. Solem, “Celery - Distributed Task Queue,”
https://docs.celeryq.dev/en/stable/.

E. You, “Vue.js,” https://vuejs.org/.

Vuetify, “Vuetify — A Vue Component Framework,” https://vuetifyjs.com/en/.

186

Capitulo 7. Bibliografia

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

ApexCharts, “ApexCharts.js - Open Source JavaScript Charts for your

website,” https://apexcharts.com/.

E. San Martin Morote, “PiniaThe intuitive store for Vue.js,”

https://pinia.vuejs.org/.
The Axios Project, “AXIOS,” https://axios-http.com/es/.

Timescale Inc., “PostgreSQL ++ for time series and events | Timescale,”

https://www.timescale.com/.

The PostgreSQL Global Development Group, “PostgreSQL,”
https://www.postgresql.org/.

L. V. S. Kumar and T. S. L. V Ayyarao, “Real Time Environmental Monitoring
with Raspberry Pi 3B+ and MATLAB for Enhanced Worker Safety Through
loT,” Sep. 26, 2024, IEEE. doi: 10.1109/ICPEEV63032.2024.10931895.

R. Zwetsloot, “Raspberry Pi 4 specs and benchmarks — Raspberry Pi Official
Magazine,” https://magazine.raspberrypi.com/articles/raspberry-pi-4-specs-

benchmarks.

R. Shaik, F. Syed, K. Ratnam, and C. Bhargavi, “loT based automated
irrigation system using Raspberry Pi,” International Journal of Electrical

Engineering and Technology, vol. 11, no. 3, 2020.

A. Dawod, D. Georgakopoulos, P. P. Jayaraman, and A. Nirmalathas, “A
Survey of Techniques for Discovering, Using, and Paying for Third-Party loT
Sensors.,” Sensors (14248220), vol. 24, no. 8, p. 2539, Apr. 2024, doi:
10.3390/s24082539.

P. Cihan, “loT Technology in Smart Agriculture,” International Conference on
Recent Academic Studies, vol. 1, pp. 185-192, May 2023, doi:
10.59287/icras.693.

187

Capitulo 7. Bibliografia

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Edited by Andrew Banks, Ed Briggs, Ken Borgendale, and and Rahul Gupta,
‘MQTT Version 5.0,” Mar. 2019. [Online]. Available: https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

HiveMQ, “HiveMQ — The Most Trusted MQTT platform to Transform Your

Business,” https://www.hivemqg.com/.

Django Software Foundation, “Django documentation,”

https://docs.djangoproject.com/en/5.2/.

A. Saif Uddin and A. Solem, “django-celery-beat - Database-backed Periodic

Tasks,” https://django-celery-beat.readthedocs.io/en/latest/.

N. Liyanage, C. Attanayaka, T. Perera, D. Neilkumara, |. S. Bandara, and L.
Chandrasiri, “loT-Based Smart Beehive Monitoring System,” Dec. 12, 2024,
IEEE. doi: 10.1109/ICAC64487.2024.10851052.

M. Del-Coco, M. Leo, and P. Carcagni, “Machine Learning for Smart Irrigation
in Agriculture: How Far along Are We?,” Information, vol. 15, no. 6, 2024, doi:
10.3390/info15060306.

L. Umutoni and V. Samadi, “Application of machine learning approaches in
supporting irrigation decision making: A review,” Agric Water Manag, vol. 294,
p. 108710, 2024, doi: https://doi.org/10.1016/j.agwat.2024.108710.

R. Togneri et al., “Soil moisture forecast for smart irrigation: The primetime for
machine learning,” Expert Syst Appl, vol. 207, p. 117653, 2022, doi:
https://doi.org/10.1016/j.eswa.2022.117653.

Y. Wang, L. Shi, Y. Hu, X. Hu, W. Song, and L. Wang, “A comprehensive study
of deep learning for soil moisture prediction,” Hydrol Earth Syst Sci, vol. 28,
no. 4, pp. 917-943, 2024, doi: 10.5194/hess-28-917-2024.

L. P. Challa, C. D. Singh, K. V. R. Rao, A. Subeesh, and M. Srilakshmi,
“Prediction of soil moisture using machine learning techniques: A case study

of an loT-based irrigation system in a naturally ventilated polyhouse,” Irrigation

188

Capitulo 7. Bibliografia

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

and Drainage, vol. 73, no. 3, pp. 1138-1150, Jul. 2024, doi:
https://doi.org/10.1002/ird.2933.

M. Taheri, M. Bigdeli, H. Imanian, and A. Mohammadian, “An Overview of
Machine-Learning Methods for Soil Moisture Estimation,” Water (Basel), vol.
17, no. 11, 2025, doi: 10.3390/w17111638.

N. Ghadiri, B. Javadi, O. Obst, and S. Pfautsch, “Data Optimisation of Machine
Learning Models for Smart Irrigation in Urban Parks,” in 2024 International
Conference on Ubiquitous Computing and Communications (IUCC), |EEE,
Dec. 2024, pp. 70-77. doi: 10.1109/iucc65928.2024.00012.

scikit-learn, “Cross-validation: evaluating estimator performance,”
https://scikit-

learn.org/stable/modules/cross_validation.html?utm_source=chatgpt.com.

M. Bhagat and B. Bakariya, “A Comprehensive Review of Cross-Validation
Techniques in Machine Learning,” Jan. 2025. doi:
10.71097/1JSAT.v16.i1.1305.

X. Ding and W. Du, “Optimizing Irrigation Efficiency using Deep Reinforcement
Learning in the Field,” 2023. [Online]. Available:
https://arxiv.org/abs/2304.01435

A. Vyas and S. Bandyopadhyay, “Dynamic Structure Learning through Graph
Neural Network for Forecasting Soil Moisture in Precision Agriculture,” 2022.
[Online]. Available: https://arxiv.org/abs/2012.03506

Raspberry Pi Foundation, “Raspberry Pi Documentation,”

https://www.raspberrypi.com/documentation/.

Python Software Foundation, “Paho MQTT Documentation.” [Online].

Available: https://www.eclipse.org/paho/
I. Craggs, “Eclipse Paho | The Eclipse Foundation,” https://eclipse.dev/paho/.

Lou. Hattersley, “The official Raspberry Pi handbook 2024,” p. 201, 2024.

189

Capitulo 7. Bibliografia

[67] Y. G. Kusuma, S. Parvathi, Y. Sirisha, and Ch. Lasya, “Gas Detection and
Environmental Monitoring Using Raspberry Pi Pico,” Jun. 21, 2024, IEEE. doi:
10.1109/SCES61914.2024.10652582.

190

TESIS TESIS TESIS TESIS TESIS

Capitulo 9 s

TESIS TESIS TESIS TESIS TESIS

Capitulo 9. Anexos

8. Anexos

Anexo A. Configuraciones de hardware y software

A.1 Instalaciéon del sistema operativo y entorno de
desarrollo
Instalacion del Sistema Operativo y Actualizacion

Se recomienda utilizar Raspberry Pi OS (64-bit). Si aun no esta instalado, se puede
descargar desde la pagina oficial de Raspberry Piy flashear en una tarjeta microSD

utilizando Raspberry Pi Imager o balenaEtcher.
Actualizar el sistema operativo para garantizar que los paquetes estan actualizados:

sudo apt update && sudo apt upgrade -y [63]

Instalacion de Python y Configuracion del Entorno Virtual

Python 3 viene preinstalado en Raspberry Pi OS, pero es recomendable asegurarse

de que se tenga la version mas reciente e instalar las bibliotecas necesarias.
Instalar Python y pip:

sudo apt install python3 python3-pip -y

Crear y activar un entorno virtual para aislar las dependencias:

python3 -m venv .venv

source .venv/bin/activate [63]

Instalacion de Bibliotecas Necesarias

Instalar las bibliotecas especificas utilizadas en este proyecto:

192

Capitulo 9. Anexos

pip install Adafruit-Blinka adafruit-circuitpython-adsix15 adafruit-
circuitpython-bh1750 \

adafruit-circuitpython-busdevice adafruit-circuitpython-connectionmanager

adafruit-circuitpython-dht \

adafruit-circuitpython-register adafruit-circuitpython-requests adafruit-

circuitpython-scddx \

adafruit-circuitpython-typing adafruit-io Adafruit-PlatformDetect
Adafruit-PureIO binho-host-adapter \

certifi charset-normalizer click idna paho-mqtt pyftdi pyserial python-

dotenv pyusb requests RPi.GPIO \

rpi_ws281x smbus2 sysv_ipc typing_extensions urllib3 wlthermsensor

Configuracion de Buses I°C Adicionales

En este proyecto, se han creado dos buses I?C adicionales para manejar los tres
sensores |?°C utilizados. Para configurarlos, se debe modificar el archivo de

configuracion:

sudo nano /boot/firmware/config.txt

Agregar las siguientes lineas al final del archivo:
dtoverlay=i2c-gpio,bus=3,i2c_gpio_sda=23,i2c_gpio_scl=24
dtoverlay=i2c-gpio,bus=4,i2c_gpio_sda=27,i2c_gpio_scl=22
Guardar los cambios y reiniciar la Raspberry Pi:

sudo reboot

Para verificar los buses creados:

1s /dev/i2c-*

Debe mostrar algo como:

193

Capitulo 9. Anexos

/dev/i2c-1 /dev/i2c-3 /dev/i2c-4 [44]

A.2 Verificacion de sensores y configuracion MQTT
Habilitacion de Interfaces de Hardware

Para permitir la comunicacién con los sensores, se deben habilitar las interfaces

necesarias:
sudo raspi-config
Dentro del menu de configuracion, habilitar en Interfacing Options:

e [|?C (para sensores BH1750, SCD41 y ADS1115)
e 1-Wire (para el sensor DS18B20)
o SPI (si se requiere en futuras expansiones)

Después de realizar los cambios, reiniciar la Raspberry Pi:

sudo reboot [63]

Verificacion de la Comunicacion con los Sensores

Después de configurar los buses, se deben detectar los sensores conectados

ejecutando:
sudo i2cdetect -y 3

sudo i2cdetect -y 4

Esto listara las direcciones de los sensores conectados en cada bus [63].

Configuracion del Cliente MQTT

194

Capitulo 9. Anexos

El sistema usa el protocolo MQTT para enviar y recibir datos de sensores y 6rdenes
para la bomba de agua. Se debe instalar la libreria paho-maqtt y verificar la conexién

con el broker de HiveMQ.

Ejemplo de cddigo para probar la conexion con HiveMQ:

Caodigo 21. Ejemplo de cédigo para probar la conexién con HiveMQ.
Si el mensaje "Conexién exitosa al broker MQTT" aparece en la terminal, la

configuracion ha sido correcta.

Con esta configuracion, la Raspberry Pi esta lista para la adquisicion de datos desde

los sensores, el control de la bomba de agua y la transmision de informacion

mediante MQTT [64], [65].

A.3. Esquema de Conexidén de Sensores y Actuadores

Conexion del DHT22 (Humedad y temperatura ambiental)

195

Capitulo 9. Anexos

¢ Alimentacion: 3.3V o 5V

o Comunicacién: Digital (protocolo de un solo cable)

¢ Pines de conexion:

- VCC — 3.3V 0 5V de la Raspberry Pi

- GND — GND de la Raspberry Pi

- DATA — GPIO 4 (con resistencia pull-up de 10kQ)

Diagrama 6. Conexion del sensor DHT22 con la Raspberry Pi.

Conexion del DS18B20 (Temperatura del suelo)

¢ Alimentacion: 3.3V o 5V

e Comunicacion: 1-Wire

¢ Pines de conexion:

196

Capitulo 9. Anexos

- VCC — 3.3V de la Raspberry Pi
- GND — GND de la Raspberry Pi

- DATA — GPIO 4 (compartido con el DHT22, requiere resistencia pull-

up de 4.7kQ)

Diagrama 7. Conexion del sensor DS18B20 con la Raspberry Pi.

Conexion del BH1750 (Intensidad de luz ambiental) en el Bus I’°C 3

o Alimentacion: 3.3V o 5V
e Comunicacion: I?C
o Pines de conexion:
- VCC — 3.3V de la Raspberry Pi

- GND — GND de la Raspberry Pi

197

Capitulo 9. Anexos

- SDA — GPIO 23 (SDAbus 3)

- SCL — GPIO 24 (SCL bus 3)

Diagrama 8. Conexion del sensor BH1750 con la Raspberry Pi.

Conexion del SCD41 (Sensor de CO,) en el Bus I>C 4

¢« Alimentacion: 3.3V o 5V

¢ Comunicacion: I?C

¢ Pines de conexion:

o VCC — 3.3V de la Raspberry Pi

o GND — GND de la Raspberry Pi

o SDA — GPIO 27 (SDA bus 4)

198

Capitulo 9. Anexos

o SCL — GPIO 22 (SCL bus 4)

Diagrama 9. Conexion del sensor SCD41 con la Raspberry Pi.

Conexion del LM393 (Sensor de humedad del suelo con ADC ADS1115) en el
Bus I’C 3

Dado que la Raspberry Pi no cuenta con entradas analdgicas, se utiliza el
convertidor ADC ADS1115 para leer la salida analdgica del sensor LM393.

o Alimentacion: 3.3V o 5V
e Conversion ADC: ADS1115 (16 bits)
e Conexion del LM393 al ADS1115:
o VCC — 3.3V de la Raspberry Pi
o GND — GND de la Raspberry Pi
o A0 (Salida Analdgica) — A0 del ADS1115

199

Capitulo 9. Anexos

o Conexion del ADS1115 a la Raspberry Pi:
o VCC — 3.3V de la Raspberry Pi
o GND — GND de la Raspberry Pi
o SDA — GPIO 23 (SDA bus 3)

o SCL — GPIO 24 (SCL bus 3)

Diagrama 10. Conexion del LM393 con el ADS1115 y la Raspberry Pi.

Esta configuracion de hardware permite que el sistema loT maneje multiples
sensores sin conflictos de direccion en el bus I?C, garantizando una comunicacién

eficiente y estable con la Raspberry Pi [66].

Esquema de Conexion de la Bomba de Agua

La bomba de agua es el unico actuador del sistema de riego inteligente basado en

loT y es controlada mediante un moédulo relé conectado a la Raspberry Pi. La

200

Capitulo 9. Anexos

activacion de la bomba se basa en los valores obtenidos del sensor de humedad

del suelo (LM393), permitiendo una gestion eficiente del riego.
Componentes Utilizados

e« Bomba de agua.

¢ Modulo relé de 1 canal.

o Fuente de alimentacién de la bomba.

o Raspberry Pi 4 Model B.

Conexion del Médulo Relé con la Raspberry Pi

El médulo relé actua como un interruptor controlado digitalmente por la Raspberry
Pi para encender o apagar la bomba de agua. La conexion se realiza de la siguiente

manera:

e VCC — 5V de la Raspberry Pi

e GND — GND de la Raspberry Pi

e IN — GPIO 17 (puede cambiarse segun necesidad)

Cuando la Raspberry Pi envia un nivel I6gico bajo al pin IN, el relé se activa y permite
el paso de corriente hacia la bomba de agua.

Conexion de la Bomba de Agua al Relé

La bomba de agua opera con una fuente de alimentacion externa (3v — 6V), y su

circuito de control se establece a través del relé.

1. Conexidn en el lado de control del relé:

¢ Un terminal de la fuente de alimentacion se conecta a COM (comun)

del relé.

201

Capitulo 9. Anexos

e El otro terminal de la fuente de alimentacion se conecta directamente

a la bomba de agua.

e El pin NO (normalmente abierto) del relé se conecta al otro terminal

de la bomba.

2. Flujo de operacion:

e Cuando el relé esta inactivo, el circuito de la bomba esta abierto y no

fluye corriente.

e Cuando el relé es activado por la Raspberry Pi, el circuito se cierra y

la bomba comienza a funcionar.

Diagrama 11. Conexion eléctrica de la bomba de agua con el relé y la Raspberry Pi.

Esta configuracion garantiza un control preciso del riego, asegurando que el agua

se distribuya solo cuando el nivel de humedad del suelo lo requiera [44].

202

Capitulo 9. Anexos

A.4. Lectura de sensores
Cédigo de Captura de Datos de Sensores

El sistema de riego inteligente recopila informacion de multiples sensores
ambientales y del suelo, utilizando scripts individuales en Python para cada sensor.
Estos scripts son gestionados desde el script principal mqtt_client.py, el cual

importa y ejecuta las funciones de cada sensor.
Estructura del Codigo

El codigo se organiza de la siguiente manera:

Codigo 22. Estructura de carpetas de scripts de sensores.

Cada script de sensor define una funcién para leer los datos y retornarlos al cliente

MQTT para su publicacion.

Cédigo de Lectura del Sensor DHT22 (Temperatura y Humedad)

203

Capitulo 9. Anexos

Cadigo 23. Codigo de Lectura del Sensor DHT22.

Cadigo de Lectura del Sensor DS18B20 (Temperatura del Suelo)

Cadigo 24. Cédigo de Lectura del Sensor DS18B20.

Cadigo de Lectura del Sensor BH1750 (Intensidad de Luz)

204

TESIS TESIS JESLY TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS JESLY TESIS TESIS

Cddigo 27. Codigo de Lectura del Sensor BH1750 (parte 3).

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS JESLY TESIS TESIS

Cédigo de Lectura del Sensor SCD41 (CO,)

digo de Lectura del Sensor SCD41 (parte

Cddigo 29. Codigo de Lectura del Sensor SCD41 (parte 2).

TESIS TESIS TESIS TESIS TESIS

Capitulo 9. Anexos

Codigo 30. Codigo de Lectura del Sensor SCD41 (parte 3).

Cadigo de Lectura del Sensor de Humedad del Suelo LM393 con ADS1115

Codigo 31. Lectura del Sensor de Humedad del Suelo LM393 con ADS1115 (parte 1).

208

Capitulo 9. Anexos

Codigo 32. Lectura del Sensor de Humedad del Suelo LM393 con ADS1115 (parte 2).

Con esta arquitectura modular, cada sensor tiene su propio script, lo que facilita la
escalabilidad y mantenimiento del sistema loT. Scripts en Python para la lectura de

los sensores y procesamiento de los datos obtenidos.

A.5 Control de actuadores
Cadigo de Control de la Bomba de Agua

El control de la bomba de agua en el sistema de riego inteligente se realiza a traves
de un modulo relé conectado a la Raspberry Pi. La activacion y desactivacion de la
bomba dependen de los valores obtenidos por el sensor de humedad del suelo
LM393 con ADS1115.

Estructura del Codigo

El codigo sigue la misma estructura modular utilizada en los sensores y se

encuentra organizado de la siguiente manera:

209

Capitulo 9. Anexos

Codigo 33. Estructura de carpetas de scripts de actuadores.

Caédigo de Control de la Bomba de Agua (relay_bomba.py)

Codigo 34. Codigo de Control de la Bomba de Agua.

210

Capitulo 9. Anexos

Este cddigo garantiza que la bomba de agua se active solo cuando sea necesario,
optimizando el uso del recurso hidrico en el sistema de riego inteligente basado en
loT.

A.6 Implementacion del cliente MQTT
Coédigo de Comunicacion MQTT

La comunicacion en el sistema de riego inteligente se realiza utilizando el protocolo
MQTT, un estandar ampliamente utilizado en loT debido a su eficiencia y bajo
consumo de ancho de banda. Este protocolo permite que la Raspberry Pi envie
datos de los sensores y reciba comandos para la activacion y desactivacion de la

bomba de agua a través del broker de HiveMQ [47].
Estructura de Comunicacion MQTT

El sistema sigue una arquitectura publicador-suscriptor, donde la Raspberry Pi actua

como:

e Publicador: Enviando datos de sensores a topicos especificos en el broker.

o Suscriptor: Recibiendo comandos para activar o desactivar la bomba de agua

[47].

Los topicos utilizados en este sistema son:
e iot/sensores — Publica los valores de temperatura, humedad, luz, CO, y

humedad del suelo.

e iot/control — Recibe comandos (ON u OFF) para el control de la bomba

de agua.

Instalacion de la Biblioteca MQTT

211

Capitulo 9. Anexos

Para habilitar la comunicacion MQTT en Python, es necesario instalar la biblioteca

paho-mqtt si no esta instalada previamente:
pip install paho-mqtt
Caédigo de Cliente MQTT en mqtt_client.py

El siguiente cddigo implementa un cliente MQTT en la Raspberry Pi para gestionar

la comunicacion con HiveMQ:

212

TESIS TESIS JESLY TESIS TESIS

Caodigo 35. Cliente MQTT en mqtt_client.py (parte 1).

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS JESLY TESIS TESIS

Cddigo 36. Cliente MQTT en mqtt_client.py (parte 2).

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS JESLY TESIS TESIS

jente MQTT en mqtt_client.py (|

TESIS TESIS TESIS TESIS TESIS

Capitulo 9. Anexos

Codigo 38. Cliente MQTT en mqtt_client.py (parte 4).

Explicacion del Cédigo

1.

Conexion al broker MQTT: Se establece la conexién con HiveMQ y se

suscribe al toépico iot/control para recibir comandos.

Recepcion de mensajes: La funcion on_message procesa los mensajes

recibidos y activa o desactiva la bomba segun el comando.

Publicacién de datos: Cada 10 segundos, la Raspberry Pi recopila los valores

de los sensores y los envia al topico iot/sensores.

216

Capitulo 9. Anexos

Este codigo asegura una comunicacion eficiente entre la Raspberry Pi y el broker
MQTT de HiveMQ, permitiendo la monitorizacidén en tiempo real del sistema de riego

inteligente.

Publicacion de Datos de Sensores

La Raspberry Pi adquiere informacion de los sensores y la envia al broker MQTT en

un formato estructurado. La publicacion de estos datos se realiza en el tépico:
iot/sensores

Cada sensor genera datos que se publican periédicamente en el broker para su

monitoreo en tiempo real. Ejemplo de publicacién de datos:

Caodigo 39. Ejemplo de Publicacion de Datos de Sensores.

217

Capitulo 9. Anexos

Recepcion de Comandos para la Bomba de Agua
La Raspberry Pi se suscribe al topico:
iot/control

En este topico se reciben comandos para la activacion (ON) o desactivacion (OFF)
de la bomba de agua. El siguiente codigo muestra como se suscribe y gestiona los

mensajes recibidos:

Caodigo 40. Recepcion de Comandos para la Bomba de Agua.

Flujo de Comunicacién

218

Capitulo 9. Anexos

1.

Adquisicion de Datos: Los sensores miden temperatura, humedad, luz, CO,

y humedad del suelo.

Publicacién de Datos: La Raspberry Pi publica estos valores en

iot/sensores.

Recepcion de Comandos: Si un usuario o sistema externo publica ON u OFF
en iot/control, la Raspberry Pi procesa la orden y activa/desactiva la

bomba.

219

Capitulo 9. Anexos

Anexo B. Implementaciéon del backend y frontend web

B.1 Configuracion del backend
Instalacién y Configuracién de Celery

Para usar Celery, primero es necesario instalar la libreria y configurar el backend de
tareas y el scheduler (programador de tareas). En este caso, utilizaremos Redis
como el broker de Celery, que es el intermediario encargado de gestionar las colas

de tareas.
Instalacion de Celery y Redis:

Primero, instalamos Celery y Celery Beat (para programacién de tareas periodicas)

junto con Redis como backend:
pip install celery
pip install celery[redis]

Configuracion en settings.py:

En el archivo settings.py de Django, se configura el broker (Redis) y el backend de

Celery para que se comuniquen de manera eficiente.

Caodigo 41. Configuracion en settings.py.

Esto configura Redis como el broker para manejar las tareas de Celery y también
establece como se serializan los datos entre los componentes (en este caso, JSON)
[34].

220

Capitulo 9. Anexos

Configuracion del Cliente MQTT en Django

El backend se conecta al broker HiveMQ utilizando un cliente MQTT. Para ello, se
puede utilizar la libreria paho-mqtt, que es una de las bibliotecas mas utilizadas para
trabajar con MQTT en Python.

A continuacién, se muestra como configurar el cliente MQTT en el backend de

Django para conectarse a HiveMQ, suscribirse a un tema y recibir los mensajes.

Cadigo 42. Cédigo de Conexion MQTT en Django.

Explicaciéon del cédigo:

1. Conexioén al broker: El cliente MQTT se conecta al broker HiveMQ utilizando

las credenciales y el host configurado en los ajustes de Django.

221

Capitulo 9. Anexos

2. Suscripcion a los temas: Una vez conectado, el cliente se suscribe al tema
iot/sensores, |0 que le permite recibir todos los mensajes publicados en los

temas relacionados con los sensores.

3. Recepcion de mensajes: Cuando el cliente recibe un mensaje, el callback
on_message es ejecutado. Los datos del mensaje (que generalmente estaran

en formato JSON o texto) se procesan y se almacenan en la base de datos.

4. Procesamiento de los datos: Los datos del sensor se procesan en la funcién
process_sensor_data, donde los mensajes recibidos se convierten a un

formato adecuado para ser almacenados en la base de datos [64].

Manejo de Conexiones y Reconexién Automatica

Una de las caracteristicas mas importantes del protocolo MQTT es su capacidad de
manejar conexiones inestables o intermitentes, lo que es especialmente util en
entornos como un cultivo, donde las conexiones pueden ser inestables. paho-mqtt
soporta la reconexion automatica en caso de que el cliente pierda la conexién con

el bréker.

Cadigo 43. Manejo de Reconexion Automatica.

Explicacion:

e En caso de desconexion inesperada, el cliente intentara reconectarse
automaticamente, asegurando que el backend reciba los datos de los

sensores de manera continua [64].

222

Capitulo 9. Anexos

Manejo de Errores en la Comunicacion MQTT y WebSocket

Es importante implementar un manejo robusto de errores para asegurar la
estabilidad del sistema, ya que tanto en la comunicacion MQTT (para recibir datos
de los sensores) como en los WebSockets (para la comunicacion en tiempo real con
el frontend), pueden ocurrir problemas de conexion, pérdida de mensajes o errores

en la transmision de datos.
Errores en MQTT:

La comunicacion mediante MQTT puede fallar por diversas razones, como la
desconexion de la red o problemas con el broker (HiveMQ). Para manejar estos
errores, es necesario configurar un sistema de reconexiéon automatica y registrar los

errores para poder analizarlos.

1. Reconexion automatica: Cuando la conexién con el broker se pierde, el

cliente MQTT debe intentar reconectarse automaticamente.

2. Manejo de excepciones: Los errores en la recepcion de mensajes deben ser

capturados y gestionados adecuadamente [64].

Cadigo 44. Ejemplo de cbdigo para reconexion automatica en MQTT.

Errores en WebSocket (Django Channels):

La comunicacion en tiempo real mediante WebSockets también puede enfrentar
errores debido a desconexiones inesperadas o problemas con los datos recibidos.

Es crucial manejar estos errores para evitar que la aplicacion se detenga.

223

Capitulo 9. Anexos

1. Reconexion automatica: Si se pierde la conexién WebSocket, el cliente debe

intentar reconectarse.

2. Manejo de excepciones: Cuando se reciben datos que no son validos o
cuando hay un error en el procesamiento de los mensajes, este debe ser

capturado y manejado adecuadamente [32].

Cadigo 45. Ejemplo de cédigo para manejar errores en Django Channels.

Validaciones de los Datos de los Sensores y las Configuraciones de los

Dispositivos

Las validaciones son fundamentales para asegurar que los datos recibidos de los

sensores sean correctos y que las configuraciones del sistema sean adecuadas. De

224

Capitulo 9. Anexos

lo contrario, el sistema podria tomar decisiones incorrectas, como activar la bomba

de agua en condiciones inadecuadas.
Validacién de Datos de los Sensores:

Los datos de los sensores, como la temperatura o la humedad del suelo, deben
estar dentro de rangos predefinidos. Se debe verificar que los datos sean

consistentes y correctos [67].

Cadigo 46. Ejemplo de validacion de datos de sensores.

Validacién de Configuraciones de Dispositivos:

Las configuraciones de los sensores, como los umbrales de activacion de la bomba
de agua, deben ser validadas para asegurar que estén dentro de valores

razonables.

Cadigo 47. Ejemplo de validacion de configuraciones de dispositivos.

Estas validaciones permiten que el sistema funcione de manera robusta,
asegurando que solo se ejecuten acciones validas y que los datos sean confiables
[42].

225

Capitulo 9. Anexos

B.2 Tareas automatizadas

Definicidon de Tareas Periédicas con Celery Beat

Una de las caracteristicas de Celery Beat es que permite programar tareas que se
ejecutan de manera periddica. En el contexto de este sistema, podemos tener tareas

como la recoleccion periddica de datos de los sensores o la activacion de

dispositivos (como la bomba de agua).
Definicion de una tarea periddica:

Supongamos que queremos que el sistema recoja los datos de los sensores cada
10 minutos. Para ello, definimos una tarea en Celery que sera ejecutada

periédicamente.

Codigo 48. Ejemplo de tarea Celery para la recoleccion de datos.

Esta tarea fetch_sensor_data se encarga de obtener los datos de los sensores (a

través de una funcidn externa get_sensor_data) y almacenarlos en la base de datos.
Programacion de la tarea con Celery Beat:

Para que esta tarea se ejecute cada 10 minutos, la configuramos en Celery Beat. A

continuacion, se muestra como hacerlo:

226

Capitulo 9. Anexos

Cadigo 49. Programacion de una tarea con Celery Beat.

La linea crontab(minute='*/10') indica que la tarea se debe ejecutar cada 10

minutos [50].

Ejecucion de Tareas Periédicas

Cuando se ejecuta el servidor de Celery con Celery Beat, el programador manejara
las tareas periodicas automaticamente. Aqui hay una forma basica de ejecutar

Celery y Celery Beat:

Ejecutando Celery con Celery Beat:

celery -A myproject worker --loglevel=info
celery -A myproject beat --loglevel=info

El comando worker se encarga de ejecutar las tareas, y beat gestiona la

programacioén de las tareas periddicas [50].

Monitoreo y Gestion de Tareas

Es importante monitorear y gestionar las tareas que se ejecutan en segundo plano.
Celery ofrece herramientas de monitoreo que permiten ver qué tareas se estan
ejecutando, si alguna ha fallado o si hay tareas pendientes. Ademas, se pueden
configurar tareas de forma que se puedan ejecutar de manera mas eficiente en

entornos de produccion.

227

Capitulo 9. Anexos

Ejemplo de monitoreo de tareas:

Celery permite ver el estado de las tareas ejecutadas utilizando herramientas de

monitoreo, como Flower, una herramienta de monitoreo en tiempo real para Celery.
pip install flower
celery -A myproject flower

Esto abrira una interfaz web para monitorear las tareas de Celery en tiempo real
[34].

Manejo de Errores en Tareas Periddicas

Como las tareas de Celery se ejecutan en segundo plano, es crucial gestionar los
errores que puedan ocurrir durante la ejecucion. Algunos mecanismos de manejo

de errores incluyen:

« Reintentos automaticos: Si una tarea falla, Celery puede configurarse para

reintentarla automaticamente después de un cierto periodo.

o Notificacion de errores: Se pueden configurar alertas para notificar a los

administradores si una tarea critica falla.

Caodigo 50. Ejemplo de reintentos automaticos en Celery.

En este caso, Celery intentara ejecutar la tarea hasta 3 veces si ocurre un error [34].

228

Capitulo 9. Anexos

B.3 APl y comunicacién en tiempo real

Implementacién de WebSocket en Django Channels

Django Channels proporciona una manera sencilla de gestionar WebSockets
mediante el uso de consumers. Un consumer es responsable de recibir las

conexiones WebSocket y enviar/recibir mensajes entre el cliente y el servidor.
Configuracion del WebSocket Consumer en Django

A continuacién, se muestra como crear un consumer en Django Channels para
manejar las conexiones WebSocket, recibir mensajes y enviar actualizaciones a los

clientes.
1. Instalacién de Django Channels:
Primero, es necesario instalar Django Channels si aun no se ha hecho:

pip install channels

2. Configuracién del consumidor WebSocket:

229

Capitulo 9. Anexos

Cadigo 51. Configuracién del consumidor WebSocket.

Explicacion:

e connect: Establece la conexion WebSocket y la afiade a un grupo de canales

(en este caso, "sensor_data").

e disconnect: Cuando el cliente se desconecta, se elimina del grupo de

canales.

230

Capitulo 9. Anexos

o receive: Recibe los mensajes del cliente WebSocket (en este caso, los datos
de los sensores), y los transmite de vuelta al cliente a través de

send_sensor_data.

e send_sensor_data: Este método es utilizado para enviar datos al cliente. El
backend puede llamar a este método para enviar actualizaciones al frontend

en tiempo real [32].

Configuracion de Channels Layer (Canal de Comunicacion)

Django Channels utiliza un channel layer para gestionar la comunicacion entre los
consumidores y distribuir los mensajes a través de grupos. Para configurarlo,

utilizamos Redis como un backend para el channel layer.
Instalacion de Redis:
Para instalar Redis, ejecutamos el siguiente comando:

pip install channels_redis

Configuracion en settings.py:

Cadigo 52. Configuracion en settings.py.

Con esta configuracion, Django Channels utilizara Redis como backend para

gestionar las conexiones y las tareas asincronas [32].

Envio de Datos de los Sensores en Tiempo Real

231

Capitulo 9. Anexos

Una vez que el backend recibe los datos de los sensores (por ejemplo, a través de
MQTT como se mostro en la seccion anterior), puede enviar estos datos en tiempo

real al frontend a través de WebSockets.

Ejemplo de como enviar los datos de sensores al frontend:

Cadigo 53. Ejemplo de cémo enviar los datos de sensores al frontend.

En este ejemplo, el backend consulta la base de datos para obtener los datos mas
recientes de los sensores y los envia al frontend a través de la conexion WebSocket

en tiempo real [32].

Creacion de Tablas en TimescaleDB

A continuacion, se describe como crear las tablas en TimescaleDB, basadas en el

modelo de datos proporcionado:

232

Capitulo 9. Anexos

Codigo 54. Creacion de Tablas en TimescaleDB.

Explicacion:

e sensors_sensor_type almacena los tipos de sensores, como temperatura,

humedad, etc., con la unidad correspondiente.

e sensors_sensor almacena los sensores individuales, con informacion como
su nombre, ubicacion, valores minimos y maximos, y su tipo (relacionado con

la tabla sensors_sensor_type).

e sensors_sensordata almacena las mediciones de los sensores, incluyendo

la marca de tiempo y el valor medido.

233

Capitulo 9. Anexos

e sensors_notification almacena las notificaciones generadas por los
sensores (por ejemplo, cuando los valores de los sensores superan ciertos
umbrales) [40].

Creacién de Hypertable para Datos de Sensores

Para aprovechar las capacidades de TimescaleDB y optimizar la consulta de series
temporales, convertimos la tabla sensors_sensordata en una hypertable. Las
hypertables permiten que los datos se particionen automaticamente en funcién del

tiempo, lo que mejora el rendimiento de las consultas sobre grandes volumenes de

datos.

Cadigo 55. Codigo SQL para convertir sensors_sensordata en una hypertable.

Esto convierte la tabla sensors_sensordata en una hypertable, lo que permite
manejar de manera eficiente grandes cantidades de datos que se generan con

frecuencia [40].
Insercion y Consulta de Datos

Ahora que las tablas estan configuradas, podemos insertar y consultar los datos de
manera eficiente. A continuacién, se muestran ejemplos de como insertar datos en

la base de datos y como realizar consultas sobre los datos almacenados.

Insercion de Datos:

234

Capitulo 9. Anexos

Cadigo 56. Ejemplo de insercién de datos.

Consultas de Datos:

1. Obtener los ultimos 10 registros de datos de sensores:

Caodigo 57. Consulta SQL para obtener los ultimos registros de datos sensados.

2. Obtener el promedio de las mediciones de un sensor en los ultimos 30

minutos:

Cadigo 58. Calculo del promedio de lecturas de un sensor en los dltimos 30 minutos.

Escalabilidad y Gestion del Almacenamiento

TimescaleDB permite gestionar grandes volumenes de datos de manera eficiente,
y proporciona herramientas para implementar politicas de retencion de datos. Esto
es util para eliminar datos antiguos que ya no son relevantes, optimizando el

almacenamiento.

Politica de Retencion de Datos:

232

Capitulo 9. Anexos

Cadigo 59. Configuracion de la politica de retencién de datos.

Esto eliminara de forma automatica los datos mas antiguos de la tabla
sensors_sensordata, |0 que ayuda a mantener el rendimiento de la base de datos a

medida que el volumen de datos crece [40].

236

	Portada
	Índice General
	Índice de Imágenes
	Índice de Diagramas
	Índice de Tablas
	Índice de Códigos
	Resumen
	Abstract
	1. Introducción
	1.1. Contexto
	1.2. Problema de Investigación
	1.3. Formulación de Objetivos
	1.3.1. Objetivo General
	1.3.2. Objetivos Específicos

	1.4. Justificación
	1.4.1. Pertinencia
	1.4.2. Valor Científico
	1.4.3. Valor Práctico

	1.5. Alcance y Limitaciones
	1.5.1. Alcance
	1.5.2. Limitaciones

	2. Marco Teórico
	2.1. Sistemas de Riego
	2.2. Internet de las Cosas (IoT)
	2.3. Fundamentos de IoT aplicados a la agricultura
	2.3.1. Conectividad y Monitoreo en Tiempo Real
	2.3.2. Automatización del Riego
	2.3.3. Agricultura de Precisión
	2.3.4. Sostenibilidad y Gestión de Recursos

	2.4. Gestión Sostenible del Agua
	2.4.1. Principios de la Gestión Sostenible del Agua
	2.4.2. Tecnologías y Prácticas para la Sostenibilidad Hídrica
	2.4.3. Impacto en la Agricultura y el Medio Ambiente
	2.4.4. Desafíos y Oportunidades

	2.5. Impacto del Crecimiento Urbano
	2.5.1. Presión sobre los Recursos Hídricos
	2.5.2. Cambios en el Uso del Suelo
	2.5.3. Contaminación del Agua
	2.5.4. Estrategias de Mitigación

	2.6. Industria 4.0 y su Aplicación en la Agricultura
	2.6.1. Cultivos Protegidos: Innovación y Sostenibilidad
	2.6.2. Internet de las Cosas (IoT) en la Agricultura
	2.6.3. Justificación del Uso de IoT en Cultivos Protegidos

	3. Metodología
	3.1. Fase 1: Análisis del problema y definición de requerimientos
	3.2. Fase 2: Diseño del Sistema
	3.2.1. Diseño de Software

	3.3. Fase 3: Implementación
	3.3.1. Desarrollo de Software
	3.3.2. Integración con Hardware
	3.3.3. Descripción de Sensores y Controlador
	3.3.3.1. Controlador Central: Raspberry Pi
	3.3.3.2. Sensor de Humedad del Suelo: DHT22
	3.3.3.3. Sensor de Temperatura del Aire y del Suelo: DS18B20
	3.3.3.4. Sensor de Niveles de Luz: BH1750
	3.3.3.5. Sensor de Concentraciones de CO2: SCD30
	3.3.3.6. Integración y Monitoreo

	3.4. Fase 4: Validación en entorno de laboratorio
	3.5. Fase 5: Documentación del proceso

	4. Desarrollo e Implementación
	4.1. Desarrollo del Sistema SIRCA-IoT
	4.1.1. Arquitectura General del Sistema
	4.1.1.1. Estructura de la Arquitectura Distribuida
	4.1.1.2. Comunicación y Flujo de Datos
	4.1.1.3. Principios de Diseño

	4.1.2. Subsistema IoT: Adquisición y Transmisión de Datos
	4.1.2.1. Controlador Central
	4.1.2.2. Sensores y Actuadores Implementados
	4.1.2.2.1. Sensores
	4.1.2.2.2. Actuadores

	4.1.2.3. Conectividad y Comunicación
	4.1.2.3.1. Protocolo MQTT
	4.1.2.3.2. Broker MQTT de HiveMQ
	4.1.2.3.3. Tópicos MQTT Utilizados en el Sistema
	4.1.2.3.4. Flujo de Datos y Procesamiento

	4.1.3. Subsistema Web: Backend y Frontend
	4.1.3.1. Backend del Sistema
	4.1.3.1.1. Stack Tecnológico
	4.1.3.1.2. Recepción de Datos desde HiveMQ
	4.1.3.1.3. Envío de Datos en Tiempo Real (WebSocket)
	4.1.3.1.4. Tareas Periódicas con Celery
	4.1.3.1.5. API REST para Configuración

	4.1.3.2. Estructura de la Base de Datos
	4.1.3.2.1. Modelo de Datos en TimescaleDB

	4.1.3.3. Frontend del Sistema
	4.1.3.3.1. Stack Tecnológico
	4.1.3.3.2. Arquitectura de la SPA

	4.1.3.4. Comunicación entre Backend y Frontend
	4.1.3.4.1. API REST con Axios
	4.1.3.4.2. WebSockets para Comunicación en Tiempo Real
	4.1.3.4.3. Integración entre WebSockets y API REST
	4.1.3.4.4. Componentes Principales

	4.1.3.5. Flujo de Datos Integrado
	4.1.3.5.1. Adquisición de Datos desde los Sensores
	4.1.3.5.2. Procesamiento y Almacenamiento de Datos
	4.1.3.5.3. Visualización en Tiempo Real (Frontend)
	4.1.3.5.4. Visualización de Datos Históricos (Frontend)
	4.1.3.5.5. Notificaciones y Alertas (Frontend)
	4.1.3.5.6. Resumen del Flujo de Datos

	4.1.3.6. Seguridad y Consideraciones Técnicas
	4.1.3.6.1. Seguridad
	4.1.3.6.2. Validaciones de Datos
	4.1.3.6.3. Control de Errores
	4.1.3.6.4. Rendimiento
	4.1.3.6.5. Escalabilidad

	4.1.4. Subsistema Predictivo
	4.1.4.1. Datos utilizados para el entrenamiento
	4.1.4.1.1. Características generales del conjunto de datos
	4.1.4.1.2. Justificación de las variables utilizadas
	4.1.4.1.3. Simulación de condiciones reales
	4.1.4.1.4. Ventajas del enfoque simulado
	4.1.4.1.5. Limitaciones

	4.1.4.2. Proceso de entrenamiento
	4.1.4.2.1. Herramientas utilizadas
	4.1.4.2.2. Preprocesamiento de los datos
	4.1.4.2.3. Selección del algoritmo
	4.1.4.2.4. Entrenamiento del modelo
	4.1.4.2.5. Validación cruzada
	4.1.4.2.6. Exportación del modelo

	4.1.4.3. Toma de decisiones basada en predicción
	4.1.4.3.1. Lógica de operación del sistema predictivo
	4.1.4.3.2. Estructura técnica de la integración
	4.1.4.3.3. Interfaz de usuario y experiencia
	4.1.4.3.4. Ventajas del enfoque predictivo
	4.1.4.3.5. Limitaciones actuales

	4.1.4.4. Limitaciones y perspectivas de mejora
	4.1.4.4.1. Limitaciones del modelo actual
	4.1.4.4.2. Perspectivas de mejora y líneas futuras de trabajo

	4.2. Implementación del Sistema SIRCA-IoT
	4.2.1. Integración del sistema
	4.2.1.1. Arquitectura general del sistema
	4.2.1.2. Flujo de funcionamiento del sistema
	4.2.1.3. Sincronización, control y monitoreo
	4.2.1.4. Modularidad y escalabilidad
	4.2.1.5. Seguridad y robustez del sistema

	5. Resultados
	5.1. Validación funcional del sistema
	5.1.1. Lectura y transmisión de datos sensoriales
	5.1.2. Estabilidad de comunicación y manejo de errores
	5.1.3. Visualización de datos en tiempo real
	5.1.4. Activación del sistema de riego
	5.1.5. Registro y trazabilidad de eventos

	5.2. Desempeño del modelo de Machine Learning
	5.2.1. Métricas de evaluación
	5.2.2. Resultados cuantitativos
	5.2.3. Evaluación cualitativa y funcional
	5.2.4. Robustez y limitaciones observadas
	5.2.5. Recomendaciones para mejora del modelo
	5.2.6. Impacto en la lógica del sistema

	5.3. Evaluación de rendimiento del SIRCA-IoT
	5.3.1. Tiempo de respuesta total del sistema
	5.3.2. Consumo y utilización de recursos computacionales
	5.3.3. Estabilidad y confiabilidad del sistema
	5.3.4. Capacidad de escalabilidad y adaptabilidad
	5.3.5. Consideraciones y recomendaciones

	5.4. Síntesis de resultados
	5.4.1. Integración funcional completa y operación sincronizada
	5.4.2. Precisión y utilidad del modelo predictivo
	5.4.3. Rendimiento, estabilidad y escalabilidad del sistema
	5.4.4. Limitaciones y áreas de oportunidad
	5.4.5. Contribuciones y perspectivas de impacto

	6. Conclusiones
	6.1. Cumplimiento de los objetivos propuestos
	6.2. Viabilidad técnica y operativa del sistema propuesto
	6.3. Desempeño y utilidad del modelo predictivo
	6.4. Aportes del sistema al sector agrícola
	6.5. Limitaciones del trabajo
	6.6. Escalabilidad y perspectivas de mejora
	6.7. Contribución académica y científica
	6.8. Reflexión final
	6.9. Trabajos Futuros
	6.10. Recomendaciones Finales

	7. Bibliografía
	8. Anexos
	Anexo A. Configuraciones de hardware y software
	A.1 Instalación del sistema operativo y entorno de desarrollo
	A.2 Verificación de sensores y configuración MQTT
	A.3. Esquema de Conexión de Sensores y Actuadores
	A.4. Lectura de sensores
	A.5 Control de actuadores
	A.6 Implementación del cliente MQTT

	Anexo B. Implementación del backend y frontend web
	B.1 Configuración del backend
	B.2 Tareas automatizadas
	B.3 API y comunicación en tiempo real

