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a b s t r a c t 

Background and objective: In this manuscript, we consider a compartmental model to describe the dy- 

namics of propagation of an infectious disease in a human population. The population considers the 

presence of susceptible, exposed, asymptomatic and symptomatic infected, quarantined, recovered and 

vaccinated individuals. In turn, the mathematical model considers various mechanisms of interaction be- 

tween the sub-populations in addition to population migration. Methods: The steady-state solutions for 

the disease-free and endemic scenarios are calculated, and the local stability of the equilibium solutions 

is determined using linear analysis, Descartes’ rule of signs and the Routh–Hurwitz criterion. We demon- 

strate rigorously the existence and uniqueness of non-negative solutions for the mathematical model, 

and we prove that the system has no periodic solutions using Dulac’s criterion. To solve this system, a 

nonstandard finite-difference method is proposed. Results: As the main results, we show that the com- 

puter method presented in this work is uniquely solvable, and that it preserves the non-negativity of 

initial approximations. Moreover, the steady-state solutions of the continuous model are also constant 

solutions of the numerical scheme, and the stability properties of those solutions are likewise preserved 

in the discrete scenario. Furthermore, we establish the consistency of the scheme and, using a discrete 

form of Gronwall’s inequality, we prove theoretically the stability and the convergence properties of the 

scheme. For convenience, a Matlab program of our method is provided in the appendix. Conclusions: The 

computer method presented in this work is a nonstandard scheme with multiple dynamical and numer- 

ical properties. Most of those properties are thoroughly confirmed using computer simulations. Its easy 

implementation make this numerical approach a useful tool in the investigation on the propagation of in- 

fectious diseases. From the theoretical point of view, the present work is one of the few papers in which 

a nonstandard scheme is fully and rigorously analyzed not only for the dynamical properties, but also for 

consistently, stability and convergence. 

© 2022 Elsevier B.V. All rights reserved. 

1. Introduction 

Epidemiology is considered a scientific discipline that stud- 

ies the distribution, frequency, determinants, relationships, predic- 

tions, and control of factors related to health and disease in human 
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populations [1] . Nowadays, epidemiology has a relevant place in 

many scientific areas, including the biomedical sciences, social sci- 

ences and even in the exact sciences [2] . In fact, it is worth point- 

ing out that the study of diseases is an area which is as old as 

the birth of human writing. Indeed, the origins of the word “epi- 

demiology” date back to ancient Greece, to some classical texts by 

Hippocrates of Kos, Aristotle and Galen [3] . Some of these scien- 

tists and philosophers were the first to use the terms “endemic”

and “epidemic” in their works [4] , though these concepts could 

https://doi.org/10.1016/j.cmpb.2022.106920 

0169-2607/© 2022 Elsevier B.V. All rights reserved. 
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a b s t r a c t 

Background: We provide a compartmental model for the transmission of some contagious illnesses in 

a population. The model is based on partial differential equations, and takes into account seven sub- 

populations which are, concretely, susceptible, exposed, infected (asymptomatic or symptomatic), quar- 

antined, recovered and vaccinated individuals along with migration. The goal is to propose and analyze 

an efficient computer method which resembles the dynamical properties of the epidemiological model. 

Materials and methods: A non-local approach is utilized for finding approximate solutions for the mathe- 

matical model. To that end, a non-standard finite-difference technique is introduced. The finite-difference 

scheme is a linearly implicit model which may be rewritten using a suitable matrix. Under suitable cir- 

cumstances, the matrices representing the methodology are M-matrices. 

Results: Analytically, the local asymptotic stability of the constant solutions is investigated and the next 

generation matrix technique is employed to calculate the reproduction number. Computationally, the dy- 

namical consistency of the method and the numerical efficiency are investigated rigorously. The method 

is thoroughly examined for its convergence, stability, and consistency. 

Conclusions: The theoretical analysis of the method shows that it is able to maintain the positivity of its 

solutions and identify equilibria. The method’s local asymptotic stability properties are similar to those 

of the continuous system. The analysis concludes that the numerical model is convergent, stable and 

consistent, with linear order of convergence in the temporal domain and quadratic order of convergence 

in the spatial variables. A computer implementation is used to confirm the mathematical properties, and 

it confirms the ability in our scheme to preserve positivity, and identify equilibrium solutions and their 

local asymptotic stability. 

© 2023 Elsevier B.V. All rights reserved. 
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1. Introduction 

During the final months in 2019, humanity began a struggle 

against a new virus called SARS-CoV-2, which is a pathogen that 

has caused almost 6.7 million human casualties around the world 

until January 2023 [1] . This disease is known also as COVID-19, and 

it will be in the history annals along with others pandemics such 

as the black plague, the smallpox and the Spanish flu among many 

others [2] . It is worth mentioning that COVID-19 has not been as 

https://doi.org/10.1016/j.cmpb.2023.107526 

0169-2607/© 2023 Elsevier B.V. All rights reserved. 
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1 INTRODUCTION

Recall that epidemiology is the study of the patterns, causes, and effects of diseases in populations. From the mathematical
point of view, this discipline uses mathematical models to understand and analyze the spread of infectious illnesses within
communities1,2. Among those mathematical model used in epidemiology, some of them are based on the use of compartments.
It is worth recalling that compartmental models divide the population into different compartments or disjoint groups based on
their disease status1. The compartments typically include categories such as susceptible (individuals who are susceptible to
the disease), infected (individuals who are currently infected), and recovered (individuals who have recovered from the disease
and gained immunity). Depending on the specific disease and model, additional compartments may be included to represent
factors such as exposed individuals or those requiring medical treatment3,4. In that sense, some compartmental models consider
subpopulations of quarantined, vaccinated and exposed individuals, not to mention effects of migration between populations5.
Meanwhile, other epidemiological models consider even the effect of spatial diffusion of diseases6.

The movement of individuals between compartments is described by a set of differential equations, which govern the
rates of transition from one compartment to another. These equations can take various forms, including ordinary differential
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Resumen

Esta tesis integra dos estudios sobre modelación epidemiológica con ecuaciones en derivadas parciales
y esquemas numéricos que preservan estructura. En ambos trabajos se considera una población seg-
mentada en clases susceptibles, expuestas, infectadas sintomáticas y asintomáticas, en cuarentena,
recuperadas y vacunadas, incorporando migración y difusión espacial.

El primer artículo propone un esquema de diferencias finitas no estándar, linealmente implícito y
escribible en forma matricial. El método está diseñado para reproducir propiedades cualitativas del
sistema continuo: positividad, invariancia del conjunto admisible, preservación de equilibrios y estabil-
idad local. Se prueban consistencia (orden lineal en tiempo y cuadrático en espacio), estabilidad bajo
restricciones de paso temporal y convergencia. La demostración se apoya en teoría de matrices M y en
desigualdades discretas tipo Gronwall–Young. Las simulaciones en MATLAB corroboran el análisis y
muestran aproximaciones robustas en todo el dominio.

El segundo artículo se centra en la dinámica del modelo. Se obtienen los equilibrios libre de enfer-
medad y endémico, se calcula el número reproductivo básico mediante la matriz de próxima generación
y se analiza la estabilidad local de ambos estados. Además, se presenta un análisis de sensibilidad de
R0 respecto a parámetros clave (contacto, cuarentena, vacunación y migración). Los experimentos
numéricos validan la preservación de positividad del método y muestran transiciones claras entre
regímenes con R0 < 1 y R0 > 1, así como convergencia hacia estados estacionarios. En conjunto, la
tesis ofrece un marco continuo–discreto coherente para modelos compartimentales con difusión, que
equilibra fidelidad cualitativa y garantías numéricas.

4



Abstract

This thesis comprises two studies on PDE-based epidemic modeling and structure-preserving discretiza-
tion. In both, the host population is split into S, E, IS , IA, Q, R, and V classes, with spatial mobility
represented by diffusion and inter-compartment migration.

The first article develops a linearly implicit nonstandard finite-difference scheme that can be writ-
ten in matrix form. The method is built to mirror key qualitative features of the continuous model:
positivity, invariance of the admissible set, preservation of equilibria, and local stability. We prove
consistency (first order in time, second order in space), step-size–dependent stability, and convergence.
The analysis relies on M-matrix theory and discrete Gronwall–Young inequalities. MATLAB simula-
tions confirm the theory and deliver robust approximations across the computational domain.

The second article focuses on system-level behavior. We derive the disease-free and endemic equilibria,
compute the basic reproduction number via the next-generation matrix, and study local stability for
both steady states. A sensitivity analysis of R0 with respect to transmission, quarantine, vaccination,
and migration parameters is presented. Numerical experiments validate positivity preservation and dis-
play sharp transitions between regimes with R0 < 1 and R0 > 1, together with convergence to steady
states. Overall, the thesis offers a coherent continuous–discrete framework for diffusive compartmental
models that balances qualitative fidelity with rigorous numerical guarantees.

5



Introduction

Aims and scope

The aims and scope of this thesis are to develop, analyze, and compute reliable frameworks for modeling
the spread of infectious diseases in heterogeneous populations. First, I formulate mechanistic epidemi-
ological models that incorporate spatial diffusion, migration, vaccination, quarantine, and multiple
infectious states. Second, I carry out a rigorous mathematical study of these models, including the
identification of equilibria, the derivation of the basic reproduction number through the next-generation
approach, and local asymptotic stability results around the disease-free and endemic states. Third, I
design nonstandard finite-difference schemes that preserve the key dynamical features of the continuous
problem—positivity, boundedness, and the location and stability of equilibria—and I prove their con-
sistency, stability, and convergence with respect to the temporal and spatial discretizations. Fourth, I
implement the proposed schemes efficiently and validate them through numerical experiments. Fifth, I
estimate model parameters from data or literature ranges and conduct sensitivity analyses to quantify
the influence of epidemiological and control parameters. Finally, I use the calibrated models to assess
and propose realistic intervention strategies (such as vaccination, quarantine, or mobility policies),
with the goal of supporting evidence-based decision making.

Summary

Chapter 1. A linearly implicit non-standard finite-difference (NSFD) scheme is proposed for a spatial
compartmental epidemic model with vaccination, quarantine, and migration. The method admits a
compact matrix formulation and, under natural assumptions, the discrete operators are M -matrices,
which implies nonsingularity and inverse positivity. We prove nonnegativity preservation, consistency
(first-order in time (t) and also second-order in space (x)), stability for mild time-step restrictions, and
convergence. MATLAB simulations corroborate the theoretical properties.

Chapter 2. We examine the dynamics in depth: the disease-free and endemic equilibria are charac-
terized, the basic reproduction number R0 is derived via the next-generation matrix, and local stability
of both states is proved. A parameter sensitivity study for R0 is included. The NSFD scheme inher-
its key qualitative properties of the continuous model (nonnegativity, equilibrium preservation, and
stability) and is validated computationally. Numerical experiments display threshold behavior across
R0 < 1 and R0 > 1 and show temporal convergence toward steady states.

6



1. An efficient nonstandard computer
method to solve a compartmental
epidemiological model for COVID-19
with vaccination and population
migration

1.1 Introduction

This chapter develops a compartmental model to describe the spread of an infectious disease in a single
population with vaccination, quarantine, recovery, natural deaths, and migration. The population is
divided into seven groups: susceptible, vaccinated, exposed, asymptomatic infected, symptomatic in-
fected, quarantined, and recovered. The model is stated as a system of ordinary differential equations
that connects these groups through biologically meaningful flows. This structure makes it possible to
study key questions such as when an outbreak fades out, when it becomes endemic, and how policy
levers (like vaccination or quarantine) affect those outcomes.

The analytical study identifies the disease-free and endemic equilibria and computes the basic repro-
duction number using the next-generation approach. A main result is that the disease-free equilibrium
is locally asymptotically stable whenever the reproduction number is below one. These results give a
clear threshold condition that separates control from persistence of the disease.

On the computational side, the chapter proposes a nonstandard finite-difference time integrator de-
signed to mimic the qualitative behavior of the continuous model. The scheme preserves nonnegativity
and boundedness, shares the same equilibria as the ODE system, and maintains their local stability.
The analysis also establishes consistency, conditional stability, and convergence of the discrete model,
and numerical experiments confirm these properties.

1.2 Article 1

7
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namics of propagation of an infectious disease in a human population. The population considers the 

presence of susceptible, exposed, asymptomatic and symptomatic infected, quarantined, recovered and 

vaccinated individuals. In turn, the mathematical model considers various mechanisms of interaction be- 

tween the sub-populations in addition to population migration. Methods: The steady-state solutions for 

the disease-free and endemic scenarios are calculated, and the local stability of the equilibium solutions 

is determined using linear analysis, Descartes’ rule of signs and the Routh–Hurwitz criterion. We demon- 

strate rigorously the existence and uniqueness of non-negative solutions for the mathematical model, 

and we prove that the system has no periodic solutions using Dulac’s criterion. To solve this system, a 

nonstandard finite-difference method is proposed. Results: As the main results, we show that the com- 

puter method presented in this work is uniquely solvable, and that it preserves the non-negativity of 

initial approximations. Moreover, the steady-state solutions of the continuous model are also constant 

solutions of the numerical scheme, and the stability properties of those solutions are likewise preserved 

in the discrete scenario. Furthermore, we establish the consistency of the scheme and, using a discrete 

form of Gronwall’s inequality, we prove theoretically the stability and the convergence properties of the 

scheme. For convenience, a Matlab program of our method is provided in the appendix. Conclusions: The 

computer method presented in this work is a nonstandard scheme with multiple dynamical and numer- 

ical properties. Most of those properties are thoroughly confirmed using computer simulations. Its easy 

implementation make this numerical approach a useful tool in the investigation on the propagation of in- 

fectious diseases. From the theoretical point of view, the present work is one of the few papers in which 
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ies the distribution, frequency, determinants, relationships, predic- 

tions, and control of factors related to health and disease in human 
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populations [1] . Nowadays, epidemiology has a relevant place in 

many scientific areas, including the biomedical sciences, social sci- 

ences and even in the exact sciences [2] . In fact, it is worth point- 

ing out that the study of diseases is an area which is as old as 

the birth of human writing. Indeed, the origins of the word “epi- 

demiology” date back to ancient Greece, to some classical texts by 

Hippocrates of Kos, Aristotle and Galen [3] . Some of these scien- 

tists and philosophers were the first to use the terms “endemic”

and “epidemic” in their works [4] , though these concepts could 

https://doi.org/10.1016/j.cmpb.2022.106920 
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have been used even before. However, epidemiology has witness 

a tremendous development since those times, being nowadays a 

useful discipline which encompasses various branches of human 

knowledge, even mathematical modeling and mathematical anal- 

ysis [5] . These areas play an increasingly important role in the 

prediction and control of new pandemics like the coronavirus dis- 

ease 2019 (SARS-CoV-2) or other diseases throughout human his- 

tory [6] . 

It is important to recall that infectious diseases progress within 

populations due to both the behavior of the infectious agents and 

the population itself. Mathematical models which describe how an 

epidemic progresses are based on a set of assumptions and statis- 

tics that are used to establish suitable model parameters. In turn, 

these parameters completely determine the mechanics of propaga- 

tion of the disease to a certain degree of reliability [7] . The math- 

ematical models obtained in the way can be used then to predict 

which interventions to implement or avoid in order to control a 

disease, as well as patterns of growth and expansion that may 

result [8] . As expected, there is a vast amount of mathematical 

models which try to predict the evolution of a disease, and these 

models vary in complexity from simple deterministic models [9] to 

complex stochastic systems [10] . The former are usually based on 

differential or difference equations, while the latter employ usu- 

ally stochastic equations. The approach chosen by epidemiologists 

depends on several variables including how much is known about 

the epidemiology of the disease, the purpose of the study, and the 

quantity and quality of data available [11] . 

Among the mathematical models used in mathematical epi- 

demiology, compartment-based systems are a widely used tech- 

nique for the quantitative and qualitative descriptions of the prop- 

agation of a disease [12] . This technique hinges mainly on describ- 

ing the possible phases of interaction that a disease can have in a 

population [13] . It is worth pointing out that this type of mod- 

els has been used to describe various diseases, and those sys- 

tems are frequently based on the use of coupled ordinary dif- 

ferential equations [14] . Using this approach, several studies have 

been carried out to simulate the spreading of some diseases that 

have caused havoc in recent decades. For example, there are works 

which model and simulate the spread of Chikungunya disease [15] , 

the control of measles in a human population [16] , the epidemiol- 

ogy of diabetes mellitus with lifestyle and genetic factors [17] , the 

epidemiology of sexually transmitted diseases [18] , the modeling 

of tuberculosis disease in the Philippines [19] , and the modeling 

of the coronavirus disease 2019 (COVID-19) pandemic [20] , among 

other examples. 

In the particular case of COVID-19, countries are currently 

working hard to fight this disease. To this day, this disease ac- 

counts for 5,732,354 deaths worldwide just 2 years after its first 

case [21] . Since then, many studies have been reported on the 

mathematical model of COVID-19, including some works using 

compartmental models to predict the effect of social distancing 

and vaccination as control measures [22] , compartmental mod- 

els for the COVID-19 pandemic with immunity loss [23] , math- 

ematical models for the calculation of COVID-19 lockdown effi- 

ciency [24] or the assessment of sensitivity and optimal economic 

evaluation with control intervention [25] , a simple model with- 

out vaccination and migration [26] , and even some compartmen- 

tal models which employ various types of fractional-order oper- 

ators in both space and time [27] among many examples avail- 

able in the recent literature. In summary, various models have 

been proposed to describe the propagation of COVID-19 under var- 

ious mathematical assumptions. It is worth mentioning that some 

of those works provide comparisons between various models and 

propose improvements in order to obtain more reliable paradigms. 

As an example, the authors of [28] carry out some detailed com- 

parisons between various mathematical models and, after a careful 

analysis, they suggest that susceptible-exposed-infected-recovered- 

quarantined models are fundamental in order to capture the es- 

sential characteristics in the modeling of COVID-19. 

The purpose of this work is to propose a general model that 

allows describing the spread of various diseases (including COVID- 

19) under general epidemiological assumptions. To that end, we 

will propose a compartmental system for an arbitrary human pop- 

ulation. In particular, we will suppose that the population is sep- 

arated into subpopulations of susceptible, exposed, symptomatic 

and asymptomatic infected, quarantined, recovered and vaccinated 

individuals. Various possible interactions between them will be 

taken into account, including the fact that recovered individu- 

als may become susceptible. It is important to mention that the 

use of suitable model parameters will allow for the application 

of our mathematical model to particular diseases and epidemics. 

Our mathematical model will be based on the use of ordinary dif- 

ferential equations. We will determine the equilibrium points of 

this system along with their local and global stability properties, 

as well as the basic reproductive number. We will provide several 

simulations in this work, all of them obtained with a computer 

implementation of a nonstandard finite-difference method which 

is capable of preserving the most relevant analytical features of 

the solutions of the mathematical model. We must mention be- 

forehand that the computational results will confirm the validity 

of our analytical properties. Finally, we will close this manuscript 

with a brief summary of the conclusions obtained in our study. 

2. Methods 

In this section, we deduce the mathematical model used to de- 

scribe the propagation of a disease under suitable epidemiologi- 

cal assumptions. The epidemiological model will be analyzed to 

determine the equilibrium solutions and their stability properties. 

Among other analytical results presented in this section, we will 

derive the expression of the basic reproductive number using the 

next generation matrix approach [29] . 

To start with, we will consider a population of human individ- 

uals which are exposed to some contagious infection. Throughout, 

P (t) will represent the population size at the time t ≥ 0 , and we 

will suppose that the population is partitioned into the following 

seven compartments or subpopulations: 

• Susceptible individuals ( S). 
• Exposed individuals ( E). 
• Asymptomatic infected individuals ( I A ). 
• Symptomatic infected individuals ( I S ). 
• Quarantined individuals ( Q). 
• Recovered/remove individuals ( R ). 
• Vaccinated individuals ( V ). 

Obviously, the sizes of these subpopulations at time t ≥ 0 will 

be represented by S(t ) , E(t ) , I A (t ) , I S (t ) , Q(t ) , R (t ) and V (t ) , re- 

spectively. Under these assumptions, we have that 

P (t) = S(t) + E(t) + Q(t) + I A (t) + I S (t) + R (t) + V (t) . (2.1) 

Moreover, to provide a more realistic epidemiological model, we 

consider in this work a constant migration into the population. 

More precisely, we will assume that a rate of people equal to m S , 

m E , m I A 
and m I S 

will migrate into the sub-populations of suscepti- 

ble, exposed, asymptomatic and symptomatic. 

Throughout this manuscript, all the parameters and variables in 

our mathematical model will take on non-negative real values. We 

will suppose that the population has natural birth and mortality 

rates which will be denoted by � and μ, respectively. Susceptible 

individuals may become exposed if they have enough contact with 

exposed individuals at a rate of α. On the other hand, susceptible 

individuals will be vaccinated a rate denoted by ω. Here, we will 
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Table 1 

Notations used in this work and their meaning. 

Notations used in this manuscript and their meaning 

Parameter Description 

� Recruitment rate. 

τ Rate of transfer from vaccinated individuals to susceptible. 

ω Rate of transfer from susceptible individuals to vaccinated. 

α Contact rate between susceptible individuals and exposed individuals. 

ζ Rate of transfer of exposed individuals to quarantine. 

ε Rate of transfer of exposed individuals to symptomatic infected individuals. 

δ Rate of transfer of exposed individuals to asymptomatic infected individuals. 

ι Recovery rate of quarantine individuals. 

υ Mortality rate due to coronavirus in quarantine individuals. 

κ Rate of transfer of symptomatic infected individuals to quarantine. 

ρ Mortality rate due to coronavirus in symptomatic infected individuals. 

θ Recovery rate of transfer of symptomatic infected individuals. 

σ Rate of transfer of recovered individuals to susceptible. 

μ Natural mortality rate. 

m S Rate of immigration of susceptible individuals. 

m E Rate of immigration of exposed individuals. 

m I A Rate of immigration of asymptomatic infected individuals. 

m I S Rate of immigration of symptomatic infected individuals. 

suppose that the vaccine is complete effective for all individuals, 

so it is appropriate to consider that vaccinated people will become 

susceptible at a rate equal to τ . 

On the other hand, exposed individuals change compartment 

according to three possible options. The first one is to become 

quarantined, and we will assume that this will take place at a 

rate equal to ζ . Alternatively, some exposed persons will become 

asymptomatic or symptomatic infected at rate equal to δ and ε, re- 

spectively. In turn, asymptomatic individuals may move to the re- 

covered state at a rate given by η. Individuals in the symptomatic 

compartment will become quarantined at a rate of κ . This may oc- 

cur when the individuals present obvious symptoms of the disease. 

However, individuals can just move to the recovered state at a rate 

of ι or θ depending on whether then were quarantined or symp- 

tomatic. It is important to notice here that some quarantined and 

symptomatic individuals may die from the infectious disease, and 

we will employ υ and ρ , respectively, to denote the rates at which 

these events occur. Finally, recovered individuals may become sus- 

ceptible class with a rate equal to σ , under the assumption that 

the human body does not entirely create immunity to the disease. 

For convenience, Table 1 provides a summary of all the epidemio- 

logical parameters employed in this manuscript. 

Figure 1 provides a flow chart which illustrates the epidemi- 

ological assumptions described above. Under these circumstances, 

the mathematical model describing the dynamics of propagation of 

the infectious disease is given by the following system of coupled 

nonlinear ordinary differential equations: 

dS 

dt 
= � + m S + σR − αSE + τV − (ω + μ) S, 

dV 

dt 
= ωS − (τ + μ) V, 

dE 

dt 
= m E + αSE − (ζ + ε + δ + μ) E, 

dI A 
dt 

= m I A + δE − (η + μ) I A , 

dQ 

dt 
= ζE + κ I S − (ι + υ + μ) Q, 

dI S 
dt 

= m I S + εE − (κ + ρ + θ + μ) I S , 

dR 

dt 
= ιQ + θ I S + ηI A − (σ + μ) R. (2.2) 

The model will be complemented with initial conditions at the 

time t = 0 . More precisely, we will assume that the initial com- 

partment sizes will be provided by the non-negative numbers S 0 , 

V 0 , E 0 , Q 

0 , I 0 
A 

, I 0 
S 

and R 0 . Obviously, they will represent respectively 

the initial populations of susceptible, vaccinated, exposed, quaran- 

tined, asymptomatic infected, symptomatic infected and recovered. 

It is important to notice that the mathematical model (2.2) has 

one disease-free equilibrium solution. To check this fact, let us as- 

sume a constant solution for the mathematical model in which 

E = Q = I A = I S = R = 0 . After some algebra, we readily check that 

the disease-free equilibrium P DF E is the point whose coordinates 

are given by 

P DF E = (S 0 , V 0 , 0 , 0 , 0 , 0 , 0) 

= 

(
(� + m S )(μ + τ ) 

μ(μ + ω + τ ) 
, 

ω(� + m S ) 

μ(μ + ω + τ ) 
, 0 , 0 , 0 , 0 , 0 

)
. (2.3) 

In order to calculate the basic reproductive number R 0 , we will 

employ the next generation matrix technique. Beforehand, recall 

that R 0 is the expected value of infection rate per time unit. Let 

us consider only those compartments of the mathematical model 

(2.2) which contribute to the dynamics of the infection, that is, let 

us consider the system 

dE 

dt 
= m E + αSE − (ζ + ε + δ + μ) E, 

dI A 
dt 

= m I A + δE − (η + μ) I A , 

dQ 

dt 
= ζE + κ I S − (ι + υ + μ) Q, 

dI S 
dt 

= m I S + εE − (κ + ρ + θ + μ) I S , (2.4) 

Following the approach in [29] , we define the vectors 

F = 

⎛ 

⎜ ⎝ 

αS(t) E(t) 
0 

0 

0 

⎞ 

⎟ ⎠ 

(2.5) 

and 

V = 

⎛ 

⎜ ⎝ 

−m E + (ζ + ε + δ + μ) E 
−m I A − δE + (η + μ) I A 

−ζE − κ I S + (ι + υ + μ) Q, 

−m I S − εE + (κ + ρ + θ + μ) I S 

⎞ 

⎟ ⎠ 

. (2.6) 
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Fig. 1. Flow chart describing graphically the dynamics of the compartmental epidemiological model proposed in this work. 

Their Jacobian matrices are, respectively, 

F = 

⎛ 

⎜ ⎝ 

α(�+ m S ) 
ω+ μ 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎠ 

(2.7) 

and 

V = 

⎛ 

⎜ ⎝ 

ζ + ε + δ + μ 0 0 0 

−δ η + μ 0 0 

−ζ 0 ι + υ + μ −κ
−ε 0 0 κ + ρ + θμ

⎞ 

⎟ ⎠ 

. 

(2.8) 

A straightforward calculation shows that 

G = F V 

−1 = 

⎛ 

⎜ ⎝ 

α(�+ m S ) 
X(ω+ μ) 

g 12 g 13 g 14 

0 0 0 0 

0 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎠ 

, (2.9) 

where g 12 , g 13 and g 14 are real numbers, and 

X = δ + ε + μ + ζ . (2.10) 

As a consequence, we obtain that the basic reproductive number is 

provided by the expression 

R 0 = 

α(� + m S ) 

(δ + ε + μ + ζ )(ω + μ) 
. (2.11) 

Our next result summarizes the local stability analysis of the 

disease-free equilibrium. 

Theorem 1. The disease-free equilibrium of system (2.2) is locally 

asymptotically stable if R 0 < 1 . 

Proof. Let J represent the Jacobian matrix of associated to the sys- 

tem (2.2) , and use J ∗ to represent the matrix J evaluated at the 

disease-free equilibrium solution. It is easy to check then that the 

Jacobian matrix is given by 

J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

J 11 τ −αS 0 0 0 σ
ω J 22 0 0 0 0 0 

αE 0 J 33 0 0 0 0 

0 0 δ J 44 0 0 0 

0 0 ζ 0 J 55 κ 0 

0 0 ε 0 0 J 66 0 

0 0 0 η ι θ J 77 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(2.12) 

where 

J 11 = −αE − (ω + μ) , (2.13) 

J 22 = −(τ + μ) , (2.14) 

J 33 = αS − (ζ + ε + δ + μ) , (2.15) 

J 44 = −(η + μ) , (2.16) 

4 
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J 55 = −(ι + υ + μ) , (2.17) 

J 66 = −(κ + ρ + θ + μ) , (2.18) 

J 77 = −(σ + μ) . (2.19) 

Let λ be any complex number, and let I be the identity matrix of 

order 7. If we let M = J ∗ − λI, then it is easy to check that 

M = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

M 11 τ M 13 0 0 0 σ
ω M 22 0 0 0 0 0 

0 0 M 33 0 0 0 0 

0 0 δ M 44 0 0 0 

0 0 ζ 0 M 55 κ 0 

0 0 ε 0 0 M 66 0 

0 0 0 η ι θ M 77 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (2.20) 

In this expression for the matrix M, we observe the following def- 

initions for the components: 

M 11 = −(ω + μ) − λ, (2.21) 

M 13 = 

α(� + m S )(μ + τ ) 

μ(μ + ω + τ ) 
, (2.22) 

M 22 = −(τ + μ) − λ, (2.23) 

M 33 = 

α(� + m S )(μ + τ ) 

μ(μ + ω + τ ) 
− (ζ + ε + δ + μ) − λ, (2.24) 

M 44 = −(η + μ) − λ, (2.25) 

M 55 = −(ι + υ + μ) − λ, (2.26) 

M 66 = −(κ + ρ + θ + μ) − λ, (2.27) 

M 77 = −(σ + μ) − λ. (2.28) 

Using properties of determinants, it is possible to check that 

det M = (M 11 M 22 − ωτ ) M 33 M 44 M 55 M 66 M 77 . (2.29) 

Setting the determinant equal to zero, solving for the unknown 

λ and rearranging terms algebraically, it follows that five of the 

eigenvalues of J ∗ are 

λ1 = (ζ + ε + δ + μ)(R 0 − 1) , (2.30) 

λ2 = −(η + μ) < 0 , (2.31) 

λ3 = −(ι + υ + μ) < 0 , (2.32) 

λ4 = −(κ + ρ + θ + μ) < 0 , (2.33) 

λ5 = −(σ + μ) < 0 , (2.34) 

The remaining eigenvalues satisfy the quadratic equation 

λ2 + (ω + τ + 2 μ) λ + (ω + τ + μ) μ = 0 . (2.35) 

Descartes’ rule of signs imply that the number of negative roots for 

this polynomial is 0 or 2. However, the quadratic formula shows 

that the roots are 

λ6 , 7 = 

−(ω + τ + 2 μ) ± √ 

ω 

2 + τ 2 + ωτ

2 

. (2.36) 

It follows that λ6 and λ7 are negative. Summarizing, notice that 

all the eigenvalues are negative if R 0 < 1 , in which case the 

disease-free equilibrium solution is locally asymptotically stable, as 

desired. �

Next, we proceed to calculate the endemic equilibrium solution. 

To that end, we assume a constant solution for the system (2.2) , 

of the form S(t) = S ∗, E(t) = E ∗, V (t) = V ∗, I A (t) = I ∗
A 

, Q(t) = Q 

∗, 

I S (t) = I ∗S and R (t) = R ∗, valid for all t ≥ 0 . Here, S ∗, E ∗, V ∗, I ∗
A 

, Q 

∗, 

I ∗
S 

and R ∗ are non-negative constants. For the sake of convenience, 

we define 

P EE = (S ∗, V 

∗, E ∗, I ∗A , Q 

∗, I ∗S , R 

∗) . (2.37) 

Under these hypotheses, the mathematical model (2.2) reduces to 

the following system of algebraic equations: 

� + m S + σR 

∗ − αS ∗E ∗ + τV 

∗ − (ω + μ) S ∗ = 0 , 

ωS ∗ − (τ + μ) V 

∗ = 0 , 

m E + αS ∗E ∗ − (ζ + ε + δ + μ) E ∗ = 0 , 

m I A + δE ∗ − (η + μ) I ∗A = 0 , 

ζE ∗ + κ I ∗S − (ι + υ + μ) Q 

∗ = 0 , 

m I S + εE ∗ − (κ + ρ + θ + μ) I ∗S = 0 , 

ιQ 

∗ + θ I ∗S + ηI ∗A − (σ + μ) R 

∗ = 0 . (2.38) 

Proceeding algebraically, we may reach the identities: 

S ∗ = 

� + m s + σR 

∗ + τV 

∗

μ + ω + αE ∗
, (2.39) 

V 

∗ = 

S ∗ω 

μ + τ
, (2.40) 

E ∗ = 

m e 

δ + ε + μ + ζ − αS ∗
, (2.41) 

I ∗A = 

m I A + δE ∗

η + μ
, (2.42) 

Q 

∗ = 

κ∗I S + ζE ∗

ι + μ + υ
, (2.43) 

I ∗S = 

m I S + εE ∗

κ + μ + ρ + θ
, (2.44) 

R 

∗ = 

ηI ∗A + ιQ 

∗ + θ I ∗S 
μ + σ

. (2.45) 

Moreover, after more tedious algebraic manipulations (or, equiva- 

lently, using symbolic software), it is possible to find out that 

S ∗ = 

δ + ε + μ + ζ

α
, (2.46) 

V 

∗ = 

ω(δ + ε + μ + ζ ) 

α(μ + τ ) 
. (2.47) 

We provide here the exact expressions for S ∗ and V ∗ only in view 

that they are relatively short. The expressions for the remaining 

coordinates of the endemic equilibrium point are actually too long 

to be written in this column. However, we must mention that all 

the coordinates are non-negative real numbers. 
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Theorem 2. The endemic equilibrium point of system (2.2) is locally 

asymptotically stable if R 0 < 1 . 

Proof. Notice that the Jacobian matrix evaluated at the endemic 

equilibrium point is given now by 

J ∗ = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

J ∗11 τ −αS ∗ 0 0 0 σ
ω J ∗22 0 0 0 0 0 

αE ∗ 0 J ∗33 0 0 0 0 

0 0 δ J ∗44 0 0 0 

0 0 ζ 0 J ∗55 κ 0 

0 0 ε 0 0 J ∗66 0 

0 0 0 η ι θ J ∗77 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (2.48) 

where 

J ∗11 = −αE ∗ − (ω + μ) , (2.49) 

J ∗22 = −(τ + μ) , (2.50) 

J ∗33 = αS ∗ − (ζ + ε + δ + μ) , (2.51) 

J ∗44 = −(η + μ) , (2.52) 

J ∗55 = −(ι + υ + μ) , (2.53) 

J ∗66 = −(κ + ρ + θ + μ) , (2.54) 

J ∗77 = −(σ + μ) . (2.55) 

However, the value of S ∗ in the endemic case guarantees that J ∗
33 

= 

0 . Using this fact and the properties of determinants, it is easy to 

check that the determinant of M = J ∗ − λI is given by 

det M = λ7 + Q 1 λ
6 + . . . + Q 6 λ + Q 7 , (2.56) 

where the expressions of the coefficients Q i can be algebraically 

obtained, and are given in terms of the model parameters and the 

endemic equilibrium point. The exact expressions of these coeffi- 

cients are long, and they were computed using symbolic algebra. 

We omit their expressions in view of the space available. The sys- 

tem is stable if the eigenvalues of the Jacobian matrix at the en- 

demic point all have negative real parts. Using the Routh–Hurwitz 

criterion [30] and symbolic algebra, we obtain that the endemic 

equilibrium is stable if R 0 < 1 . �

In the next result, we will employ the gradient operator 

∇ = 

(
∂ 

∂S 
, 

∂ 

∂V 

, 
∂ 

∂E 
, 

∂ 

∂ I A 
, 

∂ 

∂Q 

, 
∂ 

∂ I S 
, 

∂ 

∂R 

)
. (2.57) 

Theorem 3. The system (2.2) has no periodic solutions. 

Proof. To establish this proposition, we will use the well 

known Dulac’s criterion. Let F : R → R 

7 be the function defined 

component-wise for each t ∈ R by the expression 

F (t) = (S(t ) , V (t ) , E(t ) , I A (t ) , Q(t ) , I S (t ) , R (t )) . (2.58) 

Moreover, let 

G (t) = 

1 

S(t) E(t) 
, ∀ t ≥ 0 . (2.59) 

Using differentiation, it is easy to check that 

∂ 

∂S 

(
G 

dS 

dt 

)
= −� + m S + σR + τV 

S 2 E 
, (2.60) 

∂ 

∂V 

(
G 

dV 

dt 

)
= −τ + μ

SE 
, (2.61) 

∂ 

∂E 

(
G 

dE 

dt 

)
= − m E 

SE 2 
, (2.62) 

∂ 

∂ I A 

(
G 

dI A 
dt 

)
= −η + μ

SE 
, (2.63) 

∂ 

∂Q 

(
G 

dQ 

dt 

)
= − ι + υ + μ

SE 
, (2.64) 

∂ 

∂ I S 

(
G 

dI S 
dt 

)
= −κ + ρ + θ + μ

SE 
, (2.65) 

∂ 

∂R 

(
G 

dR 

dt 

)
= −σ + μ

SE 
. (2.66) 

We can check now that 

∇ ·
(

G 

dF 

dt 

)
< 0 . (2.67) 

The conclusion follows now from Dulac’s criterion. �

Finally, we turn our attention to the problem on the existence 

and uniqueness of non-negative solutions of the mathematical 

model (2.2) . To start with, it is obvious that solutions of (2.2) exist 

and are unique, for any set of initial conditions. This is a straight- 

forward consequence of the fact that the model can be equivalently 

rewritten in the form 

dx 

dt 
= F (x ) , (2.68) 

where the function x : [0 , ∞ ) → R 

7 is given by 

x (t) = (S(t ) , E(t ) , Q(t ) , I A (t ) , I S (t ) , R (t ) , V (t )) , (2.69) 

for each t ≥ 0 . Moreover, the function F : R 

7 → R 

7 is given 

component-wise by F = (F 1 , . . . , F 7 ) , where each of the functions F i 
depends on x , and is given by the right-hand side of the i th dif- 

ferential equation in (2.2) . The fact that F is continuously differen- 

tiable assures the existence and uniqueness of continuous solutions 

for the mathematical model (2.2) , for any set of initial conditions. 

Theorem 4. If the initial conditions S 0 , V 0 , E 0 , Q 

0 , I 0 
A 

, I 0 
S 

and R 0 are 

non-negative numbers, then the corresponding solution functions of 

the model (2.2) are likewise non-negative. 

Proof. We proceed by contradiction. Suppose that some of the so- 

lutions take on negative values, and let t 0 ≥ 0 be the greatest lower 

bound for which any of the solution functions is negative. Let U

represent the function for which this greatest lower bound occurs, 

and notice that U(t 0 ) = 0 . There are several cases whose proofs 

are entirely similar. We will only consider here the case in which 

U = S. Observe then that S(t 0 ) = 0 and all the other functions at 

that time take on non-negative values. In particular, this implies 

that R (t 0 ) ≥ 0 and V (t 0 ) ≥ 0 . Using now that first equation of (2.2) , 

it follows that 

dS(t 0 ) 

dt 
= � + m S + σR (t 0 ) + τV (t 0 ) 

≥ � + m S > 0 . (2.70) 

Thus, there exists δ > 0 with the property that S(t) > 0 , for each 

t ∈ (t 0 , t 0 + δ) . This contradicts the definition of t 0 , and we con- 

clude that all the solution functions of the mathematical model 

(2.2) are non-negative for all times t ≥ 0 . �

Next, we would like to establish a bound for the growth of the 

population described by the epidemiological model (2.2) . To that 

6
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end, we add all the ordinary differential equations in (2.2) and 

simplify terms algebraically. It is easy to check that 

dN 

dt 
= � + m S + m E + m I A + m I S − μN − νQ − ρI S . (2.71) 

Assuming that the initial population sizes of the compartments 

are non-negative, then the solution functions are likewise non- 

negative. As a consequence, the rate of change of increase of the 

total population is bounded from above by the non-negative con- 

stant � + m S + m E + m I A 
+ m I S 

. A straightforward integration yields 

then that, for each t ≥ 0 , 

P (t) ≤ P 0 + (� + m S + m E + m I A + m I S ) t, (2.72) 

where P 0 = S 0 + V 0 + E 0 + Q 

0 + I 0 
A 

+ I 0 
S 

+ R 0 . In view of this in- 

equality, the following result is trivial. 

Theorem 5. Suppose that the initial conditions S 0 , V 0 , E 0 , Q 

0 , I 0 
A 

, I 0 
S 

and R 0 are non-negative numbers, and let T be a positive time period. 

Then the non-negative constant 

B = P 0 + (� + m S + m E + m I A + m I S ) T (2.73) 

is a uniform bound for the solution functions of (2.2) . �

As a consequence of the local stability properties, the bound- 

edness of the solutions of the mathematical model (2.2) and the 

absence of periodic solutions, we conclude that the steady-state 

solutions are globally asymptotically stable. 

Before closing this section, we provide a standard sensitivity 

analysis of the basic reproductive number with respect to the 

model parameters. To that end, for each parameter φ of the model, 

define the constant 

A φ = 

φ

R 0 

∂R 0 

∂φ
. (2.74) 

Notice then that 

A α = 1 , A � = 

�

� + m S 

, (2.75) 

A m S 
= 

m S 

� + m S 

, A δ = − δ

δ + ε + μ + ζ
, (2.76) 

A ε = − ε

δ + ε + μ + ζ
, A ζ = − ζ

δ + ε + μ + ζ
, (2.77) 

A ω = − ω 

ω + μ
, (2.78) 

and 

A μ = − μ(ω + 2 μ + δ + ε + ζ ) 

(δ + ε + μ + ζ )(ω + μ) 
. (2.79) 

Observe that only A α , A � and A m S 
are positive. We conclude that 

the basic reproductive number is sensitive only to the model pa- 

rameters α, � and m S . 

3. Results 

In this section, we introduce a finite-difference scheme to ap- 

proximate the solutions of (2.2) . The methodology will be designed 

using the nonstandard approach popularized by Mickens in vari- 

ous of his seminal papers and monographs [31–33] . As the most 

important results, we will establish the main theoretical properties 

of our discretization, namely, the consistency, the stability and the 

convergence. Moreover, We will prove the capability of our scheme 

to preserve the positivity of the solutions, the constant solutions 

and their stability. 

For the sake of convenience, agree that I n = { 1 , . . . , n } and I n = 

I n ∪ { 0 } , for each n ∈ N . We will approximate the solutions of our 

epidemiological model on a finite interval of time [0 , T ] , where T ≥
0 . Let N ∈ N , and fix a regular partition of the interval [0 , T ] of the 

form 

0 = t 0 ≤ t 1 < . . . < t n < . . . < t N = T , (3.1) 

for each n ∈ I N . For convenience, the associated partition norm will 

be represented by �t where, obviously, �t = T /N is a positive real 

number. We will use the lower-case symbols s , v , e , i A , q , i S , r

and p to represent numerical approximations to the exact values 

of the functions S, V , E, I A , Q , I S , R and P , respectively. Moreover, 

if w is any of the lower-case symbols, then we will convey that 

w 

n = w (t n ) , for each n ∈ I N . Furthermore, we introduce the follow- 

ing linear discrete operator: 

ˆ δt w 

n = 

w 

n +1 − w 

n 

�t 
. (3.2) 

It is well known that this operator provides a consistent approxi- 

mation to the derivative if W at the point t n , with consistency or- 

der equal to one in time. Alternatively, it also yields a first-order 

consistent approximation of the derivative of W with respect to t

at the time t n +1 . 

Using this nomenclature, the finite-difference scheme employed 

to approximate the solutions of the system (2.2) at time t n is given 

by the algebraic nonlinear system of equations 

ˆ δt s 
n = � + m S + σ r n − αs n +1 e n +1 + τv n − (ω + μ) s n +1 , 

ˆ δt v n = ωs n − (τ + μ) v n +1 , 

ˆ δt e 
n = m E + αs n e n − (ζ + ε + δ + μ) e n +1 , 

ˆ δt i 
n 
A = m I A + δe n − (η + μ) i n +1 

A 
, 

ˆ δt q 
n = ζ e n + κ i n S − (ι + υ + μ) q n +1 , 

ˆ δt i 
n 
S = m I S + εe n − (κ + ρ + θ + μ) i n +1 

S , 

ˆ δt r 
n = ιq n + θ i n S + ηi n A − (σ + μ) r n +1 . (3.3) 

Obviously, this is a nonstandard discretization in the sense that 

the approximations provided for some terms in the scheme are 

provided in a non-local manner. The numerical model is a two- 

step system which will be theoretically analyzed in this section. 

To that end, it is important to notice that the discrete model 

(3.3) can be alternatively expressed in explicit form. After some 

algebraic manipulations, the finite-difference scheme can be equiv- 

alently rewritten as 

s n +1 = 

s n + (� + m S + σ r n + τv n )�t 

1 + (αe n +1 + ω + μ)�t 
, 

v n +1 = 

v n + ωs n �t 

1 + (τ + μ)�t 
, 

e n +1 = 

e n + (m E + αs n e n )�t 

1 + (ζ + ε + δ + μ)�t 
, 

i n +1 
A 

= 

i n 
A 

+ (m I A + δe n )�t 

1 + (η + μ)�t 
, 

q n +1 = 

q n + (ζ e n + κ i n S )�t 

1 + (ι + υ + μ)�t 
, 

i n +1 
S = 

i n S + (m I S + εe n )�t 

1 + (κ + ρ + θ + μ)�t 
, 

r n +1 = 

r n + (ιq n + θ i n S + ηi n 
A 
)�t 

1 + (σ + μ)�t 
. (3.4) 

From this discussion, it is obvious that the discrete model 

(3.3) is a semi-explicit algebraic system. We just need to point 

out that s n +1 is given in terms of e n +1 as the first equation of 

(3.4) shows. However, this shortcoming can be saved calculating 

firstly e n +1 from the third equation, and the obtaining s n +1 from 
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the first identity of (3.4) . Moreover, the following theoretical re- 

sult is also straightforward. The reader will notice that this is the 

discrete version of Theorem 4 . 

Theorem 6. If the initial conditions S 0 , V 0 , E 0 , Q 

0 , I 0 
A 

, I 0 
S 

and R 0 are 

non-negative, then the discrete system (3.3) has a unique solution, 

and all the solution functions are non-negative. 

Proof. If n = 0 , then s 0 = S 0 , v 0 = V 0 , e 0 = E 0 , i 0 
A 

= I 0 
A 

, q 0 = Q 

0 , i 0 
S 

= 

I 0 
S 

and r 0 = R 0 are non-negative numbers by hypothesis. Now, sup- 

pose that the conclusion of this result is true for some n ∈ I N−1 . 

Under these circumstances, the right-hand sides of the identities 

in (3.4) are non-negative. As a consequence, the approximations at 

time t n +1 are also non-negative, and the conclusion of this theorem 

follows by induction. �

Our next step is to obtain a discrete form of the inequality 

(2.72) . To that end, let us suppose that the initial conditions are 

all non-negative. As a consequence of the previous theorem, the 

numerical solutions are likewise non-negative. Add together the 

equations in the discrete system (3.3) and simplify terms. It is easy 

check that if n ∈ I N−1 , then 

ˆ δt p 
n = � + m S + m E + m I A + m I S − μp n +1 − ρi n +1 

S 

−νq n +1 + σ (r n − r n +1 ) + τ (v n − v n +1 ) (3.5) 

+ ω(s n − s n +1 ) + (δ + ε + ζ )(e n − e n +1 ) 

+ (κ + θ )(i n S − i n +1 
S ) + η(i n A − i n +1 

A 
) 

+ ι(p n − q n +1 ) + α(s n e n − s n +1 e n +1 ) . (3.5) 

Let k ∈ I N , and take the sum on both sides of this equation for n be- 

tween 0 and k − 1 . Using the formula for telescoping sums, simpli- 

fying algebraically, rearranging terms, recalling that the solutions 

of the discrete model (3.3) are non-negative and using the fact that 

t k = k �t , we obtain the following upper bound for the total popu- 

lation at the time t k : 

p k ≤ p 0 + (� + m S + m E + m I A + m I S ) t k 

+ �t 

[ 
σ r 0 + τv 0 + ωs 0 + (δ + ε + ζ ) e 0 

+ (κ + θ ) i 0 S + ηi 0 A + ιp 0 + αs 0 e 0 
] 
. (3.6) 

Observe that the continuous estimate (2.72) is recovered from this 

last inequality when we let �t → 0 . Moreover, we have the follow- 

ing discrete version of Theorem 5 . 

Theorem 7. Suppose that the initial conditions S 0 , V 0 , E 0 , Q 

0 , I 0 
A 

, I 0 
S 

and R 0 are non-negative. Then the non-negative number 

b = p 0 + (� + m S + m E + m I A + m I S ) T 

+ �t 

[ 
σ r 0 + τv 0 + ωs 0 + (δ + ε + ζ ) e 0 

+ (κ + θ ) i 0 S + ηi 0 A + ιp 0 + αs 0 e 0 
] 
. (3.7) 

is a uniform bound for the solutions of model (3.3) . �

The following theorem establishes that the disease-free and the 

endemic equilibrium solutions are also constant solutions of the 

numerical model (3.3) . Moreover, their stability properties are also 

preserved in the discrete scenario. 

Theorem 8. The points P DF E and P EE are constant solutions of the 

numerical model (3.3) . Moreover, the following hold: 

• The point P DF E is locally asymptotically stable if R 0 < 1 , and un- 

stable if R 0 > 1 . 

• The point P EE is locally asymptotically stable if R 0 < 1 , and unsta- 

ble if R 0 > 1 . 

Proof. The points are constant solutions of (3.3) follows after a 

simple substitution in that system. On the other hand, the local 

stability properties of the numerical model are satisfied in view 

that the Jacobian matrix of the discrete system (3.3) is the same as 

that of the continuous model (2.2) . �

Next we establish the numerical properties of our finite- 

difference scheme. More precisely, we will prove that the numeri- 

cal scheme (3.3) is consistent, stable and convergent. To that end, 

let us define the differential operators 

L S = 

dS 

dt 
− � − m S − σR + αSE − τV + (ω + μ) S, 

L V = 

dV 

dt 
− ωS + (τ + μ) V, 

L E = 

dE 

dt 
− m E − αSE + (ζ + ε + δ + μ) E, 

L I A = 

dI A 
dt 

− m I A − δE + (η + μ) I A , 

L Q = 

dQ 

dt 
− ζE − κ I S + (ι + υ + μ) Q, 

L I S = 

dI S 
dt 

− m I S − εE + (κ + ρ + θ + μ) I S , 

L R = 

dR 

dt 
− ιQ − θ I S − ηI A + (σ + μ) R. (3.8) 

Obviously, these continuous operators are defined for each t ∈ 

[0 , T ] . For each n ∈ I N−1 and W being any of the solution functions 

of (2.2) , agree that L 

n 
W 

= L W 

(t n ) . On the other hand, define also 

the difference operators 

L n S = 

ˆ δt S 
n − � − m S − σR 

n + αS n +1 E n − τV 

n 

+ (ω + μ) S n +1 , 

L n V = 

ˆ δt V 

n − ωS n + (τ + μ) V 

n +1 , 

L n E = 

ˆ δt E 
n − m E − αS n E n + (ζ + ε + δ + μ) E n +1 , 

L n I A 
= 

ˆ δt I 
n 
A − m I A − δE n + (η + μ) I n +1 

A 
, 

L n Q = 

ˆ δt Q 

n − ζE n − κ I n S + (ι + υ + μ) Q 

n +1 , 

L n I S 
= 

ˆ δt I 
n 
S − m I S − εE n + (κ + ρ + θ + μ) I n +1 

S , 

L n R = 

ˆ δt R 

n − ιQ 

n − θ I n S − ηI n A + (σ + μ) R 

n +1 . (3.9) 

Let us define now 

L 

n = (L 

n 
S , L 

n 
V , L 

n 
E , L 

n 
I A 
, L 

n 
Q , L 

n 
I S 
, L 

n 
R ) , (3.10) 

L n = (L n S , L 
n 
V , L 

n 
E , L 

n 
I A 
, L n Q , L 

n 
I S 
, L n R ) , (3.11) 

for each n ∈ I N−1 . In the following, we will use ‖ · ‖ 1 and ‖ · ‖ ∞ 

to denote, respectively, the L 1 -norm and the infinity norm in R 

7 . 

More precisely, if ξ = (ξ1 , . . . ξ7 ) ∈ R 

7 , then 

‖ ξ‖ 1 = 

7 ∑ 

i =1 

| ξi | , (3.12) 

‖ ξ‖ ∞ 

= max { | ξi | : i ∈ I 7 } . (3.13) 

Moreover, we introduce the norm 

|‖L − L ‖| ∞ 

= max 
{‖L 

n − L n ‖ ∞ 

: n ∈ I N−1 

}
. (3.14) 

Using this nomenclature, we will prove firstly the consistency 

of the finite-difference method (3.3) . 

Theorem 9. If S, V, E, I A , Q, I S , R : [0 , T ] → R are of class C 2 ([0 , T ]) , 

then there exists a constant C ≥ 0 which is independent of �t, such 

that |‖L − L ‖| ∞ 

≤ C�t. 
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Proof. Let n ∈ I N−1 . Using the regularity of the function E, it fol- 

lows that this function is bounded on [0 , T ] by some non-negative 

constant K E . Moreover, since S is of class C 2 ([0 , T ]) , Taylor’s theo- 

rem readily guarantees that there exist constants C ′ 
1 
, C ′ 

2 
≥ 0 which 

are independent of �t , with the property that ∣∣∣∣dS n 

dt 
− ˆ δt S 

n 

∣∣∣∣ ≤ C ′ 1 �t, (3.15) 

∣∣S n − S n +1 
∣∣ ≤ C ′ 2 �t, (3.16) 

for each n ∈ I N−1 . As a consequence of these inequalities, algebraic 

simplifications and the triangle inequality, it follows that 

| L 

n 
S − L n S | ≤

∣∣∣∣dS n 

dt 
− ˆ δt S 

n 

∣∣∣∣ + α| E n | ∣∣S n − S n +1 
∣∣

+ (ω + μ) 
∣∣S n − S n +1 

∣∣
≤ C ′ 1 �t + (αK E + ω + μ) C ′ 2 �t 

= C S �t, (3.17) 

for each n ∈ I N−1 . Here, 

C S = C ′ 1 + (αK E + ω + μ) C ′ 2 , (3.18) 

which is a non-negative constant that is independent of �t . It fol- 

lows then that ‖L S − L S ‖ ∞ 

≤ C S �t . In similar fashion, it is pos- 

sible to show that there exist constants C W 

≥ 0 which are inde- 

pendent of �t for W = V, E, I A , Q, I S , R , such that the inequality 

‖L W 

− L W 

‖ ≤ C W 

�t is satisfied. Now, if we define the non-negative 

constant 

C = max { C S , C V , C E , C I A , C Q , C I S , C R } , (3.19) 

then the constant C is independent of �t and it satisfies the con- 

clusion of this theorem, as desired. �

Next, we turn our attention to the stability and convergence 

properties of the finite-difference scheme (3.3) . The following dis- 

crete form of Gronwall’s inequality will be needed. 

Lemma 1 (Pen-Yu [34] ) . Let (ω 

n ) N n =0 and (ρn ) N n =0 be finite se- 

quences of nonnegative mesh functions, and suppose that there exists 

C ≥ 0 such that 

ω 

k ≤ ρk + Cτ
k −1 ∑ 

n =0 

ω 

k , ∀ k ∈ I N−1 . (3.20) 

Then ω 

n ≤ ρn e Cnτ for each n ∈ I N . �

To establish the stability property, we will consider two sets 

of non-negative initial conditions for the finite-difference scheme, 

which we will denote respectively by 

L 0 = (S 0 , V 

0 , E 0 , I 0 A , Q 

0 , I 0 S , R 

0 ) , (3.21) 

˜ L 0 = ( ̃  S 0 , ̃  V 

0 , ˜ E 0 , ̃  I 0 A , 
˜ Q 

0 , ̃  I 0 S , 
˜ R 

0 ) . (3.22) 

According to Theorem 6 , the discrete model (3.3) yields non- 

negative solutions for each of these solutions. These solutions will 

be denoted respectively by (L n ) N n =0 and ( ̃ L n ) N n =0 , where 

L n = (s n , v n , e n , i n A , q 
n , i n S , r 

n ) , (3.23) 

˜ L n = ( ̃  s n , ̃  v n , ̃  e n , ̃  i n A , ̃  q n , ̃  i n S , ̃  r n ) . (3.24) 

Moreover, we will agree that ξ n 
w 

= w 

n − ˜ w 

n , for each n ∈ I N and 

w = s, v , e, i A , q, i S , r. This nomenclature will be used in the follow- 

ing theorem. 

Theorem 10. Let L 0 and ˜ L 0 be non-negative initial conditions for the 

model (3.3) , and suppose that (L n ) N 
n =0 

and ( L 
n 
) N 

n =0 
are the respective 

solutions. If �t is sufficiently small, then there is a constant K > 0 

such that ξ n ≤ Kξ 0 , for each n ∈ I N . Here, 

ξ n = | ξ n 
s | + | ξ n 

v | + | ξ n 
e | + | ξ n 

i A 
| + | ξ n 

q | + | ξ n 
i S 
| + | ξ n 

r | . (3.25) 

Proof. For the sake of convenience, we will let �n = L n − ˜ L n , for 

each n ∈ I N . It is obvious that 

�n = (ξ n 
S , ξ

n 
v , ξ

n 
e , ξ

n 
i A 
, ξ n 

q , ξ
n 
i S 
, ξ n 

r ) (3.26) 

is satisfied for each n ∈ I N . Moreover, after simplification and some 

additional algebraic steps, it is possible to show the sequence 

(�n ) N 
n =0 

satisfies the system of algebraic equations 

ˆ δt ξ
n 
s = σξ n 

r − α(s n +1 ξ n 
e − ξ n +1 

s ˜ e n ) + τξ n 
v − (ω + μ) ξ n +1 

s , 

ˆ δt ξ
n 
v = ωξ n 

s − (τ + μ) ξ n +1 
v , 

ˆ δt ξ
n 
e = α(s n ξ n 

e − ξ n 
s ˜ e n ) − (ζ + ε + δ + μ) ξ n +1 

e , 

ˆ δt ξ
n 
i A 

= δξ n 
e − (η + μ) ξ n +1 

i A 
, 

ˆ δt ξ
n 
q = ζ ξ n 

e + κξ n 
i S 

− (ι + υ + μ) ξ n +1 
q , 

ˆ δt ξ
n 
i S 

= εξ n 
e − (κ + ρ + θ + μ) ξ n +1 

i S 
, 

ˆ δt ξ
n 
r = ιξ n 

q + θξ n 
i S 

+ ηξ n 
i A 

− (σ + μ) ξ n +1 
r . (3.27) 

Let m ∈ I N , and assume that C p ≥ 0 is the uniform bound for the 

solution functions of (3.3) . Take absolute value on both sides of the 

first equation of the discrete system (3.27) , groups similar terms 

algebraically and use the triangle inequality to obtain 

| ξ n +1 
s | − | ξ n 

s | 
�t 

≤ σ | ξ n 
r | + αC p | ξ n 

e | + τ | ξ n 
ν | + C ′ s | ξ n +1 

s | , (3.28) 

for each n ∈ I N−1 . Here, C ′ s = αC p + ω + μ. Multiplying both sides 

of this inequality by �t , summing on both sides for all n from 0 

to m − 1 , using the formula for telescoping sums and rearranging 

terms, we obtain that 

| ξm 

s | ≤ | ξ 0 
s | + �t 

m −1 ∑ 

n =0 

[
σ | ξ n 

r | + αC p | ξ n 
e | + τ | ξ n 

ν | + C ′ s | ξ n +1 
s | ]. 

(3.29) 

In turn, if we let 

C ′′ s = σ + αC p + τ + C ′ s , (3.30) 

then 

(1 − C ′ s �t) | ξm 

s | ≤ | ξ 0 
s | + �t 

m −1 ∑ 

n =0 

[ 
σ | ξ n 

r | + αC p | ξ n 
e | 

+ τ | ξ n 
ν | + C ′ s | ξ n 

s | 
] 

≤ | ξ 0 
s | + C ′′ s �t 

m −1 ∑ 

n =0 

[ | ξ n 
r | + | ξ n 

e | + | ξ n 
v | + | ξ s 

r | ] , 
(3.31) 

for each m ∈ I N . In similar fashion, we may use the remaining 

equations in (3.27) to show that there exist non-negative constants 

C ′ w 

and C ′′ w 

for each w = v , e, i A , q, i S , r, such that 

(1 − C ′ v �t) | ξm 

v | ≤ | ξ 0 
v | + C ′′ v �t 

m −1 ∑ 

n =0 

[ | ξ n 
s | + | ξ n 

v | ] , (3.32) 

(1 − C ′ e �t) | ξm 

e | ≤ | ξ 0 
e | + C ′′ e �t 

m −1 ∑ 

n =0 

[ | ξ n 
s | + | ξ n 

e | ] , (3.33) 
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Fig. 2. Graphs of the temporal behavior of the sub-population of susceptible (first column) and the sub-population of vaccinated (second column) in the mathematical model 

(2.2) . We employed the parameter values in Table 2 , along with the initial conditions given by data set 1 (first row) and data set 2 (second row) in Table 3 . The dashed lines 

represent the theoretical steady-state solutions for the disease-free scenario. 

(1 − C ′ i A �t) | ξm 

i A 
| ≤ | ξ 0 

i A 
| + C ′′ i A 

�t 

m −1 ∑ 

n =0 

[| ξ n 
e | + | ξ n 

i A 
| ], (3.34) 

(1 − C ′ q �t) | ξm 

q | ≤ | ξ 0 
q | + C ′′ q �t 

m −1 ∑ 

n =0 

[| ξ n 
e | + | ξ n 

i S 
| + | ξ n 

q | 
]
, (3.35) 

(1 − C ′ i S �t) | ξm 

i S 
| ≤ | ξ 0 

i S 
| + C ′′ i S 

�t 

m −1 ∑ 

n =0 

[| ξ n 
e | + | ξ n 

i S 
| ], (3.36) 

and 

(1 − C ′ r �t) | ξm 

r | ≤ | ξ 0 
r | + C ′′ r �t 

∑ m −1 
n =0 

[ 
| ξ n 

i S 
| + | ξ n 

i A 
| 

+ | ξ n 
q | + | ξ n 

r | 
] 
. 

(3.37) 

Let �t > 0 be sufficiently small so that 1 − C ′ w 

�t > 0 , for each 

w = s, v , e, i A , q, i S , r, and let C > 0 satisfy C < 1 − C ′ w 

�t , for each w . 

Adding the inequalities (3.31) –(3.37) and letting 

C ′′ = C ′′ s + C ′′ v + C ′′ e + C ′′ i A 
+ C ′′ q + C ′′ i S 

+ C ′′ r , (3.38) 

we obtain that 

C ξm ≤ ξ 0 + C ′′ �t 

m −1 ∑ 

n =0 

ξ n (3.39) 

Finally, we use Lemma 1 to establish that ξ n ≤ Kξ 0 , where K = 

C −1 exp (C ′′ T /C) , for each n ∈ I N . The conclusion of this theorem 

readily follows from this fact. �

In terms of the nomenclature employed in the proof of the pre- 

vious theorem, observe that the conclusion can be rewritten as 

‖ �n ‖ 1 ≤ K‖ �0 ‖ 1 , for each n ∈ I N . 

Our final theoretical result summarizes the convergence prop- 

erty of the finite-difference method (3.3) . We omit the proof in 

view that it is similar to that of Theorem 10 . We just need to 

point out that ξ n 
w 

is the difference between the exact solution 

W 

n and the numerical approximation w 

n , for each n ∈ I N and W = 

V, E, I A , Q, I S , R . The consistency property of the computer method 

is also required to bound the local truncation error, along with the 

discrete form of Gronwall’s inequality. 

Theorem 11. Suppose that the solutions of problem (2.2) are of class 

C 2 ([0 , T ]) . For sufficiently small values of �t, the solutions of the dis- 
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Fig. 3. Graphs of the temporal behavior of the sub-populations of (a) susceptible, (b) vaccinated, (c) exposed and (d) asymptomatic infected individuals in a population 

modeled by (2.2) . We employed the parameter values in Table 2 , along with the initial conditions given by data set 3 3 . The dashed lines represent the theoretical steady- 

state solutions for the endemic scenario. 

crete model (2.2) converge in the L 1 -norm to the exact solution with 

order of convergence equal to �t. �

Before closing this section, we present computer simulations 

which confirm the validity of some of the analytical results de- 

rived in this work. Our simulations have been carried out with 

the Matlab code provided in Appendix A . It is worth pointing out 

that the computational implementation is relatively simple, which 

is yet another important advantage of the approach introduced in 

the present manuscript. It is worth pointing out that the parame- 

ter values will be those in Table 2 , and that some of those values 

wer taken from [35] . 

Example 1. In our first example, we will confirm the local stability 

properties of the disease-free equilibrium solution. To that end, we 

will employ the parameter values in Table 2 along with the data 

set 1 from Table 3 . Under these circumstances, Figure 2 shows the 

dynamics of the solution for (a) the susceptible population and (b) 

the vaccinated population with respect to time, over the time pe- 

riod [0 , 250] . The results confirm the stability of the disease-free 

equilibrium solution. It is worth pointing out that the value of the 

basic reproductive number is equal to 171.12. Moreover, the dashed 

Table 2 

Values of the parameters used in the various computa- 

tional experiments presented in this manuscript. 

Parameter Value 

α 0.01 

δ 1 . 6728 × 10 −5 

ε 0.0101 

ζ 0.02798 

η 0.04478 

θ 0.0101 

ι 0.0045 

κ 0.0368 

� 0.06 

μ 0.0106 

ρ 0.004 

σ 0.0668 

τ 0.0002 

υ 3 . 2084 × 10 −4 

ω 0.0032 

m S 0 

m E 0 

m I A 0 

m I S 0 
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Fig. 4. Graphs of the temporal behavior of the sub-populations of (a) quarantined, (b) symptomatic infected, (c) recovered and (d) total population of individuals in a 

system modeled by (2.2) . We employed the parameter values in Table 2 , along with the initial conditions given by data set 3 3 . The dashed lines represent the theoretical 

steady-state solutions for the endemic scenario. 

Table 3 

Initial conditions used in the numerical ex- 

periments of this manuscript. 

Data 

Parameter Set 1 Set 2 Set 3 

S 0 S 0 − 0 . 3 S 0 + 30 20 

V 0 V 0 + 0 . 3 0 0 

E 0 0 0 1 

I 0 
A 

0 0 0 

Q 0 0 0 0 

I 0 S 0 0 0 

R 0 0 0 0 

line represents the value of the equilibrium point. Obviously, the 

solutions tend to reach those values as t tends to infinity. In turn, 

(c) and (d) show, respectively, the susceptible population and the 

vaccinated individuals as functions of time, for t ∈ [0 , 10 0 0] . We 

employed data set 2 from Table 3 in this case. Again, these sub- 

populations converge asymptotically to the steady-state solutions. 

So, whether the initial conditions are close to or far from the equi- 

librium solutions of the system (2.2) , the numerical solutions con- 

verge to these values as time increases. This is in agreement with 

the analytical results. Moreover, the simulations show that the nu- 

merical method preserves the equilibria and their stability, as ex- 

pected from the theoretical analysis. �

Example 2. In this example, we consider the endemic case and 

show once more that the finite-difference scheme is capable of 

preserving the steady-state solutions and their stabilities. More- 

over, we provide computational proof that the endemic equilib- 

rium is globally asymptotically stable as proved in the previ- 

ous section. To that end, consider the parameter values given in 

Table 2 , along with the initial conditions under data set 3 of 

Table 3 . The results are provided in Figure 3 as time-dependent 

graphs of (a) susceptible, (b) vaccinated, (c) exposed and (d) 

asymptomatic infected, and in Figure 4 as graphs of (a) quaran- 

tined, (b) symptomatic infected, (c) recovered and (d) total pop- 

ulation, for t ∈ [0 , 10 0 0] . For convenience, the theoretical endemic 

equilibrium values are plotted as dashed lines. The results show 

that the solutions tend to their equilibrium values as time in- 

12 
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creases. This is in obvious agreement with the theoretical results 

derived in this work. �

4. Conclusions 

In this work, we investigated both analytically and numerically 

a compartmental epidemiological model which describes the prop- 

agation of a disease among a human population. The model is in- 

tended to describe the propagation of COVID-19, but it can be used 

to any other disease which satisfies the epidemiological hypotheses 

used in this work. Among the distinctive features of the model, we 

considered various compartments: susceptible, exposed, asymp- 

tomatic and symptomatic infected, quarantined, recovered and vac- 

cinated individuals. We supposed also that population migration 

is possible in the mathematical model. Analytically, we obtained 

the steady-state solutions of the model, and determined conditions 

for their local stability. The basic reproductive number was deter- 

mined using the next generation matrix, and we established the 

existence and uniqueness of non-negative solutions. Also, we pro- 

vided an upper bound for the solutions functions, and the analysis 

of parametric sensitivity was theoretically carried out. 

As one of the most important results of our study, we pro- 

posed a finite-difference method to approximate the solutions of 

our mathematical model. This computational technique was de- 

signed using the nonstandard approach proposed by R. E. Mickens. 

An explicit form of the scheme was provide, and we established 

the existence and uniqueness of non-negative solutions for this 

mathematical model. We showed that the computational scheme 

has the same steady-state solutions as the continuous model and, 

moreover, the stability properties are also preserved by our dis- 

cretization. We proved that the discrete model is a consistent dis- 

cretization of the epidemiological model, and the conditional sta- 

bility and convergence properties were derived using a discrete 

form of Gronwall’s inequality. Here, it is worth pointing out that 

many nonstandard techniques are usually presented in the liter- 

ature without providing these numerical properties. However, we 

established them mathematically in the present manuscript. Com- 

putationally, we obtained various simulations to illustrate the per- 

formance of our scheme. The results showed that the method iden- 

tifies correctly the steady-state solutions and, moreover, it is also 

able to reproduce the stability properties of the continuous model. 

Our simulations show additionally that the scheme is capable or 

preserving the non-negativity and the boundedness of the solu- 

tions, in agreement with out theoretical results. 

It is important to point out that the discretization proposed in 

this work is first order accurate in the temporal variable. As one of 

the reviewers pointed out, this numerical accuracy may not be sat- 

isfactory in the practice, in particular when dynamical simulations 

are performed. Other approaches may have the advantage of pro- 

viding an accuracy of higher order, like the family of Runge–Kutta 

methods for systems of ordinary differential equations, which is 

a family of stable and convergent techniques. However, those ap- 

proaches may not be able to preserve the positivity and bounded- 

ness of the solutions, or may not be able to preserve the equilibria 

and their stability. Nevertheless, in the case that they can preserve 

those features, the present methodology has its simplicity as one 

of the advantages. As the appendix shows, the present methodol- 

ogy is relatively easy to implement even for a scientist with little 

knowledge in computer programming. 

On the other hand, as one of the anonymous reviewers of this 

manuscript pointed out, it is important to mention that there ex- 

ist various reports available in the literature of third-order meth- 

ods for time-dependent nonlinear partial differential equations in 

which the convergence and the stability have been analyzed. 

For example, there are reports on fully discrete Fourier colloca- 

tion spectral methods for the 3-D viscous Burgers equation [36] , 

high-order multi-step numerical schemes for two-dimensional in- 

compressible Navier–Stokes equations [37] , high-order exponential 

time-differencing numerical schemes for no-slope-selection epitax- 

ial thin-film models with energy stability [38] , third-order BDF 

energy-stable linear schemes for the no-slope-selection thin film 

model [39] and BDF-type energy-stable schemes for the Cahn–

Hilliard equation [40] . 

Finally, as the same reviewer pointed out, there are var- 

ious reports in which some logarithmic energy potential has 

been introduced for reaction-diffusion equations or other re- 

lated gradient flows. In such way, the preservation of the pos- 

itivity of the solutions has been ensured. As examples, we can 

mention some numerical works for the Poisson–Nernst–Planck 

system [41] , a ternary Cahn–Hilliard system with the singular 

interfacial parameters [42] , the three-component Cahn–Hilliard- 

type model for macromolecular microsphere composite hydrogels 

[43] , the binary fluid-surfactant system [44] , a liquid thin-film 

coarsening model [45] , the Poisson–Nernst–Planck–Cahn–Hilliard 

equations with steric interactions [46] , the Cahn–Hilliard equa- 

tion with variable interfacial parameters [47] , the Cahn–Hilliard 

equation with a Flory–Huggins–Degennes energy [48] , he Cahn- 

Hilliard equation with logarithmic potential [49] and a reaction- 

diffusion system with detailed balance [50,51] . The authors of the 

present manuscript are not aware whether an entropy could be in- 

troduced in the epidemiological mathematical model (2.2) , in order 

to guarantee the preservation of the positivity of the numerical so- 

lutions. 
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Appendix A. Matlab code 
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2. A multiconsistent computational
methodology to resolve a diffusive
epidemiological system with effects of
migration, vaccination and quarantine

2.1 Introduction

This chapter extends the previous framework to a spatial setting. The model now consists of a sys-
tem of nonlinear parabolic partial differential equations that track seven interacting subpopulations
(susceptible, exposed, asymptomatic and symptomatic infected, quarantined, recovered, and vacci-
nated) while accounting for diffusion in space and migration between locations. The scientific aim is to
design a numerical method that respects the model’s dynamics and is robust for large-scale simulations.

A non-local, linearly implicit nonstandard finite-difference scheme is introduced. In suitable regimes
the matrices behind the method are M-matrices, which supports positivity and monotonicity proper-
ties. The analysis proves that the method identifies the equilibria of the PDE model and preserves their
local asymptotic stability; the reproduction number is computed with the next-generation technique.
Moreover, the scheme is consistent, stable, and convergent—first order in time and second order in
space—providing a practical balance between accuracy and structure preservation.

Implementation details are also discussed. The discrete systems at each time step are solved with
a biconjugate-gradients-stabilized solver, and the experiments verify positivity, stability, and agree-
ment with theory in both disease-free and endemic regimes.

2.2 Article 2
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a b s t r a c t 

Background: We provide a compartmental model for the transmission of some contagious illnesses in 

a population. The model is based on partial differential equations, and takes into account seven sub- 

populations which are, concretely, susceptible, exposed, infected (asymptomatic or symptomatic), quar- 

antined, recovered and vaccinated individuals along with migration. The goal is to propose and analyze 

an efficient computer method which resembles the dynamical properties of the epidemiological model. 

Materials and methods: A non-local approach is utilized for finding approximate solutions for the mathe- 

matical model. To that end, a non-standard finite-difference technique is introduced. The finite-difference 

scheme is a linearly implicit model which may be rewritten using a suitable matrix. Under suitable cir- 

cumstances, the matrices representing the methodology are M-matrices. 

Results: Analytically, the local asymptotic stability of the constant solutions is investigated and the next 

generation matrix technique is employed to calculate the reproduction number. Computationally, the dy- 

namical consistency of the method and the numerical efficiency are investigated rigorously. The method 

is thoroughly examined for its convergence, stability, and consistency. 

Conclusions: The theoretical analysis of the method shows that it is able to maintain the positivity of its 

solutions and identify equilibria. The method’s local asymptotic stability properties are similar to those 

of the continuous system. The analysis concludes that the numerical model is convergent, stable and 

consistent, with linear order of convergence in the temporal domain and quadratic order of convergence 

in the spatial variables. A computer implementation is used to confirm the mathematical properties, and 

it confirms the ability in our scheme to preserve positivity, and identify equilibrium solutions and their 

local asymptotic stability. 

© 2023 Elsevier B.V. All rights reserved. 
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1. Introduction 

During the final months in 2019, humanity began a struggle 

against a new virus called SARS-CoV-2, which is a pathogen that 

has caused almost 6.7 million human casualties around the world 

until January 2023 [1] . This disease is known also as COVID-19, and 

it will be in the history annals along with others pandemics such 

as the black plague, the smallpox and the Spanish flu among many 

others [2] . It is worth mentioning that COVID-19 has not been as 
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0169-2607/© 2023 Elsevier B.V. All rights reserved. 



J.E. Herrera-Serrano, J.A. Guerrero-Díaz-de-León, I.E. Medina-Ramírez et al. Computer Methods and Programs in Biomedicine 236 (2023) 107526 

deadly in comparison to other illnesses [3–5] . The above situation 

may be due to the fact that the population has better health and 

sanitation conditions nowadays. In addition, it may be due to the 

great advances in technology within the health sector [6,7] . In that 

sense, humankind has been fortunate enough to be in a time when 

the mortal consequences of the current pandemic have been min- 

imized by many factors. 

In Mexico, the initial confirmed of the existence of COVID-19 

was reported on February 28th, 2020. The individual was an Ital- 

ian citizen residing in the country [8] . Just a few weeks later, the 

federal government of this country announced the first victim of 

the disease on March 18, 2020 [8] . Based on the world panorama, 

the government decided to start a quarantine period, in which all 

the activities of a non-essential nature would be carried out at the 

distance. Furthermore, certain mandatory precautions were put in 

place, including regularly washing hands, using facial masks, and 

keeping a personal separation of at least 1.5 meters from others. 

Although these measures lasted for several months, it was impos- 

sible to maintain them for a long period. Later on, it was decided 

to employ a traffic-light system for the control of the disease: de- 

pending on the color of the traffic light, certain tasks were allowed 

or prohibited [9] . From the beginning of the disease to January 

2023, almost 331,0 0 0 people have died in this country. In fact, Jan- 

uary 2021 was the month reporting the most deaths with almost 

33,0 0 0 individuals, representing around 10% of the total deaths to 

this day [10] . 

As we mentioned above, all the countries around the world suf- 

fered a lot of harsh consequences derived from this new disease. 

According to data from Johns Hopkins University [1] , some nations 

have suffered to a greater or lesser degree. However, one thing is 

very clear: since vaccinations began, COVID-19-related deaths have 

drastically decreased [11] . As we previously pointed out, a possible 

reason why this pandemic was not as deadly as others may be be- 

cause of the technological progress in the field of medicine (which 

is abysmal compared to the situation some centuries ago [2] ). And 

it is a fact that the vaccines against the SARS-CoV-2 virus were 

developed in record time [12] , something that perhaps would not 

have been possible many years ago. In addition, the vaccine has 

been effective for all detected variants [13] . Despite the fact that 

we already have the vaccine and that the number of infections and 

deaths have decreased by a large percentage, it is very important 

to continue understanding the dynamics of this and other lethal 

disease, and be ready when the next pandemic hits [14] . 

Surely, COVID-19 is not be the first nor will be the last disease 

to attack humanity. Thus, scientists must be ready to face the next 

pandemic. Specifically, experts in the field of epidemiology are 

continually refining and assessing their techniques and pushing the 

boundaries of the field, to be ready for the potential outbreak of 

subsequent illnesses [15] . It is worth remembering that epidemiol- 

ogy is the field in science which studies occurrences, spreading and 

causes of illnesses within human populations [16,17] . This branch 

of science has experienced an increased popularity in recent years 

due to the many diseases that have afflicted the human population. 

Among those diseases, we can mention malaria [18] , the H1N1 flu 

[19,20] and currently COVID-19 [21] . Moreover, epidemiology and 

mathematics have come together to support this cause. In fact, 

mathematical modeling and simulation have been tools used to 

a great extent, in order to generate a general description of the 

spreading of a disease. In such way, mathematical epidemiology 

tries to predict the behavior of a disease in a population of human 

individuals. 

Within the frame of mathematical epidemiology, the so-called 

compartment-based models have become a widely used technique 

to represent the behavior of the spreading of a specific disease 

within a population [22] . These models are adapted depending on 

the characteristics of the disease under study [23] . In the scien- 

tific literature, there are a number of basic compartmental mod- 

els available such as the SIR (susceptible-infected-recovered) model 

[24] , as well as more complex models such as the SEIQR which in- 

cludes the quarantine compartment [25] . It is worth noting that 

these models can be adjusted to enhance the explanations of the 

phenomena [26] . Usually, this type of models are expressed as 

nonlinear systems of ordinary differential equations [27] , but it is 

also possible to employ partial [28] or stochastic [29] differential 

equations to that end. In particular, the advantage of using partial 

differential equations is that they allow for modeling using two or 

more independent variables, like space and time. In light of this 

advantage, this manuscript presents a mathematical model using 

partial differential equations to simulate the propagation of COVID- 

19 within some human population, taking into account various re- 

alistic factors. 

The aim of this study is to develop a general model that can 

be used to prescribe the transmission mechanisms for various ill- 

nesses, including COVID-19. The mathematical model will con- 

sider the presence of diffusion in two spatial variables, and var- 

ious mechanisms of reaction will be taken into account. To that 

end, various interactions between population compartments will 

be considered, and we will use partial differential equations for a 

precise mathematical description of the model in the spatial and 

temporal variables. More specifically, our community is divided 

into sub-populations of vaccinated, recovered, quarantined, asymp- 

tomatic and symptomatic infected, exposed, and susceptible indi- 

viduals. The model is a rather complex system which cannot be 

solved exactly in general, that is why the need to provide a nu- 

merical methodology to simulate it is justified. This paper is fo- 

cused on presenting a computer scheme to simulate the dynam- 

ics in our epidemiological model. The mathematical analysis of the 

properties of the scheme will be discussed in detail, and various 

simulations will be conducted to provide examples. 

Methodologically, the computer technique used in this work 

is based on a non-standard approach. It is worth pointing out 

that this approach was popularized by Ronald E. Mickens in var- 

ious manuscripts [30] , and various other authors have applied 

it successfully to solve numerically many mathematical problems 

[31,32] , including some complex epidemiological models [33] and 

some other mathematical problems [34–37] . The present method- 

ology follows a non-local perspective, which presents the advan- 

tage of being able to conserve the positive character of the nu- 

merical solutions. This is an important fact in view that the func- 

tions involved in our model represent population sizes or densi- 

ties. Moreover, this approach results in a linear discretization of the 

model. In such way, the computer implementation of the scheme 

is relatively easy to carry out, though the theoretical analysis of the 

computer model is still challenging. However, we are able to estab- 

lish mathematically the most important properties of the scheme. 

In particular, the consistency, the stability and the convergence of 

the methodology are proved rigorously, and some computational 

simulations verify the validity of many of our theoretical results. 

This manuscript is organized as follows. In Section 2 , we in- 

troduce the mathematical models investigated in this work. In 

a first stage, a continuous model based in partial differential 

equations is deduced from epidemiological assumptions. In such 

way, a system of seven nonlinear partial differential equations is 

obtained assuming the presence of spatial diffusion. Initial and 

boundary conditions are imposed on the boundary of the two- 

dimensional spatial domain. In addition, a computer method is de- 

rived from the continuous model using a finite-difference method- 

ology. For the sake of computational convenience, the scheme is 

presented as a vector system which can be easily implemented 

in a computer. Section 3 establishes the most important analyti- 

cal and numerical results. Analytically, we obtain the basic repro- 

duction number using the next generation matrix method, and we 
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determine the disease-free and the endemic equilibria. Using non- 

linear arguments, the local asymptotic stability of the equilibrium 

points is elucidated. Numerically, the computer method is thor- 

oughly analyzed. In particular, we show that the method is capable 

of preserving the positivity, the equilibrium points and their local 

asymptotic stability under the same conditions for which they hold 

in the continuous case. Moreover, the consistency, the stability and 

the convergence of the scheme are theoretically established. Some 

computer simulations provided therein confirm our theoretical re- 

sults. This work closes with some concluding remarks. 

2. Methods 

2.1. Epidemiological model 

In this initial stage, a compartment mathematical model is in- 

troduced to depict the spreading of a sickness based on epidemio- 

logical assumptions. We will have in mind a group of people who 

are prone to catching some infectious disease. The variable P (x , t) 

symbolizes the number of people at time t ≥ 0 and a spatial point 

x = (x, y ) ∈ R 

2 . The specific vulnerable society is also divided into 

different sub-groups or categories: 

• V - Vaccinated category. 
• S - Susceptible category. 
• E - Exposed category. 
• I S - Symptomatic infected category. 
• I A - Asymptomatic infected category. 
• Q - Quarantined category. 
• R - Recovered category. 

Therefore, the following equation is fulfilled at any point x ∈ �

and any time t ≥ 0 : 

P = S + E + I A + I S + Q + R + V. (2.1) 

To make the epidemiological model more accurate, this study con- 

siders constant rates of migration into the population. Those pa- 

rameters are represented by m S , m V , m E , m IA , m Q , m I S 
, and m R , re- 

spectively, which indicate the number of individuals moving into 

the categories of vaccinated, susceptible, exposed, symptomatic, 

asymptomatic, quarantined, and recovered people. 

All the terms will have non-negative real numbers. The popula- 

tion is assumed to have death and birth rates, represented with 

constants μ and � respectively. Three scenarios are considered 

in which susceptible individuals can become exposed. The first of 

which is when these persons get in touch with exposed subjects. 

This happens at a transmission velocity equal to α. A second case 

is if they are in contact with asymptomatic individual at a rate β . 

This scenario is supported by the fact that some diseases produce 

no symptoms on some individuals, but those subjects are carriers 

of the pathogen. The last case occurs when individuals have con- 

tact with people who are already infected by the disease, in which 

case the propagation will have a rate equal γ . We will assume also 

that there is a vaccine available to control the propagation. More 

specifically, susceptible individuals will be vaccinated at a rate rep- 

resented by ω. To produce an even more realistic scenario, we 

also suppose that the vaccines are not 100% effective and, in some 

cases, the individuals may lose their immunity. To accomplish that, 

vaccinated people will become susceptible one more time at a rate 

given by the value of the constant τ . 

Exposed individuals have three potential outcomes. One option 

is to quarantine, either when they know they are infected, or sim- 

ply for precautionary measures. This occurs at a rate represented 

by ζ . The other two options are becoming asymptomatic infected 

or symptomatic infected, at rates δ and ε, respectively. It is impor- 

tant to mention here that we assume that the individuals do the 

test and the proofs report that they are positive for the infectious 

Table 1 

Symbols used and their corresponding definitions for comprehending all the inter- 

connections within the proposed model. 

Parameter Description 

m S Rate of immigration individuals to susceptible class. 

m V Rate of immigration individuals to vaccinated class. 

m E Rate of immigration individuals to exposed class. 

m I S Rate of immigration individuals to symptomatic infected class. 

m I A Rate of immigration individuals to asymptomatic infected class. 

m Q Rate of immigration individuals to quarantine class. 

m R Rate of immigration individuals to recovered class. 

� Rate of recruitment for individuals prone to contracting the 

disease. 

τ Proportion of individuals to susceptible category from 

vaccinated. 

ω Proportion of individuals to vaccinated category from 

susceptible. 

α Proportion of contact enclosed by exposed and susceptible 

category. 

γ Proportion of contact enclosed by susceptible and symptomatic 

category. 

β Proportion of contact enclosed by susceptible and 

asymptomatic category. 

ζ Proportion of individuals from exposed to quarantine category. 

ε Proportion of individuals from exposed to symptomatic 

infected category. 

δ Proportion of individuals to asymptomatic infected category 

from exposed. 

η Proportion of individuals from asymptomatic infected to 

recover category. 

ι Proportion of individuals from quarantine to recover category. 

υ Deaths for the disease in quarantine category. 

κ Proportion of individuals from symptomatic infected to 

quarantine category. 

ρ Deaths for the disease in symptomatic infected category. 

θ Proportion of recovery individuals from symptomatic infected 

category. 

σ Proportion of individuals who lost immunity and return to 

susceptible category. 

μ Deaths due to causes unrelated to the disease. 

disease. Some people may or may not have symptoms, and this 

obviously depends strongly on the particular type of illness un- 

der study. In fact, we suppose that asymptomatic people recover 

at rate of η by natural causes. 

Additionally, the population inside the symptomatic category 

will be transferred to the confined state at a rate of κ . It is impor- 

tant to note that the quarantined state can be assumed for mild 

or severe symptoms. However, depending on whether they were 

quarantined or symptomatic, they can only transition to the recov- 

ered condition at a rate of ι or θ , respectively. We will use υ to 

indicate the rates at which quarantined individuals succumb to the 

infectious disease, and ρ for the people who die as a consequence 

of the illness. In addition, since the body does not acquire a perma- 

nent immunity to the illness, individuals who have recovered may 

re-enter the susceptible class at a rate of σ . For easy reference, 

the epidemiological parameters employed herein are displayed in 

Table 1 . 

A visually convenient flowchart is shown in Fig. 1 , which de- 

picts the epidemiological postulation discussed in this work. These 

assumptions are used to simulate the propagation of the illness. 

Mathematically, we present the next system of nonlinear partial 

differential equations: 

∂S 

∂t 
= � + m S + σR − αSE − βSI A − γ SI S + τV − (ω + μ) S + d S ∇ 

2 S, 

∂V 

∂t 
= m V + ωS − (τ + μ) V + d V ∇ 

2 V, 

∂E 

∂t 
= m E + αSE + βSI A + γ SI S − (ζ + ε + δ + μ) E + d E ∇ 

2 E, 

∂ I A 
∂t 

= m I A 
+ δE − (η + μ) I A + d I A ∇ 

2 I A , 
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Fig. 1. A flowchart that graphically illustrates mechanisms involved in the trans- 

mission of a disease, as supposed in the present manuscript. 

∂Q 

∂t 
= m Q + ζE + κ I S − (ι + υ + μ) Q + d Q ∇ 

2 Q, 

∂ I S 
∂t 

= m I S 
+ εE − (κ + ρ + θ + μ) I S + d I S ∇ 

2 I S , 

∂R 

∂t 
= m R + ιQ + θ I S + ηI A − (σ + μ) R + d R ∇ 

2 R. (2.2) 

Obviously, the constants d S , d V , d E , d I A , d Q , d I S and d R represent 

non-negative diffusion coefficients. 

The set of equations presented here is a nonlinearly coupled 

system of differential equations in partial derivatives that are de- 

fined on a particular domain in space and time. The seven func- 

tions in the model are all real functions, and the domain of def- 

inition is an open, bounded subset of a two-dimensional space. 

So, this is defined as (x , t) ∈ � × [0 , ∞ ) where � ∈ R 

2 . Addition- 

ally, we will add homogeneous Dirichlet data at the boundary of 

�, along with conditions at the time t = 0 . To be more specific, we 

will assume that the following requirements are satisfied: {
U(x , 0) = U 

0 (x ) , ∀ x ∈ �, 

U(x , t) = 0 , ∀ (x , t) ∈ ∂� × [0 , ∞ ) . 
(2.3) 

Let us use the function U as any of the operators S, V , E, I A , Q , I S , or 

R , and S 0 , V 0 , E 0 , I 0 
A 

, Q 

0 , I 0 
S 

, and R 0 are real-valued functions defined 

in our domain �. Moreover, the symbol ∂� is used to represent 

the boundary of �. 

2.2. Computer method 

Next, we present a numerical method using discrete opera- 

tors to approximate the solutions of the epidemiological proposed 

model 2.2 . It is worthy to mention that the steps followed to re- 

duce the mathematical model to a numerical one were inspired by 

the use of the non-standard technique popularized by R. E. Mick- 

ens in various of his influential articles [30,38,39] . For the sake 

of convenience, we will approximate the numeric model within 

some fixed temporal period, namely, within the set [0 , T ] for T ∈ 

R 

+ . From the spatial point of view, we shall focus just on one 

rectangle-related domain denoted by � = [ a, b] × [ c, d] . Let us use 

M, N, K ∈ N to represent amount of subintervals for the variables x , 

y and t , respectively. Fix now uniform partitions of the form 

a = x 0 < x 1 < x 2 < . . . < x m 

< . . . < x M−1 < x M 

= b, 

c = y 0 < y 1 < y 2 < . . . < y n < . . . < x N−1 < y N = d, 

0 = t 0 < t 1 < t 2 < . . . < t k < . . . < t K−1 < t K = T . (2.4) 

For convenience, the associated partition norms in the x , y 

and t variables will be the positive real numbers �x = (b − a ) /M, 

�y = (d − c) /N and �t = T /N, respectively. Obviously, all of them 

are positive real numbers. Now, we set up the discrete terminol- 

ogy that is required for approximating the dynamics for the differ- 

ential system (2.2) . In a discrete setting, the continuous functions 

S, E, I A , I S , Q , R , V , and P shall be represented in the sequel by 

the lower-case letters s , e , i A , i S , q , r, v , and p, respectively. Assume 

that U = S, E, I S , I A , Q, R, V and u = s, e, i S , i A , q, r, v . In what follows, 

we will agree that 

U 

k 
m,n = U(x m 

, y n , t k ) , (2.5) 

where m = 0 , 1 , 2 , . . . , M − 1 , M, n = 0 , 1 , 2 , . . . , N − 1 , N, 

k = 0 , 1 , 2 . . . , K − 1 , K. Moreover, we introduce the following 

discrete finite-difference linear operators: 

ˆ σx u 

k 
m,n = u 

k 
m −1 ,n + u 

k 
m +1 ,n , (2.6) 

ˆ σy u 

k 
m,n = u 

k 
m,n −1 + u 

k 
m,n +1 , (2.7) 

ˆ μt u 

k 
m,n = 

u 

k 
m,n + u 

k +1 
m,n 

2 

, (2.8) 

ˆ δt u 

k 
m,n = 

1 

�t 
(u 

k +1 
m,n − u 

k 
m,n ) , (2.9) 

ˆ δ2 
y u 

k 
m,n = 

1 

(�y ) 2 
(u 

k 
m,n −1 − 2 u 

k 
m,n + u 

k 
m,n +1 ) , (2.10) 

ˆ δ2 
x u 

k 
m,n = 

1 

(�x ) 2 
(u 

k 
m −1 ,n − 2 u 

k 
m,n + u 

k 
m +1 ,n ) . (2.11) 

Needless to mention that operators (2.9) –(2.11) provide a con- 

sistent approximation to suitable continuous differential operators. 

The fully discretized methodology used to approximation the dis- 

cretized solutions uses the discrete nomenclature used in this stage 

(2.2) at time t k and spatial node (x m 

, y n ) . Concretely, the method is 

provided by the equations in the algebraic coupled nonlinear sys- 

tem 

ˆ δt s 
k 
m,n = � + m S + σ r k m,n − αs k +1 

m,n e 
k 
m,n − βs k +1 

m,n i 
k 
A m,n 

− γ s k +1 
m,n i 

k 
S m,n 

+ τv k m,n − (ω + μ) s k +1 
m,n + d S ( ̂  δ

2 
x + 

ˆ δ2 
y ) ̂  μt s 

k 
m,n , 

ˆ δt v k m,n = m V + ωs k m,n − (τ + μ) v k +1 
m,n + d V ( ̂  δ

2 
x + 

ˆ δ2 
y ) ̂  μt v k m,n , 

ˆ δt e 
k 
m,n = m E + αs k m,n e 

k 
m,n + βs k m,n i 

k 
A m,n 

+ γ s k m,n i 
k 
S m,n 

− (ζ + ε + δ + μ) e k +1 
m,n + d E ( ̂  δ

2 
x + 

ˆ δ2 
y ) ̂  μt e 

k 
m,n , 

ˆ δt i 
k 
A m,n 

= m I A + δe k m,n − (η + μ) i k +1 
A m,n 

+ d i A ( ̂
 δ2 
x + 

ˆ δ2 
y ) ̂  μt i 

k 
A m,n 

, 

ˆ δt q 
k 
m,n = m Q + ζ e k m,n + κ i k S m,n 

− (ι + υ + μ) q k +1 
m,n 

+ d Q ( ̂  δ
2 
x + 

ˆ δ2 
y ) ̂  μt q 

k 
m,n , 

ˆ δt i 
k 
S m,n 

= m I S + εe k m,n − (μ + θ + ρ + κ) i k +1 
S m,n 

+ d i S ( ̂
 δ2 
x + 

ˆ δ2 
y ) ̂  μt i 

k 
S m,n 

, 

ˆ δt r 
k 
m,n = m R + ιq k m,n + θ i k S m,n 

+ ηi k A m,n 
− (σ + μ) r k +1 

m,n 

+ d R ( ̂  δ
2 
x + 

ˆ δ2 
y ) ̂  μt r 

k 
m,n . (2.12) 

It is clear that this discretization is nonstandard because it pro- 

vides non-local approximations for some terms in the scheme. On 

the edge of �, discrete homogeneous Dirichlet conditions will then 

be applied. To put it another way, we shall impose discrete initial- 

boundary constraints as follows: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

u 

0 
m,n = U 

0 
m,n , ∀ m = 1 , 2 , . . . , M − 1 , 

∀ n = 1 , 2 , . . . , N − 1 , 

u 

k 
m,n = 0 , ∀ k = 0 , 1 , 2 , . . . , K − 1 , K and [∀ (m, 0) , (m, N) , m = 0 , 1 , 2 , . . . , M − 1 , M, or 

∀ (0 , n ) , (M, n ) , n = 0 , 1 , . . . , N − 1 , N 

]
. 

(2.13) 
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Notice that the algebraic system (2.12) can be presented in lin- 

ear form as follows: 

b 

s 
m,n,k = a s m,n,k s 

k +1 
m,n − R s x s 

k +1 
m +1 ,n − R s x s 

k +1 
m −1 ,n − R s y s 

k +1 
m,n +1 − R s y s 

k +1 
m,n −1 , 

b 

v 
m,n,k = a v m,n,k v 

k +1 
m,n − R v x v k +1 

m +1 ,n − R v x v k +1 
m −1 ,n − R v y v k +1 

m,n +1 − R v y v k +1 
m,n −1 , 

b 

e 
m,n,k = a e m,n,k e 

k +1 
m,n − R e x e 

k +1 
m +1 ,n − R e x e 

k +1 
m −1 ,n − R e y e 

k +1 
m,n +1 − R e y e 

k +1 
m,n −1 , 

b 

i A 
m,n,k 

= a i A 
m,n,k 

i A 
k +1 
m,n − R i A x i A 

k +1 
m +1 ,n − R i A x i A 

k +1 
m −1 ,n − R i A y i A 

k +1 
m,n +1 − R i A y i A 

k +1 
m,n −1 , 

b 

q 

m,n,k 
= a q 

m,n,k 
q k +1 

m,n − R q x q 
k +1 
m +1 ,n − R q x q 

k +1 
m −1 ,n − R q y q 

k +1 
m,n +1 − R q y q 

k +1 
m,n −1 , 

b 

i S 
m,n,k 

= a i S 
m,n,k 

i S 
k +1 
m,n − R i S x i S 

k +1 
m +1 ,n − R i S x i S 

k +1 
m −1 ,n − R i S y i S 

k +1 
m,n +1 − R i S y i S 

k +1 
m,n −1 , 

b 

r 
m,n,k = a r m,n,k r 

k +1 
m,n − R r x r 

k +1 
m +1 ,n − R r x r 

k +1 
m −1 ,n − R r y r 

k +1 
m,n +1 − R r y r 

k +1 
m,n −1 , 

(2.14) 

where 

a s m,n,k = 1 + 2 R 

s 
x + 2 R 

s 
y + �t(αe k m,n + βi k A m,n 

+ γ i k S m,n 
+ ω + μ) , 

a v m,n,k = 1 + 2 R 

v 
x + 2 R 

v 
y + �t(τ + μ) , 

a e m,n,k = 1 + 2 R 

e 
x + 2 R 

e 
y + �t(ζ + ε + δ + μ) , 

a i A 
m,n,k 

= 1 + 2 R 

i A 
x + 2 R 

i A 
y + �t(η + μ) , 

a q 
m,n,k 

= 1 + 2 R 

q 
x + 2 R 

q 
y + �t(ι + υ + μ) , 

a i s 
m,n,k 

= 1 + 2 R 

i S 
x + 2 R 

i S 
y + �t(κ + ρ + θ + μ) , 

a r m,n,k = 1 + 2 R 

r 
x + 2 R 

r 
y + �t(σ + μ) . (2.15) 

and 

b 

s 
m,n,k = �t 

(
� + m S + σ r k m,n + τv k m,n 

)
+ 

ˆ D s s 
k 
m,n , 

b 

v 
m,n,k = �t 

(
m V + ωs k m,n 

)
+ 

ˆ D v v k m,n , 

b 

e 
m,n,k = �t 

(
m E + αs k m,n e 

k 
m,n + βs k m,n i A 

k 
m,n + γ s k m,n i S 

k 
m,n 

)
+ 

ˆ D e e 
k 
m,n , 

b 

i A 
m,n,k 

= �t 
(
m I A + δe k m,n 

)
+ 

ˆ D i A i A 
k 
m,n , 

b 

q 

m,n,k 
= �t 

(
m Q + ζ e k m,n + κ i S 

k 
m,n 

)
+ 

ˆ D q q 
k 
m,n , 

b 

i S 
m,n,k 

= �t 
(
m I S + εe k m,n 

)
+ 

ˆ D i S i S 
k 
m,n , 

b 

r 
m,n,k = �t 

(
m R + ιq k m,n + θ i S 

k 
m,n + ηi A 

k 
m,n 

)
+ 

ˆ D r r 
k 
m,n . (2.16) 

Moreover, we used the computational parameters and operators 

R 

u 
x = 

d u 

2 

�t 

(�x ) 2 
, 

R 

u 
y = 

d u 

2 

�t 

(�y ) 2 
, 

ˆ D u u 

k 
m,n = 

[
(1 − 2 R 

u 
x − 2 R 

u 
y ) + R 

u 
x ̂  σx + R y ̂  σy 

]
u 

k 
m,n . (2.17) 

In the numerical model, each recursive equation can be ex- 

pressed in vector form alternatively as 

A 

u 
k u 

k +1 = b 

u 
k , (2.18) 

where u 

k +1 and b 

u 
k 

are, respectively, the real vectors of length 

equal to (M + 1)(N + 1) given by 

u 

k +1 = (u 

k +1 
0 , 0 , u 

k +1 
0 , 1 , · · · , u 

k +1 
0 ,N , u 

k +1 
1 , 0 , u 

k +1 
1 , 1 , . . . , u 

k +1 
1 ,N , 

· · · , u 

k +1 
M, 0 , u 

k +1 
M, 1 , · · · , u 

k +1 
M,N ) , (2.19) 

and 

b 

u 
k = ( 0 , 0 , . . . , 0 , 0 ︸ ︷︷ ︸ 

(N+1) -times 

, 

0 , b u 1 , 1 ,k , . . . , b 
u 
1 ,N−1 ,k , 0 , 

0 , b u 2 , 1 ,k , . . . , b 
u 
2 ,N−1 ,k , 0 , 

. . . 

0 , b u M−1 , 1 ,k , . . . , b 
u 
M−1 ,N−1 ,k , 0 , 

0 , 0 , . . . , 0 , 0 ︸ ︷︷ ︸ 
(n +1) -times 

) , (2.20) 

for each k = 0 , 1 , 2 , . . . , K − 1 and u any of the discrete functions 

s , e , i A , i S , q , r or v . Moreover, the matrix A 

u 
k 

is the square block 

matrix with number of rows equal to (N + 1)(M + 1) , given as 

A 

u 
k 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

I 0 0 0 · · · 0 0 0 

E u D 

u 
k E u 0 · · · 0 0 0 

0 E u D 

u 
k E u · · · 0 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 0 0 · · · E u D 

u 
k E u 

0 0 0 0 · · · 0 0 I 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

(2.21) 

The identity matrix is indicated by I and it is has dimension N + 1 . 

The matrices D 

u 
k 
, E u both have similar size as I, and are, respec- 

tively, the tridiagonal and diagonal matrices given below: 

D 

u 
k 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 0 0 · · · 0 0 0 

−R u y a u 
m, 1 ,k 

−R u y 0 · · · 0 0 0 

0 −R u y a u 
m, 2 ,k 

−R u y · · · 0 0 0 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. . . 
. 
. 
. 

. 

. 

. 
. 
. 
. 

0 0 0 0 · · · −R u y a u 
m,n −1 ,k 

−R u y 

0 0 0 0 · · · 0 0 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(2.22) 

and 

E u = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 · · · 0 0 

0 −R 

u 
x 0 · · · 0 0 

0 0 −R 

u 
x · · · 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 0 · · · −R 

u 
x 0 

0 0 0 · · · 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(2.23) 

It is important to realize that the identity matrix appears at the 

beginning and at the end of the main diagonal of matrix A . This 

inclusion is to account for the homogeneous Dirichlet data at the 

vertical boundaries. Observe that other of the remaining entries on 

the main diagonal of matrix A 

u 
k 

are equal to 1. These entries are as- 

sociated to the homogeneous Dirichlet boundary data at the hori- 

zontal boundaries of �. All remaining entries obviously correspond 

to the discretization at the inner nodes of the spatial domain. 

In the case that e k m,n , i 
k 
A m,n 

and i k 
S m,n 

are non-negative, it is worth 

noting that each of the matrices A 

u 
k 

is an M-matrix, for each k = 

0 , 1 , . . . , K − 1 , and u being r, s , q , e , i S , i A or v . The term M-matrix 

refers to a real and square matrix M which satisfies the criteria 

listed below [40] : 

1. The off-diagonal components are negative numbers. 

2. Entries of the principal diagonal are all positive. 

3. The matrix is strictly diagonally dominant. 

As a matter of fact, these type of matrices have the property 

of being non-singular and having positive real numbers as entries 

in their inverses [40] . The non-negativity preservation for the ap- 

proximations obtained through the computer methodology will be 

demonstrated by utilizing the previously stated property on M- 

matrices. Evidently, this is a crucial aspect of the numerical model, 

given that the solutions for the continuous system correspond to 

population sizes. 
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3. Results 

In this section, we showcase the key analytical and numerical 

outcomes linked to the epidemiological model (2.2) and its non- 

standard discretization (2.12) . We provide a fresh start by deriving 

rigorously some results on the analytical solutions for our mathe- 

matical model. 

3.1. Analytical outcomes 

In a first stage, the equilibrium solutions for system (2.2) will 

be derived. First, we determine the equilibrium that exists when 

there is no sickness, which is a steady-state solution to the mathe- 

matical model. In particular, this implies that E = I A = I S = Q = R = 

0 . As a consequence, the epidemiological model leads to the fol- 

lowing algebraic system of equations: 

� + m S + τV − S(μ + ω) = 0 , 

m V + ωS − V (μ + τ ) = 0 . 
(3.1) 

From this system, we can find the constants S and V algebraically. 

This leads us to calculate the equilibrium point for the case with- 

out sickness, which is 

P DF E = (S 0 , V 0 , 0 , 0 , 0 , 0 , 0) , (3.2) 

where 

S 0 = 

(μ + τ )(� + m S ) + τm V 

μ(μ + ω + τ ) 
, 

V 0 = 

(μ + ω) m V + ω(m S + �) 

μ(μ + ω + τ ) 
. (3.3) 

Next, we calculate the basic reproduction number of (2.2) . This 

number is denoted by R 0 . To that end, we will apply the technique 

of the next generation matrix. In that way, 

R 0 = ρ(F V 

−1 ) . (3.4) 

The largest absolute value of an eigenvalue is represented by the 

symbol ρ , which stands for the spectral radius operator of a matrix 

[41] . To find our matrices F and V , we focus on the compartments 

in the mathematical model that impact the spreading, concretely, 

the exposed, asymptomatic, quarantined, and symptomatic individ- 

uals. Their behavior is controlled by the following system: 

∂E 

∂t 
= m E + αSE + βSI A + γ SI S − (ζ + ε + δ + μ) E + d E ∇ 

2 E, 

∂ I A 
∂t 

= m I A + δE − (η + μ) I A + d I A ∇ 

2 I A , 

∂Q 

∂t 
= m Q + ζE + κ I S − (ι + υ + μ) Q + d Q ∇ 

2 Q, 

∂ I S 
∂t 

= m I S + εE − (κ + ρ + θ + μ) I S + d I S ∇ 

2 I S . (3.5) 

Using results derived in [42,43] , the determination of the ba- 

sic reproductive number can be obtained by omitting the diffusion 

terms in system (3.5) . In that way, the system of PDEs becomes a 

mathematical model consisting of the simpler model 

dE 

dt 
= m E + αSE + βSI A + γ SI S − (ζ + ε + δ + μ) E, 

dI A 
dt 

= m I A + δE − (η + μ) I A , 

dQ 

dt 
= m Q + ζE + κ I S − (ι + υ + μ) Q, 

dI S 
dt 

= m I S + εE − (κ + ρ + θ + μ) I S . (3.6) 

From (3.6) , we introduce two vectors. The first is denoted by F , 

and it considers only those terms where infection exists. The sec- 

ond will be represented by V , and will contain all the remaining 

terms with opposite sign. More precisely, let us define 

F = 

⎛ 

⎜ ⎝ 

αSE + βSI A + γ SI S 
0 

0 

0 

⎞ 

⎟ ⎠ 

(3.7) 

and 

V = 

⎛ 

⎜ ⎝ 

−m E + (ζ + ε + δ + μ) E 
−m I A − δE + (η + μ) I A 

−m Q − ζE − κ I s + (ι + υ + μ) Q 

−m I S − εE + (κ + ρ + θ + μ) I S 

⎞ 

⎟ ⎠ 

. (3.8) 

Let V and F represent, respectively, the Jacobians associated to 

the vectors V and F calculated on the constant solution where 

the disease does not exists. Thus, we find that 

F = 

⎛ 

⎜ ⎝ 

αS βS 0 γ S 
0 0 0 0 

0 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎠ 

(3.9) 

and 

V J = 

⎛ 

⎜ ⎝ 

ζ + ε + δ + μ 0 0 0 

−δ η + μ 0 0 

−ζ 0 ι + υ + μ −κ
−ε 0 0 κ + ρ + θ + μ

⎞ 

⎟ ⎠ 

. 

(3.10) 

As a consequence, 

F V 

−1 = 

⎛ 

⎜ ⎝ 

g 11 g 12 0 g 14 

0 0 0 0 

0 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎠ 

, (3.11) 

where g 11 , g 12 and g 14 are real numbers that depend on the model 

parameters. As a consequence, the basic reproductive number sat- 

isfies R 0 = | g 11 | or, more precisely, 

R 0 = 

S 0 [((κ + μ + ρ + θ )(α(η + μ) + βδ)) + εγ (η + μ)] 

(η + μ)(δ + ε + μ + ζ )(κ + μ + ρ + θ ) 
. 

(3.12) 

Here, we may substitute the value for S = S 0 from (3.3) into (3.12) . 

Thus, only constants from the proposed model will be used to gen- 

erate the expression for R 0 . Theorem 1 presents the study on the 

local asymptotic stability of this constant solution. 

Theorem 1. The equilibrium of the model (2.2) in the case when the 

disease is absent is locally asymptotically stable whenever R 0 < 1 . �

Proof. The Jacobian matrix is represented by J, and evaluated for 

the system (2.2) when the disease is not present. After some cal- 

culations, it can be readily checked that J is given by 

J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

J 11 τ −αS −βS 0 −γ S σ
ω J 22 0 0 0 0 0 

αE + βI A + γ I S 0 J 33 0 0 0 0 

0 0 δ J 44 0 0 0 

0 0 ζ 0 J 55 κ 0 

0 0 ε 0 0 J 66 0 

0 0 0 η ι θ J 77 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

(3.13) 

where 

J 11 = −αE − βI A − γ I S − (ω + μ) , 

J 22 = −(τ + μ) , 

J 33 = αS − (ζ + ε + δ + μ) , 
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J 44 = −(η + μ) , 

J 55 = −(ι + υ + μ) , 

J 66 = −(κ + ρ + θ + μ) , 

J 77 = −(σ + μ) . (3.14) 

Suppose that λ is any complex eigenvalue of J. It is straightforward 

to verify that M = J − λI, with 

M = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

M 11 τ −αS −βS 0 −γ S σ
ω M 22 0 0 0 0 0 

αE + βI A + γ I S 0 M 33 0 0 0 0 

0 0 δ M 44 0 0 0 
0 0 ζ 0 M 55 κ 0 

0 0 ε 0 0 M 66 0 

0 0 0 η ι θ M 77 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

(3.15) 

In this equation, we observe the following conventions: 

M 11 = −αE − βI A − γ I S − (ω + μ) − λ, 

M 22 = −(τ + μ) − λ, 

M 33 = αS − (ζ + ε + δ + μ) − λ, 

M 44 = −(μ + η) − λ, 

M 55 = −(μ + υ + ι) − λ, 

M 66 = −(μ + ρ + κ + θ ) − λ, 

M 77 = −(μ + σ ) − λ. (3.16) 

It is possible to verify through the use of the properties for deter- 

minants that 

det M = (M 11 M 22 − ωτ ) M 33 M 44 M 55 M 66 M 77 . (3.17) 

Equating the determinant to zero and performing some adequate 

mathematical calculations yields 

λ1 = α

[
(μ + τ )(� + m S ) + τm v 

μ(μ + ω + τ ) 

]
− (ζ + ε + δ + μ) , 

λ2 = −(η + μ) , 

λ3 = −(ι + υ + μ) , 

λ4 = −(κ + ρ + θ + μ) , 

λ5 = −(μ + σ ) . (3.18) 

Notice that λ2 , λ3 , λ4 and λ5 are negative. Moreover, λ1 is also 

negative if R 0 < 1 (see Appendix A for the calculations). The miss- 

ing eigenvalues will be calculated by utilizing the expression of a 

second order polynomial, that is, 

λ2 + (ω + τ + 2 μ) λ + μ(μ + τ + ω) μ = 0 . (3.19) 

More precisely, 

λ6 , 7 = 

−(ω + τ + 2 μ) ± √ 

ω 

2 + τ 2 + ωτ

2 

. (3.20) 

As a result, λ6 and λ7 are negative. To summarize our findings, if 

R 0 < 1 , than all eigenvalues are negative, whence the conclusion 

of this proposition follows. �

To determine the endemic equilibrium solution, let us suppose 

a constant solution for (2.2) . This solution will take the expression 

R (t) = R ∗, I S (t) = I ∗
S 
, Q(t) = Q 

∗, I A (t) = I ∗
A 

, V (t) = V ∗, E(t) = E ∗ and 

S(t) = S ∗. Here, S ∗, E ∗, V ∗, I ∗
A 

, Q 

∗, I ∗S and R ∗ are numbers which are 

greater than or equal to zero. Conveniently agree that 

P EE = (S ∗, V 

∗, E ∗, I ∗A , Q 

∗, I ∗S , R 

∗) . (3.21) 

Under these circumstances, the main model (2.2) can be changed 

to a particular algebraic system. It is possible to check that those 

solutions satisfy the implicit system 

S ∗ = 

� + m S + σR 

∗ + τV 

∗

μ + ω + αE ∗ + βI ∗
A 

+ γ I ∗
S 

, 

V 

∗ = 

m V + S ∗ω 

μ + τ
, 

E ∗ = 

m E + βS ∗I ∗A + γ S ∗I ∗S 
δ + ε + μ + ζ − αS ∗

, 

I ∗A = 

m I A + δE ∗

η + μ
, 

Q 

∗ = 

m Q + κ∗I S + ζE ∗

ι + μ + υ
, 

I ∗S = 

m I S + εE ∗

κ + μ + ρ + θ
, 

R 

∗ = 

m R + ηI ∗A + ιQ 

∗ + θ I ∗S 
μ + σ

. (3.22) 

An explicit form of the solutions is available using software for 

symbolic algebra. We have not presented those solutions in view 

that their expressions are too long to be provided herein. 

We state now the local asymptotic stability property for our 

point P EE in our next theorem. The demonstration is similar to that 

for Theorem 1 and, thus, to avoid duplication of arguments, we 

omit the proof here. 

Theorem 2. In the system (2.2) , local asymptotic stability for the en- 

demic constant solution is observed when R 0 > 1 . �

Before closing this stage of our work, we provide the parametric 

sensitivity analysis for system (2.2) . The next expression is used in 

order to calculate it: 

A φ = 

φ

R 0 

∂R 0 

∂φ
. (3.23) 

Notice then that 

A α = 

(κ + μ + ρ + θ )(η + μ) α

(βδ + α(η + μ))(κ + μ + ρ + θ ) + εγ (μ + η) 
, 

A β = 

βδ(κ + μ + ρ + θ ) 

(βδ + α(η + μ))(κ + μ + ρ + θ ) + εγ (η + μ) 
, 

A γ = 

εγ (η + μ) 

(βδ + α(η + μ))(κ + μ + ρ + θ ) + εγ (η + μ) 
, 

A η = 

−βδη(κ + μ + ρ + θ ) 

(η + μ)(εγ (η + μ) + (αη + αμ + βδ)(κ + μ + ρ + θ ) 
, 

A m V 
= 

m V τ

m V τ + (� + m S )(μ + τ ) 
, 

A � = 

�(μ + τ ) 

m V τ + (� + m S )(μ + τ ) 
, 

A ω = 

−ω 

μ + ω + τ
, 

A ζ = 

−ζ

δ + ε + μ + ζ
, 

A m S 
= 

m S (μ + τ ) 

m V τ (� + m S )(μ + τ ) 
. (3.24) 

Observe that the constants A α , A β , A γ , A m V 
, A � and A m S 

are pos- 

itive numbers. It can be checked also that A τ , A ε and A δ are pos- 

itive. The expressions for these values have been omitted in view 

that they are too long to be presented herein. The constants A η , A ζ

and A ω are negative, and so are A μ, A κ , A ρ and A θ . The remaining 

constants A φ are not presented here, but they are actually equal to 

zero. From this sensitivity analysis, we deduce that R 0 is sensitive 

to values of the variables α, β , γ , δ, ε, �, τ , m S and m V . 

3.2. Numerical outcomes 

We outline in this section the most significant theoretical find- 

ings related to the computational approach (2.12) . To demonstrate 

the accuracy of the analytical and numerical properties of our 
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models, some simulations will be performed. The first result con- 

firms the presence of positive solutions for the computer method 

(2.12) . 

Theorem 3. Suppose that S 0 , V 0 , E 0 , I 0 
A 
, Q 

0 , I 0 
S 
, R 0 : � → R are non- 

negative. If 

2 R 

u 
x + 2 R 

u 
y < 1 (3.25) 

for each u = s, e, i A , q, i S , r, v , then the solution functions obtained 

through the computational method (2.12) are also non-negative. 

Proof. This proof will make use of an inductive argument. For 

this purpose, note that the initial approximations u 0 m,n are all non- 

negative because the initial data are non-negative, for each u = 

s, e, i A , q, i S , r, v . So, assume that it is true that u k m,n ≥ 0 for some 

k ∈ N ∪ { 0 } , for all m = 0 , 1 , . . . , M and n = 0 , 1 , . . . , N, and all grid 

functions u = s, e, i A , q, i S , r, v . This implies that all the matrices A 

u 
k 

are M-matrices and, moreover, the components of all the vectors 

b 

u 
m,n,k 

are non-negative numbers by virtue of the fact that the in- 

equality (3.25) is satisfied. The positivity property of the inverses 

of M-matrices and the identity (2.18) assure now that the real vec- 

tor 

u 

k +1 = (A 

u 
k ) 

−1 b 

u 
k (3.26) 

is non-negative, for each u = s, e, i A , q, i S , r, v . The conclusion fol- 

lows then from mathematical induction. �

Our next result establishes that the finite-difference method 

(2.12) has the same equilibrium solutions as those from the math- 

ematical model (2.2) . Additionally, the numerical approach keeps 

the stability characteristics of such equilibrium solutions. 

Theorem 4. The equilibrium solutions for the computer method 

(2.12) are P DF E and P EE . Moreover, 

(a) if R 0 < 1 , P DF E is locally asymptotically stable. 

(b) when R 0 > 1 , P EE is locally asymptotically stable. 

Proof. This result is reached by noting that the nonlinear analysis 

of the computer method (2.12) is exactly the same as that of the 

mathematical model (2.2) . �

Considering this results, the proposed computer method pre- 

sented in this report is a dynamically consistent discretization of 

the epidemiological system (2.2) . Only the numerical properties for 

our method need to be established now. The consistency of the 

finite-difference method will then be discussed in a first step. We 

introduce the next continuous operators in order to examine the 

consistency: 

S L = 

∂S 

∂t 
− � − m S − σR + αSE + βSI A + γ SI S 

− τV + (ω + μ) S − d S ∇ 

2 S, 

V L = 

∂V 

∂t 
− m V − ωS + (τ + μ) V − d V ∇ 

2 V, 

E L = 

∂E 

∂t 
− m E − αSE − βSI A − γ SI S 

+ (ζ + ε + δ + μ) E − d E ∇ 

2 E, 

I A L = 

∂ I A 
∂t 

− m I A − δE + (η + μ) I A − d I A ∇ 

2 I A , 

Q L = 

∂Q 

∂t 
− m Q − ζE − κ I S + (ι + υ + μ) Q − d Q ∇ 

2 Q, 

I S L = 

∂ I S 
∂t 

− m I S − εE + (κ + ρ + θ + μ) I S − d I S ∇ 

2 I S , 

R L = 

∂R 

∂t 
− m R − ιQ − θ I S − ηI A + (σ + μ) R − d R ∇ 

2 R. (3.27) 

All these operators are considered functions of (x , t) . For 

simplification purposes, agree that U L 

k +1 
m,n = L (x m 

, y n , t k ) , for 

each U = S, V, E, I A , Q, I S , R , m = 0 , 1 , . . . , M, n = 0 , 1 , . . . , N and k = 

0 , 1 , . . . , K − 1 . 

Let us consider also the following discrete operators, for k = 

0 , 1 , 2 , . . . , K − 1 , m = 0 , 1 , 2 , . . . , M and n = 0 , 1 , 2 , . . . , N: 

S L 
k +1 
m,n = 

ˆ δt S 
k +1 
m,n − � − m S − δR k m,n + αS k +1 

m,n E 
k 
m,n + βS k +1 

m,n I 
k 
A m,n 

+ γ S k +1 
m,n I 

k 
S m,n 

− τV k m,n − (ω + μ) S k +1 
m,n − ˆ ∇ 

2 
s S 

k +1 
m,n , 

V L 
k +1 
m,n = 

ˆ δt V 
k +1 

m,n − m V − ωS k m,n + (τ + μ) V k +1 
m,n − ˆ ∇ 

2 
v V 

k +1 
m,n , 

E L 
k +1 
m,n = 

ˆ δt E 
k +1 
m,n − m E − αS k m,n E 

k +1 
m,n − βS k m,n I 

k 
A m,n 

− γ S k m,n I S k m,n 

+ (ζ + ε + δ + μ) E k +1 
m,n − ˆ ∇ 

2 
e E 

k +1 
m,n , 

I A L 
k +1 
m,n = 

ˆ δt I 
k +1 
A m,n 

− m I A − δE k m,n + (η + μ) I k +1 
A m,n 

− ˆ ∇ 

2 
i A 

I k +1 
A m,n 

, 

Q L 
k +1 
m,n = 

ˆ δt Q 

k +1 
m,n − m Q − ζE k m,n − κ I S k m,n 

+ (ι + υ + μ) Q 

k 
m,n − ˆ ∇ 

2 
q Q 

k +1 
m,n , 

I S L 
k +1 
m,n = 

ˆ δt I 
k +1 
S m,n 

− m I S − εE k m,n + (κ + ρ + θ + μ) I k +1 
S m,n 

− ˆ ∇ 

2 
i S 

I k +1 
S m,n 

, 

R L 
k +1 
m,n = 

ˆ δt R 
k +1 
m,n − m R − ιQ 

k 
m,n − θ I k S m,n 

− ηI k A m,n 
+ (σ + μ) R k +1 

m,n − ˆ ∇ 

2 
r R 

k +1 
m,n . 

(3.28) 

Here, we let 

ˆ ∇ 

2 
u U 

k +1 
m,n = d U ( ̂  δ

2 
x + 

ˆ δ2 
y ) ̂  μt U 

k 
m,n . (3.29) 

Theorem 5. Suppose that S, E, I A , I S , Q, R, V ∈ C 4 , 2 x,t ( � × [0 , T ]) . Then 

there is some C ≥ 0 independently from �t, �x and �y , which satis- 

fies ∣∣
U L 

k +1 
m,n − U L 

k +1 
m,n 

∣∣ ≤ C(�t + (�x ) 2 + (�y ) 2 ) , (3.30) 

for all the indexes m = 0 , 1 , 2 , . . . , M, n = 0 , 1 , 2 , . . . , N and k = 

0 , 1 , 2 , . . . , K − 1 . 

Proof. Notice that the triangle inequality and some algebraic sim- 

plifications yield 

∣∣
S L 

k +1 
m,n − S L 

k +1 
m,n 

∣∣ ≤
∣∣∣∣∂S 

∂t 
(x n , y n , t k +1 ) − ˆ δt S 

k +1 
m,n 

∣∣∣∣
+ (α| E k m,n | + β| I k A m,n 

| + γ | I k S m,n 
| + ω + μ) 

∣∣S k +1 
m,n − S k m,n 

∣∣
+ 

∣∣∣∣∂ 
2 S 

∂x 2 
(x n , y n , t k +1 ) − ˆ δ2 

x S 
k +1 
m,n 

∣∣∣∣ + 

∣∣∣∣∂ 
2 S 

∂y 2 
(x n , y n , t k +1 ) − ˆ δ2 

y S 
k +1 
m,n 

∣∣∣∣, 
(3.31) 

for each k = 0 , 1 , 2 , . . . , K − 1 , m = 0 , 1 , 2 , . . . , M and n = 

0 , 1 , 2 , . . . , N. The regularity assumption on the functions im- 

plies that, for some K E , K I A 
, K I S 

≥ 0 independently from �t , �x and 

�y , the next relations hold: 

| E k m,n | ≤ K E , 

| I k A m,n 
| ≤ K I A , 

| I k S m,n 
| ≤ K I S , (3.32) 

for k = 0 , 1 , 2 , . . . , K, m = 0 , 1 , 2 , . . . , M and n = 0 , 1 , 2 , . . . , N. Using 

Taylor’s theorem, there are constants C 1 , C 2 , C 3 , C 4 ≥ 0 which are 

also independent from the computational parameters such that, for 

each k , m and n , the following are satisfied: ∣∣∣∣∂S 

∂t 
(x n , y n , t k +1 ) − ˆ δt S 

k +1 
m,n 

∣∣∣∣ ≤ C 1 �t, 

∣∣S k +1 
m,n − S k m,n 

∣∣ ≤ C 2 �t, ∣∣∣∣∂ 
2 S 

∂x 2 
(x n , y n , t k +1 ) − ˆ δ2 

x ˆ μt S 
k 
m,n 

∣∣∣∣ ≤ C 3 
[
�t + (�x ) 2 

]
, 

∣∣∣∣∂ 
2 S 

∂y 2 
(x n , y n , t k +1 ) − ˆ δ2 

y ˆ μt S 
k 
m,n 

∣∣∣∣ ≤ C 4 
[
�t + (�y ) 2 

]
, (3.33) 
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Let us define 

C S = max { C 1 , (αK E + βK I A γ K I S + ω + μ) C 2 , C 3 , C 4 } . (3.34) 

It is obvious that C S ≥ 0 is independent from �t , �x and �y . 

Moreover, the inequality (3.31) implies that ∣∣
S L 

k +1 
m,n − S L 

k 
m,n 

∣∣ ≤ C S (�t + (�x ) 2 + (�y ) 2 ) , (3.35) 

for k = 0 , 1 , 2 , . . . , K, m = 0 , 1 , 2 , . . . , M and n = 0 , 1 , 2 , . . . , N. Simi- 

larly, it is possible to verify that there are non-negative constants 

C V , C E , C I A , C Q , C I S and C R which are independent from the numer- 

ical step sizes, with the properties that the following inequalities 

hold uniformly over all k , m and n : ∣∣
V L 

k +1 
m,n −V L 

k +1 
m,n 

∣∣ ≤ C V (�t + (�x ) 2 + (�y ) 2 ) , ∣∣
E L 

k +1 
m,n −E L 

k +1 
m,n 

∣∣ ≤ C E (�t + (�x ) 2 + (�y ) 2 ) , ∣∣
I A L 

k +1 
m,n −I A L 

k +1 
m,n 

∣∣ ≤ C I A (�t + (�x ) 2 + (�y ) 2 ) , ∣∣
Q L 

k +1 
m,n −Q L 

k +1 
m,n 

∣∣ ≤ C Q (�t + (�x ) 2 + (�y ) 2 ) , ∣∣
I S L 

k +1 
m,n −I S L 

k +1 
m,n 

∣∣ ≤ C I S (�t + (�x ) 2 + (�y ) 2 ) , ∣∣
R L 

k +1 
m,n −R L 

k +1 
m,n 

∣∣ ≤ C R (�t + (�x ) 2 + (�y ) 2 ) . (3.36) 

If C = max { C S , C V , C E , C I A , C Q , C I S , C R } , then the conclusion of this re- 

sult is readily satisfied. �

We now concentrate on the stability and convergence of model 

(2.12) . The discrete form of Gronwall’s inequality (a well-known re- 

sult from analysis) will be essential in reaching those properties 

[44] . 

Lemma 1. Let (ρn ) N 
n =0 

and (ω 

n ) N 
n =0 

be arrays of non-negative num- 

bers, and let C ≥ 0 satisfy 

ω 

k ≤ ρk + Cτ
k −1 ∑ 

n =0 

ω 

k , ∀ k ∈ { 1 , . . . , N} . (3.37) 

Then ω 

n ≤ ρn e Cnτ for each n ∈ { 0 , 1 , . . . , N} . �

For the mathematical model, we take into consideration two 

sets of initial data (2.2) . They will be represented, respectively, by 

P 0 = (S 0 , V 

0 , E 0 , I 0 A , Q 

0 , I 0 S , R 

0 ) , 

˜ P 0 = ( ̃  S 0 , ̃  V 

0 , ˜ E 0 , ̃  I 0 A , 
˜ Q 

0 , ̃  I 0 S , 
˜ R 

0 ) . (3.38) 

The components of these vectors are obviously non-negative real 

functions with domain �. The numerical solutions correspond- 

ing to the initial data P 0 and 

˜ P 0 will be denoted, respectively, 

by p = (s, v , e, i A , q, i S , r) and ˜ p = ( ̃ s , ̃  v , ̃  e , ̃  i A , ̃  q , ̃  i S , ̃  r ) . Notice that the 

former solution satisfies the computer method (2.12) , while the 

latter satisfies the following system, for each k = 0 , 1 , . . . , K − 1 , 

m = 0 , 1 , . . . , M and n = 0 , 1 , . . . , N: 

ˆ δt ̃  s k m,n = � + m S + σ ˜ r k m,n − α ˜ s k +1 
m,n ̃  e k m,n − β ˜ s k +1 

m,n ̃
 i k A m,n 

− γ s k +1 
m,n ̃

 i k S m,n 

+ τ ˜ v k m,n − (ω + μ) ̃  s k +1 
m,n + 

ˆ ∇ 

2 
s ˜ s k +1 

m,n , 

ˆ δt ̃  v k m,n = m V + ω ̃

 s k m,n − (τ + μ) ̃ v k +1 
m,n + 

ˆ ∇ 

2 
v ̃  v k +1 

m,n , 

ˆ δt ̃  e k m,n = m E + α ˜ s k m,n ̃  e k m,n + β ˜ s k m,n ̃
 i k A m,n 

+ γ ˜ s k m,n ̃
 i k S m,n 

− (ζ + ε + δ + μ) ̃  e k +1 
m,n + 

ˆ ∇ 

2 
e ̃  e k +1 

m,n , 

ˆ δt ̃
 i k A m,n 

= m I A + δ ˜ e k m,n − (η + μ) ̃ i k +1 
A m,n 

+ 

ˆ ∇ 

2 
i A 

˜ i k +1 
A m,n 

, 

ˆ δt ̃  q k m,n = m Q + ζ ˜ e k m,n + κ ˜ i k S m,n 
− (ι + υ + μ) ̃  q k +1 

m,n + 

ˆ ∇ 

2 
q ̃  q k +1 

m,n , 

ˆ δt ̃
 i k S m,n 

= m I S + ε ˜ e k m,n − (κ + ρ + θ + μ) ̃ i k +1 
S m,n 

+ 

ˆ ∇ 

2 
i S 

˜ i k +1 
S m,n 

, 

ˆ δt ̃  r k m,n = m R + ι ˜ q k m,n + θ ˜ i k S m,n 
+ η˜ i k A m,n 

− (σ + μ) ̃ r k +1 
m,n + 

ˆ ∇ 

2 
r ˜ r k +1 

m,n . 

(3.39) 

For the sake of simplification, we introduce following numbers 

u ε 
k 
m,n = u 

k 
m,n − ˜ u 

k 
m,n , (3.40) 

where u = s, v , e, i A , q, i S , r. 

For the remainder of this manuscript, we will suppose that 

S, E, I A , I S , Q, R, V ∈ C 4 , 2 x,t ( � × [0 , T ]) . The subsequent theorem, which 

provides the stability features of the numerical model, will follow 

this notation (2.12) . Moreover, we will require the following addi- 

tional operators: 

ˆ δx u 

k 
m,n = 

u 

k 
m +1 ,n − u 

k 
m,n 

�x 
, (3.41) 

ˆ δy u 

k 
m,n = 

u 

k 
m,n +1 − u 

k 
m,n 

�y 
. (3.42) 

Additionally, we concur that the Euclidean norm of u and the inner 

product of u and v (when they are real vectors of the same size N) 

are, respectively, 

‖ u ‖ 

2 
2 = 

N ∑ 

i =1 

| u i | 2 , (3.43) 

〈 u, v 〉 = 

N ∑ 

i =1 

u i v i . (3.44) 

Using this notation, the Cauchy–Schwartz and Young’s inequalities 

are given, respectively, by 

| 〈 u, v 〉 | ≤ ‖ u ‖ 2 ‖ v ‖ 2 , (3.45) 

| 〈 u, v 〉 | ≤ 1 

2 

‖ u ‖ 

2 
2 + 

1 

2 

‖ v ‖ 

2 
2 . (3.46) 

Theorem 6. Stability in the Euclidean norm of the computer method- 

ology can be ensured whenever �t is sufficiently small. 

Proof. In this proof, the parameter C will denote a non-negative 

constant which does not depend on the computational parameters, 

and which may be different in each case. Taking the difference be- 

tween the first equation in system (2.12) and the first equation of 

(3.39) , one readily shows that the next discrete equality holds: 

ˆ δt s ε 
k = σ r ε 

k − γ (s k +1 i k S − ˜ s k +1 ˜ i k S ) + τ v ε 
k 

− (ω + μ) s ε 
k +1 − α(s k +1 e k − ˜ s k +1 ˜ e k m,n ) 

− β(s k +1 i k A − ˜ s k +1 ˜ i k A ) + d S ( ̂  δ
2 
x + 

ˆ δ2 
y ) ̂  μt s ε 

k . (3.47) 

It is now possible to verify that the subsequent identities are sat- 

isfied: 

2�t〈 ̂  δt s ε 
k , ˆ μt s ε 

k 〉 = ‖ s ε 
k +1 ‖ 

2 
2 − ‖ s ε 

k ‖ 

2 
2 , (3.48) 

〈 ( ̂  δ2 
x + 

ˆ δ2 
y ) ̂  μt s ε 

k , ˆ μt s ε 
k 〉 = −

(
‖ ̂

 δx ̂  μt s ε 
k ‖ 

2 
2 + ‖ ̂

 δy ̂  μt s ε 
k ‖ 

2 
2 

)
. (3.49) 

Moreover, the following equations hold component-wise: 

s k +1 i k S − ˜ s k +1 ˜ i k S = s ε 
k +1 i k S − ˜ s k +1 

i S ε 
k , 

s k +1 e k − ˜ s k +1 ˜ e k = s ε 
k +1 e k − ˜ s k +1 

e ε 
k , 

s k +1 i k A − ˜ s k +1 ˜ i k A = s ε 
k +1 i k A − ˜ s k +1 

i A ε 
k . (3.50) 

Let then m be any number in { 0 , 1 , . . . , K − 1 } . Calculate summa- 

tion among all the indexes k ∈ { 0 , 1 , . . . , m } on both sides of (3.47) , 

take then the product of ˆ μt s ε k on both ends and apply our last 
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identities. Rearranging terms algebraically, using telescoping sums 

and bounding from above, one obtains that 

‖ s ε 
m +1 ‖ 

2 
2 ≤ ‖ s ε 

0 ‖ 

2 
2 + 2�t 

m ∑ 

k =0 

[
〈 σ r ε 

k , ˆ μt s ε 
k 〉 − γ 〈 s ε k i k s , ˆ μt s ε 

k 〉 

+ γ 〈 ̃  s k +1 
i S ε 

k , ˆ μt s ε 
k 〉 + τ 〈 v ε k , ˆ μt s ε 

k 〉 
− (ω + μ) 〈 s ε k +1 , ˆ μt s ε 

k 〉 − α〈 s ε k +1 e k , ˆ μt s ε 
k 〉 

+ α〈 ̃  s k +1 
e ε 

k , ˆ μt s ε 
k 〉 − β〈 s ε k +1 i k A , ˆ μt s ε 

k 〉 

β〈 ̃  s k +1 
i A ε 

k , ˆ μt s ε 
k 〉 

]
. (3.51) 

Notice now that Young’s inequality yields 

∣∣〈 r ε k , ˆ μt s ε 
k 〉 ∣∣ ≤ 1 

2 

∣∣〈 r ε k , s ε k +1 〉 ∣∣ + 

1 

2 

∣∣〈 r ε k , s ε k 〉 ∣∣
≤ 1 

2 

‖ r ε 
k ‖ 

2 
2 + 

1 

4 

‖ s ε 
k +1 ‖ 

2 
2 + 

1 

4 

‖ s ε 
k ‖ 

2 
2 

≤ C 
(‖ r ε 

k ‖ 

2 
2 + ˆ μt ‖ s ε 

k ‖ 

2 
2 

)
. (3.52) 

Obviously, in this case, the constant C can be taken as 1 
2 . On the 

contrary, the supposition that the solutions have an upper bound 

and an application of Young’s inequality lead to ∣∣γ 〈 s ε k i k s , ˆ μt s ε 
k 〉 ∣∣ ≤ γ

2 

∣∣〈 s ε k i k s , s ε 
k +1 〉 ∣∣ + 

γ

2 

∣∣〈 s ε k i k s , s ε 
k 〉 ∣∣

≤ γ

2 

C 
∣∣〈 s ε k , s ε k +1 〉 ∣∣ + 

γ

2 

C 
∣∣〈 s ε k , s ε k 〉 ∣∣

≤ C ̂  μt ‖ s ε 
k ‖ 

2 
2 . (3.53) 

In an analogue form, the following are readily obtained using the 

boundedness of the solutions and Young’s inequality: ∣∣γ 〈 ̃  s k +1 
i S ε 

k , ˆ μt s ε 
k 〉 ∣∣ ≤ C 

(‖ i S ε 
k ‖ 

2 
2 + ˆ μt ‖ s ε 

k ‖ 

2 
2 

)
, ∣∣τ 〈 v ε k , ˆ μt s ε 

k 〉 ∣∣ ≤ C 
(‖ v ε 

k ‖ 

2 
2 + ˆ μt ‖ s ε 

k ‖ 

2 
2 

)
, ∣∣(ω + μ) 〈 s ε k +1 , ˆ μt s ε 

k 〉 ∣∣ ≤ C ̂  μt ‖ s ε 
k ‖ 

2 
2 , ∣∣α〈 s ε k +1 e k , ˆ μt s ε 

k 〉 ∣∣ ≤ C ̂  μt ‖ s ε 
k ‖ 

2 
2 , ∣∣α〈 ̃  s k +1 

e ε 
k , ˆ μt s ε 

k 〉 ∣∣ ≤ C 
(‖ e ε 

k ‖ 

2 
2 + ˆ μt ‖ s ε 

k ‖ 

2 
2 

)
, ∣∣β〈 s ε k +1 i k A , ˆ μt s ε 

k 〉 ∣∣ ≤ C ̂  μt ‖ s ε 
k ‖ 

2 
2 , ∣∣β〈 ̃  s k +1 

i A ε 
k , ˆ μt s ε 

k 〉 ∣∣ ≤ C 
(‖ i A ε 

k ‖ 

2 
2 + ˆ μt ‖ s ε 

k ‖ 

2 
2 

)
. (3.54) 

Using these inequalities into (3.51) , the validity of the inequality 

below can be readily demonstrated: 

ˆ μt ‖ s ε 
m ‖ 

2 
2 ≤ ‖ s ε 

0 ‖ 

2 
2 + C s �t 

m ∑ 

k =0 

∑ 

w 

ˆ μt ‖ w 

ε k ‖ 

2 
2 (3.55) 

Here, the second summation in (3.55) ranges over all the functions 

w = s, v , e, i A , q, i S , r, and C s is a positive constant which does not 

depend on the computer parameters. Obviously, the last inequality 

was obtained by using the finite-difference associated to s ε k . Using 

the other discrete equations, we obtain the following inequalities 

in similar fashion: 

ˆ μt ‖ u ε 
m ‖ 

2 
2 ≤ ‖ u ε 

0 ‖ 

2 
2 + C u �t 

m ∑ 

k =0 

∑ 

w 

ˆ μt ‖ w 

ε k ‖ 

2 
2 , (3.56) 

for each u = s, v , e, i A , q, i S , r and m ∈ { 0 , 1 , . . . , K − 1 } . Adding these 

inequalities for all u , it follows that 

ω 

m ≤ ρ + C�t 

m ∑ 

k =0 

ω 

k , ∀ m ∈ { 0 , 1 , . . . , K} . (3.57) 

Table 2 

Common parameter values for the simulations in 

Section 3.3 . The only parameters which vary in the 

experiments are m S and m E . 

Paramater Value Paramater Value 

α 0.01 β 0 

γ 0 δ 1 . 6728 × 10 −5 

ε 0.0101 ζ 0.02798 

η 0.04478 θ 0.0101 

ι 0.0045 κ 0.0368 

� 0.06 μ 0.0106 

ρ 0.004 σ 0.0668 

τ 0.0002 υ 3 . 2084 × 10 −4 

ω 0.0032 d S 1 

d V 1 d E 1 

d I A 1 d Q 1 

d I S 1 d R 1 

m V 0.1 m I A 0 

m Q 0 m I S 0 

m R 0 

Here, we let 

ρ = 

∑ 

w 

‖ w 

ε 0 ‖ 

2 
2 , (3.58) 

ω 

k = 

∑ 

w 

ˆ μt ‖ w 

ε k ‖ 

2 
2 . (3.59) 

As a consequence from Lemma 1 , if �t > 0 is sufficiently small, 

then ω 

m ≤ ρe Cm �t ≤ ρe CT , for each k ∈ { 0 , 1 , . . . , K} . Evidently, e CT 

is a constant which does not depend on the computational param- 

eters, and ρ depends on the differences between the initial con- 

ditions. The stability of the finite-difference method can now be 

established easily. �

The demonstration of the following proposition is analogue to 

that of Theorem 6 . It is left out to prevent repetition. 

Theorem 7. If S, E, I A , I S , Q, R, V ∈ C 4 , 2 x,t ( � × [0 , T ]) and �t is small 

enough, then the approximations derived from the method (2.12) con- 

verge to the solution of the model (2.2) in the Euclidean norm, with 

convergence order O((�x ) 2 + (�y ) 2 + �t) . �

3.3. Computer simulations 

The objective of this stage is to demonstrate the analytical 

properties of mathematical model (2.2) through computer simu- 

lations and to confirm that computer method (2.12) can accurately 

capture the key dynamics of the continuous model. To do so, two 

sets of parameter values will be used, one with a basic reproduc- 

tive number greater than 1 and the other with a value less than 1. 

The common parameter values used in all simulations are listed in 

Table 2 . The value of parameter m S will be altered to change the 

basic reproductive number. The migration rate of susceptible indi- 

viduals will be adjusted to alter the basic reproductive number as 

follows: 

• m S = 0 . 001 , in which case, R 0 < 1 . 
• m S = 0 . 02 , which yields R 0 > 1 . 

The rate of migration of exposed individuals will be taken into 

account to consider the disease-free and the endemic cases. 

It is worthwhile mentioning that the values of the constants 

were chosen arbitrarily. Moreover, we will consider two exam- 

ples in this section. In one of them, we will study the disease- 

free scenario, while the second example will investigate the en- 

demic case. Computationally, we will let � = [0 , 30] × [0 , 30] , and 

let �x = �y = 1 and �t = 0 . 1 . The computer method (2.12) was 

used to approximate the solutions of the epidemiological model 

10 
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Fig. 2. Approximate solutions of the epidemiological model (2.2) versus the variables x and y at various instants of time. The left column shows approximate solutions for 

the function S, while the right column shows those for the function V . We used t = 1 (first row), t = 10 (second row) and t = 500 (third row). The approximations were 

obtained using the computer method (2.12) together with the parameter values in Table 2 and m S = 0 . 001 . All the initial populations are identically equal to zero, except for 

the susceptible and vaccinated, which were selected randomly in [0 , 5] using the function rand from Matlab. 

(2.2) . Obviously, the inequality (3.25) is satisfied, whence the com- 

puter method is solvable and yields non-negative solutions. 

Example 1 (Disease-free case) . Throughout, we will assume that 

the initial populations of exposed, asymptomatic, symptomatic, 

quarantined and recovered individuals are all identically equal to 

zero. Meanwhile, the populations for susceptible and vaccinated 

individuals will be randomly selected in the interval [0 , 5] , us- 

ing the random number generator function rand from Matlab. 

Fix the values of the parameter as in Table 2 , and let m E = 0 . 

Let us consider the case R 0 < 1 . More precisely, the basic repro- 

ductive number satisfies R 0 = 0 . 9393 when m S = 0 . 001 . In this 

case, the disease-free equilibrium solution is the point P DF E = 

(S 0 , V 0 , 0 , 0 , 0 , 0 , 0) , where 

S 0 = 4 . 5741 , (3.60) 

V 0 = 10 . 6145 . (3.61) 

Figure 2 shows the results for our simulations at three different 

times. More precisely, the left column shows approximate solu- 

tions for the function S, while the right column shows those for the 

function V . We used t = 1 for the first row, t = 10 for the second 

row, and t = 500 for the third row. It is clear that the approximate 

solutions approach the equilibrium solutions as time approaches 

infinity, which is consistent with the theoretical outcomes for both 
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Fig. 3. Approximate solutions of the epidemiological model (2.2) versus the variables x and y at the time t = 1 . The graphs correspond to the approximations to the functions 

(a) S, (b) E, (c) I A , (d) I S , (e) Q and (f) R . The approximations were obtained using the computer method (2.12) together with the parameter values in Table 2 and m S = 0 . 02 . 

All the initial populations were selected randomly in [0 , 5] using the function rand from Matlab. 

the continuous and discrete models. Here, we must point out that 

we did not include graphs depicting the dynamical behavior of the 

other compartments in view that they are always equal to zero, as 

expected in the disease-free case. �

Example 2 (Endemic case) . In this computational experiment, we 

let all the initial populations sizes be randomly defined taking val- 

ues in [0 , 5] , and let m S = 0 . 02 and m E = 0 . 1 . Under these cir- 

cumstances, the basic reproductive number is equal to 1.2236, 

which means that R 0 > 1 . In this particular case, the epidemi- 

ological system has the theoretical endemic equilibrium solution 

P EE = (S ∗, V ∗, E ∗, I ∗
A 
, Q 

∗, I ∗S , R 
∗) , where the components of this vector 

are 

S ∗ = 2 . 2959 , 

V 

∗ = 9 . 9395 , 

E ∗ = 3 . 8853 , 

I ∗A = 1 . 1736 × 10 

−3 , 

Q 

∗ = 8 . 5724 , 

I ∗S = 6 . 3808 × 10 

−1 , 

R 

∗ = 5 . 8234 × 10 

−1 . (3.62) 

Figures 3 , 4 and 5 show the results of our simulations at the times 

t = 1 , t = 10 and t = 10 0 0 , respectively. For each figure, the graphs 

show the approximate solutions for (a) S, (b) E, (c) I A , (d) I S , (e) Q

and (f) R , as functions of the variables x and y . The graphs were ob- 

tained using the computer method (2.12) , and they show that the 
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Fig. 4. Approximate solutions of the epidemiological model (2.2) versus the variables x and y at the time t = 10 . The graphs correspond to the approximations to the 

functions (a) S, (b) E, (c) I A , (d) I S , (e) Q and (f) R . The approximations were obtained using the computer method (2.12) together with the parameter values in Table 2 and 

m S = 0 . 02 . All the initial populations were selected randomly in [0 , 5] using the function rand from Matlab. 

solutions converge in time toward constant solutions. It is worth- 

while to notice that each of these functions tends point-wisely to 

the corresponding component of the endemic equilibrium point. 

This outcome is consistent with the properties of both the contin- 

uous and discrete models analyzed in this study. To conserve space, 

the graphs for function V were omitted, but it’s worth mentioning 

that the simulations also align well with the analytical prediction 

for the equilibrium solution. �
As a summary of our computer simulations, Figures 2–5 investi- 

gate the dynamics of propagation for the disease in both scenarios, 

namely, the disease-free and the endemic cases. Figure 2 consid- 

ered the disease-free case by showing the evolution of the suscep- 

tible and the vaccinated compartments (which are the only com- 

partments in that scenario). Starting from a random profile, that 

figure shows snapshots of the solutions at three different times 

for a human population confined on the two-dimensional square 

[0 , 30] × [0 , 30] . The results show that both solutions tend toward 

two constants, namely, approximately 4.5741 for the susceptible, 

and 10.6145 for the vaccinated. This is in agreement with the the- 

oretical value of the disease-free equilibrium point. On the other 

hand, the remaining figures consider the endemic case, each of 

them at three different and consecutive times. For each figure, we 

provide the snapshot of the solutions for (a) S, (b) E, (c) I A , (d) I S , 

(e) Q and (f) R over the same spatial domain as in the disease-free 

case. The results again show that the tendency of the solutions is 

to converge asymptotically toward constants. Those constants are 

the same as the endemic equilibrium solution, as predicted by our 

theoretical results. 
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Fig. 5. Approximate solutions of the epidemiological model (2.2) versus the variables x and y at the time t = 10 0 0 . The graphs correspond to the approximations to the 

functions (a) S, (b) E, (c) I A , (d) I S , (e) Q and (f) R . The approximations were obtained using the computer method (2.12) together with the parameter values in Table 2 and 

m S = 0 . 02 . All the initial populations were selected randomly in [0 , 5] using the function rand from Matlab. 

Before concluding this section, we want to emphasize that ad- 

ditional simulations were conducted using the computer methods. 

We do not present them here in order to avoid redundancy, but 

they confirm the analytical features of the epidemic model as well 

as the numerical properties of the computer method. 

4. Conclusions 

A mathematical epidemic system describing the spread of an 

infectious illness inside a population of individuals was presented 

in this study. It is a compartmental deterministic system that 

takes into account the presence of different types of individu- 

als, such as susceptible, exposed, asymptomatic infected, symp- 

tomatic infected, quarantined, recovered and vaccinated, and var- 

ious transmission mechanisms. It also includes migration and non- 

linear interactions between compartments. To analyze the sys- 

tem, a unique computer method based on finite differences was 

proposed, which is a linear, discrete, two-step model that can 

be expressed in vector form. When conditions are met, the nu- 

merical model matrix is an M-matrix, ensuring positivity con- 

servation. Analytically, the existence of equilibrium solutions in 

both cases endemic and disease-free was established, and the 

local asymptotic stability was determined, as well as calculate 

the basic reproduction number through the next-generation ma- 

trix approach. The computer method has various other desirable 

properties, such as preserving the equilibria and stability, and 

being a consistent, stable, and convergent method. The results 

of numerical simulations using this method showed the posi- 
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tivity conservation, stability, and agreement with the theoretical 

results. 

The proposed model has equilibrium solutions in the contin- 

uous model and also in the discretized system and the method 

can preserve the local stability properties of these constant solu- 

tions. The computer method has been proven to be a consistent 

discretization of the continuous model with linear order of consis- 

tency in time and quadratic order of consistency in the spatial vari- 

ables using Taylor’s theorem. Additionally, the discretized model 

is conditionally stable in the Euclidean norm for small temporal 

step-size, and is a convergent technique with linear order conver- 

gence in time and quadratic order in both spatial variables, estab- 

lished through Gronwall’s and Young’s discretized inequality. The 

vector form of the method was implemented in Matlab and the 

linear systems were solved at each temporal step using the bicon- 

jugate gradients stabilized method. Numerical simulations showed 

positivity preservation and stability of the method, and the results 

were in agreement with the theory. 

Before concluding this manuscript, it is important to discuss 

the future work that we plan to carry out. Although the pro- 

posed model in this study is quite complete, complex and ro- 

bust, the goal is to make it as realistic as possible. Some research 

papers have utilized the Crowley–Martin model instead of a di- 

rect or linear spread of the disease. This model was initially de- 

signed for predator-prey models but has been adapted to epidemi- 

ological models effectively [45] . Furthermore, a treatment function 

rather than a direct cure of the infection has also been suggested 

in different studies [46] . Additionally, the model presented in this 

manuscript can be also scaled to a fractional case [47] . Various op- 

erators are used in that case, depending on whether the fractional 

derivative order is used in the temporal or the spacial variables. 

In the particular case of Riesz spatial derivatives, the applications 

seem to be more promising as various theoretical, numerical and 

physical results are already available for that scenario [48] . We ex- 

pect to tackle these research avenues and others in the near future. 
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Appendix A. 

In this appendix, we show that the eigenvalue λ1 in the proof 

of Theorem 1 is negative whenever R 0 < 1 . For the sake of con- 

venience, remember that the expressions for λ1 , S 0 and R 0 are, 

respectively, 

λ1 = αS 0 − (ζ + ε + δ + μ) , (A.1) 

S 0 = 

(μ + τ )(� + m S ) + τm v 

μ(μ + ω + τ ) 
, (A.2) 

R 0 = 

S 0 [((κ + μ + ρ + θ )(α(η + μ) + βδ)) + εγ (η + μ)] 

(η + μ)(δ + ε + μ + ζ )(κ + μ + ρ + θ ) 
. 

(A.3) 

Solving for S 0 in this last equation, using the hypothesis that R 0 < 

1 and recalling that all the parameters are non-negative numbers, 

it follows that 

αS 0 = 

α(η + μ)(δ + ε + μ + ζ )(κ + μ + ρ + θ ) R 0 

(κ + μ + ρ + θ )(α(η + μ) + βδ) + εγ (η + μ) 

≤ α(η + μ)(δ + ε + μ + ζ )(κ + μ + ρ + θ ) R 0 

(κ + μ + ρ + θ )(α(η + μ) + βδ) 

= 

α(η + μ)(δ + ε + μ + ζ ) R 0 

α(η + μ) + βδ

≤ α(η + μ)(δ + ε + μ + ζ ) R 0 

α(η + μ) 

≤ (δ + ε + μ + ζ ) R 0 

< δ + ε + μ + ζ . (A.4) 

Subtracting the term δ + ε + μ + ζ on both ends, we readily reach 

that λ1 < 0 , as desired. 
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Conclusions

Chapter 1. We introduced a linearly implicit NSFD discretization that preserves the key qualitative
features of a diffusion–enhanced epidemic model with vaccination and quarantine. By designing the
discrete operators so that their coefficient matrices possess an M–matrix structure, and by verify-
ing consistency and stability, we obtained convergence together with biologically meaningful, positiv-
ity–preserving approximations. The computational experiments corroborate the analysis and illustrate
the method’s effectiveness across scenarios that include vaccination and quarantine interventions.

It is worth emphasizing that the proposed time discretization is first–order accurate. As a re-
viewer correctly noted, this temporal order may be insufficient for long–horizon dynamical studies.
Higher–order alternatives—such as Runge–Kutta families for ODE subsystems—are well known to be
stable and convergent; however, they do not automatically guarantee preservation of positivity, bound-
edness, or equilibrium invariance (nor the stability of those equilibria). In cases where such qualitative
properties can be enforced with higher–order schemes, the present approach retains a practical advan-
tage: simplicity. As shown in the appendix, our NSFD formulation is straightforward to implement
even for users with modest programming experience.

Related literature documents third–order (and higher) schemes for time–dependent nonlinear PDEs
with rigorous stability/convergence analyses, e.g., fully discrete Fourier–collocation spectral methods
for the 3D viscous Burgers equation [50], high–order multistep schemes for the 2D incompressible
Navier–Stokes equations [29], exponential time–differencing methods for no–slope–selection thin–film
models with energy stability [28], third–order BDF energy–stable linear schemes for no–slope–selection
thin films [52], and BDF–type energy–stable schemes for the Cahn–Hilliard equation [30].

A complementary line of work enforces positivity via logarithmic (or singular) energy potentials
in reaction–diffusion systems and related gradient flows: see, for instance, positivity–preserving nu-
merics for Poisson–Nernst–Planck systems [78], ternary Cahn–Hilliard models with singular interfa-
cial parameters [41], three–component Cahn–Hilliard–type models for MMC hydrogels [120], binary
fluid–surfactant systems [96], liquid thin–film coarsening [121], Poisson–Nernst–Planck–Cahn–Hilliard
with steric interactions [95], Cahn–Hilliard with variable interfacial parameters [40], Flory–Huggins–de
Gennes energies [42], logarithmic potentials [27], and reaction–diffusion with detailed balance [77, 76].
Whether an entropy structure of this type can be embedded into the epidemiological model (??) to
guarantee discrete positivity remains, to our knowledge, an open question.
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Chapter 2. We developed a diffusion–driven compartmental framework with vaccination and quar-
antine, analyzed its deterministic structure, and proposed a structure–preserving NSFD scheme aligned
with the continuous model. On the analytical side, we identified the disease–free and endemic equilibria,
derived the basic reproduction number R0 via the next–generation matrix formalism, and determined
local stability thresholds around each steady state [109]. We also delineated an invariant, positively
invariant region and verified nonnegativity of solutions. On the numerical side, the linearly implicit
discretization yields coefficient matrices with M–matrix character; in conjunction with discrete Gron-
wall–type arguments, this ensures inverse positivity, step–size–dependent stability, and convergence of
the scheme. Moreover, the discretization is equilibrium–consistent: steady states of the PDE model
are inherited as constant solutions of the discrete dynamics, and their local stability properties are
preserved under suitable conditions.

From a computational viewpoint, simulations in both disease–free and endemic regimes show tra-
jectories converging toward the corresponding steady states, matching the theoretical predictions for
thresholds determined by R0. Parametric explorations illustrate how vaccination, quarantine, and
waning–immunity rates modulate R0 and the transient profiles, while grid/time–step refinements con-
firm first–order accuracy in time and second–order accuracy in space, consistent with the design of
the scheme. The framework readily accommodates modeling extensions—space–dependent parame-
ters, advective transport, spatially heterogeneous controls, or optimal–control interventions—without
abandoning the emphasis on qualitative preservation. In summary, Chapter 2 complements the theory
with a practical, reproducible computational pipeline that (i) respects the biology (positivity and in-
variance), (ii) mirrors the steady–state structure and its stability, and (iii) delivers provable consistency,
stability, and convergence for the space–time discretization, thereby providing a reliable platform for
scenario analysis and policy–relevant experimentation.
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