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ABSTRACT

Background and objective: In this manuscript, we consider a compartmental model to describe the dy-
namics of propagation of an infectious disease in a human population. The population considers the
presence of susceptible, exposed, asymptomatic and symptomatic infected, quarantined, recovered and
vaccinated individuals. In turn, the mathematical model considers various mechanisms of interaction be-
tween the sub-populations in addition to population migration. Methods: The steady-state solutions for
the disease-free and endemic scenarios are calculated, and the local stability of the equilibium solutions
is determined using linear analysis, Descartes’ rule of signs and the Routh-Hurwitz criterion. We demon-
strate rigorously the existence and uniqueness of non-negative solutions for the mathematical model,
and we prove that the system has no periodic solutions using Dulac’s criterion. To solve this system, a
nonstandard finite-difference method is proposed. Results: As the main results, we show that the com-
puter method presented in this work is uniquely solvable, and that it preserves the non-negativity of
initial approximations. Moreover, the steady-state solutions of the continuous model are also constant
solutions of the numerical scheme, and the stability properties of those solutions are likewise preserved
in the discrete scenario. Furthermore, we establish the consistency of the scheme and, using a discrete
form of Gronwall’s inequality, we prove theoretically the stability and the convergence properties of the
scheme. For convenience, a Matlab program of our method is provided in the appendix. Conclusions: The
computer method presented in this work is a nonstandard scheme with multiple dynamical and numer-
ical properties. Most of those properties are thoroughly confirmed using computer simulations. Its easy
implementation make this numerical approach a useful tool in the investigation on the propagation of in-
fectious diseases. From the theoretical point of view, the present work is one of the few papers in which
a nonstandard scheme is fully and rigorously analyzed not only for the dynamical properties, but also for
consistently, stability and convergence.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

populations [1]. Nowadays, epidemiology has a relevant place in
many scientific areas, including the biomedical sciences, social sci-

Epidemiology is considered a scientific discipline that stud-
ies the distribution, frequency, determinants, relationships, predic-
tions, and control of factors related to health and disease in human
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ences and even in the exact sciences [2]. In fact, it is worth point-
ing out that the study of diseases is an area which is as old as
the birth of human writing. Indeed, the origins of the word “epi-
demiology” date back to ancient Greece, to some classical texts by
Hippocrates of Kos, Aristotle and Galen [3]. Some of these scien-
tists and philosophers were the first to use the terms “endemic”
and “epidemic” in their works [4], though these concepts could
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ABSTRACT

Background: We provide a compartmental model for the transmission of some contagious illnesses in
a population. The model is based on partial differential equations, and takes into account seven sub-
populations which are, concretely, susceptible, exposed, infected (asymptomatic or symptomatic), quar-
antined, recovered and vaccinated individuals along with migration. The goal is to propose and analyze
an efficient computer method which resembles the dynamical properties of the epidemiological model.

Materials and methods: A non-local approach is utilized for finding approximate solutions for the mathe-
matical model. To that end, a non-standard finite-difference technique is introduced. The finite-difference
scheme is a linearly implicit model which may be rewritten using a suitable matrix. Under suitable cir-
cumstances, the matrices representing the methodology are M-matrices.

Results: Analytically, the local asymptotic stability of the constant solutions is investigated and the next
generation matrix technique is employed to calculate the reproduction number. Computationally, the dy-
namical consistency of the method and the numerical efficiency are investigated rigorously. The method
is thoroughly examined for its convergence, stability, and consistency.

Conclusions: The theoretical analysis of the method shows that it is able to maintain the positivity of its
solutions and identify equilibria. The method’s local asymptotic stability properties are similar to those
of the continuous system. The analysis concludes that the numerical model is convergent, stable and
consistent, with linear order of convergence in the temporal domain and quadratic order of convergence
in the spatial variables. A computer implementation is used to confirm the mathematical properties, and
it confirms the ability in our scheme to preserve positivity, and identify equilibrium solutions and their
local asymptotic stability.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

During the final months in 2019, humanity began a struggle
against a new virus called SARS-CoV-2, which is a pathogen that

* Corresponding author at Department of Mathematics and Physics, Aguas- has caused almost 6.7 million human casualties around the world
calientes Autonomous University, 940 University Ave, Aguascalientes 20100, Mexico. until January 2023 [1]. This disease is known also as COVID-19, and
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it will be in the history annals along with others pandemics such
as the black plague, the smallpox and the Spanish flu among many
others [2]. It is worth mentioning that COVID-19 has not been as
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1 | INTRODUCTION

Recall that epidemiology is the study of the patterns, causes, and effects of diseases in populations. From the mathematical
point of view, this discipline uses mathematical models to understand and analyze the spread of infectious illnesses within
communities '>. Among those mathematical model used in epidemiology, some of them are based on the use of compartments.
It is worth recalling that compartmental models divide the population into different compartments or disjoint groups based on
their disease status'. The compartments typically include categories such as susceptible (individuals who are susceptible to
the disease), infected (individuals who are currently infected), and recovered (individuals who have recovered from the disease
and gained immunity). Depending on the specific disease and model, additional compartments may be included to represent
factors such as exposed individuals or those requiring medical treatment>*. In that sense, some compartmental models consider
subpopulations of quarantined, vaccinated and exposed individuals, not to mention effects of migration between populations>.
Meanwhile, other epidemiological models consider even the effect of spatial diffusion of diseases®.

The movement of individuals between compartments is described by a set of differential equations, which govern the
rates of transition from one compartment to another. These equations can take various forms, including ordinary differential
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Resumen

Esta tesis integra dos estudios sobre modelacion epidemiolégica con ecuaciones en derivadas parciales
y esquemas numéricos que preservan estructura. En ambos trabajos se considera una poblacion seg-
mentada en clases susceptibles, expuestas, infectadas sintomaticas y asintomaticas, en cuarentena,

recuperadas y vacunadas, incorporando migracion y difusion espacial.

El primer articulo propone un esquema de diferencias finitas no estandar, linealmente implicito y
escribible en forma matricial. El método estd disenado para reproducir propiedades cualitativas del
sistema continuo: positividad, invariancia del conjunto admisible, preservacion de equilibrios y estabil-
idad local. Se prueban consistencia (orden lineal en tiempo y cuadritico en espacio), estabilidad bajo
restricciones de paso temporal y convergencia. La demostracion se apoya en teoria de matrices M y en
desigualdades discretas tipo Gronwall-Young. Las simulaciones en MATLAB corroboran el analisis y

muestran aproximaciones robustas en todo el dominio.

El segundo articulo se centra en la dinamica del modelo. Se obtienen los equilibrios libre de enfer-
medad y endémico, se calcula el niimero reproductivo basico mediante la matriz de préxima generacion
y se analiza la estabilidad local de ambos estados. Ademads, se presenta un analisis de sensibilidad de
Zy respecto a pardmetros clave (contacto, cuarentena, vacunacién y migracion). Los experimentos
numéricos validan la preservacion de positividad del método y muestran transiciones claras entre
regimenes con Zy < 1y %y > 1, asi como convergencia hacia estados estacionarios. En conjunto, la
tesis ofrece un marco continuo—discreto coherente para modelos compartimentales con difusién, que

equilibra fidelidad cualitativa y garantias numéricas.



Abstract

This thesis comprises two studies on PDE-based epidemic modeling and structure-preserving discretiza-
tion. In both, the host population is split into S, E, I, 14, Q, R, and V classes, with spatial mobility

represented by diffusion and inter-compartment migration.

The first article develops a linearly implicit nonstandard finite-difference scheme that can be writ-
ten in matrix form. The method is built to mirror key qualitative features of the continuous model:
positivity, invariance of the admissible set, preservation of equilibria, and local stability. We prove
consistency (first order in time, second order in space), step-size—dependent stability, and convergence.
The analysis relies on M-matrix theory and discrete Gronwall-Young inequalities. MATLAB simula-

tions confirm the theory and deliver robust approximations across the computational domain.

The second article focuses on system-level behavior. We derive the disease-free and endemic equilibria,
compute the basic reproduction number via the next-generation matrix, and study local stability for
both steady states. A sensitivity analysis of %, with respect to transmission, quarantine, vaccination,
and migration parameters is presented. Numerical experiments validate positivity preservation and dis-
play sharp transitions between regimes with %y < 1 and %, > 1, together with convergence to steady
states. Overall, the thesis offers a coherent continuous—discrete framework for diffusive compartmental

models that balances qualitative fidelity with rigorous numerical guarantees.



Introduction

Aims and scope

The aims and scope of this thesis are to develop, analyze, and compute reliable frameworks for modeling
the spread of infectious diseases in heterogeneous populations. First, I formulate mechanistic epidemi-
ological models that incorporate spatial diffusion, migration, vaccination, quarantine, and multiple
infectious states. Second, I carry out a rigorous mathematical study of these models, including the
identification of equilibria, the derivation of the basic reproduction number through the next-generation
approach, and local asymptotic stability results around the disease-free and endemic states. Third, I
design nonstandard finite-difference schemes that preserve the key dynamical features of the continuous
problem—positivity, boundedness, and the location and stability of equilibria—and I prove their con-
sistency, stability, and convergence with respect to the temporal and spatial discretizations. Fourth, I
implement the proposed schemes efficiently and validate them through numerical experiments. Fifth, I
estimate model parameters from data or literature ranges and conduct sensitivity analyses to quantify
the influence of epidemiological and control parameters. Finally, I use the calibrated models to assess
and propose realistic intervention strategies (such as vaccination, quarantine, or mobility policies),

with the goal of supporting evidence-based decision making.

Summary

Chapter 1. A linearly implicit non-standard finite-difference (NSFD) scheme is proposed for a spatial
compartmental epidemic model with vaccination, quarantine, and migration. The method admits a
compact matrix formulation and, under natural assumptions, the discrete operators are M-matrices,
which implies nonsingularity and inverse positivity. We prove nonnegativity preservation, consistency
(first-order in time (¢) and also second-order in space (x)), stability for mild time-step restrictions, and

convergence. MATLAB simulations corroborate the theoretical properties.

Chapter 2. We examine the dynamics in depth: the disease-free and endemic equilibria are charac-
terized, the basic reproduction number %, is derived via the next-generation matrix, and local stability
of both states is proved. A parameter sensitivity study for %, is included. The NSFD scheme inher-
its key qualitative properties of the continuous model (nonnegativity, equilibrium preservation, and
stability) and is validated computationally. Numerical experiments display threshold behavior across

Py < 1 and Zy > 1 and show temporal convergence toward steady states.



An efficient nonstandard computer
method to solve a compartmental

epidemiological model for COVID-19

with vaccination and population

migration

1.1 Introduction

This chapter develops a compartmental model to describe the spread of an infectious disease in a single
population with vaccination, quarantine, recovery, natural deaths, and migration. The population is
divided into seven groups: susceptible, vaccinated, exposed, asymptomatic infected, symptomatic in-
fected, quarantined, and recovered. The model is stated as a system of ordinary differential equations
that connects these groups through biologically meaningful flows. This structure makes it possible to
study key questions such as when an outbreak fades out, when it becomes endemic, and how policy

levers (like vaccination or quarantine) affect those outcomes.

The analytical study identifies the disease-free and endemic equilibria and computes the basic repro-
duction number using the next-generation approach. A main result is that the disease-free equilibrium
is locally asymptotically stable whenever the reproduction number is below one. These results give a

clear threshold condition that separates control from persistence of the disease.

On the computational side, the chapter proposes a nonstandard finite-difference time integrator de-
signed to mimic the qualitative behavior of the continuous model. The scheme preserves nonnegativity
and boundedness, shares the same equilibria as the ODE system, and maintains their local stability.
The analysis also establishes consistency, conditional stability, and convergence of the discrete model,

and numerical experiments confirm these properties.

1.2 Article 1
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ABSTRACT

Background and objective: In this manuscript, we consider a compartmental model to describe the dy-
namics of propagation of an infectious disease in a human population. The population considers the
presence of susceptible, exposed, asymptomatic and symptomatic infected, quarantined, recovered and
vaccinated individuals. In turn, the mathematical model considers various mechanisms of interaction be-
tween the sub-populations in addition to population migration. Methods: The steady-state solutions for
the disease-free and endemic scenarios are calculated, and the local stability of the equilibium solutions
is determined using linear analysis, Descartes’ rule of signs and the Routh-Hurwitz criterion. We demon-
strate rigorously the existence and uniqueness of non-negative solutions for the mathematical model,
and we prove that the system has no periodic solutions using Dulac’s criterion. To solve this system, a
nonstandard finite-difference method is proposed. Results: As the main results, we show that the com-
puter method presented in this work is uniquely solvable, and that it preserves the non-negativity of
initial approximations. Moreover, the steady-state solutions of the continuous model are also constant
solutions of the numerical scheme, and the stability properties of those solutions are likewise preserved
in the discrete scenario. Furthermore, we establish the consistency of the scheme and, using a discrete
form of Gronwall’s inequality, we prove theoretically the stability and the convergence properties of the
scheme. For convenience, a Matlab program of our method is provided in the appendix. Conclusions: The
computer method presented in this work is a nonstandard scheme with multiple dynamical and numer-
ical properties. Most of those properties are thoroughly confirmed using computer simulations. Its easy
implementation make this numerical approach a useful tool in the investigation on the propagation of in-
fectious diseases. From the theoretical point of view, the present work is one of the few papers in which
a nonstandard scheme is fully and rigorously analyzed not only for the dynamical properties, but also for
consistently, stability and convergence.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

populations [1]. Nowadays, epidemiology has a relevant place in
many scientific areas, including the biomedical sciences, social sci-

Epidemiology is considered a scientific discipline that stud-
ies the distribution, frequency, determinants, relationships, predic-
tions, and control of factors related to health and disease in human
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ences and even in the exact sciences [2]. In fact, it is worth point-
ing out that the study of diseases is an area which is as old as
the birth of human writing. Indeed, the origins of the word “epi-
demiology” date back to ancient Greece, to some classical texts by
Hippocrates of Kos, Aristotle and Galen [3]. Some of these scien-
tists and philosophers were the first to use the terms “endemic”
and “epidemic” in their works [4], though these concepts could
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have been used even before. However, epidemiology has witness
a tremendous development since those times, being nowadays a
useful discipline which encompasses various branches of human
knowledge, even mathematical modeling and mathematical anal-
ysis [5]. These areas play an increasingly important role in the
prediction and control of new pandemics like the coronavirus dis-
ease 2019 (SARS-CoV-2) or other diseases throughout human his-
tory [6].

It is important to recall that infectious diseases progress within
populations due to both the behavior of the infectious agents and
the population itself. Mathematical models which describe how an
epidemic progresses are based on a set of assumptions and statis-
tics that are used to establish suitable model parameters. In turn,
these parameters completely determine the mechanics of propaga-
tion of the disease to a certain degree of reliability [7]. The math-
ematical models obtained in the way can be used then to predict
which interventions to implement or avoid in order to control a
disease, as well as patterns of growth and expansion that may
result [8]. As expected, there is a vast amount of mathematical
models which try to predict the evolution of a disease, and these
models vary in complexity from simple deterministic models [9] to
complex stochastic systems [10]. The former are usually based on
differential or difference equations, while the latter employ usu-
ally stochastic equations. The approach chosen by epidemiologists
depends on several variables including how much is known about
the epidemiology of the disease, the purpose of the study, and the
quantity and quality of data available [11].

Among the mathematical models used in mathematical epi-
demiology, compartment-based systems are a widely used tech-
nique for the quantitative and qualitative descriptions of the prop-
agation of a disease [12]. This technique hinges mainly on describ-
ing the possible phases of interaction that a disease can have in a
population [13]. It is worth pointing out that this type of mod-
els has been used to describe various diseases, and those sys-
tems are frequently based on the use of coupled ordinary dif-
ferential equations [14]. Using this approach, several studies have
been carried out to simulate the spreading of some diseases that
have caused havoc in recent decades. For example, there are works
which model and simulate the spread of Chikungunya disease [15],
the control of measles in a human population [16], the epidemiol-
ogy of diabetes mellitus with lifestyle and genetic factors [17], the
epidemiology of sexually transmitted diseases [18], the modeling
of tuberculosis disease in the Philippines [19], and the modeling
of the coronavirus disease 2019 (COVID-19) pandemic [20], among
other examples.

In the particular case of COVID-19, countries are currently
working hard to fight this disease. To this day, this disease ac-
counts for 5,732,354 deaths worldwide just 2 years after its first
case [21]. Since then, many studies have been reported on the
mathematical model of COVID-19, including some works using
compartmental models to predict the effect of social distancing
and vaccination as control measures [22], compartmental mod-
els for the COVID-19 pandemic with immunity loss [23], math-
ematical models for the calculation of COVID-19 lockdown effi-
ciency [24] or the assessment of sensitivity and optimal economic
evaluation with control intervention [25], a simple model with-
out vaccination and migration [26], and even some compartmen-
tal models which employ various types of fractional-order oper-
ators in both space and time [27] among many examples avail-
able in the recent literature. In summary, various models have
been proposed to describe the propagation of COVID-19 under var-
ious mathematical assumptions. It is worth mentioning that some
of those works provide comparisons between various models and
propose improvements in order to obtain more reliable paradigms.
As an example, the authors of [28] carry out some detailed com-
parisons between various mathematical models and, after a careful
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analysis, they suggest that susceptible-exposed-infected-recovered-
quarantined models are fundamental in order to capture the es-
sential characteristics in the modeling of COVID-19.

The purpose of this work is to propose a general model that
allows describing the spread of various diseases (including COVID-
19) under general epidemiological assumptions. To that end, we
will propose a compartmental system for an arbitrary human pop-
ulation. In particular, we will suppose that the population is sep-
arated into subpopulations of susceptible, exposed, symptomatic
and asymptomatic infected, quarantined, recovered and vaccinated
individuals. Various possible interactions between them will be
taken into account, including the fact that recovered individu-
als may become susceptible. It is important to mention that the
use of suitable model parameters will allow for the application
of our mathematical model to particular diseases and epidemics.
Our mathematical model will be based on the use of ordinary dif-
ferential equations. We will determine the equilibrium points of
this system along with their local and global stability properties,
as well as the basic reproductive number. We will provide several
simulations in this work, all of them obtained with a computer
implementation of a nonstandard finite-difference method which
is capable of preserving the most relevant analytical features of
the solutions of the mathematical model. We must mention be-
forehand that the computational results will confirm the validity
of our analytical properties. Finally, we will close this manuscript
with a brief summary of the conclusions obtained in our study.

2. Methods

In this section, we deduce the mathematical model used to de-
scribe the propagation of a disease under suitable epidemiologi-
cal assumptions. The epidemiological model will be analyzed to
determine the equilibrium solutions and their stability properties.
Among other analytical results presented in this section, we will
derive the expression of the basic reproductive number using the
next generation matrix approach [29].

To start with, we will consider a population of human individ-
uals which are exposed to some contagious infection. Throughout,
P(t) will represent the population size at the time t > 0, and we
will suppose that the population is partitioned into the following
seven compartments or subpopulations:

o Susceptible individuals (S).

o Exposed individuals (E).

o Asymptomatic infected individuals (I).
o Symptomatic infected individuals (Is).
e Quarantined individuals (Q).

o Recovered/remove individuals (R).

o Vaccinated individuals (V).

Obviously, the sizes of these subpopulations at time t > 0 will
be represented by S(t), E(t), I4(t), Is(t), Q(t), R(t) and V (t), re-
spectively. Under these assumptions, we have that

P(t) =S(t) +E(t) + Q(t) + Ia(t) + Is(t) + R(t) + V (t). (2.1)

Moreover, to provide a more realistic epidemiological model, we
consider in this work a constant migration into the population.
More precisely, we will assume that a rate of people equal to ms,
mg, my, and my, will migrate into the sub-populations of suscepti-
ble, exposed, asymptomatic and symptomatic.

Throughout this manuscript, all the parameters and variables in
our mathematical model will take on non-negative real values. We
will suppose that the population has natural birth and mortality
rates which will be denoted by A and u, respectively. Susceptible
individuals may become exposed if they have enough contact with
exposed individuals at a rate of «. On the other hand, susceptible
individuals will be vaccinated a rate denoted by w. Here, we will
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Table 1

Notations used in this work and their meaning.
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Notations used in this manuscript and their meaning

Parameter  Description

Recruitment rate.

Natural mortality rate.

3§§§§Q%bkc“%m\/\rQSﬁ>

Rate of transfer from vaccinated individuals to susceptible.

Rate of transfer from susceptible individuals to vaccinated.

Contact rate between susceptible individuals and exposed individuals.

Rate of transfer of exposed individuals to quarantine.

Rate of transfer of exposed individuals to symptomatic infected individuals.
Rate of transfer of exposed individuals to asymptomatic infected individuals.
Recovery rate of quarantine individuals.

Mortality rate due to coronavirus in quarantine individuals.

Rate of transfer of symptomatic infected individuals to quarantine.
Mortality rate due to coronavirus in symptomatic infected individuals.
Recovery rate of transfer of symptomatic infected individuals.

Rate of transfer of recovered individuals to susceptible.

Rate of immigration of susceptible individuals.

Rate of immigration of exposed individuals.

Rate of immigration of asymptomatic infected individuals.
Rate of immigration of symptomatic infected individuals.

suppose that the vaccine is complete effective for all individuals,
so it is appropriate to consider that vaccinated people will become
susceptible at a rate equal to 7.

On the other hand, exposed individuals change compartment
according to three possible options. The first one is to become
quarantined, and we will assume that this will take place at a
rate equal to ¢. Alternatively, some exposed persons will become
asymptomatic or symptomatic infected at rate equal to é and ¢, re-
spectively. In turn, asymptomatic individuals may move to the re-
covered state at a rate given by 7. Individuals in the symptomatic
compartment will become quarantined at a rate of x. This may oc-
cur when the individuals present obvious symptoms of the disease.
However, individuals can just move to the recovered state at a rate
of ¢ or O depending on whether then were quarantined or symp-
tomatic. It is important to notice here that some quarantined and
symptomatic individuals may die from the infectious disease, and
we will employ v and p, respectively, to denote the rates at which
these events occur. Finally, recovered individuals may become sus-
ceptible class with a rate equal to o, under the assumption that
the human body does not entirely create immunity to the disease.
For convenience, Table 1 provides a summary of all the epidemio-
logical parameters employed in this manuscript.

Figure 1 provides a flow chart which illustrates the epidemi-
ological assumptions described above. Under these circumstances,
the mathematical model describing the dynamics of propagation of
the infectious disease is given by the following system of coupled
nonlinear ordinary differential equations:

% =A+ms+0R—-aSE+ 1V — (0 + 1)S,
dv

ar =wS—(t+ )y,

dE

T =mg +aSE— (L +€+8+n)E,

dI

gt = M OE— (4 W,

d

LT? =CE+«kls— (t+v+p)Q,

dl.

7; =my+€E—(k+p+0+ i,

dR

T 1Q +0Is+nly — (0 + )R (2.2)

The model will be complemented with initial conditions at the
time t = 0. More precisely, we will assume that the initial com-

partment sizes will be provided by the non-negative numbers S°,
V0, E0, Q9 19, 12 and RO. Obviously, they will represent respectively
the initial populations of susceptible, vaccinated, exposed, quaran-
tined, asymptomatic infected, symptomatic infected and recovered.

It is important to notice that the mathematical model (2.2) has
one disease-free equilibrium solution. To check this fact, let us as-
sume a constant solution for the mathematical model in which
E=Q =1y =Is =R =0. After some algebra, we readily check that
the disease-free equilibrium Pprg is the point whose coordinates
are given by

Porg = (S0, V5.0,0,0,0,0)

o (A+mg)(n+7)
o\ up+o+1)

(A + mg)
wpt+o+T)’

0,0,0,0, 0). (2.3)

In order to calculate the basic reproductive number Ry, we will
employ the next generation matrix technique. Beforehand, recall
that Rg is the expected value of infection rate per time unit. Let
us consider only those compartments of the mathematical model
(2.2) which contribute to the dynamics of the infection, that is, let
us consider the system

dE
T mg +aSE — ({ +€+6+ W)E,
dl
T? =my, + 6E — (T} +M)IA,
d
d—? =CE+kls— (t+v+u)Q,
dls
I =m+€E—(k+p+0+pl, (2.4)
Following the approach in [29], we define the vectors
aS(t)E(t)

0
F= 0 (2.5)

0
and

-mg+ (¢ +€+8+n)E

v -my, — SOE + (7} + ,bL)IA (26)

—CE—kls+ (t+v+w)Q,
—my, —€E+ (k +p+0+
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Fig. 1. Flow chart describing graphically the dynamics of the compartmental epidemiological model proposed in this work.

Their Jacobian matrices are, respectively,

(A+ms)
EaA
F = 2.7
0 0 0 O (2.7)
0 0 0 O
and
C+e+d+ 0 0 0
Ve -8 n+u 0 0
a - 0 t+v+p —K
—€ 0 0 K+p+0u
(2.8)
A straightforward calculation shows that
o;;&i"f)) 82 83 8u
G=Fvi=| O 0O 0 0] 29
0 0 0 0 (2.9)
0 0 0 0
where g1,, g13 and g4 are real numbers, and
X=8+e+pn+¢. (2.10)

As a consequence, we obtain that the basic reproductive number is
provided by the expression

. o (A + ms)

S te+rpu+o)(w+p)’

Ro (2.11)

Our next result summarizes the local stability analysis of the
disease-free equilibrium.

Theorem 1. The disease-free equilibrium of system (2.2) is locally
asymptotically stable if Rg < 1.

Proof. Let J represent the Jacobian matrix of associated to the sys-
tem (2.2), and use J* to represent the matrix J evaluated at the
disease-free equilibrium solution. It is easy to check then that the
Jacobian matrix is given by

Js T —aS 0 0 0 o
OB 5! 0 0O 0 o0 O
aE 0 Js3 0 0 0 0
J=10 o0 8 Jau 0O 0 O (212)
0 0 g 0 155 K 0
0 0 € 0 0 Jss O
0 o0 0 no ot 0 Jy
where
Jn=—aE—(w+ ), (2.13)
Jo=—(T+u), (2.14)
Js3=aS—(C+€+d6+ 1), (2.15)
Jaa=—-(+ ), (2.16)
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Jss =—(+v+p), (2.17)
Jos =—(K+p+0+n), (2.18)
Ji7=—(0 + ). (2.19)

Let A be any complex number, and let I be the identity matrix of
order 7. If we let M = J* — Al then it is easy to check that

T Mi3 0 0 0
My, 0 0 0 0
Mss 0 0 0

§ My 0 O (2.20)

¢ 0 Mss «

€ 0 0 Mgg

0 n 0 0 M77

In this expression for the matrix M, we observe the following def-
initions for the components:

oooooe§
=
cocococooqQ

[eNeNolelNe)

My = —(a) + /L) —A, (221)
_a(A+mg)(p+1)

M3 = Lt o+7) (2.22)

My, = *(T + /,L) - A, (223)
_a(A+mg)(u+1)

Ms3 = (i + ol —(C+€e+6+un)—A, (2.24)

Myg=—-(n+ @) — A, (2.25)

Mss = —(L+ v+ 1) — A, (2.26)

Mse:—(K+p+9+M)—)\,, (227)

M77 = —(O' + ,LL) — A (228)

Using properties of determinants, it is possible to check that
detM = (M1 M3, — @t )M33My4MssMesM77. (2.29)

Setting the determinant equal to zero, solving for the unknown
A and rearranging terms algebraically, it follows that five of the
eigenvalues of J* are

M= +e+5+n)(Ro—1), (2.30)
A=—-M+wpn) <0, (2.31)
AM=—-(+v+pn) <0, (2.32)
A=—-(K+p+60+pun)<0, (2.33)
A =—(0+npn) <0, (2.34)
The remaining eigenvalues satisfy the quadratic equation

M+ (@+T+2A+ (0+T+pu)u =0. (2.35)
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Descartes’ rule of signs imply that the number of negative roots for
this polynomial is 0 or 2. However, the quadratic formula shows
that the roots are

—(W+T+20) £V + T2+ 0T

5 .
It follows that Ag and A; are negative. Summarizing, notice that
all the eigenvalues are negative if Ry <1, in which case the
disease-free equilibrium solution is locally asymptotically stable, as
desired. O

Ae7 = (2.36)

Next, we proceed to calculate the endemic equilibrium solution.
To that end, we assume a constant solution for the system (2.2),
of the form S(t) =S*, E(t) =E* V(t) =V*, I,(t) =1}, Q(t) =Q*,
Is(t) = I£ and R(t) = R*, valid for all t > 0. Here, S*, E*, V*, I;, Q%,
I{ and R* are non-negative constants. For the sake of convenience,
we define

Pep = (§. V", E*, I}, Q" 5, RY). (2.37)
Under these hypotheses, the mathematical model (2.2) reduces to
the following system of algebraic equations:

A+ms+oR —aS'E* + V" — (w+ u)S* =0,

wS* — (T +p)V*=0,

mg +aS'E* — ({ +€+ 8+ n)E* =0,

my, 4+ 8E* — (n + wl; =0,

CE*+kE—(+v+pm)Q* =0,

mg +€E*— (kK +p+6 + )l =0,

1Q* +0I¢+nl; — (0 + wW)R*=0. (2.38)
Proceeding algebraically, we may reach the identities:
S*=A+m‘+GR +1V ’ (2:39)

m+ o+ oE*

yro 5@ (2.40)

W+T
me

* ; 241
S+e+u+¢—as ( )
my, + SE*

= A 242

ot (242)
K*IS =+ (E*

e 243
Q L+ pu+v ( )

my; + €E*

s 244
ST Kk+pu+p+0 (244)

. nl; +1Q* + 01 (2.45)

n+o

Moreover, after more tedious algebraic manipulations (or, equiva-
lently, using symbolic software), it is possible to find out that

g dtetn+l (2.46)
o
pro @Orern+d) (2.47)

a(pu+1)
We provide here the exact expressions for S* and V* only in view
that they are relatively short. The expressions for the remaining
coordinates of the endemic equilibrium point are actually too long
to be written in this column. However, we must mention that all
the coordinates are non-negative real numbers.
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Theorem 2. The endemic equilibrium point of system (2.2) is locally
asymptotically stable if Rg < 1.

Proof. Notice that the Jacobian matrix evaluated at the endemic
equilibrium point is given now by

I T —-aS* 0 0 0 o
o 5 0 0 0 0 ©
af* 0 Ji 0 0 0 ©
=1 0 o0 B 5, 0 0 0] (2.48)
0 0 e 0 Ji k 0
0 0 € 0 0 Ji; O
0 0 0 noo 0 Jy
where
Ji = —eE" — (0 + ), (2.49)
S =—(T+n), (2.50)
Jis=aS*— (L +e+06+n), (2.51)
Jag=—(M+ ), (2.52)
Jis=—(+v+pu), (2.53)
Jos=—(k+p+0+p), (2.54)
J77==(0+ ). (2.55)

However, the value of $* in the endemic case guarantees that J5, =
0. Using this fact and the properties of determinants, it is easy to
check that the determinant of M = J* — Al is given by

detM = 27 + QA8 + ... + Qs + Q7. (2.56)

where the expressions of the coefficients Q; can be algebraically
obtained, and are given in terms of the model parameters and the
endemic equilibrium point. The exact expressions of these coeffi-
cients are long, and they were computed using symbolic algebra.
We omit their expressions in view of the space available. The sys-
tem is stable if the eigenvalues of the Jacobian matrix at the en-
demic point all have negative real parts. Using the Routh-Hurwitz
criterion [30] and symbolic algebra, we obtain that the endemic
equilibrium is stable if Ry < 1. O

In the next result, we will employ the gradient operator

v_(0 0 9 0 0 9 9
=\ 85 av" 9E" 3l," 9Q 3l 9R )°

Theorem 3. The system (2.2) has no periodic solutions.

(2.57)

Proof. To establish this proposition, we will use the well
known Dulac’s criterion. Let F : R — R7 be the function defined
component-wise for each t € R by the expression

E(t) = (5(t), V (1), Et), Ia(t), Q(t), Is(t), R(t)). (2.58)
Moreover, let

1
G(t) = SOED)’ Vt>0 (2.59)
Using differentiation, it is easy to check that
0 ds A+ms+oR+7TV
as( dt) DR o
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0 avy  t+u

v (Gt - SE (2.61)
0 dE mg

3E (Gdt> =~ (2.62)
81A<Gt> =" (2.63)
d dQ\ t+vu+pu

70 (Gdt> =—— (2.64)
0 dls)  k+p+0+pu

T <Gt> = _ <E , (2.65)
a dRY  o+p

8R(Gdt> -~ SE (266)

We can check now that

\Y Gd—F 0 (2.67)

The conclusion follows now from Dulac’s criterion. O

Finally, we turn our attention to the problem on the existence
and uniqueness of non-negative solutions of the mathematical
model (2.2). To start with, it is obvious that solutions of (2.2) exist
and are unique, for any set of initial conditions. This is a straight-
forward consequence of the fact that the model can be equivalently
rewritten in the form

dx

F F(x), (2.68)
where the function x : [0, c0) — R7 is given by
X(t) = (S(t), E(t), Q1) Ia (). Is(t), R(t), V (1)), (2.69)

for each t>0. Moreover, the function F:R’ — R’ is given
component-wise by F= (F, ..., F;), where each of the functions F
depends on x, and is given by the right-hand side of the ith dif-
ferential equation in (2.2). The fact that F is continuously differen-
tiable assures the existence and uniqueness of continuous solutions
for the mathematical model (2.2), for any set of initial conditions.

Theorem 4. If the initial conditions S, V0, E, QO, I3, I? and R° are
non-negative numbers, then the corresponding solution functions of
the model (2.2) are likewise non-negative.

Proof. We proceed by contradiction. Suppose that some of the so-
lutions take on negative values, and let t; > 0 be the greatest lower
bound for which any of the solution functions is negative. Let U
represent the function for which this greatest lower bound occurs,
and notice that U(tg) = 0. There are several cases whose proofs
are entirely similar. We will only consider here the case in which
U =S. Observe then that S(tg) =0 and all the other functions at
that time take on non-negative values. In particular, this implies
that R(tg) > 0 and V(tp) > 0. Using now that first equation of (2.2),
it follows that

ds(to)
dt

= A +ms+0R(ty) + TtV (tp)
(2.70)

Thus, there exists § > 0 with the property that S(t) > 0, for each
t € (tp, to + 8). This contradicts the definition of ty;, and we con-
clude that all the solution functions of the mathematical model
(2.2) are non-negative for all times t > 0. O

> A +ms>0.

Next, we would like to establish a bound for the growth of the
population described by the epidemiological model (2.2). To that
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end, we add all the ordinary differential equations in (2.2) and
simplify terms algebraically. It is easy to check that
dN

E=A+m5+m5+m,A+m,5—uN—vQ—p15.

Assuming that the initial population sizes of the compartments
are non-negative, then the solution functions are likewise non-
negative. As a consequence, the rate of change of increase of the
total population is bounded from above by the non-negative con-
stant A +mg + mg + my, +my,. A straightforward integration yields
then that, for each t > 0,

2.71)

(2.72)

where PO =504+ V0+E04+Q%+19+12+R% In view of this in-
equality, the following result is trivial.

P(t) < P° + (A + ms + mg + my, + my)t,

Theorem 5. Suppose that the initial conditions S°, v°, E9, QO, I9, 12
and RO are non-negative numbers, and let T be a positive time period.

Then the non-negative constant

B =P° 4 (A + mg+mg +my, +m)T (2.73)

is a uniform bound for the solution functions of (2.2). O

As a consequence of the local stability properties, the bound-
edness of the solutions of the mathematical model (2.2) and the
absence of periodic solutions, we conclude that the steady-state
solutions are globally asymptotically stable.

Before closing this section, we provide a standard sensitivity
analysis of the basic reproductive number with respect to the
model parameters. To that end, for each parameter ¢ of the model,
define the constant

_ @ R
Ay = Ro 96 (2.74)
Notice then that
A
Ay =1, AA:A—i—ms’ (2.75)
ms 1)
Am, = , Ag=—————, 2.76
™A+ ms S TS tet+m+e (276)
€ ¢
. — Ap=———> | 2.77
T Stetu+e . Ste+tpu+l (277)
w
Aw:_w+,u’ (2.78)
and
A, = ww+2u+86+€+¢) (2.79)

S+ e+pu+O)(w+p)

Observe that only Ay, Ay and Apg are positive. We conclude that
the basic reproductive number is sensitive only to the model pa-
rameters o, A and msg.

3. Results

In this section, we introduce a finite-difference scheme to ap-
proximate the solutions of (2.2). The methodology will be designed
using the nonstandard approach popularized by Mickens in vari-
ous of his seminal papers and monographs [31-33]. As the most
important results, we will establish the main theoretical properties
of our discretization, namely, the consistency, the stability and the
convergence. Moreover, We will prove the capability of our scheme
to preserve the positivity of the solutions, the constant solutions
and their stability.

For the sake of convenience, agree that I, = {1,..., n} and I, =
I, u {0}, for each n e N. We will approximate the solutions of our
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epidemiological model on a finite interval of time [0, T], where T >
0. Let N € N, and fix a regular partition of the interval [0, T] of the
form

O=th<t1j<...<tg<...<ty=T, (3.1)

for each n e Iy. For convenience, the associated partition norm will
be represented by At where, obviously, At = T/N is a positive real
number. We will use the lower-case symbols s, v, e, ia, q, is, T
and p to represent numerical approximations to the exact values
of the functions S, V, E, I4, Q, Is, R and P, respectively. Moreover,
if w is any of the lower-case symbols, then we will convey that
w" = w(ty), for each n e Iy. Furthermore, we introduce the follow-
ing linear discrete operator:
N n+1 _ i
Sown = %. (32)
It is well known that this operator provides a consistent approxi-
mation to the derivative if W at the point t,, with consistency or-
der equal to one in time. Alternatively, it also yields a first-order
consistent approximation of the derivative of W with respect to t
at the time t, .

Using this nomenclature, the finite-difference scheme employed
to approximate the solutions of the system (2.2) at time t, is given
by the algebraic nonlinear system of equations

Sis" = A +mg+or" —as™le™! 4 Tyt — (w + p)s"H,
S = ws" — (T + p)vrtl,

Sie" = mg + as"e" — (£ +€ + 8 + p)e™,

8eily = my, + 8™ — (n + p)itt,

Stqn
Stig =my +ee" — (kK +p+0 +p)itt!,

ge" + kil — L+ v+ p)gl,

8" = 1q" + 01 + nill — (o + u)rt (3.3)

Obviously, this is a nonstandard discretization in the sense that
the approximations provided for some terms in the scheme are
provided in a non-local manner. The numerical model is a two-
step system which will be theoretically analyzed in this section.
To that end, it is important to notice that the discrete model
(3.3) can be alternatively expressed in explicit form. After some
algebraic manipulations, the finite-difference scheme can be equiv-
alently rewritten as

S"+ (A+ms+or+TVU")AL

sn+1 o
1+ (e +w+pu)At
S V" + ws" At
1+ (T + )AL’
ol _ e" + (mg + ase™) At
14+ (C +e+06+ AL’
1 b+ (my, +SeM) At

o= 1+ (m+p)At

w1 4"+ (Ce" ki) At

T =T (rur AL

il _ ig + (my; + €e") At

s 1+ (kK+p+6+p)AL’

i ™+ (,q" + 01 + nif) At (3.4)
1+ (0 +pn)At ' ’

From this discussion, it is obvious that the discrete model
(3.3) is a semi-explicit algebraic system. We just need to point
out that s™! is given in terms of e™! as the first equation of
(3.4) shows. However, this shortcoming can be saved calculating
firstly e™*! from the third equation, and the obtaining s™*! from
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the first identity of (3.4). Moreover, the following theoretical re-
sult is also straightforward. The reader will notice that this is the
discrete version of Theorem 4.

Theorem 6. If the initial conditions S°, VO, EC, Q°, I3, 12 and RO are
non-negative, then the discrete system (3.3) has a unique solution,
and all the solution functions are non-negative.

Proof. If n =0, then sO =50, 10 =V0, €0 =F% 0 =19, q*=Q0, i =
12 and 10 = RO are non-negative numbers by hypothesis. Now, sup-
pose that the conclusion of this result is true for some n e lIy_q.
Under these circumstances, the right-hand sides of the identities
in (3.4) are non-negative. As a consequence, the approximations at
time ¢, are also non-negative, and the conclusion of this theorem
follows by induction. O

Our next step is to obtain a discrete form of the inequality
(2.72). To that end, let us suppose that the initial conditions are
all non-negative. As a consequence of the previous theorem, the
numerical solutions are likewise non-negative. Add together the
equations in the discrete system (3.3) and simplify terms. It is easy
check that if n € Iy_q, then

Sep" = A+ ms + mg + my, +my, — up™t — pitt!

_an+1 +O.(rn_rn+1)+l.(vn_vn+1) (3.5)
+o(s" —s") + (§+€e+ ) (" —eT)

+ (K +0) (i — i) + (i} — i)

Tupt — qu—l) +a(sme" _Sn+len+l). (3.5)

Let k € Iy, and take the sum on both sides of this equation for n be-
tween 0 and k — 1. Using the formula for telescoping sums, simpli-
fying algebraically, rearranging terms, recalling that the solutions
of the discrete model (3.3) are non-negative and using the fact that
t, = kAt, we obtain the following upper bound for the total popu-
lation at the time ¢;:

pX < p° + (A + ms + mg + my, +my)t,

+At[ar° +T +ws®+ (5 +€+)e°

(ke +0)i2 + niS 1 1p® +asoe°], (3.6)
Observe that the continuous estimate (2.72) is recovered from this
last inequality when we let At — 0. Moreover, we have the follow-
ing discrete version of Theorem 5.

Theorem 7. Suppose that the initial conditions S°, VO, EO, Q°, I9, I?
and RO are non-negative. Then the non-negative number

b = p° + (A + ms+mg +my, +m)T

+At[ar0 + 10 +ws® + (8 +€+)e°

+ (k +0)i2 + nid + p° + asoeo]. (3.7)

is a uniform bound for the solutions of model (3.3). O

The following theorem establishes that the disease-free and the
endemic equilibrium solutions are also constant solutions of the
numerical model (3.3). Moreover, their stability properties are also
preserved in the discrete scenario.

Theorem 8. The points Pppg and Pgg are constant solutions of the
numerical model (3.3). Moreover, the following hold:

e The point Pppg is locally asymptotically stable if Rg < 1, and un-
stable if Ry > 1.

e The point Pgg is locally asymptotically stable if Rg < 1, and unsta-
ble if Ry > 1.
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Proof. The points are constant solutions of (3.3) follows after a
simple substitution in that system. On the other hand, the local
stability properties of the numerical model are satisfied in view
that the Jacobian matrix of the discrete system (3.3) is the same as
that of the continuous model (2.2). O

Next we establish the numerical properties of our finite-
difference scheme. More precisely, we will prove that the numeri-
cal scheme (3.3) is consistent, stable and convergent. To that end,
let us define the differential operators

ds

Ls = E—A—ms—aR+aSE—tV+(w+u)S,

Ly = Ccll—‘t/—a)s+(r+u)v,

Ly = Z—f—mE—aSE+(§+e+8+u)E,

Ly, = %—mm—85+(n+u)b\,
£Q:(;—(tl—§E—KIS+(L+v+/L)Q,

Ly :%—mIS—GE-G-(K—i-/O—i-@—i-M)IS,

Lr = d—I:—LQ—Gls—nlA+(a+u)R. (3.8)

d

Obviously, these continuous operators are defined for each ¢ ¢
[0, T]. For each n € Iy_; and W being any of the solution functions
of (2.2), agree that L}, = Ly (tn). On the other hand, define also
the difference operators

Ll = §S"— A —ms— oR" + aS™E" — TV"
+ (0 + p)S™1,
Ll = 8;V" — S" + (T + w)V™,
[} = §E" — mg — aS"E" + (£ + € + 8 + pw)E™,
L} =808 —my, — SE" + (n + I,
Ly = 8:Q" — CE® — k[P + (t+ U + p)Q™,
L} =8It —my, — €E™ + (i + p + 60 + W)+,

[} = §R" —1Q" — OIF — nl} + (0 + p)R™1. (3.9)
Let us define now

LM = (L, Ly, Lg, L], £y, LI, LR), (3.10)

"= (L?,LG,LE,LZ\,L"Q,LZ,L,’}), (3.11)

for each n eIy_y. In the following, we will use || -||; and | - ||«

to denote, respectively, the L'-norm and the infinity norm in R7.
More precisely, if & = (&1,...&7) € R, then

7

€0 =14l (3.12)
i=1

1 lloc = max {|&] i€ l7}. (3.13)

Moreover, we introduce the norm

12 = Ll = max {Jl£" = 1"l s n €T 1}, (314)

Using this nomenclature, we will prove firstly the consistency
of the finite-difference method (3.3).

Theorem 9. If S,V,E,I,,Q,I;,R: [0, T] - R are of class C%([0,T]),
then there exists a constant C > 0 which is independent of At, such
that |||£ - L|||« < CAL.
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Proof. Let n e Iy_;. Using the regularity of the function E, it fol-
lows that this function is bounded on [0, T] by some non-negative
constant K. Moreover, since S is of class ¢2([0, T]), Taylor’s theo-
rem readily guarantees that there exist constants Cj,C, > 0 which
are independent of At, with the property that

n ~
‘% —&:S"| < G A, (3.15)
|s" -S| < G AL, (3.16)

for each n e Iy_;. As a consequence of these inequalities, algebraic
simplifications and the triangle inequality, it follows that

st &
— — 5 S"
da

2§ — L3| < +alEm||s" - 5™

+(w+p)[st— s
< GAt + (aKg + 0 + )G At

— GAL, (3.17)
for each n e Iy_;. Here,
Cs =C} + (K + 0 + )G, (3.18)

which is a non-negative constant that is independent of At. It fol-
lows then that ||Ls — Ls|lco < CsAt. In similar fashion, it is pos-
sible to show that there exist constants Gy > 0 which are inde-
pendent of At for W =V,E,I,,Q, L, R, such that the inequality
ILw — Ly || < Gy At is satisfied. Now, if we define the non-negative
constant

C= maX{Cs,Cv,CE,CIA,CQ, C[S,CR}, (319)

then the constant C is independent of At and it satisfies the con-
clusion of this theorem, as desired. [

Next, we turn our attention to the stability and convergence
properties of the finite-difference scheme (3.3). The following dis-
crete form of Gronwall’s inequality will be needed.

Lemma 1 (Pen-Yu [34]). Let (w™N_, and (p™N_; be finite se-
quences of nonnegative mesh functions, and suppose that there exists
C > 0 such that
k-1
ok §pk+Ct Zwk, Vk ely_q.
n=0

(3.20)

Then w" < p"e for eachnely. O

To establish the stability property, we will consider two sets
of non-negative initial conditions for the finite-difference scheme,
which we will denote respectively by

0= (% VO E® 19,Q% 12, RO), (3.21)

0= (S V0. E°. R, Q° . R). (3.22)

According to Theorem 6, the discrete model (3.3) yields non-
negative solutions for each of these solutions. These solutions will
be denoted respectively by (L")N_ and (I")N_,, where

"= (s" v, e ik, q", ig, ™), (3.23)

"= o en i gn i, ). (3.24)
Moreover, we will agree that &2 =w" —w", for each nely and
w=S,V,e,ia, q, is, . This nomenclature will be used in the follow-
ing theorem.
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Theorem 10. Let L° and [® be non-negative initial conditions for the
model (3.3), and suppose that (L")N_, and (Zn)lrLo are the respective
solutions. If At is sufficiently small, then there is a constant K > 0
such that €" < K&9, for each n € Iy. Here,

E" = &M + 16|+ 1& + [E] 1 + 164 | + 1&2] + 1§71 (3.25)
Proof. For the sake of convenience, we will let E" = [" — [, for
each n e Iy. It is obvious that

B = (EDLED D EDEDEDED) (3.26)

is satisfied for each n  Iy. Moreover, after simplification and some
additional algebraic steps, it is possible to show the sequence
(E”)Q’:O satisfies the system of algebraic equations

il = o8] —a(s™IEN — EMTIE) + TED — (0 + )EM,
Si&N = wE! — (T + WEMT,

SiEN = a(S"EN — ENE") — (£ + € + 8 + u)EMT,

il = 8E1 — ( + pEM,

ia

S€l = CEM+KE! — (L v+ WEM,
Bi&]l = €El — (i + p +60 + PEM,
SiEM = 1E1 + OE! + nEl — (0 + p)EMT. (3.27)

Let m e Iy, and assume that Cp > 0 is the uniform bound for the
solution functions of (3.3). Take absolute value on both sides of the
first equation of the discrete system (3.27), groups similar terms
algebraically and use the triangle inequality to obtain

|éjsn+1| — |%_sn|
At

for each n ely_q. Here, C, = «Cp + w + . Multiplying both sides
of this inequality by At, summing on both sides for all n from 0
to m — 1, using the formula for telescoping sums and rearranging
terms, we obtain that

< o |&8] + aGplE] | + TIEN] + CIEM, (3.28)

m-1
&M < 1621+ At Y [0 18] + aCol&| + TIEN] + GIEM].
n=0
(3.29)
In turn, if we let
C/=0+aC+1+C, (3.30)
then
m-1
(1 -GADIEN < |71+ At Y [ g7+ aGyl&!)
n=0
+rlen+clgn |
m—1
< &2+ /ALY IER] + 18] + &)1 + €21,
n=0
(3.31)

for each m ely. In similar fashion, we may use the remaining
equations in (3.27) to show that there exist non-negative constants
C,, and C), for each w =, e, iy, q, is, 1, such that

m—1

(1—-CADIEM < [EX]+C) At Y [IE] + €)1, (3.32)
n=0
m—1

(1-CGA)IEM < |82 +C/ ALY [IE] + €11, (333)
n=0



J.E. Herrera-Serrano, J.E. Macias-Diaz, L.E. Medina-Ramirez et al.

(a)

40.8

40.75

40.7

40.65

40.55

40.5

40.45
0

200 400 600 800 1000

(©)

800

400 600 1000

t

Computer Methods and Programs in Biomedicine 221 (2022) 106920

(b)

800 1000

14 T T

L

600

0 200 400 800 1000

t

Fig. 2. Graphs of the temporal behavior of the sub-population of susceptible (first column) and the sub-population of vaccinated (second column) in the mathematical model
(2.2). We employed the parameter values in Table 2, along with the initial conditions given by data set 1 (first row) and data set 2 (second row) in Table 3. The dashed lines

represent the theoretical steady-state solutions for the disease-free scenario.

m—1

(1-C, AN < (621 +CL At Y [1€21+1871]. (334)
n=0
m-1

(1-GADIE < 181+ G/ At Y [1E + &M +1571].  (3.35)
n=0
m—1

(1-CLADIEM < 2]+l AL Y [1E0 +1871]. (336)
n=0

and

(1-CADIEN] = 1621+ C/ AL [Ign1+ 18]

(3.37)
+gg 1+ 1gn1 -

Let At > 0 be sufficiently small so that 1 —C],At > 0, for each
W =5,v,e,is,q,is, 1, and let C > 0 satisfy C <1 —C}, At, for each w.
Adding the inequalities (3.31)-(3.37) and letting

O =+ G+ + G+ + T+ (338)

10

we obtain that

m—1
C%’m < %-0 +C”At Z g_—n

n=0

(3.39)

Finally, we use Lemma 1 to establish that &§" < K&O, where K =
C1exp(C’T/C), for each n e lIy. The conclusion of this theorem
readily follows from this fact. O

In terms of the nomenclature employed in the proof of the pre-
vious theorem, observe that the conclusion can be rewritten as
1211 < K||E%]4, for each n € Iy.

Our final theoretical result summarizes the convergence prop-
erty of the finite-difference method (3.3). We omit the proof in
view that it is similar to that of Theorem 10. We just need to
point out that & is the difference between the exact solution
W" and the numerical approximation w", for each n e Iy and W =
V,E,I4,Q,Is, R. The consistency property of the computer method
is also required to bound the local truncation error, along with the
discrete form of Gronwall’s inequality.

Theorem 11. Suppose that the solutions of problem (2.2) are of class
C2([0, T]). For sufficiently small values of At, the solutions of the dis-
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Fig. 3. Graphs of the temporal behavior of the sub-populations of (a) susceptible, (b) vaccinated, (c) exposed and (d) asymptomatic infected individuals in a population
modeled by (2.2). We employed the parameter values in Table 2, along with the initial conditions given by data set 3 3. The dashed lines represent the theoretical steady-
state solutions for the endemic scenario.

crete model (2.2) converge in the L'-norm to the exact solution with Table 2

order of convergence equal to At. O Values of the parameters used in the various computa-
tional experiments presented in this manuscript.

Before closing this section, we present computer simulations

which confirm the validity of some of the analytical results de- Parameter Value
rived in this work. Our simulations have been carried out with a 0.01
the Matlab code provided in Appendix A. It is worth pointing out 8 1.6728 x 10-°
that the computational implementation is relatively simple, which Z g’g;%s
is yet another important advantage of the approach introduced in n 0104478
the present manuscript. It is worth pointing out that the parame- 0 0.0101
ter values will be those in Table 2, and that some of those values L 0.0045
wer taken from [35]. “ 8:8268
Example 1. In our first example, we will confirm the local stability Z 8j83)26
properties of the disease-free equilibrium solution. To that end, we o 0.0668
will employ the parameter values in Table 2 along with the data T 0.0002
set 1 from Table 3. Under these circumstances, Figure 2 shows the v 3‘(2)82‘2‘ x 1074
dynamics of the solution for (a) the susceptible population and (b) ﬁs 0
the vaccinated population with respect to time, over the time pe- me 0
riod [0, 250]. The results confirm the stability of the disease-free my, 0
m 0

equilibrium solution. It is worth pointing out that the value of the
basic reproductive number is equal to 171.12. Moreover, the dashed

11
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Fig. 4. Graphs of the temporal behavior of the sub-populations of (a) quarantined, (b) symptomatic infected, (c) recovered and (d) total population of individuals in a
system modeled by (2.2). We employed the parameter values in Table 2, along with the initial conditions given by data set 3 3. The dashed lines represent the theoretical

steady-state solutions for the endemic scenario.

Table 3
Initial conditions used in the numerical ex-
periments of this manuscript.

Data

Parameter Set 1 Set 2 Set 3
S0 So—03  Sp+30 20
Vo WwW+03 0 0

E° 0 0 1

I 0 0 0

Q° 0 0 0

I8 0 0 0

RO 0 0 0

line represents the value of the equilibrium point. Obviously, the
solutions tend to reach those values as t tends to infinity. In turn,
(c) and (d) show, respectively, the susceptible population and the
vaccinated individuals as functions of time, for t € [0, 1000]. We
employed data set 2 from Table 3 in this case. Again, these sub-
populations converge asymptotically to the steady-state solutions.
So, whether the initial conditions are close to or far from the equi-

12

librium solutions of the system (2.2), the numerical solutions con-
verge to these values as time increases. This is in agreement with
the analytical results. Moreover, the simulations show that the nu-
merical method preserves the equilibria and their stability, as ex-
pected from the theoretical analysis. O

Example 2. In this example, we consider the endemic case and
show once more that the finite-difference scheme is capable of
preserving the steady-state solutions and their stabilities. More-
over, we provide computational proof that the endemic equilib-
rium is globally asymptotically stable as proved in the previ-
ous section. To that end, consider the parameter values given in
Table 2, along with the initial conditions under data set 3 of
Table 3. The results are provided in Figure 3 as time-dependent
graphs of (a) susceptible, (b) vaccinated, (c) exposed and (d)
asymptomatic infected, and in Figure 4 as graphs of (a) quaran-
tined, (b) symptomatic infected, (c) recovered and (d) total pop-
ulation, for t € [0, 1000]. For convenience, the theoretical endemic
equilibrium values are plotted as dashed lines. The results show
that the solutions tend to their equilibrium values as time in-
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creases. This is in obvious agreement with the theoretical results
derived in this work. O

4. Conclusions

In this work, we investigated both analytically and numerically
a compartmental epidemiological model which describes the prop-
agation of a disease among a human population. The model is in-
tended to describe the propagation of COVID-19, but it can be used
to any other disease which satisfies the epidemiological hypotheses
used in this work. Among the distinctive features of the model, we
considered various compartments: susceptible, exposed, asymp-
tomatic and symptomatic infected, quarantined, recovered and vac-
cinated individuals. We supposed also that population migration
is possible in the mathematical model. Analytically, we obtained
the steady-state solutions of the model, and determined conditions
for their local stability. The basic reproductive number was deter-
mined using the next generation matrix, and we established the
existence and uniqueness of non-negative solutions. Also, we pro-
vided an upper bound for the solutions functions, and the analysis
of parametric sensitivity was theoretically carried out.

As one of the most important results of our study, we pro-
posed a finite-difference method to approximate the solutions of
our mathematical model. This computational technique was de-
signed using the nonstandard approach proposed by R. E. Mickens.
An explicit form of the scheme was provide, and we established
the existence and uniqueness of non-negative solutions for this
mathematical model. We showed that the computational scheme
has the same steady-state solutions as the continuous model and,
moreover, the stability properties are also preserved by our dis-
cretization. We proved that the discrete model is a consistent dis-
cretization of the epidemiological model, and the conditional sta-
bility and convergence properties were derived using a discrete
form of Gronwall’s inequality. Here, it is worth pointing out that
many nonstandard techniques are usually presented in the liter-
ature without providing these numerical properties. However, we
established them mathematically in the present manuscript. Com-
putationally, we obtained various simulations to illustrate the per-
formance of our scheme. The results showed that the method iden-
tifies correctly the steady-state solutions and, moreover, it is also
able to reproduce the stability properties of the continuous model.
Our simulations show additionally that the scheme is capable or
preserving the non-negativity and the boundedness of the solu-
tions, in agreement with out theoretical results.

It is important to point out that the discretization proposed in
this work is first order accurate in the temporal variable. As one of
the reviewers pointed out, this numerical accuracy may not be sat-
isfactory in the practice, in particular when dynamical simulations
are performed. Other approaches may have the advantage of pro-
viding an accuracy of higher order, like the family of Runge-Kutta
methods for systems of ordinary differential equations, which is
a family of stable and convergent techniques. However, those ap-
proaches may not be able to preserve the positivity and bounded-
ness of the solutions, or may not be able to preserve the equilibria
and their stability. Nevertheless, in the case that they can preserve
those features, the present methodology has its simplicity as one
of the advantages. As the appendix shows, the present methodol-
ogy is relatively easy to implement even for a scientist with little
knowledge in computer programming.
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On the other hand, as one of the anonymous reviewers of this
manuscript pointed out, it is important to mention that there ex-
ist various reports available in the literature of third-order meth-
ods for time-dependent nonlinear partial differential equations in
which the convergence and the stability have been analyzed.
For example, there are reports on fully discrete Fourier colloca-
tion spectral methods for the 3-D viscous Burgers equation [36],
high-order multi-step numerical schemes for two-dimensional in-
compressible Navier-Stokes equations [37], high-order exponential
time-differencing numerical schemes for no-slope-selection epitax-
ial thin-film models with energy stability [38], third-order BDF
energy-stable linear schemes for the no-slope-selection thin film
model [39] and BDF-type energy-stable schemes for the Cahn-
Hilliard equation [40].

Finally, as the same reviewer pointed out, there are var-
ious reports in which some logarithmic energy potential has
been introduced for reaction-diffusion equations or other re-
lated gradient flows. In such way, the preservation of the pos-
itivity of the solutions has been ensured. As examples, we can
mention some numerical works for the Poisson-Nernst-Planck
system [41], a ternary Cahn-Hilliard system with the singular
interfacial parameters [42], the three-component Cahn-Hilliard-
type model for macromolecular microsphere composite hydrogels
[43], the binary fluid-surfactant system [44], a liquid thin-film
coarsening model [45], the Poisson-Nernst-Planck-Cahn-Hilliard
equations with steric interactions [46], the Cahn-Hilliard equa-
tion with variable interfacial parameters [47], the Cahn-Hilliard
equation with a Flory-Huggins-Degennes energy (48], he Cahn-
Hilliard equation with logarithmic potential [49] and a reaction-
diffusion system with detailed balance [50,51]. The authors of the
present manuscript are not aware whether an entropy could be in-
troduced in the epidemiological mathematical model (2.2), in order
to guarantee the preservation of the positivity of the numerical so-
lutions.
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Appendix A. Matlab code

function [t,s,v,e,q,iA,iS,r]=epidemic
alpha=0.01;
delta=1.6728e-5;
epsilon=0.0101;
zeta=0.02798;
eta=0.04478;
theta=0.0101;
iota=0.0045;
kappa=0.0368;
Lambda=0.06;
mu=0.0106;
rho=0.004;
sigma=0.0668;
tau=0.0002;
upsilon=3.2084e-4;
omega=0.0032;

mS=0;
mE=0;
mIA=0;
mIS=0;

S0=0.5;
v0=0;
E0=0.2;
Q0=0.1;
IA0=0.2;
1S0=0.1;
RO=0;

T=150;
Deltat=0.01;

t=0:Deltat:T;

s=zeros (size (t));
v=zeros (size(t));
e=zeros (size(t));
g=zeros (size(t));
iA=zeros (size(t));
iS=zeros (size(t));
r=zeros (size(t));

s(1)=S0;
v(1)=V0;
e(1)=E0;
q(1)=Q0;
iA(1)=1IA0;
iS(1)=1I80;
r(1)=RO;

N=length(t) -1;

for n=1:N

e(n+1)=(e(n)+(mE+alpha*s(n)*e(n))*Deltat)/(1+(
zeta+epsilon+delta+mu)*Deltat) ;

s(n+1)=(s(n)+(Lambda+mS+sigma*r(n)+tauxv(n))x*
Deltat)/(1+(alpha*e(n+1)+omega+mu)*Deltat);

v(n+1)=(v(n)+omega*s(n)*Deltat)/(1+(tau+mu)*
Deltat);

iA(n+1)=(iA(n)+(mIA+delta*e(n))*Deltat)/(1+(eta+
mu) *Deltat) ;
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q(n+1)=(q(n)+(zeta*xe(n)+kappa*iS(n))*Deltat)
/(1+(iota+upsilon+mu)*Deltat) ;
iS(n+1)=(iS(n)+(mIS+epsilon*e(n))*Deltat) /(1+(
kappa+rho+theta+mu)*Deltat) ;
r(n+1)=(r(n)+(iota*xg(n)+theta*xiS(n)+etaxiA(n))*
Deltat)/(1+(sigma+mu)*Deltat);
end
p=s+v+e+iA+iS+q+r;
end
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A multiconsistent computational

methodology to resolve a diffusive
epidemiological system with effects of

migration, vaccination and quarantine

2.1 Introduction

This chapter extends the previous framework to a spatial setting. The model now consists of a sys-
tem of nonlinear parabolic partial differential equations that track seven interacting subpopulations
(susceptible, exposed, asymptomatic and symptomatic infected, quarantined, recovered, and vacci-
nated) while accounting for diffusion in space and migration between locations. The scientific aim is to

design a numerical method that respects the model’s dynamics and is robust for large-scale simulations.

A non-local, linearly implicit nonstandard finite-difference scheme is introduced. In suitable regimes
the matrices behind the method are M-matrices, which supports positivity and monotonicity proper-
ties. The analysis proves that the method identifies the equilibria of the PDE model and preserves their
local asymptotic stability; the reproduction number is computed with the next-generation technique.
Moreover, the scheme is consistent, stable, and convergent—first order in time and second order in

space—providing a practical balance between accuracy and structure preservation.

Implementation details are also discussed. The discrete systems at each time step are solved with
a biconjugate-gradients-stabilized solver, and the experiments verify positivity, stability, and agree-

ment with theory in both disease-free and endemic regimes.

2.2 Article 2
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ABSTRACT

Background: We provide a compartmental model for the transmission of some contagious illnesses in
a population. The model is based on partial differential equations, and takes into account seven sub-
populations which are, concretely, susceptible, exposed, infected (asymptomatic or symptomatic), quar-
antined, recovered and vaccinated individuals along with migration. The goal is to propose and analyze
an efficient computer method which resembles the dynamical properties of the epidemiological model.

Materials and methods: A non-local approach is utilized for finding approximate solutions for the mathe-
matical model. To that end, a non-standard finite-difference technique is introduced. The finite-difference
scheme is a linearly implicit model which may be rewritten using a suitable matrix. Under suitable cir-
cumstances, the matrices representing the methodology are M-matrices.

Results: Analytically, the local asymptotic stability of the constant solutions is investigated and the next
generation matrix technique is employed to calculate the reproduction number. Computationally, the dy-
namical consistency of the method and the numerical efficiency are investigated rigorously. The method
is thoroughly examined for its convergence, stability, and consistency.

Conclusions: The theoretical analysis of the method shows that it is able to maintain the positivity of its
solutions and identify equilibria. The method’s local asymptotic stability properties are similar to those
of the continuous system. The analysis concludes that the numerical model is convergent, stable and
consistent, with linear order of convergence in the temporal domain and quadratic order of convergence
in the spatial variables. A computer implementation is used to confirm the mathematical properties, and
it confirms the ability in our scheme to preserve positivity, and identify equilibrium solutions and their
local asymptotic stability.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

During the final months in 2019, humanity began a struggle
against a new virus called SARS-CoV-2, which is a pathogen that

* Corresponding author at Department of Mathematics and Physics, Aguas- has caused almost 6.7 million human casualties around the world
calientes Autonomous University, 940 University Ave, Aguascalientes 20100, Mexico. until January 2023 [1]. This disease is known also as COVID-19, and
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it will be in the history annals along with others pandemics such
as the black plague, the smallpox and the Spanish flu among many
others [2]. It is worth mentioning that COVID-19 has not been as
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deadly in comparison to other illnesses [3-5]. The above situation
may be due to the fact that the population has better health and
sanitation conditions nowadays. In addition, it may be due to the
great advances in technology within the health sector [6,7]. In that
sense, humankind has been fortunate enough to be in a time when
the mortal consequences of the current pandemic have been min-
imized by many factors.

In Mexico, the initial confirmed of the existence of COVID-19
was reported on February 28th, 2020. The individual was an Ital-
ian citizen residing in the country [8]. Just a few weeks later, the
federal government of this country announced the first victim of
the disease on March 18, 2020 [8]. Based on the world panorama,
the government decided to start a quarantine period, in which all
the activities of a non-essential nature would be carried out at the
distance. Furthermore, certain mandatory precautions were put in
place, including regularly washing hands, using facial masks, and
keeping a personal separation of at least 1.5 meters from others.
Although these measures lasted for several months, it was impos-
sible to maintain them for a long period. Later on, it was decided
to employ a traffic-light system for the control of the disease: de-
pending on the color of the traffic light, certain tasks were allowed
or prohibited [9]. From the beginning of the disease to January
2023, almost 331,000 people have died in this country. In fact, Jan-
uary 2021 was the month reporting the most deaths with almost
33,000 individuals, representing around 10% of the total deaths to
this day [10].

As we mentioned above, all the countries around the world suf-
fered a lot of harsh consequences derived from this new disease.
According to data from Johns Hopkins University [1], some nations
have suffered to a greater or lesser degree. However, one thing is
very clear: since vaccinations began, COVID-19-related deaths have
drastically decreased [11]. As we previously pointed out, a possible
reason why this pandemic was not as deadly as others may be be-
cause of the technological progress in the field of medicine (which
is abysmal compared to the situation some centuries ago [2]). And
it is a fact that the vaccines against the SARS-CoV-2 virus were
developed in record time [12], something that perhaps would not
have been possible many years ago. In addition, the vaccine has
been effective for all detected variants [13]. Despite the fact that
we already have the vaccine and that the number of infections and
deaths have decreased by a large percentage, it is very important
to continue understanding the dynamics of this and other lethal
disease, and be ready when the next pandemic hits [14].

Surely, COVID-19 is not be the first nor will be the last disease
to attack humanity. Thus, scientists must be ready to face the next
pandemic. Specifically, experts in the field of epidemiology are
continually refining and assessing their techniques and pushing the
boundaries of the field, to be ready for the potential outbreak of
subsequent illnesses [15]. It is worth remembering that epidemiol-
ogy is the field in science which studies occurrences, spreading and
causes of illnesses within human populations [16,17]. This branch
of science has experienced an increased popularity in recent years
due to the many diseases that have afflicted the human population.
Among those diseases, we can mention malaria [18], the HIN1 flu
[19,20] and currently COVID-19 [21]. Moreover, epidemiology and
mathematics have come together to support this cause. In fact,
mathematical modeling and simulation have been tools used to
a great extent, in order to generate a general description of the
spreading of a disease. In such way, mathematical epidemiology
tries to predict the behavior of a disease in a population of human
individuals.

Within the frame of mathematical epidemiology, the so-called
compartment-based models have become a widely used technique
to represent the behavior of the spreading of a specific disease
within a population [22]. These models are adapted depending on
the characteristics of the disease under study [23]. In the scien-
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tific literature, there are a number of basic compartmental mod-
els available such as the SIR (susceptible-infected-recovered) model
[24], as well as more complex models such as the SEIQR which in-
cludes the quarantine compartment [25]. It is worth noting that
these models can be adjusted to enhance the explanations of the
phenomena [26]. Usually, this type of models are expressed as
nonlinear systems of ordinary differential equations [27], but it is
also possible to employ partial [28] or stochastic [29] differential
equations to that end. In particular, the advantage of using partial
differential equations is that they allow for modeling using two or
more independent variables, like space and time. In light of this
advantage, this manuscript presents a mathematical model using
partial differential equations to simulate the propagation of COVID-
19 within some human population, taking into account various re-
alistic factors.

The aim of this study is to develop a general model that can
be used to prescribe the transmission mechanisms for various ill-
nesses, including COVID-19. The mathematical model will con-
sider the presence of diffusion in two spatial variables, and var-
ious mechanisms of reaction will be taken into account. To that
end, various interactions between population compartments will
be considered, and we will use partial differential equations for a
precise mathematical description of the model in the spatial and
temporal variables. More specifically, our community is divided
into sub-populations of vaccinated, recovered, quarantined, asymp-
tomatic and symptomatic infected, exposed, and susceptible indi-
viduals. The model is a rather complex system which cannot be
solved exactly in general, that is why the need to provide a nu-
merical methodology to simulate it is justified. This paper is fo-
cused on presenting a computer scheme to simulate the dynam-
ics in our epidemiological model. The mathematical analysis of the
properties of the scheme will be discussed in detail, and various
simulations will be conducted to provide examples.

Methodologically, the computer technique used in this work
is based on a non-standard approach. It is worth pointing out
that this approach was popularized by Ronald E. Mickens in var-
ious manuscripts [30], and various other authors have applied
it successfully to solve numerically many mathematical problems
[31,32], including some complex epidemiological models [33] and
some other mathematical problems [34-37]. The present method-
ology follows a non-local perspective, which presents the advan-
tage of being able to conserve the positive character of the nu-
merical solutions. This is an important fact in view that the func-
tions involved in our model represent population sizes or densi-
ties. Moreover, this approach results in a linear discretization of the
model. In such way, the computer implementation of the scheme
is relatively easy to carry out, though the theoretical analysis of the
computer model is still challenging. However, we are able to estab-
lish mathematically the most important properties of the scheme.
In particular, the consistency, the stability and the convergence of
the methodology are proved rigorously, and some computational
simulations verify the validity of many of our theoretical results.

This manuscript is organized as follows. In Section 2, we in-
troduce the mathematical models investigated in this work. In
a first stage, a continuous model based in partial differential
equations is deduced from epidemiological assumptions. In such
way, a system of seven nonlinear partial differential equations is
obtained assuming the presence of spatial diffusion. Initial and
boundary conditions are imposed on the boundary of the two-
dimensional spatial domain. In addition, a computer method is de-
rived from the continuous model using a finite-difference method-
ology. For the sake of computational convenience, the scheme is
presented as a vector system which can be easily implemented
in a computer. Section 3 establishes the most important analyti-
cal and numerical results. Analytically, we obtain the basic repro-
duction number using the next generation matrix method, and we
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determine the disease-free and the endemic equilibria. Using non-
linear arguments, the local asymptotic stability of the equilibrium
points is elucidated. Numerically, the computer method is thor-
oughly analyzed. In particular, we show that the method is capable
of preserving the positivity, the equilibrium points and their local
asymptotic stability under the same conditions for which they hold
in the continuous case. Moreover, the consistency, the stability and
the convergence of the scheme are theoretically established. Some
computer simulations provided therein confirm our theoretical re-
sults. This work closes with some concluding remarks.

2. Methods
2.1. Epidemiological model

In this initial stage, a compartment mathematical model is in-
troduced to depict the spreading of a sickness based on epidemio-
logical assumptions. We will have in mind a group of people who
are prone to catching some infectious disease. The variable P(x,t)
symbolizes the number of people at time t > 0 and a spatial point
X = (x,y) € R%. The specific vulnerable society is also divided into
different sub-groups or categories:

e V - Vaccinated category.

e S - Susceptible category.

o E - Exposed category.

o [ - Symptomatic infected category.
o I, - Asymptomatic infected category.
e Q - Quarantined category.

e R - Recovered category.

Therefore, the following equation is fulfilled at any point x €
and any time t > 0:

P=S+E+Ii+I+Q+R+V. (2.1)

To make the epidemiological model more accurate, this study con-
siders constant rates of migration into the population. Those pa-
rameters are represented by ms, my, mg, mys, mg, my,, and mg, re-
spectively, which indicate the number of individuals moving into
the categories of vaccinated, susceptible, exposed, symptomatic,
asymptomatic, quarantined, and recovered people.

All the terms will have non-negative real numbers. The popula-
tion is assumed to have death and birth rates, represented with
constants u and A respectively. Three scenarios are considered
in which susceptible individuals can become exposed. The first of
which is when these persons get in touch with exposed subjects.
This happens at a transmission velocity equal to «. A second case
is if they are in contact with asymptomatic individual at a rate S.
This scenario is supported by the fact that some diseases produce
no symptoms on some individuals, but those subjects are carriers
of the pathogen. The last case occurs when individuals have con-
tact with people who are already infected by the disease, in which
case the propagation will have a rate equal y. We will assume also
that there is a vaccine available to control the propagation. More
specifically, susceptible individuals will be vaccinated at a rate rep-
resented by w. To produce an even more realistic scenario, we
also suppose that the vaccines are not 100% effective and, in some
cases, the individuals may lose their immunity. To accomplish that,
vaccinated people will become susceptible one more time at a rate
given by the value of the constant .

Exposed individuals have three potential outcomes. One option
is to quarantine, either when they know they are infected, or sim-
ply for precautionary measures. This occurs at a rate represented
by ¢. The other two options are becoming asymptomatic infected
or symptomatic infected, at rates § and ¢, respectively. It is impor-
tant to mention here that we assume that the individuals do the
test and the proofs report that they are positive for the infectious
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Table 1
Symbols used and their corresponding definitions for comprehending all the inter-
connections within the proposed model.

Parameter  Description

ms Rate of immigration individuals to susceptible class.

my Rate of immigration individuals to vaccinated class.

mg Rate of immigration individuals to exposed class.

my, Rate of immigration individuals to symptomatic infected class.

my, Rate of immigration individuals to asymptomatic infected class.

mq Rate of immigration individuals to quarantine class.

mg Rate of immigration individuals to recovered class.

A Rate of recruitment for individuals prone to contracting the
disease.

T Proportion of individuals to susceptible category from
vaccinated.

w Proportion of individuals to vaccinated category from
susceptible.

o Proportion of contact enclosed by exposed and susceptible
category.

y Proportion of contact enclosed by susceptible and symptomatic
category.

B Proportion of contact enclosed by susceptible and
asymptomatic category.

4 Proportion of individuals from exposed to quarantine category.

€ Proportion of individuals from exposed to symptomatic
infected category.

§ Proportion of individuals to asymptomatic infected category
from exposed.

n Proportion of individuals from asymptomatic infected to
recover category.

L Proportion of individuals from quarantine to recover category.

v Deaths for the disease in quarantine category.

K Proportion of individuals from symptomatic infected to
quarantine category.

P Deaths for the disease in symptomatic infected category.

6 Proportion of recovery individuals from symptomatic infected
category.

o Proportion of individuals who lost immunity and return to
susceptible category.

% Deaths due to causes unrelated to the disease.

disease. Some people may or may not have symptoms, and this
obviously depends strongly on the particular type of illness un-
der study. In fact, we suppose that asymptomatic people recover
at rate of n by natural causes.

Additionally, the population inside the symptomatic category
will be transferred to the confined state at a rate of «. It is impor-
tant to note that the quarantined state can be assumed for mild
or severe symptoms. However, depending on whether they were
quarantined or symptomatic, they can only transition to the recov-
ered condition at a rate of ¢ or 6, respectively. We will use v to
indicate the rates at which quarantined individuals succumb to the
infectious disease, and p for the people who die as a consequence
of the illness. In addition, since the body does not acquire a perma-
nent immunity to the illness, individuals who have recovered may
re-enter the susceptible class at a rate of o. For easy reference,
the epidemiological parameters employed herein are displayed in
Table 1.

A visually convenient flowchart is shown in Fig. 1, which de-
picts the epidemiological postulation discussed in this work. These
assumptions are used to simulate the propagation of the illness.
Mathematically, we present the next system of nonlinear partial
differential equations:

% = A+ mg+0R—aSE — BSIy — ySIs + TV — (0 + 11)S + ds VS,
oV
ot
OE
at
oy
ot

=my +wS— (T + w)V +dy V3V,
=mg + aSE + BSIy + ySIs — (£ + € + 8 + )E + dg V2E,

=my, +8E — ( + p)la + dj, V2y,
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Fig. 1. A flowchart that graphically illustrates mechanisms involved in the trans-
mission of a disease, as supposed in the present manuscript.

aa—? =mq+§E+K15—(L+U+H«)Q+dQV2Q,

al
ZTtS = my, +€E — (k + 0 +6 + wls +d15V2[5,
R
% =mg +1Q + 05 + nly — (o + )R + dg V2R. (2.2)

Obviously, the constants ds, dy, dg, dj,, do, di; and dg represent
non-negative diffusion coefficients.

The set of equations presented here is a nonlinearly coupled
system of differential equations in partial derivatives that are de-
fined on a particular domain in space and time. The seven func-
tions in the model are all real functions, and the domain of def-
inition is an open, bounded subset of a two-dimensional space.
So, this is defined as (x,t) € Q x [0, 00) where Q € R2. Addition-
ally, we will add homogeneous Dirichlet data at the boundary of
2, along with conditions at the time t = 0. To be more specific, we
will assume that the following requirements are satisfied:

U, 0)=U%%), VxeQ,

Ux,t)=0, V(x,t) € 022 x [0, 00).
Let us use the function U as any of the operators S, V, E, I4, Q, Is, or
R, and S, V0, E%, 19, Q0 12, and RO are real-valued functions defined

in our domain 2. Moreover, the symbol 92 is used to represent
the boundary of €.

(2.3)

2.2. Computer method

Next, we present a numerical method using discrete opera-
tors to approximate the solutions of the epidemiological proposed
model 2.2. It is worthy to mention that the steps followed to re-
duce the mathematical model to a numerical one were inspired by
the use of the non-standard technique popularized by R. E. Mick-
ens in various of his influential articles [30,38,39]. For the sake
of convenience, we will approximate the numeric model within
some fixed temporal period, namely, within the set [0, T] for T
R*. From the spatial point of view, we shall focus just on one
rectangle-related domain denoted by €2 = [a, b] x [c, d]. Let us use
M, N, K € N to represent amount of subintervals for the variables x,
y and t, respectively. Fix now uniform partitions of the form
A=Xg <X <X <...<Xm<...<Xym_1<Xuy=Dh,
C=Yo<Y1<)2<.

O=th<t; <t <...

o< Yn<...<XN21 <yN=d,

< tK—l < tK =T. (24)

For convenience, the associated partition norms in the x, y
and t variables will be the positive real numbers Ax = (b —a)/M,
Ay = (d —c)/N and At = T/N, respectively. Obviously, all of them
are positive real numbers. Now, we set up the discrete terminol-
ogy that is required for approximating the dynamics for the differ-
ential system (2.2). In a discrete setting, the continuous functions

<tk<...
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S, E, Is, Is, Q, R, V, and P shall be represented in the sequel by
the lower-case letters s, e, ia, is, g, I, v, and p, respectively. Assume
that U =S,E,Is,I4,Q,R,V and u =s, e, is, ia, q, 1, v. In what follows,
we will agree that

Urkn,n = U(xm,yn, tk), (25)

where m=0,1,2,.... M—1, M, n=0,1,2,...,N-1,N,
k=0,1,2...,K—1,K. Moreover, we introduce the following
discrete finite-difference linear operators:

6xu£§1,n = ul:n—l,n + ulr<n+1,n’ (2.6)
Gyl o = Uy 1 + Uy s (2.7)
feu,, = M (2.8)
Set = ki — k), 29)
Sy, = (Alw(lﬂ‘mq —2uk kD), (2.10)
SR = s U1 = 2+ b 1.0 @)

Needless to mention that operators (2.9)-(2.11) provide a con-
sistent approximation to suitable continuous differential operators.
The fully discretized methodology used to approximation the dis-
cretized solutions uses the discrete nomenclature used in this stage
(2.2) at time t;, and spatial node (xm,yn). Concretely, the method is
provided by the equations in the algebraic coupled nonlinear sys-
tem

Sk k k+1,k k+1 5k k+15k
‘stm,n =A+ ms + OTmn— Sy n€mn — :Bsm,nlAm_n - ysm,nlSm.n

+ TV — (@ + )KL+ ds (82 + 82) sk .
Sevk n = my + sk, — (v + vk + dy (82 + 82) vk,
Srek,n = mp + s, ek, + sk, ik + sk ik

—(§ +€+8+p)ektl +dg (82 + 82)fucek, .
Siik = my, + 86k, — (n + Wik +d;, (82 + 8D e
Seqk n=mo + ek + ik — (Lt v+ p)gk)

+do (82 + 8 fuedl .
Sl =y + ek — (W+0+p+ )i +di (82 + 8k .

K K -k -k k+1
OtTmn = MR+ LGy + st‘m.n +nig, .~ (0 + ryh

+dr(82 + 82) fucrk, . (2.12)

It is clear that this discretization is nonstandard because it pro-
vides non-local approximations for some terms in the scheme. On
the edge of €2, discrete homogeneous Dirichlet conditions will then
be applied. To put it another way, we shall impose discrete initial-
boundary constraints as follows:

w,=U%, Vm=12,..M-1,
Vn=1,2,...,N—-1,
uk =0, Vk=0,1,2,....,K—1,K and

[V(m,0), (m,N), m=0,1,2,....M—1,M, or
Y(0,n),(M,n), n=0,1,...,N—1,N].

(2.13)
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Notice that the algebraic system (2.12) can be presented in lin-
ear form as follows:

bs nk —-a Sk+1 Rs k+1 _Rs k+1 _R's k+1 _R's k+1

m,n,k°m,n m+1n mln ymn+1 ymn 1’

blr;1 nk — aVm n, kka Ruvﬁ*::—]] n_ valr;lﬂl n R;/)Uﬁrrlﬁ-l - R;vfnJrr]l 1

e P k+1 e ,k+1 e ok+1 e k+1 e k+1
bmnk mnke R m+1n R mln Ry m,n+1 Ry mn-1°
bl o=l s — Reianih o — Reiag o — Riianaie — Riiagn_ 1.

q Y k+1 _ pqk+1 q 2k+1 k+1  _ pgqk+1
bm nk = am n, kqm n RquH n qum 1n~ qm n+1 R qm n-1°

is Al k+1 is s k+1 is: k+1 is: k+1 is s k+1
bmnk amnlemn R lSm-Hn*R Ism— lnfR ISmny1 — R ISmn-1-

T r k+1 T I<+1 T l<+1 T k+l r I<+1
bmnk_amnkmn RXm-Hn_RXmln_Ry mn+l_Rymn 1°

(2.14)

where

a5, = 1+2R + 2R + At(aek , + Bif  +yik +w+p).
A =1+ 2R+ 2Ry + At(T + p),
al,, =1+2R+ 2R + At({ +€+8+ ),
ap =1 2R¢ + 2R + Aty + 1),
al =1+ 2R+ 2R+ At(+ v+ ),
amnk_1+2R15+2R'5+At(,<+p+9+m
amvn’k =1+2R, + ZR; + At(o + ). (2.15)
and

ni = At(A +mg+ otk + TR )+ Dsst .

nk = At(my + wsk ) + Duvf, .

k

nk — = At <mE + as]rcn,ne’ifn,n + :lercn,niAm,n T )/S’z;l nlsm n) + De m,n>

bi

mnk_At m1A+8€ )+D1A1Amn’
mnk = At('ﬂnQ""gemn +K15m n) +qu,1;1.n7
bis

m,n,k

b; nk = At<mR + Lqm n +015m nt nl/\m n) +Drrlr<n,n'

= At(m,s + eeﬁm) + Digislrcn,n:
(2.16)

Moreover, we used the computational parameters and operators

R
* T 2 (Ax)?
R
Y2 (Ap)Y

Dyutf, , = [(1 = 2RY — 2RY) + RYGy + R,y Jufy, , (217)
In the numerical model, each recursive equation can be ex-
pressed in vector form alternatively as
k+1
Azu(Jr bu

k>

(2.18)

where uf+! and b} are, respectively, the real vectors of length
equal to (M +1)(N + 1) given by

k+1 _ (q,k+1 5 k+1 k+1 5 k+1 5 k+1 k+1
ut = (U Up'y s Ugly s Ui s U U
k+1 5 k+1 k+1
JUpgsUpps s U (2.19)

and
by =(0,0,...,0,0,
~———

(N+1)-times
u u

0. bl,l,k’ T bl,N—Lk’ 0.
u u

0, b2.1,k’ ceco b2,N—1‘k’ 0,
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bu

M-1,N-1.k’ 0,

0. bM 1.1,k -

0,0,...,0,0),

N—
(n+1)-times

for each k=0,1,2,...,K—1 and u any of the discrete functions
S, €, ia, s, g,  or v. Moreover, the matrix A} is the square block
matrix with number of rows equal to (N+1)(M + 1), given as

(2.20)

o 0 0 - 0 0 0
D! o - 0 0 0
o [e*] |p 0 0 o
|0 E

5555
0000.--00

(2.21)

The identity matrix is indicated by I and it is has dimension N + 1.
The matrices D, E¥ both have similar size as I, and are, respec-
tively, the tridiagonal and diagonal matrices given below:

1 0 0 0 0 0 0
—R} ag] 1k -R} 0 0 0 0
0 fR“ ato. Ry EEE 0 0 0
DY =
k X X .
0 0 0 0 -R; ay ., K
0 0 0 0 0 0 1
(2.22)
and
0 0 0 0 0
0 —RY 0 0 0
0 0 —RY 0 0
EY = (2.23)
0 0 0 -~ —R¢ O
0 0 0 e 0 0

It is important to realize that the identity matrix appears at the
beginning and at the end of the main diagonal of matrix A. This
inclusion is to account for the homogeneous Dirichlet data at the
vertical boundaries. Observe that other of the remaining entries on
the main diagonal of matrix A} are equal to 1. These entries are as-
sociated to the homogeneous Dirichlet boundary data at the hori-
zontal boundaries of 2. All remaining entries obviously correspond
to the discretization at the inner nodes of the spatial domain.

In the case that ef, ,, if and i are non-negative, it is worth
noting that each of the matrices Aﬁ' is an M-matrix, for each k =
0,1,...,K-1, and u being 1, s, q, e, is, iy or v. The term M-matrix
refers to a real and square matrix M which satisfies the criteria
listed below [40]:

1. The off-diagonal components are negative numbers.
2. Entries of the principal diagonal are all positive.
3. The matrix is strictly diagonally dominant.

As a matter of fact, these type of matrices have the property
of being non-singular and having positive real numbers as entries
in their inverses [40]. The non-negativity preservation for the ap-
proximations obtained through the computer methodology will be
demonstrated by utilizing the previously stated property on M-
matrices. Evidently, this is a crucial aspect of the numerical model,
given that the solutions for the continuous system correspond to
population sizes.
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3. Results

In this section, we showcase the key analytical and numerical
outcomes linked to the epidemiological model (2.2) and its non-
standard discretization (2.12). We provide a fresh start by deriving
rigorously some results on the analytical solutions for our mathe-
matical model.

3.1. Analytical outcomes

In a first stage, the equilibrium solutions for system (2.2) will
be derived. First, we determine the equilibrium that exists when
there is no sickness, which is a steady-state solution to the mathe-
matical model. In particular, this implies that E =14 =Ig=Q =R =
0. As a consequence, the epidemiological model leads to the fol-
lowing algebraic system of equations:

A+ms+tV-S(u+w) =0,

my + @S — V(i +1) ) (3.1)

From this system, we can find the constants S and V algebraically.
This leads us to calculate the equilibrium point for the case with-
out sickness, which is

Pore = (S0, %.0,0,0,0,0), (3.2)

where

S, = (U +7)(A +ms) + Tmy

T T autern

Vo = (,u+a))mv+a)(m5+A). (3'3)
i +o+71)

Next, we calculate the basic reproduction number of (2.2). This
number is denoted by %;. To that end, we will apply the technique
of the next generation matrix. In that way,

Ry = p(FV1). (3.4)

The largest absolute value of an eigenvalue is represented by the
symbol p, which stands for the spectral radius operator of a matrix
[41]. To find our matrices F and V, we focus on the compartments
in the mathematical model that impact the spreading, concretely,
the exposed, asymptomatic, quarantined, and symptomatic individ-
uals. Their behavior is controlled by the following system:

0E
o =M +aSE + BSIy + ySIs — (¢ + € + 8 + W)E + de V2E,

al

8—? =my, +8E — (1 + )y + dy, V21,

0Q _ E+«l doV?

ar = Mo+ E+kls— L+ v+ pu)Q+deV7Q,

ol

8—; =my +€E— (k4 p+0 + w)ls + d;, V2. (3.5)

Using results derived in [42,43], the determination of the ba-
sic reproductive number can be obtained by omitting the diffusion
terms in system (3.5). In that way, the system of PDEs becomes a
mathematical model consisting of the simpler model

dE

E=mE+aSE+,BSIA+ySIs—(§+e+8+u)E,

dl,

d—? :m1A+8E—(77+,u)IA,

d

98 _ g+ CE ks — v+ 0.

dls

i =m+€E—(k+p+0+ 1. (3.6)

From (3.6), we introduce two vectors. The first is denoted by .7,
and it considers only those terms where infection exists. The sec-
ond will be represented by ¥, and will contain all the remaining
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terms with opposite sign. More precisely, let us define

oSE + BSIy + ySIs

7= : (37)
0
and
—mpg+({ +€+6+ RE
v —my, = 8E + (1 + w)la (3.8)

-mg —CE—«kli+(+v+un)Q
—my, —€E+ (kK +p+0 + s

Let V and F represent, respectively, the Jacobians associated to
the vectors 7 and .# calculated on the constant solution where
the disease does not exists. Thus, we find that

oS BS 0 yS
0 0 0 O
F= 0 R (3.9)
0 0O 0 O
and
C+e+d+nu 0 0 0
v — = n+u 0 0
] - 0 L+U+ 1 —K
—€ 0 0 K+p+0+ 1
(3.10)
As a consequence,
gn &2 0 gn
1_| 0 0 0 O
FiElie . o o | (3.11)
0 0 0 O

where g11, g1 and gy4 are real numbers that depend on the model
parameters. As a consequence, the basic reproductive number sat-
isfies Zy = |g11| or, more precisely,

_ Sol(k +n+p+0) (@ + 1)+ B9) +ey(n+ W]

W M+m)@+etmtl)k+mtp+0)

(312)

Here, we may substitute the value for S =Sy from (3.3) into (3.12).
Thus, only constants from the proposed model will be used to gen-
erate the expression for %Zy. Theorem 1 presents the study on the
local asymptotic stability of this constant solution.

Theorem 1. The equilibrium of the model (2.2) in the case when the
disease is absent is locally asymptotically stable whenever %y < 1. O

Proof. The Jacobian matrix is represented by J, and evaluated for
the system (2.2) when the disease is not present. After some cal-
culations, it can be readily checked that J is given by

Jn T —aS -BS 0 —yS o
w J22 0 0 0 0 0
QE+Bla+yls 0 |33 0 0 0 0
J= 0 0 8 Jaa 0 0 0|,
0 0 ¢ 0 Js « 0
0 0 € 0 0  Jss 0
0 0 0 n t 0  Jn
(3.13)
where
Jn=—aE - Bly—yls — (@ + ),
Joo=—(T + ).

J3=aS—({+€+06+ ),
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Jaa =+ ),

Jss =—(L+v+p),

Jos = -+ p+0+ ),

Jim=—(0 + ). (3.14)

Suppose that A is any complex eigenvalue of J. It is straightforward
to verify that M = | — Al, with

My T -aS  —-fS 0 -yS o
w Ma, 0 0 0 0 0
oF + ﬂIA + ]/15 0 Ms3 0 0 0 0
M= 0 0 ) \vm 0 0 0
0 0 ; 0 M55 K 0
0 0 € 0 0 Mes 0
0 0 0 n L 0 M77
(3.15)
In this equation, we observe the following conventions:
M1] =—O{E—ﬁIA—J/Is— (C()+M) —)\.,
My = —(T + 1) — A,
M33 =(¥S—(§+€+8+M)—)\.,
Myg = —(u+1n) — A,
Mss = —(L+v+1)— A,
Mes = —(L+p + Kk +0) -2,
M77=—(L+0)—A. (3.16)

It is possible to verify through the use of the properties for deter-
minants that

detM = (M]]Mzz - C()‘L')M33M44M55M55M77. (317)

Equating the determinant to zero and performing some adequate
mathematical calculations yields

. :a[(u+t)(A+m5)+rmv

w4+ w+1)
Ay =—-(Mm+np).
Az=—(+v+u),
hy=—(K+p+0+p),
As=—(L+0). (3.18)
Notice that Ay, A3, A4 and A5 are negative. Moreover, A is also
negative if Zy < 1 (see Appendix A for the calculations). The miss-

ing eigenvalues will be calculated by utilizing the expression of a
second order polynomial, that is,

}—(§+e+5+ul

P4 (@+T+2UA+ (U +T + @) =0. (3.19)
More precisely,

—_ 2 2
hor = (‘””*2““2“‘“ +T+or (3.20)

As a result, Ag and A; are negative. To summarize our findings, if
%o < 1, than all eigenvalues are negative, whence the conclusion
of this proposition follows. O

To determine the endemic equilibrium solution, let us suppose
a constant solution for (2.2). This solution will take the expression
R(t) =R*, Is(t) =I5, Q(t) = Q*, Ia(t) =1}, V(t) =V*, E(t) = E* and
S(t) = S*. Here, S*, E*, V*, I;, Q% I¢ and R* are numbers which are
greater than or equal to zero. Conveniently agree that

Peg = (%, V*,E*, I;,Q*, 5, R"). (3.21)
Under these circumstances, the main model (2.2) can be changed
to a particular algebraic system. It is possible to check that those
solutions satisfy the implicit system

_ A+mg+oR +TV*

Tt o+ aEr+ B+ yIE

s
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yr = MvtS'e
n+T
pr_ M+ BS*Ik + v S*I¢
T dte+pu+C—aS
. m,A +8E*
=
n+u
0" = mq + k*Is + CE*
T i+ up+vu
= my, 4 €E*
ST Kk+pu+p+0°
ge — Mr+ Nl +Q7 4+ 0I5 (3.22)
n+o

An explicit form of the solutions is available using software for
symbolic algebra. We have not presented those solutions in view
that their expressions are too long to be provided herein.

We state now the local asymptotic stability property for our
point Pgg in our next theorem. The demonstration is similar to that
for Theorem 1 and, thus, to avoid duplication of arguments, we
omit the proof here.

Theorem 2. In the system (2.2), local asymptotic stability for the en-
demic constant solution is observed when %o > 1. O

Before closing this stage of our work, we provide the parametric
sensitivity analysis for system (2.2). The next expression is used in
order to calculate it:

¢ 0%
= %D e
Notice then that

Ay (3.23)

(K+pu+p+0)n+pwo

A‘”‘(ﬂ8+a(n+u))(fc+u+p+9)+ey(u+n)’
A — BS(k +p+p+0)
P Bs+a+ )k +pu+p+0)+ey(n+p)
A — ey(n+u)
T BS+am+ )k +pu+p+0) +ey(n+p)
A —Bénk + L +p+6)
T+ ey )+ (an+oapn+ B8k +pu+p+0)
Am _ myT ]
YomyTt 4+ (A +ms)(u+T)
A — Alp+1)
ATyt (A+mo)(w+ 1)
szi,
nw+ow+Tt
A :%C
T Ste+pu+’
Anm, ms(p +7) (3.24)

Tomyt(A+mg)(n+T)
Observe that the constants Aq, Ag, Ay, Am,, Ax and Apg are pos-
itive numbers. It can be checked also that A;, Ac and Ag are pos-
itive. The expressions for these values have been omitted in view
that they are too long to be presented herein. The constants A;, A,
and A, are negative, and so are Ay, A¢, Ap and Ay. The remaining
constants Ay are not presented here, but they are actually equal to
zero. From this sensitivity analysis, we deduce that %, is sensitive
to values of the variables «, 8, y, 8, €, A, T, ms and my.

3.2. Numerical outcomes
We outline in this section the most significant theoretical find-

ings related to the computational approach (2.12). To demonstrate
the accuracy of the analytical and numerical properties of our
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models, some simulations will be performed. The first result con-
firms the presence of positive solutions for the computer method
(2.12).

Theorem 3. Suppose that SO, VO E® 19, Q0 1. R®: Q@ — R are non-
negative. If

2R+ 2RY < 1 (3.25)

for each u=s,e, iy, q,is, 1, v, then the solution functions obtained
through the computational method (2.12) are also non-negative.

Proof. This proof will make use of an inductive argument. For
this purpose, note that the initial approximations u%vn are all non-
negative because the initial data are non-negative, for each u =
s,e,i4,q, is, 1, V. So, assume that it is true that u¥ , > 0 for some
keNu{0}, for all m=0,1,...,M and n=0,1,...,N, and all grid
functions u =s, e, is, q. is. 7, v. This implies that all the matrices A}
are M-matrices and, moreover, the components of all the vectors
b“m_nvk are non-negative numbers by virtue of the fact that the in-
equality (3.25) is satisfied. The positivity property of the inverses
of M-matrices and the identity (2.18) assure now that the real vec-

tor
ukl = (A6~ Tb (3.26)

is non-negative, for each u =s, e, ia, q,is, 1, v. The conclusion fol-
lows then from mathematical induction. O

Our next result establishes that the finite-difference method
(2.12) has the same equilibrium solutions as those from the math-
ematical model (2.2). Additionally, the numerical approach keeps
the stability characteristics of such equilibrium solutions.

Theorem 4. The equilibrium solutions for the computer method
(2.12) are Pppg and Pgg. Moreover,

(a) if %o < 1, Pprg is locally asymptotically stable.
(b) when % > 1, P is locally asymptotically stable.

Proof. This result is reached by noting that the nonlinear analysis
of the computer method (2.12) is exactly the same as that of the
mathematical model (2.2). O

Considering this results, the proposed computer method pre-
sented in this report is a dynamically consistent discretization of
the epidemiological system (2.2). Only the numerical properties for
our method need to be established now. The consistency of the
finite-difference method will then be discussed in a first step. We
introduce the next continuous operators in order to examine the
consistency:

Sg:%—A—mg—UR-l-OCSE"'/SSIA‘FySIS
— TV + (04 w)S — ds VS,
v = %it/—mv—wS—&-(r—&-/L)V—deZV’
Ef:%—mE—OlSE—,BSIA_VSIS
+ (£ +€+8+1E—dg V2E,
al
WL = Tf—m,A —8E+ (0 + )l — dy, V2,
aQ 2
0f = 55 —mg —(E—Kls+ L+ U+ 1)Q ~ doVQ.
ol
1 :87;—m,s—6E+(K+,0+9+M)Is—dlsvzls,
o2 = IR g1~ Ok~ nly+ (0 + jOR- VPR (3.27)

All these operators are considered functions of (x,t). For
simplification purposes, agree that Uc.(fr’,‘,ﬂ:cf(xm,yn,tk), for
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each U=SV,E, 14,,Q,Is,R, m=0,1,...,M,n=0,1,...,N and k =
0,1,...,K—-1.
Let us consider also the following discrete operators, for k =
0,1,2,..., K-1,m=0,1,2,..., Mandn=0,1,2,..., N:
sLiin = 8eShin — A — ms — 8RYy , + aSHAES , + BSKLL
+SkakS,, = Wi — @+ SKy — VIS
yLS T = SVt —my — wSK L+ (T4 VL - V2L
eLin = SERS —me — oSk (EX — BSk ALK — ¥ Skl
+ (¢ +e€+8+ uEKT — V2ERH,
biin = Bulfy) —my, = 8ER (1 + )l — V2,
oLkl = 8iQKN —mg — CEK , —klg + (t+ v+ p)Qk, — V2QKH,
LK) = S —my — €K+ (K + o+ 0 + I - V2K
RLin = SRy —mg = 1Qf , — 0I5, = I+ (0 + RN — VIR
(3.28)

Here, we let

V2URT = dy (82 + 82) U, . (3229)

Theorem 5. Suppose that S.E.Iy.Is,Q.R.V € CyZ (2 x [0, T]). Then
there is some C > 0 independently from At, Ax and Ay, which satis-

fies
ozl — uLkHY| < C(AE + (A%)? + (AY)?), (3.30)

for all the indexes m=0,1,2,..., M, n=0,1,2,..., N and k=
0,1,2,....K-1.

Proof. Notice that the triangle inequality and some algebraic sim-
plifications yield

as 2
|5$nl§ﬁ11 — sliin ‘ = &(me;u te1) — (Stsﬁfr}

+ (@[ES |+ BIE [+ VI |+ o+ w)|Sky — Sk |

aizs(x t B S2gk+1 LZS(X trer) — S2gk+1
2 X Vs L X 2m,n 3y2 ns Yn, Lt yom,n |»

(3.31)

+ +

for each k=0,1,2,...,K-1, m=0,1,2,...M and n=
0,1,2,...,N. The regularity assumption on the functions im-
plies that, for some K, Kj,, K. > 0 independently from At, Ax and
Ay, the next relations hold:

|Efal < K,
I, | <Ki,.
I, | < K, (3.32)

fork=0,1,2,...,K,m=0,1,2,...,Mand n=0,1,2,...,N. Using
Taylor’s theorem, there are constants C;,C;,C3,C4 > 0 which are
also independent from the computational parameters such that, for
each k, m and n, the following are satisfied:

as <
‘at(xns,\’n» tis1) — 5[55;4?; <G At,
|Skin = Skn| < QAL

REN a9 ~
W(anyn» biy1) — 83/“5:;1,71 = C3[At + (AX)Z]a

REN

gy Yt = 82k, | < Ga[ At + (Ay)?]. (3.33)
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Let us define

Cs = max {C], (O(KE + ,BKIA)/K]S +w + M)Cz, G, C4} (334)

It is obvious that Cs >0 is independent from At, Ax and Ay.
Moreover, the inequality (3.31) implies that
|s 2K — LK | < G(AL+ (A%)? + (AY)?), (3.35)

for k=0,1,2,...,K,m=0,1,2,...,Mand n=0,1,2,...,N. Simi-
larly, it is possible to verify that there are non-negative constants
Cv, G, G, Cq, G5 and Cg which are independent from the numer-
ical step sizes, with the properties that the following inequalities
hold uniformly over all k, m and n:

|vr5fn’§,+r1] —v LK | <G (AL + (A% + (AY)?).
|Ef,m] —E L’,§1+r,1| <G (At + (Ax)? + (AY)?),
|2t =1, L] < G (AL + (A%)? + (Ay)?),
ozt —a Lifa| = Co(At + (AX)? + (Ap)?),
|zt =1 Liia | < Go(AL+ (AX)? + (Ay)?),
|rZltl —R L] < GROAE + (AX)? + (AY)?). (3.36)

If C = max{Cs, Gy, C¢, G, Co, G5, Cr}, then the conclusion of this re-
sult is readily satisfied. O

We now concentrate on the stability and convergence of model
(2.12). The discrete form of Gronwall’s inequality (a well-known re-
sult from analysis) will be essential in reaching those properties
[44].

Lemma 1. Let (,0”){3=0 and (0)")1,;]:0 be arrays of non-negative num-
bers, and let C > 0 satisfy

k-1
ot < pb+Cr Yy ok, Vke{l.....N}.
n=0

Then w" < p"e for each n< {0,1,...,N}. O

(3.37)

For the mathematical model, we take into consideration two
sets of initial data (2.2). They will be represented, respectively, by

PO = (S% VO, E 19,Q0% I2,RY),

PO = (.99, B, 13, Q°. 1. RY). (3.38)
The components of these vectors are obviously non-negative real
functions with domain 2. The numerical solutions correspond-
ing to the initial data P® and P° will be denoted, respectively,
by p=(s.v.e. i q.is. 1) and p= (5, D, &, 104, q. 15, 7). Notice that the
former solution satisfies the computer method (2.12), while the
latter satisfies the following system, for each k=0,1,...,K -1,
m=0,1,.... Mand n=0,1,...,N:

S ok ~k ck+15k ck+13k k+13k
stm,n =A+ms+ OTmn — OSyn€mn — IBSm,nlAmn - ysm.nlS,,,,,,

+ Tl — (@ + )Si + VIS,

Mk ck Mk+1 72 5k+1
tUmn = My + Sy — (t+ /’L)Um_*.—n + Vvunj.—n7

S 5 k sk k Gk ok Gk
8tem,n = Mg + Sy 1€ + IBSm.nlAm_,l + Vsm.nlsmn

sk+1 72 5k+1
—(C+e+d+ ey, + Ve,

2;1<+1
ia"Amn’

Sfﬂf{mm =my, + a'élgnn - (77 + M)?/;;:}I + ﬁ
S8t =M + 08 +kTE — (L+ U+ WG + VG,

27k+1
is"Smn’

Sk =my +edl, — (k+p+0+mE 4V

Computer Methods and Programs in Biomedicine 236 (2023) 107526

S =k ~k k 3k ~k+1 72 =k+1
OcFmn = Mg + LGy + stm +niy — (0 + Wi + Vit

(3.39)
For the sake of simplification, we introduce following numbers
U‘grﬁ‘l,n = u:;.n - f”ﬁmv (3.40)

where u=s,v,e,ia, q, s, T.

For the remainder of this manuscript, we will suppose that
S,E,Is,Is,Q, R,V € Cg2(Q2 x [0, T]). The subsequent theorem, which
provides the stability features of the numerical model, will follow
this notation (2.12). Moreover, we will require the following addi-
tional operators:

R uk n— uk
Sty = (3.41)
. uk o —uk
Syl = —HE T8 A Ly (3.42)

Additionally, we concur that the Euclidean norm of u and the inner
product of u and v (when they are real vectors of the same size N)
are, respectively,

N

lul3 = 3 fu?, (343)
i=1
N

(u, U) = Z u;v;. (344)
i=1

Using this notation, the Cauchy-Schwartz and Young’s inequalities
are given, respectively, by

23 (3.45)

[(w, v)| < llull2[lv]

1 1
(w0} = 5 lull3 + 5 3. (3.46)

Theorem 6. Stability in the Euclidean norm of the computer method-
ology can be ensured whenever At is sufficiently small.

Proof. In this proof, the parameter C will denote a non-negative
constant which does not depend on the computational parameters,
and which may be different in each case. Taking the difference be-
tween the first equation in system (2.12) and the first equation of
(3.39), one readily shows that the next discrete equality holds:
SsEX = ek — y (sl _ g1y 4 7, o

e (a) + M)38k+1 e, a(5k+lek i §k+l€ﬁ1_n)

— B(s*Thk — SN 4 dg (87 + 62) furse. (3.47)

It is now possible to verify that the subsequent identities are sat-
isfied:

ZAt(S[SEk, ﬂt58k> = ”sBkH ”% - ||sf9k||%? (3.48)

(82 + 82 ek, furse®) = —(||Sx;ztssk||% + ||Sy/:c[se’<||§). (3.49)

Moreover, the following equations hold component-wise:
k+1:k  sk+15k _ ok+1:k  k+1. ok
ST = § g = g8 g — §T ek,

skilok _ ghtlgh _ chtlph _ gkt gk

Sk+l l,lfx _ §f<+]’l:7/§ — 58k+1 l/lg _ 5~k+1iA8k~ (350)
Let then m be any number in {0, 1,...,K — 1}. Calculate summa-

tion among all the indexes k € {0, 1, ..., m} on both sides of (3.47),
take then the product of fi;se¥ on both ends and apply our last
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identities. Rearranging terms algebraically, using telescoping sums
and bounding from above, one obtains that

m

llse™ 3 < 1se®l3 +2At Y [(Grsk, frese®) =y (sehif, fuese”)
k=0

+y (§

i85, ese®) 4+ T (vek, fese®)
_ (a)+u)(se"“, k+lek A~ >

ﬂtsgk) —afse Mes€

+o($ e, fLese®) — Blse" i, fLese®)

B3, ek, ﬂrssk)]. (3.51)
Notice now that Young’s inequality yields
" 1 1
|<r<9k, Mt58k> | <z | <r8kq 58k+1) | + = | (rek, s<9k> |
< *”rsk”z + 7 ||ss"”||2 s IIse"II%
< C(Ire*13 + aellse*13). (3.52)

Obviously, in this case, the constant C can be taken as % On the
contrary, the supposition that the solutions have an upper bound
and an application of Young’s inequality lead to

kik, seb) |

< Lftset, et + L et

ksk

’V(ss lsyﬂtsgk)} < )/| kik

ik ekl ’ 7 |
el
< Ctellse*[12. (3.53)

In an analogue form, the following are readily obtained using the
boundedness of the solutions and Young’s inequality:

| (57 iek, fese®) | < C(Nig" N3 + aellse®113),
|Tve®, fese®)| = C(Ive 113 + aellse*l13).

(@ + 1) (47, fuese®)| = Ciaellse* |13,

k+1 k 7

|a< e pL[58 |§Cllt||sf9k”%!
Jor (e, fuse®)| = C(1les" 13 + aelse“I13).
|Blse ik, use®) | < Chellse* 113,

| 1%, fese®)| < C(115,E%113 + facllseX(13).- (3.54)

Using these inequalities into (3.51), the validity of the inequality
below can be readily demonstrated:

m
Rellse™3 < €013 + GAE Y. Y et (355)

k=0 w

Here, the second summation in (3.55) ranges over all the functions
w=s,0,e,ia,q,is, 7, and Cs is a positive constant which does not
depend on the computer parameters. Obviously, the last inequality
was obtained by using the finite-difference associated to sek. Using
the other discrete equations, we obtain the following inequalities
in similar fashion:

m
Rellue™ 13 < 113 + GuAt S Y fiellwe [

k=0 w

(3.56)

for each u=s,v,e,is,q,is,rand me {0, 1, ...
inequalities for all u, it follows that

,K —1}. Adding these

m
o™ < p+CAtY o, Vme{0.1,... K} (3.57)

k=0

10
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Table 2

Common parameter values for the simulations in
Section 3.3. The only parameters which vary in the
experiments are ms and mg.

Paramater  Value Paramater  Value
o 0.01 B 0
Y 0 § 1.6728 x 10>
€ 0.0101 ¢ 0.02798
n 0.04478 6 0.0101
L 0.0045 K 0.0368
A 0.06 " 0.0106
P 0.004 o 0.0668
T 0.0002 v 3.2084 x 10~*
® 0.0032 d 1
dy 1 dg 1
d'A 1 dQ 1
dj, 1 dr 1
my 0.1 my, 0
mq 0 my 0
mg 0
Here, we let
o=>_llwell3, (3.58)
w
of =" ficllwet|l3- (3.59)
w

As a consequence from Lemma 1, if At > 0 is sufficiently small,
then ™ < peCMAL < peCT | for each k € {0, 1, ..., K}. Evidently, eT
is a constant which does not depend on the computational param-
eters, and p depends on the differences between the initial con-
ditions. The stability of the finite-difference method can now be
established easily. O

The demonstration of the following proposition is analogue to
that of Theorem 6. It is left out to prevent repetition.

Theorem 7. If S.E.I5.Is.Q.R.V € g2 (2 x [0.T]) and At is small
enough, then the approximations derived from the method (2.12) con-
verge to the solution of the model (2.2) in the Euclidean norm, with
convergence order O((Ax)2 + (Ay)? + At). O

3.3. Computer simulations

The objective of this stage is to demonstrate the analytical
properties of mathematical model (2.2) through computer simu-
lations and to confirm that computer method (2.12) can accurately
capture the key dynamics of the continuous model. To do so, two
sets of parameter values will be used, one with a basic reproduc-
tive number greater than 1 and the other with a value less than 1.
The common parameter values used in all simulations are listed in
Table 2. The value of parameter mg will be altered to change the
basic reproductive number. The migration rate of susceptible indi-
viduals will be adjusted to alter the basic reproductive number as
follows:

e mg = 0.001, in which case, %, < 1.
o mg = 0.02, which yields %, > 1.

The rate of migration of exposed individuals will be taken into
account to consider the disease-free and the endemic cases.

It is worthwhile mentioning that the values of the constants
were chosen arbitrarily. Moreover, we will consider two exam-
ples in this section. In one of them, we will study the disease-
free scenario, while the second example will investigate the en-
demic case. Computationally, we will let = [0, 30] x [0, 30], and
let Ax=Ay=1 and At =0.1. The computer method (2.12) was
used to approximate the solutions of the epidemiological model
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Fig. 2. Approximate solutions of the epidemiological model (2.2) versus the variables x and y at various instants of time. The left column shows approximate solutions for
the function S, while the right column shows those for the function V. We used t =1 (first row), t = 10 (second row) and t = 500 (third row). The approximations were
obtained using the computer method (2.12) together with the parameter values in Table 2 and ms = 0.001. All the initial populations are identically equal to zero, except for
the susceptible and vaccinated, which were selected randomly in [0, 5] using the function rand from Matlab.

(2.2). Obviously, the inequality (3.25) is satisfied, whence the com-
puter method is solvable and yields non-negative solutions.

Example 1 (Disease-free case). Throughout, we will assume that
the initial populations of exposed, asymptomatic, symptomatic,
quarantined and recovered individuals are all identically equal to
zero. Meanwhile, the populations for susceptible and vaccinated
individuals will be randomly selected in the interval [0, 5], us-
ing the random number generator function rand from Matlab.
Fix the values of the parameter as in Table 2, and let mg =0.
Let us consider the case %y < 1. More precisely, the basic repro-
ductive number satisfies %y = 0.9393 when mg = 0.001. In this
case, the disease-free equilibrium solution is the point Pprr =

11

(50,%.0,0,0,0,0), where

So = 4.5741, (3.60)

Vo = 10.6145. (3.61)

Figure 2 shows the results for our simulations at three different
times. More precisely, the left column shows approximate solu-
tions for the function S, while the right column shows those for the
function V. We used t =1 for the first row, t = 10 for the second
row, and t = 500 for the third row. It is clear that the approximate
solutions approach the equilibrium solutions as time approaches
infinity, which is consistent with the theoretical outcomes for both
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Fig. 3. Approximate solutions of the epidemiological model (2.2) versus the variables x and y at the time t = 1. The graphs correspond to the approximations to the functions
(@) S, (b) E, (c) Ia, (d) I, (e) Q and (f) R. The approximations were obtained using the computer method (2.12) together with the parameter values in Table 2 and ms = 0.02.
All the initial populations were selected randomly in [0, 5] using the function rand from Matlab.

the continuous and discrete models. Here, we must point out that
we did not include graphs depicting the dynamical behavior of the
other compartments in view that they are always equal to zero, as
expected in the disease-free case. [

Example 2 (Endemic case). In this computational experiment, we
let all the initial populations sizes be randomly defined taking val-
ues in [0,5], and let mg=0.02 and mg =0.1. Under these cir-
cumstances, the basic reproductive number is equal to 1.2236,
which means that %y > 1. In this particular case, the epidemi-
ological system has the theoretical endemic equilibrium solution
Peg = (S*,V*,E*, I}, Q*, I, R*), where the components of this vector
are

S*=2.2959,

12

V* =9.9395,

E* =3.8853,

I; =1.1736 x 1073,

Q" =8.5724,

I} =6.3808 x 1071,

R* =5.8234x 107" (3.62)

Figures 3, 4 and 5 show the results of our simulations at the times
t=1,t=10 and t = 1000, respectively. For each figure, the graphs
show the approximate solutions for (a) S, (b) E, (c) Iy, (d) Is, (e) Q
and (f) R, as functions of the variables x and y. The graphs were ob-
tained using the computer method (2.12), and they show that the
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Fig. 4. Approximate solutions of the epidemiological model (2.2) versus the variables x and y at the time t = 10. The graphs correspond to the approximations to the
functions (a) S, (b) E, (c) Ix, (d) Is, (e) Q and (f) R. The approximations were obtained using the computer method (2.12) together with the parameter values in Table 2 and
mg = 0.02. All the initial populations were selected randomly in [0, 5] using the function rand from Matlab.

solutions converge in time toward constant solutions. It is worth-
while to notice that each of these functions tends point-wisely to
the corresponding component of the endemic equilibrium point.
This outcome is consistent with the properties of both the contin-
uous and discrete models analyzed in this study. To conserve space,
the graphs for function V were omitted, but it's worth mentioning
that the simulations also align well with the analytical prediction
for the equilibrium solution. O

As a summary of our computer simulations, Figures 2-5 investi-
gate the dynamics of propagation for the disease in both scenarios,
namely, the disease-free and the endemic cases. Figure 2 consid-
ered the disease-free case by showing the evolution of the suscep-
tible and the vaccinated compartments (which are the only com-
partments in that scenario). Starting from a random profile, that

13

figure shows snapshots of the solutions at three different times
for a human population confined on the two-dimensional square
[0, 30] x [0, 30]. The results show that both solutions tend toward
two constants, namely, approximately 4.5741 for the susceptible,
and 10.6145 for the vaccinated. This is in agreement with the the-
oretical value of the disease-free equilibrium point. On the other
hand, the remaining figures consider the endemic case, each of
them at three different and consecutive times. For each figure, we
provide the snapshot of the solutions for (a) S, (b) E, (c) I, (d) I,
(e) Q and (f) R over the same spatial domain as in the disease-free
case. The results again show that the tendency of the solutions is
to converge asymptotically toward constants. Those constants are
the same as the endemic equilibrium solution, as predicted by our
theoretical results.
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Fig. 5. Approximate solutions of the epidemiological model (2.2) versus the variables x and y at the time t = 1000. The graphs correspond to the approximations to the
functions (a) S, (b) E, (c) Ix, (d) 5, (e) Q and (f) R. The approximations were obtained using the computer method (2.12) together with the parameter values in Table 2 and
mg = 0.02. All the initial populations were selected randomly in [0, 5] using the function rand from Matlab.

Before concluding this section, we want to emphasize that ad-
ditional simulations were conducted using the computer methods.
We do not present them here in order to avoid redundancy, but
they confirm the analytical features of the epidemic model as well
as the numerical properties of the computer method.

4. Conclusions

A mathematical epidemic system describing the spread of an
infectious illness inside a population of individuals was presented
in this study. It is a compartmental deterministic system that
takes into account the presence of different types of individu-
als, such as susceptible, exposed, asymptomatic infected, symp-
tomatic infected, quarantined, recovered and vaccinated, and var-

14

ious transmission mechanisms. It also includes migration and non-
linear interactions between compartments. To analyze the sys-
tem, a unique computer method based on finite differences was
proposed, which is a linear, discrete, two-step model that can
be expressed in vector form. When conditions are met, the nu-
merical model matrix is an M-matrix, ensuring positivity con-
servation. Analytically, the existence of equilibrium solutions in
both cases endemic and disease-free was established, and the
local asymptotic stability was determined, as well as calculate
the basic reproduction number through the next-generation ma-
trix approach. The computer method has various other desirable
properties, such as preserving the equilibria and stability, and
being a consistent, stable, and convergent method. The results
of numerical simulations using this method showed the posi-
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tivity conservation, stability, and agreement with the theoretical
results.

The proposed model has equilibrium solutions in the contin-
uous model and also in the discretized system and the method
can preserve the local stability properties of these constant solu-
tions. The computer method has been proven to be a consistent
discretization of the continuous model with linear order of consis-
tency in time and quadratic order of consistency in the spatial vari-
ables using Taylor’s theorem. Additionally, the discretized model
is conditionally stable in the Euclidean norm for small temporal
step-size, and is a convergent technique with linear order conver-
gence in time and quadratic order in both spatial variables, estab-
lished through Gronwall’s and Young's discretized inequality. The
vector form of the method was implemented in Matlab and the
linear systems were solved at each temporal step using the bicon-
jugate gradients stabilized method. Numerical simulations showed
positivity preservation and stability of the method, and the results
were in agreement with the theory.

Before concluding this manuscript, it is important to discuss
the future work that we plan to carry out. Although the pro-
posed model in this study is quite complete, complex and ro-
bust, the goal is to make it as realistic as possible. Some research
papers have utilized the Crowley-Martin model instead of a di-
rect or linear spread of the disease. This model was initially de-
signed for predator-prey models but has been adapted to epidemi-
ological models effectively [45]. Furthermore, a treatment function
rather than a direct cure of the infection has also been suggested
in different studies [46]. Additionally, the model presented in this
manuscript can be also scaled to a fractional case [47]. Various op-
erators are used in that case, depending on whether the fractional
derivative order is used in the temporal or the spacial variables.
In the particular case of Riesz spatial derivatives, the applications
seem to be more promising as various theoretical, numerical and
physical results are already available for that scenario [48]. We ex-
pect to tackle these research avenues and others in the near future.
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Appendix A.

In this appendix, we show that the eigenvalue A; in the proof
of Theorem 1 is negative whenever %, < 1. For the sake of con-
venience, remember that the expressions for A;, So and %, are,
respectively,

M=aSg—(C+e+5+ 1), (A1)
_(u+T)(A+ms) +Tmy

So= wh+w+1) ’ (A-2)

o = 0Lk +pt+ p+0)(a(n+ 1) +B3) +ey(n+ 1]

e M+ +e+u+)k+pu+p+6) '(A3)

Solving for Sy in this last equation, using the hypothesis that %, <
1 and recalling that all the parameters are non-negative numbers,
it follows that

an+pu)@+e+pu+8)Kk+u+p+0)%
(k+u+p+0)am+u)+B3)+eyn+p)
- aom+u)S+e+u+8)k+u+p+60)%
(kK +pu+p+0)(am+u)+B3)
oM+ u)(S+€e+pn+8)%
a(n+pn)+pBs
e+ +e+u+H%
1 a(n+up)
b +e+un+8)%
<0+e+pu+¢.

(XS()

IA

(A4)

Subtracting the term 6§ + € + @ + ¢ on both ends, we readily reach
that A; < 0, as desired.
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Conclusions

Chapter 1. We introduced a linearly implicit NSFD discretization that preserves the key qualitative
features of a diffusion—enhanced epidemic model with vaccination and quarantine. By designing the
discrete operators so that their coefficient matrices possess an M-—matrix structure, and by verify-
ing consistency and stability, we obtained convergence together with biologically meaningful, positiv-
ity—preserving approximations. The computational experiments corroborate the analysis and illustrate
the method’s effectiveness across scenarios that include vaccination and quarantine interventions.

It is worth emphasizing that the proposed time discretization is first—order accurate. As a re-
viewer correctly noted, this temporal order may be insufficient for long—horizon dynamical studies.
Higher—order alternatives—such as Runge-Kutta families for ODE subsystems—are well known to be
stable and convergent; however, they do not automatically guarantee preservation of positivity, bound-
edness, or equilibrium invariance (nor the stability of those equilibria). In cases where such qualitative
properties can be enforced with higher—order schemes, the present approach retains a practical advan-
tage: simplicity. As shown in the appendix, our NSFD formulation is straightforward to implement
even for users with modest programming experience.

Related literature documents third-order (and higher) schemes for time-dependent nonlinear PDEs
with rigorous stability /convergence analyses, e.g., fully discrete Fourier—collocation spectral methods
for the 3D viscous Burgers equation [50], high—order multistep schemes for the 2D incompressible
Navier-Stokes equations [29], exponential time-differencing methods for no-slope-selection thin—film
models with energy stability [28], third-order BDF energy—stable linear schemes for no-slope-selection
thin films [52], and BDF—type energy—stable schemes for the Cahn-Hilliard equation [30].

A complementary line of work enforces positivity via logarithmic (or singular) energy potentials
in reaction—diffusion systems and related gradient flows: see, for instance, positivity—preserving nu-
merics for Poisson—Nernst-Planck systems [78], ternary Cahn-Hilliard models with singular interfa-
cial parameters [41], three-component Cahn-Hilliard—type models for MMC hydrogels [120], binary
fluid-surfactant systems [96], liquid thin—film coarsening [121], Poisson—Nernst—Planck—Cahn—Hilliard
with steric interactions [95], Cahn—Hilliard with variable interfacial parameters [40], Flory—Huggins—de
Gennes energies [42], logarithmic potentials [27], and reaction—diffusion with detailed balance [77), [76].
Whether an entropy structure of this type can be embedded into the epidemiological model (?7?) to

guarantee discrete positivity remains, to our knowledge, an open question.
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Chapter 2. We developed a diffusion—driven compartmental framework with vaccination and quar-
antine, analyzed its deterministic structure, and proposed a structure—preserving NSFD scheme aligned
with the continuous model. On the analytical side, we identified the disease—free and endemic equilibria,
derived the basic reproduction number %, via the next—generation matrix formalism, and determined
local stability thresholds around each steady state [I09]. We also delineated an invariant, positively
invariant region and verified nonnegativity of solutions. On the numerical side, the linearly implicit
discretization yields coefficient matrices with M—matrix character; in conjunction with discrete Gron-
wall-type arguments, this ensures inverse positivity, step—size-dependent stability, and convergence of
the scheme. Moreover, the discretization is equilibrium—consistent: steady states of the PDE model
are inherited as constant solutions of the discrete dynamics, and their local stability properties are
preserved under suitable conditions.

From a computational viewpoint, simulations in both disease—free and endemic regimes show tra-
jectories converging toward the corresponding steady states, matching the theoretical predictions for
thresholds determined by Z,. Parametric explorations illustrate how vaccination, quarantine, and
waning-immunity rates modulate %, and the transient profiles, while grid /time—step refinements con-
firm first—order accuracy in time and second-order accuracy in space, consistent with the design of
the scheme. The framework readily accommodates modeling extensions—space—dependent parame-
ters, advective transport, spatially heterogeneous controls, or optimal-control interventions—without
abandoning the emphasis on qualitative preservation. In summary, Chapter 2 complements the theory
with a practical, reproducible computational pipeline that (i) respects the biology (positivity and in-
variance), (ii) mirrors the steady—state structure and its stability, and (iii) delivers provable consistency,
stability, and convergence for the space—time discretization, thereby providing a reliable platform for

scenario analysis and policy-relevant experimentation.
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