

CENTRO DE CIENCIAS BÁSICAS

DOCTORADO EN

CIENCIAS APLICADAS Y TECNOLOGÍA

TESIS

AgileBPM Methodology - an Agile Development Methodology for Business

Process Management Systems

PRESENTA

Roberto Dávila Campos

TUTORES

Dr. José Manuel Mora Tavarez

Dra. Paola Yuritzy Reyes Delgado

COMITÉ TUTORAL

Dra. Gabriela Citlalli López Torres

Dr. Jaime Muñoz Arteaga

Cd. Universitaria, junio, 2025

AGRADECIMIENTOS

Quisiera primero que nada agradecer a Dios por darme la oportunidad de poder

estar hoy aquí y haber logrado mis metas hasta ahora.

Me gustaría agradecer a todos mis profesores por compartir su tiempo y sus

conocimientos que serán muy útiles a lo largo de mi vida.

A mis tutores y cotutores por su apoyo y su dedicación para poder completar

con éxito este doctorado y la realización de los tres artículos científicos.

A mi amigo el Dr. Isaac Medina Sánchez por su apoyo durante la elaboración

de este trabajo.

Por último, quiero agradecer a mi familia y a mi novia por el apoyo brindado

durante este tiempo y darme la oportunidad de realizar mis estudios.

Gracias a todos por su valioso apoyo.

1

INDEX

Index ...1

INDEX OF TABLES ...3

INDEX OF FIGURES ...5

ABSTRACT IN SPANISH ...7

ABSTRACT IN ENGLISH ...8

1 INTRODUCTION ...9

1.1 CONTEXT OF THE RESEARCH PROBLEM .. 9

1.2 MOTIVATION AND RELEVANCE OF THE RESEARCH PROBLEM 10

1.3 FORMULATION OF THE RESEARCH PROBLEM ... 12
1.3.1 RESEARCH PROBLEM .. 12
1.3.2 RESEARCH QUESTIONS AND HYPOTHESES ... 12
1.3.3 GENERAL AND SPECIFIC RESEARCH OBJECTIVES .. 13
1.3.4 CONTRIBUTIONS AND DELIVERABLES OF THE RESEARCH .. 13

1.4 GENERAL DESCRIPTION OF THE RESEARCH METHODOLOGY 14
1.4.1 OVERVIEW OF THE RESEARCH METHODOLOGY .. 14
1.4.2 TIMELINE – SEMESTERS, ACTIVITIES, AND DELIVERABLES ... 16

2 RESEARCH METHODOLOGY ... 17

2.1 MAIN ACTIVITIES .. 18

2.2 OBJECT AND SUBJECTS OF STUDY .. 19

2.3 MATERIALS AND EQUIPMENT ... 19

2.4 RESEARCH EVALUATION METHODS ... 20

2.5 RESTRICTIONS AND LIMITATIONS .. 21

3 THEORETICAL BACKGROUND ... 22

3.1 THEORETICAL FOUNDATIONS .. 22
3.1.1 ON SOFTWARE ENGINEERING .. 22
3.1.2 ON AGILE DEVELOPMENT PARADIGM ... 31

3.1.2.1 REVIEW OF FUNDAMENTAL CONCEPTS OF AGILITY ... 31
3.1.2.2 REVIEW OF OFFICIAL SCRUM – MAIN AND MOST USE AGILE SDLC 44
3.1.2.3 REVIEW OF A ROBUST SCRUM .. 46

3.1.3 ON BUSINESS PROCESS MANAGEMENT SYSTEMS (BPMS) DEVELOPMENT PLATFORMS,

METHODOLOGIES, AND SOFTWARE APPLICATIONS ... 56
3.1.3.1 CORE DEFINITIONS (BPMS, WORKFLOW MANAGEMENT SYSTEMS, BPMS

DEVELOPMENT PLATFORMS, BPMS SOFTWARE APPLICATION/PAIS) .. 56
3.1.3.2 REVIEW OF BPMS PLATFORMS – OPEN SOURCE VS COMMERCIAL 59

2

3.1.3.3 BPMS*/POIS Systematic Selective Literature Review ... 68
3.1.3.4 NON-AGILE BPMS*/POIS SOFTWARE DEVELOPMENT METHODOLOGIES 71
3.1.3.5 AGILE BPMS*/POIS Sofware development methodologies .. 82

3.2 ANALYSIS OF CONTRIBUTIONS AND LIMITATIONS.. 91

4 DEVELOPMENT OF THE SOLUTION ... 92

4.1 DSRM STEP 1 – DESIGN PROBLEM IDENTIFICATION AND MOTIVATION 92

4.2 DSRM STEP 2 – DEFINITION OF THE DESING OBJECTIVES, DESING APPROACH,

DESIGN THEORETICAL SOURCES, AND DESING COMPONENTS FOR THE EXPECTED ARTIFACT:

AGILE BPM METHODOLOGY .. 92
4.2.1 Definition of the desing objectives... 92
4.2.2 Design restrictions .. 93
4.2.3 Design theoritical sources .. 93
4.2.4 design components for the expected artifact .. 93

4.3 DSRM STEP 3 – DESING AND DEVELOPMENT OF THE ARTIFACT 96

5 EVALUATION OF RESULTS .. 103

5.1 EVALUATION OF AGULEBPM METHODOLOGY DOCUMENT 103

5.2 EMPIRICAL USABILITY EVALUATION OF AGILEBPM METHODOLOGY. 108

5.3 APPLICATION OF THE AGUILEBPM METHODOLOGY. .. 115

6 DISCUSSION OF RESULTS ... 119

6.1 SUMMARY OF THE RESULTS .. 119

6.2 DISCUSSION ON RESULTS .. 122

6.3 DISCUSSION ON CONTRIBUTIONS TO THE PRAXIS ON AGILE DEVELOPMENT FOR

BPMS 123

6.4 LIMITATIONS .. 123

6.5 CONCLUSIONS .. 123

7 GLOSSARY ... 124

8 References .. 129

9 Appendix .. 142

9.1 LOW-CODE DEVELOPMENT PLATFORM OPEN-SOURCE DECISION-MAKING RESULTS

 142

9.2 Design of the artifact Methodology. .. 156

3

INDEX OF TABLES

Table 1 - Activity schedule. ... 16
Table 2 - Design Science Research Methodology (DSRM) with complementary

research methods ... 18
Table 3 - Design Research Evaluation Methods. .. 20
Table 4 - CMMI Categories and their processes with Process Software

categories.. 26
Table 5 - Main differences between linear and agile SDLC. 32
Table 6 - Emphasis of every single agile principle on the manifesto. 33
Table 7 - Agile features related to the 12 agile principles. 35
Table 8 - General characteristics for agile methods and traditional methods 37
Table 9 - The five critical agility and plan-driven factors. 39
Table 10 - People level for software development. ... 41
Table 11 - Scrum elements. .. 46
Table 12 - SBOK Guide phases and processes. ... 47
Table 13 - Phases, processes, roles, and artifacts used for a new methodology.

 .. 51
Table 14 - Low-code commercial platforms compared by Sahay et al. 61
Table 15 - Open-source comparative table based on risk. 63
Table 16 - Comparison between Low-code open-sour development platforms

using the MADM tool. .. 64
Table 17 - Systematic Selective Literature Review (SSLR) research method .. 69
Table 18 - Set of 8 studies on Plan-Driven and Agile Development Life Cycles

for PAIS/BPMS .. 70
Table 19 - The BPM lifecycle detailed. ... 77
Table 20 - Non-Agile BPMS Methodologies compared. 79
Table 21 - Aguile BPMS Methodologies Comparative 88
Table 22 - Contributions and are of improvements ... 91
Table 23 - DTS.1 Theoretical rigorous SDLC for BPMS (Dumas et al., 2018) .. 94
Table 24 - DTS.2 Scrum-XP (Schwaber & Sutherland, 2020) (Dudziak, 1999) 94
Table 25 - DTS.3 APBPM (Thiemich and Puhlmann, 2013) 95
Table 26 - DTS.4 ABPM (Rosing and Gill, 2015). ... 96
Table 27 - Final Design Components for roles. ... 99
Table 28 - Final Design Components for Phases and Activities........................ 99
Table 29 - Final Design Components for Phases and Artifacts. 101
Table 30 - Demographic Data of the Panel of Experts 104
Table 31 - Reliability and Validity of Constructs C1 and C2 107
Table 32 - Mean, Median, and Standard Deviation of the Constructs/Items C1

and C2. ... 107
Table 33 - Null Hypotheses Tests on Means of Constructs C1 and C2. 108

4

Table 34 - Constructs to be Evaluated for the Sample of International Academics

and Practitioners on the AgileBPM Methodology .. 109
Table 35 - Reliability and descriptive statistics for Agile Methodology. 112
Table 36 - Reliability and descriptive statistics for Other Methodology. 112
Table 37 - Discriminant Validity of the Usability Constructs for the AgileBPM 113
Table 38 - Discriminant Validity of the Usability Constructs for the other

methodology.. 113
Table 39 - Convergent Validity of the Usability Constructs for the AgileBPM . 114
Table 40 - Convergent Validity of the Usability Constructs for other methodology.

 .. 114
Table 41 - Wilcoxon Signed-Rank Tests for the Usability Constructs in AgileBPM

vs alternative methodology.. 115
Table 42 - Results for Research Question 1 ... 119
Table 43 - Results for Research Question 2 ... 120
Table 44 - Results for Research Question 3 ... 121
Table 45 - Results for Research Question 4 ... 122
Table 46 - Roles for Desing Components first and second iterations. 157
Table 47 - Phases and Activities for Desing Components first and second iteration. . 157
Table 48 - Artifacts for Desing Components first and second iterations. 165

5

INDEX OF FIGURES

Figure 1 - Low-Code applications market size forecast by Grand View Research,

Inc. .. 11
Figure 2 - DSRM for information systems. .. 17
Figure 3 - Software Engineering Process breakdown. 25
Figure 4 - Suggestions to improve software engineering research to make it

relevant. .. 28
Figure 5 - SDLC evolution and comparison. ... 28
Figure 6 - Comparing project management on agile SDLC methods 34
Figure 7 - Polar chart with the five critical factors. ... 40
Figure 8 - Boehm and Turner graphic with new methodology approach. 42
Figure 9 - Most important features on Agile SDLC. ... 43
Figure 10 - Most important features on linear SDLC. .. 43
Figure 11 - Scrum Process Diagram with all its elements taken from Scrum.org.

 .. 44
Figure 12 - Scrum Methodology created by Schwaber in 1997. 48
Figure 13 - eXtreme Programing simplified process structure. 49
Figure 14 - eXtreme Programing Phases renamed. ... 50
Figure 15 - More robust Scrum process. ... 52
Figure 16 - BPMS (PAIS) division in three main categories. 58
Figure 17 - Low-code platform typical architecture. .. 59
Figure 18 - Low-code platform cloud-based architecture. 60
Figure 19 - Open Decision Maker tool with values for the FUNCTIONALITY –

QUALITY property. .. 65
Figure 20 - Result tab that shows Joget as the best Low-code Development

Platform. .. 66
Figure 21 - Sensitivity Analysis with the values of 50% for ORGANIZATIONAL

RISKS and 25% for END – USER RISKS and TECHNICAL RISKS. 66
Figure 22 - Business Process Development Life Cycle Methodology Roadmap

(Papazoglou & van den Heuvel, 2007) .. 72
Figure 23 - BPM framework (Macedo de Morais et al., 2014) 72
Figure 24 - Collaborative process elaboration methodology (Mu et al., 2015). . 73
Figure 25 - Structure of corporate governance (Nascimento et al., 2019). 74
Figure 26 - The BPM lifecycle (Dumas et al., 2018). ... 76
Figure 27 - Agile BPM framework ... 82
Figure 28 - Agile BPM Framework Overview (Thiemich and Puhlmann, 2013). 84
Figure 29 - Agile BPM Overview (von Rosing et al., 2015). 85
Figure 30 - SEA—knowledge transformation in the agile process development

(Bider & Jalali, 2016). .. 86
Figure 31 - Agile BPPAM methodology by Zacarias (2017). 87

6

Figure 32 - BPMS Methodology Conceptual Map. .. 98
Figure 33 - PLS Model for Agile Methodology. ... 110
Figure 34 - PLS Model for other methodology. ... 111
Figure 35 - BPMN diagram of the process. ... 117
Figure 36 - Joget's process builder for the Expenses Claim app. 118
Figure 37 - Results Summary ... 142
Figure 38 - Organizational Risks ... 143
Figure 39 - Training results. .. 144
Figure 40 - Top Management Support results... 145
Figure 41 - Internal Expertise results. ... 146
Figure 42 - End-User Risks results. .. 147
Figure 43 - Functionality-Quality results. ... 148
Figure 44 - Usefulness-Relevance results. ... 149
Figure 45 - Usability results... 150
Figure 46 - Technical Risks results. .. 151
Figure 47 - Community Support results. ... 152
Figure 48 - Documentation results. ... 153
Figure 49 - Maturity-Longevity results. .. 154
Figure 50 - Security-Reliability results. .. 155

7

ABSTRACT IN SPANISH

Los Sistemas de Gestión de Procesos de Negocio (BPMS) son Sistemas de

Información especializados para la definición, ejecución y gestión de procesos

organizacionales de negocio, integrando la interacción entre software y personas

(tanto usuarios como gerentes). Para desarrollar BPMS, se han reportado varios

Ciclos de Vida de Desarrollo de Software (SDLCs) rigurosos en la literatura, y

recientemente también se han reportado SDLCs ágiles iniciales. Sin embargo, a

pesar del alto interés teórico y práctico en el desarrollo de BPMS desde un

Enfoque Ágil, se ha identificado que los SDLCs ágiles iniciales para BPMS son

incompletos en cuanto a los roles ágiles esperados, actividades y/o artefactos, y

están mínimamente documentados. Como consecuencia, académicos y

profesionales carecen de descripciones completas de ellos para su correcto

aprendizaje y utilización práctica. En esta investigación, abordamos esta brecha

de investigación y reportamos el diseño, la descripción completa de roles,

actividades y artefactos, y la validación conceptual inicial del SDLC AgileBPM - un

SDLC Ágil para BPMS– que fue elaborado utilizando una Metodología de

Investigación en Ciencia del Diseño (DSRM). Los resultados iniciales de validación

son satisfactorios, además, la investigación empírica también proporcionó

resultados muy satisfactorios, finalmente se creó un caso de demostración con el

nuevo SDLC AgileBPM con todos los procesos reportados.

8

ABSTRACT IN ENGLISH

Business Process Management Systems (BPMS) are specialized Information

Systems for the definition, execution, and management of business organizational

processes, integrating the interaction between software and people (both users

and managers). To develop BMPS, several rigorous Software Development Life

Cycles (SDLCs) have been reported in the literature, and recently, initial agile

SDLCs have also been reported. However, despite the high theoretical and

practical interest in BPMS development from an Agile Approach, it has been

identified that the initial agile SDLCs for BPMS are incomplete regarding the

expected agile roles, activities, and/or artifacts and are minimally documented.

Consequently, academics and practitioners lack full descriptions of them for their

correct learning and practical utilization. In this research, we address this research

gap and report the design, the full description of roles, activities, and artifacts, and

initial conceptual validation of AgileBPM SDLC - an Agile SDLC for BPMS– which

was elaborated using a Design Science Research Methodology (DSRM). Initial

validation results are satisfactory, further the empirical research also provided very

satisfactory results, finally a demo case was created with the new AgileBPM SDLC

with all the processes reported.

9

1 INTRODUCTION

1.1 CONTEXT OF THE RESEARCH PROBLEM

Software Systems have become essential in any business and work of millions

of people around the world. Nowadays, most companies in the world are using a

Software System or are developing one that expects to help in their Business

Process Management. Most of these Software Systems, are currently, based on

Web platforms, and they are well-known as Web Applications that bring all the

benefits from a Software System with the web capabilities such as available

anywhere, not installation required and run on any compatible device with a Web

browser (Navarro, 2009).

Business worldwide organizations are always searching for developing new

useful Software Systems with positive features such as ease of use, secure, and

valuable. However, these expectations are not easily achieved due to the long time

that takes the development of these software systems, the rework by wrong

requirements, and off-budget events. Nowadays fast software system development

approaches play a key role in any industry, and any significant delay could affect

customer satisfaction or break any contractual agreement (Hughes et al., 2017).

To accelerate the software development, in the Software Engineering discipline,

emerged the Agile Methodologies that aim to improve the speed of the application

development with all desirable features like quality, and ease of use (Petersen &

Wohlin, 2009).

The main benefits that Agile Methodologies bring to companies and developers

(Shankarmani et al., 2012) are:

• Created just needed documentation.

• Focus more on the application.

• Iterative development brings helpful feedback from stakeholders.

• Low rework amount.

• Transparency brings real-time updates on the status of development.

Developing fast software is also possible using Low-Code Business Process

Management (BPM) platforms. The expected aim of these development tools

consists of the Software System analyst can implement quickly and easily a simple

but useful Web Software System without too much programming knowledge and in

a shortened period. BPMS are defined “as a (suite of) software application(s)

that enable the modeling, execution, technical and operational monitoring,

10

and user representation of business processes and rules, based on the

integration of both existing and new information systems functionality that is

orchestrated and integrated via services” (Ravesteyn & Batenburg, 2010a, p.

496). Working jointly with Agile Methodologies and BPMS could bring to

organizations the fast software development that current business needs are

demanding.

However, the main problem is that agile practitioners prefer regular software

development using traditional programming languages like Java, JavaScript, PHP,

Phyton, and others (Barabino et al., 2014).

The utilization of these non-agile development tools, thus, can affect the

schedule and the budget of the projects. Additionally, there are a few studies

related to Agile Methodologies for BPMS so that the developers who are trying to

work with Low-Code BPMS platforms encounter many developing problems.

Working without any methodology on BPMS could cause low-quality software due

to the lack of a guided development process.

We believe that an Agile Methodology combined with a Low-Code platform on

BPMS could impact positively the development of Web Software Systems with the

expected attributes of quality, security, and ease of use that fit with the project

schedule and budget.

1.2 MOTIVATION AND RELEVANCE OF THE RESEARCH

PROBLEM

Several global business studies report that the utilization of agile development

methodologies is a frequent practice in large-, medium- and small-sized

organizations (Hoda et al., 2018). Similarly, the market for Low-Code development

BPMS platforms will grow in the next 5 years (2020-2025) (Markets and Markets,

2020). Another professional website reports “The global low-code application

development platform market size was valued at USD 11.45 billion in 2019

and is expected to grow at a compound annual growth rate (CAGR) of 22.7%

from 2020 to 2027. Increasing digital transformation in the IT and telecom

industry, increased responsiveness to the business, and rising need for

customization and scalability are the major factors driving the market

growth.” (Grand View Research, 2020).

Figure 1 shows the Grand View Research Inc. forecast for low-code platforms

with historical data.

11

Figure 1 - Low-Code applications market size forecast by Grand View Research, Inc.

The Forrester Wave research (Rymer, 2017) found that low-code platforms were

growing and after a survey of software development leaders that were using those

platforms, they found three key features of this kind of platform:

• Speed up application and innovation delivery.

• Prove useful for large-scale applications.

• Contribute to AD&D’s (application development and delivery) move to

public clouds.

With these two technological trends, and the current need for multiple Web

Information Software Systems in the organizations for help in their Business

Digitalization process (Petersen & Wohlin, 2009), the business organizations

require agile software development methodologies that can produce useful, easy

use, secure and valuable product software (i.e. to fit the product quality), as well as

they need that these agile software development methodologies help to fit the

project schedule and budget.

12

1.3 FORMULATION OF THE RESEARCH PROBLEM

1.3.1 RESEARCH PROBLEM

Consequently, based on the previous research context described, we can

identify the research problem directly as “the lack of development

methodologies for Web Software Systems -of type BPMS- that be considered

by the software developers as agile, ease of use, useful, compatible, and

valuable”.

1.3.2 RESEARCH QUESTIONS AND HYPOTHESES

RQ.1 What is the state of the art – contributions and limitations- on agile and

non-agile development methodologies for Business Process Management

systems?

H0.1 There is no need for an agile development methodology for Business

Process Management systems

RQ.2 What is the state of the art – capabilities, and limitations – of open-source

low-code Business Process Management development platforms?

H0.2 There are no powerful open-source low-code Business Process

Management development platforms.

RQ.3 What elements of Agile Development and Business Process Management

System Development Methodologies can be used to elaborate an Agile Business

Process Management System Development Methodology that can be evaluated

theoretically valid from a Panel of Experts?

H0.3 There are no elements of Agile Development and Business Process

Management System Development Methodologies that can be used to elaborate

an Agile Business Process Management System Development Methodology that

can be evaluated theoretically valid by a Panel of Experts.

RQ.4 Can the new elaborated Agile Business Process Management System

Development Methodology be documented in an Electronic Process Guide (EPG)

13

and be evaluated as agile, useful, easy to use, compatible, and valuable by a pilot

group of Software Engineering academics and practitioners?

H0.4.1 The newly elaborated Agile Business Process Management System

Development Methodology cannot be documented in an Electronic Process Guide

(EPG).

H0.4.2 The newly elaborated Agile Business Process Management System

Development Methodology is not considered agile, useful, easy to use, compatible,

and valuable by a pilot group of Software Engineering academics and practitioners.

1.3.3 GENERAL AND SPECIFIC RESEARCH OBJECTIVES

To design conceptually a development methodology for Business Process

Management systems, and document it in an Electronic Process Guide, that be

evaluated as agile, useful, easy to use, compatible, and valuable for a pilot group

of Software Engineering academics and practitioners.

1.3.4 CONTRIBUTIONS AND DELIVERABLES OF THE RESEARCH

In this research proposal, it is expected to produce the following products:

For the Software Engineering Theory:

• One research paper for an indexed journal with the theoretical analysis on

“The State of the Art on Open-Source Business Process Management

Low-Code Platforms”

• One research paper for an indexed journal with the theoretical analysis on

“The State of the Art on Development Methodologies for Business

Process Management Systems”

• One submitted research paper for an indexed journal with the theoretical

analysis and empirical evaluation of the AgileBPM Methodology – an

agile Methodology for BPM Systems

For the Software Engineering Practice:

• A new AgileBPM Methodology – an agile Methodology for BPM

Systems, available in a web-based free-cost access EPG (Electronic

Process Guideline)

• A new Ph.D. graduate in the Software Engineering area

14

1.4 GENERAL DESCRIPTION OF THE RESEARCH

METHODOLOGY

In this research, it is proposed to use a Design Science Research approach (van

Brocke et al., 2020; Peffers et al., 2007). “Design Science Research (DSR) is a

problem-solving paradigm that seeks to enhance technology and science

knowledge bases via the creation of innovative artifacts that solve problems and

improve the environment in which they are instantiated. The results of DSR include

both the newly designed artifacts - represented by constructs, and/or models,

and/or methods, and/or instantiations -, and design knowledge (DK)”.

1.4.1 OVERVIEW OF THE RESEARCH METHODOLOGY

The specific DSR methodology to conduct is the Design Science Research

Methodology proposed by Peffers et al. (2007a). It has six activities as follows:

• Activity 1: Problem identification and motivation. “Define the specific

research problem and justify the value of a solution. Justifying the

value of a solution accomplishes two things: it motivates the

researcher and the audience of the research to pursue the solution

and to accept the results and it helps to understand the reasoning

associated with the researcher’s understanding of the problem”.

• Activity 2.1: Define the objectives for a solution. “Infer the objectives of

a solution from the problem definition and knowledge of what is

possible and feasible. The objectives can be quantitative, such as

terms in which a desirable solution would be better than current

ones, or qualitative, such as a description of how a new artifact is

expected to support solutions to problems not hitherto addressed”.

• Activity 2.2: Review the State of the Art. Review the state of the art on

the main element to be designed and identify the main contributions and

limitations.

• Activity 3: Design and development. “Create the artifact. Such

artifacts are potentially constructing, models, methods, or

instantiations (each defined broadly). Conceptually, a design

research artifact can be any designed object in which a research

contribution is embedded in the design. This activity includes

determining the artifact’s desired functionality and its architecture

and then creating the actual artifact”.

15

• Activity 4: Demonstration. “Demonstrate the use of the artifact to

solve one or more instances of the problem. This could involve its

use in experimentation, simulation, case study, proof, or other

appropriate activity”.

• Activity 5: Evaluation. “Observe and measure how well the artifact

supports a solution to the problem. This activity involves

comparing the objectives of a solution to actual observed results

from use of the artifact in the demonstration. At the end of this

activity the researchers can decide whether to iterate back to

activity 3 to try to improve the effectiveness of the artifact or to

continue to communication and leave further improvement to

subsequent projects”. The specific Evaluation methods to be used will

be:

o Evaluation Conceptual from a Panel of Experts.

o Evaluation from a Proof of Concept.

o Empirical survey-based evaluation from a pilot sample of Software

Engineering professionals.

• Activity 6: Communication. “Communicate the problem and its

importance, the artifact, its utility and novelty, the rigor of its

design, and its effectiveness to researchers and other relevant

audiences such as practicing professionals, when appropriate”.

16

1.4.2 TIMELINE – SEMESTERS, ACTIVITIES, AND DELIVERABLES

Table 1 displays the timeline and schedule expected to work in the activities

described.

Table 1 - Activity schedule.

Phases 2021 2022 2023 2024

Activities 1 and 2.1
 a) Background and history of the problem.
 b) Problematic situation.
 c) Type and purpose of research.
 d) Relevance.
 e) Objectives, questions, and
hypotheses/research propositions.

x

Activity 2.2 Review the State of the Art
 a) Theories bases.
 b) Studies related.
 c) Contributions and limitations of related
studies.

x x

Activity 3 Design and Development of
Artifact
 a) Application or creative-deductive
relational conceptual design model.

 x x

Activities 4 and 5 – Demonstration and
Evaluation
 a) Validation of content by a panel of
experts.
 b) Validation by logical argument.
 c) Validation for proof of concept of the
artifact.

 x x

Activities 6 – Communication
 a) Write and submit research paper 1.
 b) Write and submit research paper 2.
 c) Write and submit research paper 3.

 x x

17

2 RESEARCH METHODOLOGY

This Ph.D. research uses an adapted Design Research Methodology from two

core studies on Design Science Research (Hevner et al., 2004) (Peffers et al.,

2007) complemented with additional research steps: Selective Systematic

Literature Review method (Cooper 1988), Conceptual Design (Mora, 2009)

Conceptual Validation from Panel of Experts (Beecham et al. 2005), Empirical

Validation with Statistical Analysis (Wohlin et al., 2012), and Guide for Scientific

Reports in Software Engineering (Shaw, 2003). Figure 2 displays the steps for

DSR.

Table 2 summarizes steps, purpose, complementary research methods, and

expected outcomes.

Figure 2 - DSRM for information systems.

18

Table 2 - Design Science Research Methodology (DSRM) with complementary research methods

DSRM Steps Purpose Complementary research
methods

Outcomes

Step 1) Design
problem identification
and motivation.

To state the expected overall
research goal that delimits the
scope of the research, the research
questions that focus on the
knowledge gaps of interest, and the
motivations to pursue the research
design. (For these aims is required
to conduct a Review of the State of
the Art on the specific problem.).

• Conceptual Literature
Review (CLR), or

• Systematic Literature
Review (SLR), or

• Selective Systematic
Literature Review
(SSLR).

• Research overall goal
statement.

• Research questions.

• Research motivation
statements.

• Review of the State of
the Art.

Step 2) Definition of

the design objectives

and restrictions for

the expected artifact.

To define the specific design
objectives (i.e. expected qualities in
the designed artifact), design
restrictions (i.e. the limitations on
time, cost and resources utilized to
design the artifact), design approach
(i.e. analytics, axiomatic or
heuristic), design theoretical sources
(i.e. the design materials), and
design components (i.e. the specific
design building-blocks).

• Conceptual Design.

• Design problem
identification and
motivation.

• Definition of the Design
Objectives, Design
Restrictions, Resign
Approach, Design
Theoretical Sources,
and Design
Components for the
expected Artifact.

Step 3) Design and
development of the
artifact.

To design and implement the
expected artifact guided-controlled
by the design objectives and
restrictions, and using the agreed
design approach, design theoretical
sources and design components.

• Heuristic Design.

• Conceptual designed
artifact.

• Implemented designed
artifact.

Step 4)
Demonstration of the
artifact (Proof of
Concept).

To demonstrate the designed and
implemented artifact and conduct
initial verification.

• Verification by a Panel
of Experts

• Conceptual Verification
by a Panel of Experts.

Step 5) Evaluation of
the artifact.

To conduct empirical evaluation of
the designed and implemented
artifact.

• Survey or Experimental
Methods.

• Empirical Validation
with Statistical
Analysis.

Step 6)
Communication of
research results.

To generate a structured scientific
report (i.e. Thesis, Technical Report,
Chapter, Conference Proceeding
document, or Journal article) of
results and communicate them in
academic outlets.

• Scientifc writing
guidelines.

• Structured Scientific
Report.

2.1 MAIN ACTIVITIES

For Activities 1 and 2.1 the following actions will be implemented:

• Background and history of the problem.

• Problematic situation.

• Type and purpose of research.

• Relevance.

• Objectives, questions, and hypotheses/research propositions.

For Activity 2.2 the following actions will be implemented:

• Theories bases.

19

• Studies related.

• Contributions and limitations of related studies.

For Activity 3 the following actions will be implemented:

• Application or creative-deductive relational conceptual design model.

For Activities 4 and 5 the following actions will be implemented:

• Validation of content by a panel of experts.

• Validation by logical argument.

• Validation for proof of concept of the artifact.

For Activities 6 the following actions will be implemented:

• Write and submit research paper 1.

• Write and submit research paper 2.

• Write and submit research paper 3.

For more details about the Activities please check Table 1-1.

2.2 OBJECT AND SUBJECTS OF STUDY

This Ph.D. dissertation has the following objects of study:

• Scrum – Agile development framework.

• eXtreme Programming (XP) – Agile development.

• BPMS – Business Process Management Systems.

The subjects of study are:

• Practitioners and academics are interested in agile BPMS development

methods.

• Pilot sample software.

Agile methodologies, Business Process Management Systems are the based for

this research, a pilot sample software is going to be developed, and will be

evaluating with practitioners and academics interested in the BPMS topic.

2.3 MATERIALS AND EQUIPMENT

20

For this work we are going to use the following materials and equipment:

• Articles of research, chapters, conference papers, and book related to the

topics of Software Engineering, Software Development, Agile

Methodologies, BPM, and BPMS.

• VM Server

• Laptop / PC

• Open-source tools:

o ProcessEdit

o Joget

o Visual Studio Code

2.4 RESEARCH EVALUATION METHODS

“The utility, quality, and efficacy of a design artifact must be rigorously

demonstrated via well-executed evaluation methods.” (Hevner & Ram, 2004, p.

85). “IT artifacts can be evaluated in terms of functionality, completeness,

consistency, accuracy, performance, reliability, usability, fit with the

organization, and other relevant quality attributes. When analytical metrics

are appropriate, designed artifacts may be mathematically evaluated.”

(Hevner & Ram, 2004, p. 85). Table 3 shows different evaluation methods for the

Design Research created by Hevner (2004). An experimental evaluation method is

selected to evaluate the new AgileBPM Methodology.

Table 3 - Design Research Evaluation Methods.

Design Evaluation Methods

1. Observational Case Study: Study artifact in depth in business environment.

Field Study: Monitor use of artifact in multiple projects.

2. Analytical Static Analysis: Examine structure of artifact for static qualities
(e.g., complexity)

Architecture Analysis: Study fit of artifact into technical IS
architecture

Optimization: Demonstrate inherent optimal properties of
artifact or provide optimality bounds on artifact behavior

Dynamic Analysis: Study artifact in use for dynamic qualities
(e.g., performance)

3. Experimental Controlled Experiment: Study artifact in controlled environment
for qualities (e.g., usability)

Simulation - Execute artifact with artificial data

21

Design Evaluation Methods

4. Testing Functional (Black Box) Testing: Execute artifact interfaces to
discover failures and identify defects

Structural (White Box) Testing: Perform coverage testing of
some metric (e.g., execution paths) in the artifact
implementation

5. Descriptive
Informed Argument: Use information from the knowledge base
(e.g., relevant research) to build a convincing argument for the
artifact's utility

Scenarios: Construct detailed scenarios around the artifact to
demonstrate its utility

Based on methodological recommendations we are going to apply the specific

techniques:

• Validation of Content by a Panel of Experts.

• Validation by Proof of Concept of Designed Artifact.

• Empirical Validation by a Pilot Survey Study / Demo Case Scenario (with

an international sample of software academicians and practitioners).

2.5 RESTRICTIONS AND LIMITATIONS

Time will be the biggest limitation for this work, there are only 3 or 4 years

available to finish the project. The budget will be also a limitation for this Ph.D.

study.

The scope for this AgileBPM Methodology is for micro and small projects with

five to ten people and three to six months within $10,000 to USD 20,000 of budget.

22

3 THEORETICAL BACKGROUND

3.1 THEORETICAL FOUNDATIONS

3.1.1 ON SOFTWARE ENGINEERING

Software is the key element for this research and the root of the Software

Engineering discipline, software is defined by IEEE (2021) as “computer

programs, procedures and possibly associated documentation and data

pertaining to the operation of a computer system”, Pressman & Maxim (2015)

defines computer software as “the product that software professionals build

and then support over the long term. It encompasses programs that execute

within a computer of any size and architecture, content that is presented as

the computer programs execute, and descriptive information in both hard

copy and virtual forms that encompass virtually any electronic media”.

Software Engineering is a branch of Computer Science that splits into twelve

different areas as Algorithms & Data Structures, Programming Languages,

Architecture Operating Systems and Networks, Software Engineering, Databases

& Information Retrieval, Artificial Intelligence & Robotics, Graphics, Human-

Computer Interaction, Computational Science, Organizational Informatics, and

Bioinformatics (Denning, 1999). In this Ph.D. dissertation, we will focus only on

Software Engineering which has all the foundations that our research needs to be

done.

There are many Software Engineering definitions provided by different authors.

For instance, S.W. Humphrey stated (1988, p. 82) that Software Engineering

“refers to the disciplined application of engineering, scientific, and

mathematical principles and methods to the economical production of

quality software.”. Abran and Moore (2014, p. xxxi) defined Software

Engineering as “the application of a systematic, disciplined, quantifiable,

approach to the development, operation, and maintenance of software; that

is, the application of engineering to software”. Finally, for Pressman and

Maxim (2015, p. 14) Software Engineering “encompasses a process, a

collection of methods (practice) and an array of tools that allow

professionals to build high-quality computer software.” IEEE (2021) states that

Software Engineering is a “systematic application of scientific and

technological knowledge, methods, and experience to the design,

implementation, testing, and documentation of software”.

23

SWEBOK (Abran & Moore, 2014) divides Software Engineering into fifteen

Knowledge Areas (KA) that are: Software Requirements, Software Design

Software Construction, Software Testing, Software Maintenance, Software

Configuration Management, Software Engineering Management, Software

Engineering processes, Software Engineering Models and Methods, Software

Quality, Software Engineering Professional Practice, Software Engineering

Economics, Computing Foundations, Mathematical Foundations, and Engineering

Foundations.

In this Ph.D. dissertation, we need to focus on Software Engineering

Processes KA which is defined such “software engineering processes are

concerned with work activities accomplished by software engineers to

develop, maintain, and operate software, such as require meets, design,

construction, testing, configuration management, and other software

engineering processes.” (Abran & Moore, 2014, pp. 8–1).

Software Engineering Process is divided into five areas (see Figure. 3)

described by the SWEBOK as Software Process Definition, Software Life Cycles,

Software Process Assessment and Improvement, Software Measurement, and

Software Engineering Process Tools. Every process has also its subprocesses.

Software Process Definition is where all the processes are defined, every

process has an input and output, and the decomposition of the work activities.

Software Life Cycles is where the software requirements are transformed into

deliverable products, we will talk more about this area below. The software

Process Assessment and Improvements area is meant to evaluate the software

processes and improve every cycle implementing the Plan-Do-Check-Act model.

Software Measurement is the area where the baselines are created before

implementing a new process to know what process is providing betters results

(Abran & Moore, 2014).

Oktaba and González defined Software Process as “a composition of

phases, activities, artifacts, and resources (including the humans)” (1998, p.

229). Every single process needs a set of tools and resources to be accomplished,

humans are part of those resources, and they must correctly manage the activities.

The software Life Cycle area is our focus in this Ph.D. dissertation, “a

software development life cycle (SDLC) includes the software processes

used to specify and transform software requirements into a deliverable

software product. A software product life cycle (SPLC) includes a software

development life cycle plus additional software processes that provide for

deployment, maintenance, support, evolution, retirement, and all other

inception to retirement processes for a software product.” (Abran & Moore,

2014, p. 8–4). In this area the relationship and temporal ordering from the

processes are defined, some processes may be run at the same time to provide a

24

shared output while other processes must wait for that output so that they can start

working.

Categories of Software Processes defined four categories: Primary processes

are for the development, operation, and maintenance of software. Supporting

processes support primary processes when needed like configuration

management, quality assurance, and verification and validation. Organizational

processes support the software engineering inside an organization and include

training, process measurement analysis, infrastructure management, portfolio, and

reuse management, organizational process improvement, and management of

software life cycle models. The cross-project process works on two or more

projects; reuse, software product line, and domain engineering are part of this

category. Project management processes include planning and estimating,

resource management, measuring and controlling, leading, managing risk,

managing stakeholders, and coordinating the primary, supporting, organizational,

and cross-project processes of software development and maintenance projects.

Depending on the organization it could also be more processes to be developed to

cover all the needs like process activities focusing on software quality (Abran &

Moore, 2014).

To have a better understanding of Software processes from SWEBOK (Abran &

Moore, 2014), it is possible to see similarities with the four categories from CMMI

Project Management, Engineering, Support, and Process Management (Capability

Maturity Model Integration) (CMMI for Development, Version 1.3, n.d.). Table 4

shows the CMMI categories and their process with Software Processes defined in

SWEBOOK (Abran & Moore, 2014).

25

Figure 3 - Software Engineering Process breakdown.

26

Table 4 - CMMI Categories and their processes with Process Software categories.

CMMI Category CMMI Process Area Software Process
Category

Project Management Integrated Project Management (IPM)
Project Monitoring and Control (PMC)
Project Planning (PP)
Quantitative Project Management (QPM)
Requirements Management (REQM)
Risk Management (RSKM)
Supplier Agreement Management (SAM)

Cross-project Process

Engineering Product Integration (PI)
Requirements Development (RD)
Technical Solution (TS)
Validation (VAL)
Verification (VER)

Primary Processes

Support Causal Analysis and Resolution (CAR)
Configuration Management (CM)
Decision Analysis and Resolution (DAR)
Measurement and Analysis (MA)
Process and Product Quality Assurance
(PPQA)

Supporting Processes

Process Management Organizational Process Definition (OPD)
Organizational Process Focus (OPF)
Organizational Process Performance (OPP)
Organizational Performance Management
(OPM)
Organizational Training (OT)

Organizational Processes

The software allows a great variety of Software Life Cycles; linear models have

different phases of software development that need to be completed sequentially,

software requirements are rigorously controlled, and every change needs to

supervise and authorized by Software Configuration Management KA. Agile SDLC

defined the requirements as a high-level state and that requirements can be

detailed or changed during the development to facilitate the evolution of the

software (Abran & Moore, 2014).

Software Process Adaptation defines software development life cycles and the

software product life cycles, and the individual process often needs to be adapted.

Sometimes does not makes sense to implement all the process defined in the

cycles due to business rules, culture, and size of the company. There are

27

situations where it is necessary to put more control on the processes, so they put

more processes into the development cycles (Abran & Moore, 2014).

There should be a lot of Practical Considerations a lot of software processes

should be recognized as idealizations that must be adapted to reflect the realities

of software development within the organization and business context. Most of the

time the software development cycles need to be adapted to every organization to

have a better solution for the business (Abran & Moore, 2014).

The software has become a basic need almost in every human activity for that

reason the software demand has increased year by year and is very important that

software engineers can accomplish every software development in time, Software

Engineering defines Tools, Methods, Processes, and Quality Tools (Pressman &

Maxim, 2015): Tools can be automated or semi-automated that are integrated with

the methods and provide support to them. Methods provide a how-to create the

software step by step, every method has different phases, and every phase has

some tasks that every role must implement. A Process is the set of activities,

actions or tasks to be completed to create a product. It is important to say that a

Process is not rigid, this means that the software engineers can select the

appropriate activities, actions, or tasks that best fit into the developed product. The

Quality Focus establish that all the Tools, Methods, and Process should be always

implemented with the quality in mind to satisfy the stakeholders that sponsored the

project.

Parnas (2010) stated that software development is lacking disciplined, most of

the time software developers do not follow any rules, predefined steps, or

methodologies or they use risky shortcuts in the development. All these errors

produce sloppy software and can produce major problems for the users and

companies.

As we have seen Software Engineering is very important in software

development and must be implemented in every development and better practices

need to be created in the future to improve current results. Garousi et al. (2020)

studied the relevance of Software Engineering research after 50 years of SE. The

authors found some root causes that made the research irrelevant and made some

suggestions. Figure 4 created by Garousi et al. (2020) maps the root causes with

the suggestions.

There have been a lot of SDLC processes through time, Rodríguez et al. (2009)

compared and classified different processes with the key values of “specification

rigor” and “agility” (see Figure. 5). The results showed that most of the

methodologies have a medium value for both references. It is very important to

mention that there was not an SDLC that fulfilled high agility with specification

rigor. In this Ph.D. dissertation, we will try to fill the gap, or get the closest as

possible, between both key values.

28

Figure 4 - Suggestions to improve software engineering research to make it relevant.

Figure 5 - SDLC evolution and comparison.

Hence, this section provides the following important concepts:

Software

29

“Computer programs, procedures and possibly associated documentation

and data pertaining to the operation of a computer system.”

(ISO/IEC/IEEE 24765:2017(En), Systems and Software Engineering —

Vocabulary, 2021)

“Computer software is the product that software professionals build and

then support over the long term. It encompasses programs that execute

within a computer of any size and architecture, content that is presented as

the computer programs execute, and descriptive information in both hard

copy and virtual forms that encompass virtually any electronic media.”

(Pressman & Maxim, 2015, p. 1).

Software Engineering

“Systematic application of scientific and technological knowledge,

methods, and experience to the design, implementation, testing, and

documentation of software.” (ISO/IEC/IEEE 24765:2017(En), Systems and

Software Engineering — Vocabulary, 2021).

“Encompasses a process, a collection of methods (practice) and an array

of tools that allow professionals to build high-quality computer software.”

(Pressman & Maxim, 2015, p. 14)

“Encompasses a process, a collection of methods (practice) and an array

of tools that allow professionals to build high-quality computer software.”

(Pressman & Maxim, 2015, p. 14).

Software Engineering Processes

“Software engineering processes are concerned with work activities

accomplished by software engineers to develop, maintain, and operate

software, such as require meets, design, construction, testing, configuration

management, and other software engineering processes.” (Abran & Moore,

2014, pp. 8–1).

Software Process

“A composition of phases, activities, artifacts, and resources (including

the humans).” (Oktaba & Ibargüengoitia González, 1998, p. 229)

Software Life Cycle

“A software development life cycle (SDLC) includes the software

processes used to specify and transform software requirements into a

deliverable software product. A software product life cycle (SPLC) includes a

software development life cycle plus additional software processes that

provide for deployment, maintenance, support, evolution, retirement, and all

30

other inception to retirement processes for a software product.” (Abran &

Moore, 2014, p. 8–4).

31

3.1.2 ON AGILE DEVELOPMENT PARADIGM

3.1.2.1 REVIEW OF FUNDAMENTAL CONCEPTS OF AGILITY

Over the last years, the Agile Methodologies have been chosen as high-speed

methodologies for developing volatile internet applications, and web development

(Paulk, 2002). Following the Agile manifesto (Beck et al., 2001) these

methodologies focus on people, working software, customer collaboration, and

responding to change in a very easy way. Following the four principles from the

Agile manifesto, it is possible to work on the most important things, when

software development is in progress, improves the development time, and keeps

the work aligned with the company’s budget.

Linear SDLC and Agile SDLC have a lot of differences, Hong et al. (2011) listed

most of them (see Table 5) between those two software development cycles. Agile

SDLC supports short development cycles and can be adapted very quickly to any

change, instead linear SDLC have very long cycles so that any change could have

a big impact on the development. IEEE (2021) defines agile development as

“software development approach based on iterative development, frequent

inspection and adaptation, and incremental deliveries, in which requirements

and solutions evolve through collaboration in cross-functional teams and

through continuous stakeholder feedback”.

Both SDLC must have their rigid steps even though agile models are more

flexible it is very important to follow the necessary steps to have the desire results.

The short development cycles allow to the stakeholders know the direction of the

project in almost real-time so that they can make any adjustment avoiding

unnecessary rework and waste of time. A key difference is the management of the

user requirements, it is not very common that stakeholders have all the

requirements at the beginning of the project, they can cause a lot of problems in a

linear SDLC, something that can be more manageable in an agile SDLC.

In the late 1990s, agile methods emerged and offered lightweight processes with

a focus on people and interactions (Hoda et al., 2018). Nowadays the last State of

Agile survey (State of Agile Survey, 2021) reported that 95% of the surveyed

companies are applying agile methods within the organization. 18% of them have

all their teams working with agile methods, and 33% of the companies have more

than half of their teams working with agile. Finally, the report stated that 75% of the

respondents are using Scrum. Hoda et al. (2018) expect that agile software

development continues growing working together with the new technologies and

trends like the Internet of Things, Big Data, Virtua-Reality, and more.

32

Table 5 - Main differences between linear and agile SDLC.

 Agile IS Non agile IS

Applicable context More fluid user requirements Relatively stable user requirements.

Identification of user
requirements

Users are constantly solicited for
new requirements; emphasis on
adaptivity to changing
environments

User requirements are typically identified at
the start of the development cycle, with
emphasis on planning and predicting.

Number of development
cycles

Many short development cycles One long development cycle

Development steps within
each development cycle

Rigid steps Rigid steps

Functions available when
system is first released.

System only provides a limited
set of functions when first
released

System is expected to deliver a full set of
functions when first released

Goal in each development
cycle

Each release has limited scope,
i.e., each release delivers only a
few valuable functions.

A major release that comes with a complete
set of functions.

Typical release frequency
Frequent; typically, every few
weeks to every few months.

Infrequent; typically, after a few years.

Example systems
iPhone apps, company intranets,
Web-based systems, software as
a service, etc.

Operational systems, enterprise resource
planning, office automation systems, etc.

The Agile manifesto is based on twelve principles (Beck et al., 2001), every

principle does emphasis different situations that make agile work as a discipline.

Laanti et al. (2013) analyzed every principle from the agile manifesto as showed in

Table 7.

33

Table 6 - Emphasis of every single agile principle on the manifesto.

Agile Principle Emphasis

Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

Customer satisfaction,
Continuous delivery,
value, early deliveries

Welcome changing requirements, even late in
development. Agile processes harness change for the
customer's competitive advantage.

Adaptability, competitiveness, customer benefit

Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference for the
shorter timescale.

Frequent deliveries

Business people and developers must work together daily
throughout the project.

Collaboration

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get
the job done.

Motivated individuals, good environment,
support, trust

The most efficient and effective method of conveying
information to and within a development team is face-
toface conversation.

Efficiency, communication

Working software is the primary measure of progress. Measure progress via deliverables

Agile processes promote sustainable development. The
sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

Sustainability, people

Continuous attention to technical excellence and good
design enhances agility.

Focus on technical excellence,

Simplicity – the art of maximizing the amount of work not
done –is essential.

Simplicity, optimize work

The best architectures, requirements, and designs emerge
from self-organizing teams.

Self-organization

At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior
accordingly.

Built-in improvement of efficiency and behavior

Laanti et al. (2013) recollected some definitions of “Agile” found in literature,

Ambler (2007) defined it as the “iterative and incremental (evolutionary)

approach to software development which is performed in a highly

collaborative manner by self-organizing teams with “just enough” ceremony

that produces high-quality software in a cost-effective and timely manner

which meets the changing needs of its stakeholders”. Schuh (2004) “Building

software by empowering and trusting people. Acknowledging change as a

norm, and promoting constant feedback. Producing more valuable

functionality faster.”

34

Figure 6 - Comparing project management on agile SDLC methods

35

Several Agile Methodologies acknowledge the high-quality software and

customer satisfaction (Javanmard & Alian, 2015), Adaptive Software Development

(ASD), Agile Modeling, Crystal Methods, Dynamic System Development, Lean

Development, and Scrum are some examples of agile methodologies. Most of the

times the agile methodologies must be using combining other practices or methods

to cover the whole cycle, Abrahamsson et al (2010) analyzed most of the agile

SDLC (see Figure 6) trying to find if they can support project management support,

a process described and offers concrete guidance. Abrahamsson et al (2010)

concluded that the lack of project management and concrete guidance could be a

problem for different situations in development phases.

Laanti et al. (2013) recollected some definitions of agile with different authors

and found some words that make emphasis from them. Table 7 represents every

agile feature found by Laanti and connects to the twelve principles of agile software

from the manifesto (Beck et al., 2001).

Table 7 - Agile features related to the 12 agile principles.

Concept Twelve Principles of Relation Reference

Effective Working software is the primary measure of
progress.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

Cockburn 2001

Steerable Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

Cockburn 2001

Rule-based Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

Cockburn 2001

Speed Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Working software is the primary measure of
progress.

Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

Anderson 2003, Larman 2003,
Schuh 2004, Ambler 2007,

36

People Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals. Give
them the environment and support they need,
and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a
development team is face-to-face conversation.

Cockburn 2001, Schuh 2004,

Empowerment At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

Schuh 2004,

Change Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

Schuh 2004

Value Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software.

Working software is the primary measure of
progress.

Schuh 2004

Delivery Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Lyytinen 2006

Innovations Continuous attention to technical excellence and
good design enhances agility.

Lyytinen 2006

Feedback Continuous attention to technical excellence and
good design enhances agility.

At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

Schuh 2004, Subramaniam
2005

Adaptability Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

Continuous attention to technical excellence and
good design enhances agility.

Subramaniam 2005

Collaboration Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals. Give
them the environment and support they need,
and trust them to get the job done.

Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

Subramaniam 2005

Iterative At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

Ambler 2007, IEEE 2007,
Wikipedia 2007

Incremental At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

Ambler 2007,

37

Selforganizing The best architectures, requirements, and
designs emerge from self-organizing teams.

Ambler 2007,

Less processdriven Working software is the primary measure of
progress.

Ambler 2007,

Collaborative Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals. Give
them the environment and support they need,
and trust them to get the job done.

Ambler 2007,

Cost-conscious Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Ambler 2007,

Customer-driven Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

Ambler 2007,

Responsiveness Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

Larman 2003, Lyytinen 2006,
Nerur and Balijepally 2007

Flexibility Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

Larman 2003, Nerur and
Balijepally 2007

Responsive Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

IEEE 2007

Conceptual
framework

Wikipedia 2007

Boehm and Turner (2003) analyzed some characteristics of agile and traditional

methods (see Table 8) using the Application, Management, Technical, and

Personnel constructors. The differences are clear: Delivering value to the customer

as quickly as possible in short increments is the key element of agile methods.

Table 8 - General characteristics for agile methods and traditional methods

Project characteristics Agile home ground Plan-driven home ground

Application

Primary goals Rapid value, responding to
change

Predictability, stability, high
assurance

Size Smaller teams and projects Larger teams and projects

Environment Turbulent, high change, project
focused

Stable, low change, project
and organization focused

Management

Customer relations Dedicated onsite customers,
focused on prioritized
increments

As-needed customer
interactions, focused on
contract provisions

Planning and control Internalized plans, qualitative
control

Documented plans,
quantitative control

Communications Tacit interpersonal knowledge Explicit documented
knowledge

Technical

38

Project characteristics Agile home ground Plan-driven home ground

Requirements Prioritized informal stories and
test cases, undergoing
unforeseeable change

Formalized project, capability,
interface, quality, foreseeable
evolution requirements

Development Simple design, short increments,
refactoring assumed
inexpensive

Extensive design, longer
increments, refactoring
assumed expensive

Test Executable test cases define
requirements, testing

Documented test plans and
procedures

Personnel

Customers Dedicated, colocated Crack
(Collaborative, representative,
authorized, committed, and
knowledgeable) performers

Crack* performers, not
always colocated

Developers At least 30% full-time Cockburn
Level 2 and 3 experts; no Level
1B or Level –1 personnel (See
the “Cockburn’s Three Levels of
Software Understanding)

50% Cockburn Level 3s early;
10% throughout; 30% Level
1B’s workable; no Level –1s
(See the “Cockburn’s Three
Levels of Software
Understanding)

Culture Comfort and empowerment via
many degrees of freedom
(thriving on chaos)

Comfort and empowerment
via framework of policies and
procedures (thriving on order)

Boehm and Turner (2003) also created the five critical agility and plan-driven

factors (see Table 9) where is possible to know if projects fit into an agile or a

traditional methodology. Finally, Figure 7 shows a polar chart where the five factors

can be graphed and provides information about what methodology should be

chosen.

39

Table 9 - The five critical agility and plan-driven factors.

Factor Agility discriminators Plan-driven discriminators

Size Well matched to small products and
teams; reliance on tacit knowledge limits
scalability.

Methods evolved to handle large
products and teams; hard to tailor
down to small projects.

Criticality Untested on safety-critical products;
potential difficulties with simple design
and lack of documentation.

Methods evolved to handle highly
critical products; hard to tailor down
efficiently to low-criticality products.

Dynamism Simple design and continuous
refactoring are excellent for highly
dynamic environments but present a
source of potentially expensive rework
for highly stable environments.

Detailed plans and “big design up
front” excellent for highly stable
environment, but a source of
expensive rework for highly dynamic
environments.

Personnel Require continuous presence of a critical
mass of scarce Cockburn Level 2 or 3
experts; risky to use nonagile Level 1B
people.

Need a critical mass of scarce
Cockburn Level 2 and 3 experts
during project definition, but can
work with fewer later in the project—
unless the environment is highly
dynamic. Can usually accommodate
some Level 1B people.

Culture Thrive in a culture where people feel
comfortable and empowered by having
many degrees of freedom; thrive on
chaos.

Thrive in a culture where people feel
comfortable and empowered by
having their roles defined by clear
policies and procedures; thrive on
order.

40

Figure 7 - Polar chart with the five critical factors.

To have success, it is very important to classify the level of expertise for every

developer of the team. Cockburn (2002) identified three levels of people that can

be sort inside a software method, Boehm and Turner (2003) modified their work

splitting level 1 to make difference between Agile and plan-driven methods and

added level (see Table 10). Level -1 people should be identified as soon as

possible to be reassigned to other activities rather than development. Level 1B

people are average and below, with a stable project they can work without any

problem, but sometimes can slow the team on urgency changes. Level 1A people

can work very well if they are enough people level 2 to guide them. Level 2 people

can manage small teams with the guide of Level 3 people, with some experience

they can become Level 3. Level 3 people are the most experienced people, able to

manage large projects.

41

Table 10 - People level for software development.

Level Characteristics

3 Is able to revise a method (break its rules) to fit an unprecedented new situation.

2 Is able to tailor a method to fit a precedented new situation.

1A With training, is able to perform discretionary method steps (e.g., sizing stories to fit increments,
composing patterns, compound refactoring, and complex COTS integration).
Can become Level 2 with experience.

1B With training, is able to perform procedural method steps (e.g., coding a simple method, simple
refactoring, following coding standards and capability model procedures, and running tests). Can
master some Level 1A skills with experience.

-1 May have technical skills, but is unable or unwilling to collaborate or follow shared methods.

Having all above information from Boehm and Turner (2003) on this PhD

Dissertation we will try to keep Personnel with 30% 1B and 20% with level 2 or 3.

Criticality should be at the middle of the bar or below with projects that have not

high impact. Dynamism allows changes up to 5% per month so that the project can

keep a balancing. Culture stated at the middle of the bar because an order should

be implemented even though we are talking about Agile development. Size of the

team should be small and there should be no more than 15 people, if the project

needs more people, it must be divided in smaller teams to be more manageable.

Figure 8 shows the graphic made by Boehm and Turner (2003) with the approach

for our methodology presented on this document.

42

Figure 8 - Boehm and Turner graphic with new methodology approach.

Agile and traditional have unique features, each of them can have one value

from ten to one to see the weight that has every feature inside the SDLC. Figure 9

represents a word cloud with the ten most valuable features in Agile development

while Figure 10 represents a word cloud with the ten most valuable features inside

traditional development.

43

Figure 9 - Most important features on Agile SDLC.

Figure 10 - Most important features on linear SDLC.

44

3.1.2.2 REVIEW OF OFFICIAL SCRUM – MAIN AND MOST USE AGILE SDLC

During the State of Agile survey (2021) the 75% of the respondents said that

they are using Scrum as Agile framework. Scrum is one of the most popular Agile

frameworks because it is very easy to learn and simple. Schwaber and Sutherland

(2020) created the Scrum Guide that includes only thirteen pages and explains all

the roles, events, and artifacts. Figure 11 shows the Scrum process (Scrum.org,

2021) with all its elements. The Scrum Guide (Schwaber & Sutherland, 2020)

defines Scrum as “a lightweight framework that helps people, teams, and

organizations generate value through adaptive solutions for complex

problems”.

Figure 11 - Scrum Process Diagram with all its elements taken from Scrum.org.

Scrum defines only three roles that work together all the time to provide the max

value to the project. The Product Owner is the person who is accountable to

maximize the value of every task, this role is in charge of the product backlog

where he or she put the tasks to be done sorted by the most important to the less

important task. The Developers are the people that have to complete every task

put inside the Sprint Backlog, they manage all those tasks and do the plan every

Sprint so that they make sure that every iteration has the reasonable tasks to be

45

developed in time. The Scrum Master is the person who is responsible to

implement every Scrum element as it is defined in the Scrum Guide, the Scrum

Master also coaches the team and removes every blocker that the developers

must continue.

The Scrum artifacts represent the work or the value and are available for

everyone to make all the team’s work transparent. Product Backlog has all the

tasks manage by the Product Owner and are sorted by the most to the less

important. The Sprint Backlog is created every Sprint by the developers, they take

the number of tasks that can be complete in a certain period, when the Sprint ends,

the completed tasks are added to the Increment that is the sum of all completed

tasks in previous Sprints, this Increment should be functional.

Finally, every Scrum event “is a formal opportunity to inspect and adapt

Scrum artifacts. These events are specifically designed to enable the

transparency required. Failure to operate any events as prescribed results in

lost opportunities to inspect and adapt. Events are used in Scrum to create

regularity and to minimize the need for meetings not defined in Scrum.

Optimally, all events are held at the same time and place to reduce

complexity” (Schwaber & Sutherland, 2020). The Sprint is where all the work is

done, it has a fixed timeframe, every time that a Sprint is over a new one Starts

immediately. Sprint Planning starts every Sprint and it’s a meeting where the

developers plan the work to be done during the timeframe choosing the most

important tasks from the Product Backlog and create a Sprint Backlog. Daily Scrum

is a fifteen-minute meeting that occurs every day to “improve communications,

identify impediments, promote quick decision-making, and consequently

eliminate the need for other meetings” (Schwaber & Sutherland, 2020). Sprint

Review occurs when the Sprint is almost over, the Scrum Team shows the results

of their work and the progress to the Stakeholders. Sprint Retrospective is where

the Scrum Team “identifies the most helpful changes to improve its

effectiveness” (Schwaber & Sutherland, 2020), the feedback from the team is very

valuable to enhance the quality of the “individuals, interactions, processes,

tools, and their Definition of Done” (Schwaber & Sutherland, 2020).

Table 11 shows every Scrum element described above divided into Roles,

Events, and Artifacts.

46

Table 11 - Scrum elements.

Roles Events Artifacts

Product Owner Sprint Product Backlog

Scrum Master Sprint Planning Sprint Backlog

Scrum Team Daily Scrum Meeting Product Increment

 Sprint Review

 Sprint Retrospective

3.1.2.3 REVIEW OF A ROBUST SCRUM

The official Scrum Guide (Schwaber & Sutherland, 2020) is a good start to learn

the Scrum principles, roles, events, and artifacts but on the other hand, it is difficult

to start a new project just with the knowledge provided by that guide.

SCRUMstudy organization created an SBOK Guide (2013) as a “guide for

organizations and project management practitioners who want to implement

Scrum, as well as those already doing so who want to make needed

improvements to their processes. It is based on experience drawn from

thousands of projects across a variety of organizations and industries. The

contributions of many Scrum experts and project management practitioners

have been considered in its development.”

The SBOK Guide (2013) is composed of six phases: Initiate, Plan and Estimate,

Implement, Review and Retrospect, and Release. Every single phase has its

processes. Table 12 shows the phases and the processes proposed by the SBOK

Guide.

Every single element from Scrum is included in the SBOK Guide (2013) and

every process is explained step by step so that it is easier to start working with

Scrum in a more organized way.

Schwaber (1997) proposed three different phases for Scrum called Pregame,

Game, and Postgame. Every single had the different Scrum processes defined in

1997 that are very similar to the current Scrum processes. Figure 12 displays the

Scrum Methodology defined by Schwaber (1997).

47

Table 12 - SBOK Guide phases and processes.

Phase Processes

Initiate Create Project Vision
Identify Scrum Master and Stakeholder(s)
Form Scrum Team
Develop Epic(s)
Create Prioritized Product Backlog
Conduct Release Planning

Plan and Estimate Create User Stories
Approve, Estimate, and Commit User Stories
Create Tasks
Estimate Tasks
Create Sprint Backlog

Implement Create Deliverables
Conduct Daily Standup
Groom Prioritized Product Backlog

Review and Retrospect Convene Scrum of Scrums
Demonstrate and Validate Sprint
Retrospect Sprint

Release Ship Deliverables
Retrospect Project

48

Figure 12 - Scrum Methodology created by Schwaber in 1997.

Using the SBOK Guide (2013) and following the Schwaber (1997) proposal, we

are proposing three different phases: Pregame, Game, and Postgame. Every

single phase is composed of different processes that help to maintain order with

the agility that we need.

We can match the three phases with the phases inside eXtreme Programing

Agile Methodology proposed by Dudziak (1999): Exploration, Releases Planning,

Iteration Planning, Implementation, Functional Test, and Release. Figure 13 shows

the eXtreme Programing simplified structure created by Dudziak (1999).

49

Figure 13 - eXtreme Programing simplified process structure.

To match Scrum and eXtreme Programing phases is it possible to rename

Planning Game as Pregame, Iteration Planning Game as Game, and Release as

Postgame. Table 13 displays the three proposed phases with their processes and

the corresponding eXtreme Programing phase. It is also possible to use the

Implementation phase where the user stories are developed.

The Pregame phase is where basics are created, the Create Project Vision

process is conducted by the Product Owner so that it will provide inspiration and

focus for the whole project. Develop Epics is a process where all the team meets to

create appropriate Epics for the project. Once the Epics are created it is necessary

to follow the Created Prioritized Product Backlog where the Epics are refined,

elaborated, and sorted from the most valuable to the less valuable. Conduct

Release Planning process is where the length of the Sprint is defined, the Release

Planning Schedule is created, and the deployment scheduled can be shared with

stakeholders.

50

Figure 14 - eXtreme Programing Phases renamed.

The Game phase is the iterative part of the project where every Sprint starts and

ends with all Scrum ceremonies. Create Sprint Backlog process runs when the

new Sprint starts and provides the necessary tasks to complete during that period.

Conduct Daily Standup process is the daily Scrum ceremony where every Scrum

Team member updates their process and report any impediment. The Groom

Prioritized Product Backlog process is vital for having a healthy Sprint Backlog for

the next Sprints, is where the team meets to update and maintain the Product

Backlog. Build Sprint Increment process is the time where developers work on user

stories and the development is done. Demonstrate and Validate Sprint process is

where the Sprint Review ceremony is conducted to show the progress from the

team during that Sprint. Finally, the Retrospective Sprint process has the Sprint

Retrospective ceremony so that the team can identify opportunities areas to

improve during the next Sprints.

The Postgame phase represents the deliverables where the increment is

delivered and deployed. This phase only has the Ship Deliverables process. Figure

14 represents this approach.

Figure 15 displays a more robust Scrum process using the three defined phases

and their processes. Please note that the Game phase is the iterative part that

must be repeated until the project is done.

51

Table 13 - Phases, processes, roles, and artifacts used for a new methodology.

 Roles

Phase eXtreme Programing phase Processes Principal Support Artifacts

Pregame Exploration Create Project Vision Product Owner Scrum Master Project Vision Statement

Develop Epics Product Owner Scrum Master
Scrum Team

Product Backlog

Create User Stories Product Owner Scrum Master
Scrum Team

User Stories

Release Planning Created Prioritized Product
Backlog

Product Owner Scrum Master
Scrum Team

Prioritized Product Backlog

Conduct Release Planning Product Owner Scrum Master
Scrum Team

Release Planning Schedule

Game Iteration Planning +
Implementation + Functional
Testing

Create Sprint Backlog Scrum Team Product Owner
Scrum Master

Sprint Backlog

Conduct Daily Standup Scrum Team Product Owner
Scrum Master

Kanban board

Build Sprint Increment Scrum Team Scrum Master Updated User Stories

Demonstrate and Validate Sprint Scrum Team Product Owner
Scrum Master

Increment

Retrospective Sprint Scrum Team Product Owner
Scrum Master

Agreed Actionable Improvements

Postgame Release Ship Deliverables Scrum Team Scrum Master Working Deliverables Agreement

52

Figure 15 - More robust Scrum process.

53

Hence, this section provides the following important concepts:

Scrum

“Scrum is a lightweight framework that helps people, teams and

organizations generate value through adaptive solutions for complex

problems.” (Schwaber & Sutherland, 2020, p. 3)

Scrum Team

“The fundamental unit of Scrum is a small team of people, a Scrum Team.

The Scrum Team consists of one Scrum Master, one Product Owner, and

Developers. Within a Scrum Team, there are no sub-teams or hierarchies. It

is a cohesive unit of professionals focused on one objective at a time, the

Product Goal.” (Schwaber & Sutherland, 2020, p. 5)

Product Owner

“The Product Owner is accountable for maximizing the value of the

product resulting from the work of the Scrum Team. How this is done may

vary widely across organizations, Scrum Teams, and individuals.” (Schwaber

& Sutherland, 2020, p. 5)

Scrum Master

“The Scrum Master is accountable for establishing Scrum as defined in the

Scrum Guide. They do this by helping everyone understand Scrum theory

and practice, both within the Scrum Team and the organization.” (Schwaber &

Sutherland, 2020, p. 6)

Developers

“Developers are the people in the Scrum Team that are committed to

creating any aspect of a usable Increment each Sprint.” (Schwaber &

Sutherland, 2020, p. 5)

54

Sprint

“Sprints are the heartbeat of Scrum, where ideas are turned into value.

They are fixed length events of one month or less to create consistency. A

new Sprint starts immediately after the conclusion of the previous Sprint.”

(Schwaber & Sutherland, 2020, p. 7)

Sprint Planning

“Sprint Planning initiates the Sprint by laying out the work to be performed

for the Sprint. This resulting plan is created by the collaborative work of the

entire Scrum Team.” (Schwaber & Sutherland, 2020, p. 8)

Daily Scrum

“The purpose of the Daily Scrum is to inspect progress toward the Sprint

Goal and adapt the Sprint Backlog as necessary, adjusting the upcoming

planned work.” (Schwaber & Sutherland, 2020, p. 9)

Sprint Review

“The purpose of the Sprint Review is to inspect the outcome of the Sprint

and determine future adaptations. The Scrum Team presents the results of

their work to key stakeholders and progress toward the Product Goal is

discussed.” (Schwaber & Sutherland, 2020, p. 9)

Sprint Retrospective

“The purpose of the Sprint Retrospective is to plan ways to increase

quality and effectiveness.” (Schwaber & Sutherland, 2020, p. 10)

Product Backlog

“The Product Backlog is an emergent, ordered list of what is needed to

improve the product. It is the single source of work undertaken by the Scrum

Team.” (Schwaber & Sutherland, 2020, p. 10)

55

Sprint Backlog

“The Sprint Backlog is composed of the Sprint Goal (why), the set of

Product Backlog items selected for the Sprint (what), as well as an actionable

plan for delivering the Increment (how).” (Schwaber & Sutherland, 2020, p. 11)

Increment

“An Increment is a concrete stepping stone toward the Product Goal. Each

Increment is additive to all prior Increments and thoroughly verified,

ensuring that all Increments work together. In order to provide value, the

Increment must be usable.” (Schwaber & Sutherland, 2020, p. 11)

eXtreme Programming (XP)

“XP is also a lightweight methodology or what Alistair Cockburn calls a

“Crystal Methodology”. In short, methodologies of this family have high

productivity and high tolerance. Communication is usually strong with short

paths, especially informal (not documented). There the is only a small range

of deliverables (artifacts), but these are delivered frequently (releases).

Processes of the Crystal family identify only a few roles and activities.”

(Dudziak, 1999, p. 4)

56

3.1.3 ON BUSINESS PROCESS MANAGEMENT SYSTEMS (BPMS)

DEVELOPMENT PLATFORMS, METHODOLOGIES, AND SOFTWARE

APPLICATIONS

3.1.3.1 CORE DEFINITIONS (BPMS, WORKFLOW MANAGEMENT SYSTEMS, BPMS

DEVELOPMENT PLATFORMS, BPMS SOFTWARE APPLICATION/PAIS)

Before going deeper into BPMS and its methodologies, it is important to have a

clear definition of the most important elements that will be used in this Ph.D.

Dissertation from now on.

In the decade of the nineties, there were Workflow Management Systems

(WFMS) that helped to integrate existing applications and isolate the management

of the business process into another component. The Workflow Management

Coalition (WfMC), cited by van der Aalst et al. (2003), defined WFMS as “A

system that defines, creates and manages the execution of workflows

through the use of software, running on one or more workflow engines,

which is able to interpret the process definition, interact with workflow

participants and, where required, invoke the use of IT tools and applications”.

van der Aalst et al. (2003) refer to the WFMS as the essence of BPMS even

Reijers (2006) uses WFMS and BPMS as synonymous.

Karagiannis (1995, p. 10) defines the BPMS as "Information systems dealing

with the definition, administration, customization, and evaluation of tasks

evolving from business processes as well as from organizational structures

are called Business Process Management Systems." Business Process

Management Initiative (BPMI), cited by Jung et al. (2007, p. 22), says that BPMS

“is to integrate systems, automate routine activities, manage all phases of

processes, deploy process seamlessly, and provide end-to-end visibility and

control”. Finally, Reijers (2006, p. 390) described a BPMS as a “piece of generic

software that supports activities such as the modeling, analysis and

enactment of business processes.”

Mutschler et al. (2008) divide the information systems into Process-oriented

Information Systems (POIS) and Process-aware Information Systems (PAIS).

POIS are developed taking into account the process of the company so that those

information systems (IS) could be obsoleted once the processes are updated. On

the other hand, PAIS “does not contain any information about the structure

and the processes of a particular organization. Instead, an organization

needs to configure the PAIS by specifying processes, organizational entities,

57

and business objects” (Mutschler et al., 2008, p. 7). The PAIS was defined as “a

software system that manages and executes operational processes involving

people, applications, and/or information sources on the basis of processes

models” by Dumas et al. (2005, p. 7).

Krafzig et al. (2005) refer that BPMS projects can be developed with a standard

software development methodology while Ravesteyn and Batenburg (2010a, p. 2)

signs that “standard software development methodologies, however – such as

the waterfall method, rapid application development or rational unified

process – ignore the business or organizational aspects.”

In this Ph.D. dissertation, we are taking BPMS/PAIS as a “Software system for

supporting the operation and monitoring of a full Business Process.”

(adapted from Reijers, 2006, p. 390). We also consider WFMS as the heart of

BPMS, in this modern era both are synonymous. BPMS can be also a Process-

aware Information system (PAIS) because they do not have any hardcoded logic

for the organization and the customer is the one that must configure every aspect

of his organization.

With BPMS already defined, it is important to know that a platform is defined as

“a bundle of functions that can serve as the basis of certain applications

whose value changes over time” (Taudes et al., 2000, p. 228) so that a

BPMS/PAIS Development Platform can be defined as "Software development

platform used for designing, building, running, and monitoring a

BPMS/PAIS.". Finally, a BPMS Application is the information system developed

with the help of a BMPS Development Platform.

With all the main terms defined we can divide BPMS into three main important

elements: BPMS (PAIS) Business Methodologies that can be classic or agile,

BPMS (PAIS) Business Development Platforms that can be modern or classic,

and BPMS (PAIS) Business Software Applications that can be developed for

small enterprises, medium enterprises, and large enterprises. Figure 16 displays a

conceptual map that represents the BPMS (PAIS) division. The main objective of

this work is to help small enterprises with low-budget.

It is important to know the difference between a Business Process Platform and

a Business Software Application; The first is a piece of generic software where the

developer creates all the business process workflow and configures the data,

interfaces, and functions to create a Business Software Application. This

application will be used by the final users and will have all the functionality, data,

and processes already configured by the developers.

58

Figure 16 - BPMS (PAIS) division in three main categories.

59

3.1.3.2 REVIEW OF BPMS PLATFORMS – OPEN SOURCE VS COMMERCIAL

Being able to be defined BPMS now it is important to clearly define Low-code

platforms. The term “low-code” was referred to by Richardson and Rymer (2014, p.

1) as “application platforms that accelerate app delivery by dramatically

reducing the amount of hand-coding required. Faster delivery is the primary

benefit of these application platforms; they also help firms respond more

quickly to customer feedback after initial software releases and provision

mobile and multichannel apps. Usage of low-code platforms is gaining

momentum for customer-facing applications”. While Waszkowski (2019, p. 1)

stated that Low-Code “Programming enables the programmer to spend less

time thinking about the syntax of the code and to put more emphasis on

designing the aesthetics and functionality of the application, so reducing the

amount of time spent on troubleshooting and implementing”. Nowadays Low-

code development platforms can be local or cloud-based so that it is possible for

the development, and deployment of functional software with minimal or no code

(Sahay et al., 2020).

As a cloud-based environment, the low-code platforms have an architecture

where everything is connected to a server where it handles the calls to different

internal and external services, repositories, databases, compilers, code generators,

and optimizers. Sahay et al. (2020) represented the typical low-code platform

architecture as shown in Figures 17 and Figure 18 for traditional and cloud-based

low-code platforms.

Figure 17 - Low-code platform typical architecture.

60

Figure 18 - Low-code platform cloud-based architecture.

There are commercial and open-source Low-code platforms so we are going to

compare three of the most important platforms in both categories. Using Magic

Quadrant for Enterprise Low-Code Application Platforms by Gartner (2019) we will

take three low-code platforms from the LEADERS quadrant that are Appian,

OutSystems, and Mendix.

Sahay et al. (2020) created a taxonomy for Low-Code Development Platforms

that compared different platforms with different constructors like graphical user

interface, interoperability support, security support, collaborative development

support, reusability support, scalability, business logic specification mechanisms,

application build mechanisms, deployment support, and kinds of supported

61

applications. Table 14 displays the work done by Sahay et al. (2020) comparing

Appian, OutSystems, and Mendix.

For Low-Code Platforms open-source it is needed to take another approach, we

cannot compare with the same parameters used in Table 3-11 because used to

have fewer functionalities with the great advantage that are free and can be used

by small enterprises with low-budget that are our main objective for this work. To

compare open-source platforms we use Mora et al. (2016) work that compares

open-source elements based on Risks Categories like Financial, Organizational,

End User, and Technical. The work created a tool called Multi-Attribute Decision

Making (MADM) after evaluating 12 frameworks: Capgemini Open Source Maturity

Model, Navica Open Source Maturity Model (OSMM), Open Business Readiness

Rating (OpenBRR), Open Business Quality Rating (OpenBQR), Quality Model for

Open Source Selection (QMOSS), QualOSS, Software Quality Observatory for

Open Source Software model (SQO-OSS), OpenSource Maturity Model (OMM),

QualiPSo—Quality Platform for Open Source Software, IRCA Model, Method for

Qualification and Selection of Open Source Software (QSOSv2), and the

Evaluation Framework for Free/Open Source Projects (EFFORT). Table 15

represents Mora's comparative table for open-source platforms.

In this document, we will focus on open-source low-code development platforms

so that the user cannot be worried about rising prices, having no control of the

code, and unexpected platforms shut down even though commercial platforms can

offer advanced functionalities (Luo et al., 2021).

Table 14 - Low-code commercial platforms compared by Sahay et al.

Feature OutSystems Mendix Appian

Graphical user interface

Drag-and-drop designer Yes Yes Yes

Point and click approach No No No

Pre-built forms/reports Yes Yes Yes

Pre-built dashboards Yes No No

Forms No No No

Progress tracking Yes Yes Yes

Advanced reporting No No No

Built-in workflows No No No

Configurable workflows No No No

Interoperability support

Interoperability with external service Yes Yes Yes

Connection with data sources Yes Yes Yes

Security Support

62

Feature OutSystems Mendix Appian

Application security Yes Yes Yes

Platform security Yes Yes Yes

Collaborative development support

Off-line collaboration Yes Yes Yes

On-line collaboration Yes Yes Yes

Reusability support

Built-in workflows No No No

Pre-built forms/reports Yes Yes Yes

Pre-built dashboards Yes No No

Scalability

Scalability on number of users Yes Yes Yes

Scalability on data traffic Yes Yes No

Scalability on data storage Yes Yes No

Business logic specification mechanisms

Business rules engine Yes Yes Yes

Graphical workflow editor Yes Yes No

AI enabled business logic Yes No Yes

Application build mechanisms

Code generation Yes No No

Models at run-time No Yes Yes

Deployment support

Deployment on cloud Yes Yes Yes

Deployment on local infrastructures Yes Yes Yes

Kinds of supported applications

Event monitoring Yes Yes Yes

Process automation Yes No Yes

Approval process control No No No

Escalation management No No No

Inventory management Yes Yes Yes

Quality management No Yes Yes

Workflow management Yes Yes Yes

63

Table 15 - Open-source comparative table based on risk.

Risk Attributeure Definition Risk Category Null risk
value

Low-risk
value

Moderate
risk value

Hight risk
value

Certain risk
value

New business
opportunity

Extent of introducing an innovative business
process supported by the tool.

Financial Very high High Moderate Low Very low

Switching costs Extent of overall costs caused for the FLOSS
adoption.

Financial Very high High Moderate Low Very low

Training Availability of free or affordable user and
technical courses.

Organizational Very high High Moderate Low Very low

Top management
support

Extent of the economic and political support from
the highest level of management.

Organizational Very high High Moderate Low Very low

Internal expertise Existence of FLOSS expertise in the
organization.

Organizational Very high High Moderate Low Very low

Functionality -
quality

Extent of expected and enhanced functionalities
provided by the tool.

End user Very high High Moderate Low Very low

Usefulness -
relevance

Extent of advantage is relatively perceived by
users of the FLOSS tool.

End user Very high High Moderate Low Very low

Usability Easiness of installation, learning and utilization
of the tool.

End user Very high High Moderate Low Very low

Community
support

Availability of technical support for tool
utilization.

Technical Very high-
low
cost

High-low
cost

Sufficient-
high
cost

Scarce-high
cost

None-high
cost

Documentation Availability of technical and user manuals and
extra documents.

Technical Very high High Moderate Low Very low

Maturity –
longevity

Period of first release of tool. Technical Decades Several
years

One year Few months One month

Security -
reliability

Extent of error-free status and hiddenflaws of the
tool.

Technical Very high High Moderate Low Very low

64

The Low-code open-source development platforms chosen for this work are

Joget, jBPM, and Camunda. The comparison using the Mora et al. (2016) tool

Multi-Attribute Decision Making (MADM) based on risks is displayed in Table 15.

Table 16 - Comparison between Low-code open-sour development platforms using the MADM tool.

Risk Attribute Risk Category Joget jBPM Camunda

New business opportunity Financial High High High

Switching costs Financial Low Moderate Very high

Training Organizational Low Moderate Moderate

Top management support Organizational Moderate Moderate Moderate

Internal expertise Organizational Very high Very high Very high

Functionality - quality End user Low Moderate Very low

Usefulness - relevance End user Moderate Moderate Moderate

Usability End user Moderate Moderate Moderate

Community support Technical Low Moderate High

Documentation Technical Low High Moderate

Maturity – longevity Technical Very low High Moderate

Security - reliability Technical Low High Low

Using an open-source Decision Making Support software named “Open

Decision Maker” it is possible to insert the attributes and their values so that we

can have the answer to which Low-code Development Platform will work better for

our needs using the values 1 to 9 from against every alternative if number 1 is

used it means that both alternatives are equal in that property. To keep the

consistency of Table 16 there will be added two numbers to represent every

difference between the scale of the table. It means that if Joget vs Camunda on

Documentation property is Low vs Moderate the Joget part will be on value 3 for

representing one value from the table scale of difference. The risks have three

different categories Organizational Risks, End-User Risks, and Technical Risks We

weighted Technical Risks with a value of 50% while End-User Risks and

Organizational Risks are getting a value of 25%. We consider that Community

support, Documentation, Maturity – Longevity, and Security - Reliability play a key

role in the decision-making but could be variable according to every project's

needs. Figure 19 displays the Open Decision Maker tool with the values provided

to the FUNCTIONALITY - QUALITY property.

65

Figure 19 - Open Decision Maker tool with values for the FUNCTIONALITY – QUALITY property.

By getting the results from the tool it is possible to see Joget as the winner with

a value of 57.46%, Camunda gets second place with 25.62%, and jBPM with a

value of 16.92%. The consistency ratios have a limit value of 0.1 and the values

that got a small CR value are FUNCTIONALITY – QUALITY with a value of 0.0332,

COMMUNITY SUPPORT with a value of 0.0332, DOCUMENTATION with a value

of 0.0332, and MATURITY – LONGEVITY with 0.0559. Figures 20 and 21 display

the results tab and the sensitivity analysis from the tool.

Following the results returned by the tool, we can see that using the Low-code

open-source Development Platform Joget can reduce the risk due to the low costs,

community support, documentation, and maturity of the project. In this Ph.D.

dissertation, we are going to use Joget in the next chapters.

66

Figure 20 - Result tab that shows Joget as the best Low-code Development Platform.

Figure 21 - Sensitivity Analysis with the values of 50% for ORGANIZATIONAL RISKS and 25% for END –

USER RISKS and TECHNICAL RISKS.

67

Hence, this section provides the following important concepts:

Workflow Management Systems (WFMS)

“A system that defines, creates and manages the execution of workflows

through the use of software, running on one or more workflow engines,

which is able to interpret the process definition, interact with workflow

participants and, where required, invoke the use of IT tools and applications”.

(van der Aalst et al., 2003)

Business Process Management System (BPMS) - Process-Aware Information

System (PAIS)

“Software system for supporting the operation and monitoring of a full

Business Process.” (adapted from Reijers, 2006, p. 390)

BPMS/PAIS Development Platform.

Software development platform used for designing, building, running, and

monitoring a BPMS/PAIS.

Low-code

 “Application platforms that accelerate app delivery by dramatically reduce

the amount of hand-coding required. Faster delivery is the primary benefit of

these application platforms; they also help firms respond more quickly to

customer feedback after initial software releases and provision mobile and

multichannel apps. Usage of low-code platforms is gaining momentum for

customer-facing applications” (Richardson and Rymer, 2014)

68

3.1.3.3 BPMS*/POIS SYSTEMATIC SELECTIVE LITERATURE REVIEW

A SSLR differs from Systematic Literature Review (SLR) (Kitchenham et al.

2009) and Mapping Study (MS) (Petersen et al. 2008) research methodologies in

the objective of the research, the scope of the research questions, the vastness of

the sources of information sought, as well as the studies analyzed (Paré et al.

2015; Boell and Cecez-Kecmanovic 2015). SLR and MS methodologies are usually

suitable for specific and mature research topics on which there is extensive

literature. SLR pursues quantitative evidence summative purpose on research

questions of narrow scope covering exhaustively all available studies – filtered by

predefined inclusion and exclusion criteria – and usually are based on many

studies. MS is similar to SLR but MS adds a visual multidimensional classification

of topics regarding the dimensions of interest for the researchers. In contrast,

SSLR method can be used to identify seminal studies on research fields still under

maturation or reactivated after a diminished period of research. These seminal

studies can be complemented with the selection of illustrative applied studies– also

filtered by predefined inclusion and exclusion criteria –, and usually are based on a

small number of studies and sources of studies. SLR and MS research methods,

thus, are suitable for mature specific research topics where a vast literature on

them exists, whereas SSLR is appropriate for research topics still under

development or renewed.

Based in Cooper (1988), a Literature Review research methodology can be

customized by defining its goal pursuing integration, critique or identification of

central of toral issues; its focus on theoretical findings or empirical practices; its

perspective as neutral or positional; its coverage through systematic exhaustive

search, systematic selective search or representative search; its organization

based on historical development or methodological grouped by similar topics; and

its expected audience as research or professional community in the domain

reviewed. This conceptual review aims the dual goal of knowledge integration and

critique - on plan-driven and agile development life cycles for BPMS against two

generic life cycles templates -; it is focused on practices – i.e. empirical

professional development methodologies for BPMS -; it is realized from a non-

neutral perspective – it aims to describe and compare the main identified plan-

driven and agile development methodologies against a generic plan-driven BPMS

life cycle and a generic agile Scrum-XP life cycle -; it uses a systematic selective

coverage – it reviews only the plan-driven and agile development life cycles for

BPMS found in a high-quality selective set of scientific publications for the 2000-

2023 period-; its organization is methodological – it is uses a generic plan-driven

and an agile development life cycle for BPMS as templates for the review -; and it

is elaborated for a dual audience – academics doing research on BPMS and

professionals developing BPMS -.

69

This SSLR method was carried out following the three main steps shown in

Table 17 (Cooper, 1988; Paré et al. 2015; Templier and Paré 2015).

Table 17 - Systematic Selective Literature Review (SSLR) research method

Step Purpose Outcomes Outcomes in this research

1) To formulate
the research goal.

To state the
expected
research goal
indicating the
theoretical, or
practical or both
ones expected
contributions.

• Research goal
statement.

• To contribute to the literature with a
conceptual descriptive-comparative review
of two – one classic and one lightweight type
- relevant development methodologies for
BDAS, and provide to the practice useful
recommendations regarding both
development methodologies.

2) To define data
sources and
selective criteria.

To identify and
agree the set of
data sources to
collect the
studies, as well
as to define the
selection
criteria.

• List of data
sources.

• Selection
criteria
statements.

• The two development methodologies for
BDAS were selected according to the next
criteria: 1) to select the classic methodology
most cited in the literature; and 2) to select a
modern and complete - i.e. it includes roles,
phases, activities, and artifacts -lightweight
development methodology reported from
2015-2022 period.

3) To collect
studies.

To get the
studies.

• Set of selected
studies.

• To methodologies were identified, and theirs
published references [13,14] were obtained.

4) To review and
synthetize the
findings from the
collected studies.

To conduct the
analysis and
integration of
finding.

• Structured
schema of
findings.

• We elaborated a generic lightweight
development methodology using the
ISO/IEC 29110 basic profile standard.

5) To elaborate
report of findings.

To produce
visible results.

• Research
results.

• This chapters was elaborated.

Tables 18 reports the set of the 8 studies on plan-driven or agile development

life cycles for BPMS found in the set of the 25 selected high-quality scientific

publications from the disciplines of Information Systems (18 publications), and

Software Engineering (7 publications). Table 18 reports type of development life

cycle between plan-driven or agile, publication domain, publication name, type of

publication – JCR journal or book-, publication impact factor if available, publication

year, study title, and number of citations. Table 18 reports firstly the 4 plan-driven

studies and secondly the 4 agile ones.

70

Table 18 - Set of 8 studies on Plan-Driven and Agile Development Life Cycles for PAIS/BPMS

Type of

PAIS/|BPMS

Life Cycle

Publication

Domain

Publication

Name

Type of

Publication

Publication

IF

Publication

Year
Study Title Citations

Heavyweight
Information

Systems
CACM JCR journal 2007

Business process development life cycle

methodology.
114

Heavyweight
Software

Engineering
IST JCR journal 2008

A methodology for business process improvement

and IS development.
103

Heavyweight
Information

Systems
EIS JCR journal 2015

A methodology proposal for collaborative business

process elaboration using a model-driven

approach.

19

Heavyweight
Information

Systems
BPMJ JCR journal 2020

Applications of business governance and the

Unified BPM Cycle in public credit recovery

activities.

4

Agile
Information

Systems
BPM CONF

Book

(Conference

Proceedings)

 2013

An agile BPM project methodology.

63

Agile
Information

Systems

BPM

HANDBOOK
Book 2015

Applying agile principles to BPM.
18

Agile
Information

Systems
ISEBM JCR journal 2016

Agile business process development: why, how and

when—applying Nonaka’s theory of knowledge

transformation to business process development.

81

Agile
Information

Systems
PROCEDIA

Book

(Conference

Proceedings)

 2017

An agile business process improvement

methodology. 50

71

3.1.3.4 NON-AGILE BPMS*/POIS SOFTWARE DEVELOPMENT METHODOLOGIES

It is important to analyze plan-driven software development life cycles

(methodologies) for BPMS so that We can have a good perspective of what was

doing in the BPMS*/PAIS field. To find methodologies that can help this research

we found three that are:

• M1: Business Process Development Life Cycle Methodology (Papazoglou

& van den Heuvel, 2007).

• M2: A methodology for business process improvement and IS

development (Damij et al., 2008).

• M3: A methodology proposal for collaborative business process

elaboration using a model-driven approach (Mu et al., 2015).

• M4: Applications of business governance and the Unified BPM Cycle in

public credit recovery activities (Nascimento et al., 2019).

M1 by Papazoglou and van den Heuvel (2007) (represented in Figure 22)

describes every single phase, there is a lack of information in some activities, the

artifacts are not reported and should be deduced by the reader, the roles are not

clearly defined and it does not describe what activities must be implemented by

any role. The classic style of this methodology denotes a lot of extra work that can

be not acceptable in an agile environment. This methodology was not implemented

in a real-world application. The Phases for this methodology are Planning, Services

and Process Analysis and Design, Construction and Testing, Provisioning,

Deployment, and Execution and Monitoring. This methodology could be

implemented easily by people who are used to working with waterfall.

M2 by Damij et al. (2008) is simply called TAD methodology that contains six

phases: Business process identification, Business process modeling, Business

process improvement, Object model development, Design, and Implementation.

This methodology has its processes and artifacts very well defined. The authors

specified in the article all the steps that should be followed in case you want to

implement it. The extra work that needs to be implemented with this methodology

could be very heavy. The authors provide an example of how to implement the

methodology but requires a deeper knowledge of the business processes.

72

Figure 22 - Business Process Development Life Cycle Methodology Roadmap (Papazoglou & van den
Heuvel, 2007)

Figure 23 - BPM framework (Macedo de Morais et al., 2014)

73

M3 by Mu et al. (2015) defines four phases: Organizational, Functional,

Informational, and Process. It also defines a Collaborative Meta-Model which

represents the roles and their functions. The organizational phase defines the

roles, the relationships between the partners, and the objectives of the main

network. In the Functional phase the tasks are defined defining the inputs and the

outputs. The Information phase is where all messages are modeled and

transferred between functions. The Process phase is where the BPM is modeled

with all their characteristics and relationships between partners. Finally, the

Collaborative Meta-Model is divided into four packages that divide the vision in

views for organizational, functional, informational, and process. This methodology

has a deeper description of all the phases, processes, and artifacts. It is important

to have a very strong knowledge of UML and BPN to create all the needed

documentation across all phases. Figure 24 represents the methodology created

by Mu et al. (2015).

Figure 24 - Collaborative process elaboration methodology (Mu et al., 2015).

74

M4 by Nascimento et al. (2019) uses Governance Structure for preparatory

stages to implement BPM, uses information from PMBOK and NBR ISO 10013 to

implement the BPM actions following best practices, and finally uses the Unified

BPM Cycle by Baldam et al. (2014) with its four phases: Planning, Analysis and

Modeling, Implementation, and Monitoring. Figure 10 displays all those phases and

how they interact. Governance Structure is the phase where all the organization

structure is understood. The second phase uses the PMBOK and NBR ISO 10013

guidelines to define the BPM processes. The planning phase prioritizes the

activities to be done by the team. Analysis and modeling phases understand the

current state of the BPM and create possible improvements. The implementation

phase is where all the actions are implemented. Monitoring phases are where all

done activities are under visualization to ensure the quality of the implemented

activities. The authors implemented the methodology in a real-life example even

though there is not a deep explanation of every single phase and the information

about roles, activities or artifacts is not available. Figure 25 represents this

methodology.

Figure 25 - Structure of corporate governance (Nascimento et al., 2019).

75

Dumas et al. (2018) defined the PAIS life cycle with six phases: Process

Identification, Process Discovery, Process Analysis, Process Redesign, Process

Implementation, and Process Monitoring. Process Identification is where the

business problem is addressed, the outcome is a new or updated business

process. Process Discovery is the phase where the process is documented.

Process Analysis is where all the issues are discovered and prioritized in a list to

resolve them. Process Redesign is where the processes are improved to resolve

issues and fulfill the desired performance. The Process Implementation phase is

where the issues are resolved based on the discovery phase. Process Monitoring

is the phase where the redesigned processes are measured to find out if the

desired performance is met.

The BPM lifecycle by Dumas et al. (2018) is represented in Figure 26, it helps us

to understand what is the role of technology in BPM and is a key instrument to

improve business processes.

To obtain the rationale and related studies of the relevance, need and most

important plan-driven and agile development life cycles for BPMS, a Systematic

Selective Literature Review (SSLR) research method was conducted. SSLR

method is a research method in the descriptive-interpretative research approach,

i.e., literature review, uses bibliographic research methods and conceptual analysis

(Cooper 1988; Glass et al. 2004; Paré et al. 2015; Templier and Paré 2015).

76

Figure 26 - The BPM lifecycle (Dumas et al., 2018).

Table 29 is an overview of the The BPM lifecycle detailing all Roles. Activities,

and Artifacts reported by Dumas (2018).

To compare those methodologies we can use the BPM lifecycle (Dumas et al.,

2018) to match their phases represented in Table 20

77

Table 19 - The BPM lifecycle detailed.

PHASE-WORKFLOW
COMPONENTS
CATEGORIES

The BPM lifecycle (Dumas et al., 2018).
PHASE-WORKFLOW COMPONENT DESCRIPTION

Roles

1. Management Team
2. Process Owners
3. Process Participants
4. Process Analysts
5. Process Methodologist
6. System Engineers
7. BPM Group

Activities-Tasks

Process Identification: "Process identification refers to those
management activities that aim to systematically define the set of business
processes of an organization and establish clear criteria for selecting
specific processes for improvement. The output of process identification is
a process architecture, which represents the processes and their
interrelations." (Dumas et al., 2018, p. 35). Activities: {1. Process
architecture definition. 2. Process selection}

Process Discovery: "The current state of each of the relevant processes
is documented, typically in the form of one or several as-is process
models." (Dumas et al., 2018, p. 22). Activities: {1. Defining the Setting. 2.
Gathering the Required Information. 3. Modeling the Process. 4. Assuring
Model Quality}

Quantitative Process Analysis: "There is not a single way of producing a
good process analysis, but rather a range of principles and techniques that
tell us which practices typically lead to a “good” process analysis". (Dumas
et al., 2018, p. 35). Activities: {1.Value-Added Analysis. 2. Waste Analysis.
3. Stakeholder Analysis and Issue Documentation. 4. Root Cause Analysis.
}

Qualitative Process Analysis: "Qualitative analysis is a valuable tool to
gain systematic insights into a process. However, the results obtained from
qualitative analysis are sometimes not detailed enough to provide a solid
basis for decision making". (Dumas et al., 2018, p. 255). Activities: {1.Flow
Analysis. 2. Queues 3. Simulation. 4. }

Process Redesign: "The thorough analysis of a business process may
lead to the identification of a range of issues. For example, bottlenecks
slow down the process or the cost of process execution is too high".
(Dumas et al., 2018, p. 297). Activities: {1. Transactional Methods. 2.
Transformational Methods. }

Process Implementation: "Conceptual process models must be
systematically reworked into executable process models to be interpreted
and automatically executed by a software system, such as a BPMS.".
(Dumas et al., 2018, p. 371). Activities: {1. Identify the automation
boundaries. 2. Review manual tasks. Complete the process model. 3. Bring
the process model to an adequate level of granularity. 4.Specify execution
properties}

Process Monitoring: "Process monitoring is about using the data
generated by the execution of a business process in order to extract
insights about the actual performance of the process and to verify its
conformance with respect to norms, policies, or regulations.". (Dumas et
al., 2018, p. 371). Activities: {1. Offline Process Monitoring. 2.Online
Process Monitoring}

Artifacts

Process Identification: {1. Process Architecture}

Process Discovery: {1. Business Process modeled in BPMN}

Qualitative Process Analysis: {1. Classification of Steps tables. 2.- Issue
Register Documents. 3. Pareto Charts. 4. PICK Charts. 5. Cause-Effect
Diagrams. 6. Why-Why Diagrams. }

78

Quantitative Process Analysis: {1. Cycle Times Tables. 2.- Processing
Times Tables. 3. Task Cycle Times Tables. 4. Analysis of Cycle Times. 5.
Cost Calculation Tables. 6. Histograms Simulation Charts.}

Process Redesign: {1. Devil’s Quadrangle. 2. The Process Model Canvas.
3. Product Data Model}

Process Implementation: {1. Executable Models with BPMS}

Process Monitoring: {1. Operational Dashboard. Tactical Dashboards. 2.
Strategic Dashboards. 3. Event Logs. 4. Dependency Graphs. 5.Dotted
Chart. 6. Timeline
Chart. }

79

Table 20 - Non-Agile BPMS Methodologies compared.

PHASE-
WORKFLOW

COMPONENTS
CATEGORIES

Business Process
Development Life Cycle

Methodology
(Papazoglou & van den

Heuvel, 2007).
PHASE-WORKFLOW

COMPONENT
DESCRIPTION

A methodology for business process
improvement and IS development

(Damij et al., 2008).
PHASE-WORKFLOW COMPONENT

DESCRIPTION

A methodology proposal for
collaborative business

process elaboration using a
model-driven approach. (Mu

et al., 2015).
PHASE-WORKFLOW

COMPONENT DESCRIPTION

Applications of business
governance and the Unified
BPM Cycle in public credit

recovery activities.
(Nascimento et al., 2019).

PHASE-WORKFLOW
COMPONENT DESCRIPTION

Roles No reported No reported No reported No reported

Activities-Tasks

Planning Phase:
"Planning sets the scene
for all ensuing phases by
analyzing the business
case of all viable mixtures
of development
approaches and realization
strategies". (Papazoglou &
van den Heuvel, 2007,
p.4). Activities: {1. Gap
Analysis, 2.Scenario
Analysis, 3. Planning}

Business process identification: "The
first phase deals with identifying the
business processes of the enterprise
discussed. To do that, we have to conduct
interviews with the management at
different levels". (Damij et al., 2008,
p.1130). Activities: {1. Business
processes, 2. Work processes, 3. Process
table}

Organizational:
"Organizational modeling is
not a new subject in enterprise
modeling. But most of the
organizational models only
define the organization chart of
enterprises, in terms of
responsibilities, departments
and workers. In a collaborative
situation, the structure is a
graph (in discrete mathematics
terms) rather than a tree". (Mu
et al., 2015, p.7). Activities:
{1. Building a collaborative
network model}

Governance Structure: "To
achieve the proposed objectives,
preliminary consultations were
required for all available
collections of official documents
(laws, ordinances, instructions
and dispatches of administrative-
managerial content) because they
were a very rich and stable
source of data". (Nascimento et
al., 2019, p.316). Activities: {1.
Construction of Institutional
Model, 2. Analysis of Typical
Dysfunctions, 3. Analysis of
Environment.}

Service and Process
Analysis and Design:
"Service analysis aims at
identifying, conceptualizing
and rationalizing business
processes as a set of
interacting Web services".
. Activities: {1. Service
Analysis and Design, 2.
Service Specification, 3.
Identifying Processes, 4.
Specifying Processes}

Business process modelling: "Most of
problems faced by enterprises concern
internal business procedures that are
neither well defined nor particularly
efficient. The business process modelling
system is a computer-based, potential
solution to these problems. It is a system
for managing a series of tasks (actions)
defined for one or more procedures".
(Damij et al., 2008, p.1131). Activities: {1.
Create Activity table, 2. Create Property
table.}

Functional: "The
requirements for the functional
model are to obtain partner
functions, to simplify user
modeling tasks and to
decrease user workload. The
functional model only collects
functions that partners want to
share and which can be
published to other partners".
(Mu et al., 2015, p.10).
Activities: {1.Create IDEF1
Model Unit.}

BPM Management Manual:
Uses the PMBOK and NBR ISO
10013 guidelines to define the
BPM processes. Activities: {1.
Organization and visibility of BPM
management, 2. Kmplementation
actions.}

80

Realization: "Once the
service- and process
specifications have
reached a steady state,
they need to be
transformed into service
implementations".
(Papazoglou & van den
Heuvel, 2007, p.9).
Activities: {1. Code Web
Services, Code Business
Processes}

Business process improvement: "The
relationship between the essence of
business process modelling and overall
business effectiveness and the efficiency
of the organization depends on the
consumer’s satisfaction with the desired
output". (Damij et al., 2008, p.1136).
Activities: {1. Process analysis. 2.
Process simulation.}

Informational: "The basic
need for the informational
model of MISE 2.0 is to model
messages, which are
transferred among business
functions, and to model the
properties of each message,
which are reused in the BPEL
transformation. IDEF1 [22] and
UML class diagrams are both
suitable for modeling
informational". (Mu et al.,
2015, p.12). Activities: {1.
Model Messages. }

Planning: Prioritizes the activities
to be done by the team.
Activities: {1. Create BPM
Management Manual.}

Deployment: In this
phase the new services
are deployed. Activities:
{1. Publish the service
interface. 2. Deploy the
Web service and business
process. 3. Publish service
implementation details}

Object model development: "This model
is developed using the information
collected in the tables, particularly the
property table". (Damij et al., 2008,
p.1138). Activities: {1. Initial object
model. 2. Final object model}

Process: "In the process
modeling domain, a number of
models have been defined,
such as flow charts IDEF3,
Petri nets, Event Process
Chains of ARIS, activity
diagrams of UML and, more
recently, BPMN". (Mu et al.,
2015, p.10). Activities: {1.
Create BPMN Models}

Analysis and modelling:
Understand the current state of
the BPM and create possible
improvements. Activities: {1.
Evaluate}

Excecution: "During the
execution phase, the
business processes and
supporting Web services
are fully deploye and made
operational". (Papazoglou
& van den Heuvel, 2007,
p.9). Activities:

Design: "Deals with designing the system
and preparing it for implementation".
(Damij et al., 2008, p.1140). Activities: {1.
Operations, Design model, 3. Algorithms}

Implementation: Is where all the
actions are implemented.
Activities: {1. Implementation of
audit activities, 2. Information
collection and verification, 3.
Management of findings, 4.
Preparation of conclusions. }

Implementation: "Deals with the
implementation of the models developed
in the previous phases. The inputs to the
implementation phase are the object
model and design model". (Damij et al.,
2008, p.1141). Activities: {}

Monitoring: is where all done
activities are under visualization
to ensure the quality of the
implemented activities.
Activities: {1. Monitoring}

81

Artifacts

Planning Phase: No
reported

Service and Process
Analysis and Design: No
reported

Realization: No reported

Deployment: No reported

Excecution: No reported

Business process identification: {1. List
of strategic goals, 2. List of business
processes, 3. Organizational scheme of
the enterprise, 4. plan of interviews with
management at operational level }

Business process modelling: {1. Activity
table, 2. Property table, 3. Flowchart}

Business process improvement:
{1.Object model}

Object model development: No reported

Design: {1. Design Model}

Implementation: {1. Program Codes}

Organizational: {1.
Collaborative network model}

Functional: {1. Functional
Model}

Informational: {1.
Informational Model}

Process: {1.BPMN Models}

Governance Structure: {1.
Canvas Business Model, 2.
Current Reality Tree, 3. SWOT
Analysis, 4. Process
Classification Structure}

BPM Management Manual: {1.
PMBOK-PMI, 2. NBR ISO
10013.}

Planning: {1. BPM Management
Manual}

Analysis and modelling: No
reported

Implementation: No reported

Monitoring: No reported

82

3.1.3.5 AGILE BPMS*/POIS SOFWARE DEVELOPMENT METHODOLOGIES

Agility is needed for BPM to deal with challenges and able to deal with process

change (Badakhshan et al., 2019). “Emerging technologies in BPM, such as

process mining, machine learning, and the Internet of Things (IoT), enable

organizations to evaluate processes on a real-time basis through real-time

connectivity, so process criteria like time, quality, and cost can be evaluated

on an ongoing basis. Modern technologies help organizations to identify and

prioritize processes rapidly, initiate necessary process changes, and manage

process models timely” (Badakhshan et al., 2019, p. 9).

To be considered agile a process needs to have Flexibility, Leanness, and

Continuity (Badakhshan et al., 2019). Figure 27 displays the Agile BPM Framework

created by Badakhshan et al. (2019) propose three columns:

• Column A: Talks about how an organization should be ready for process

change.

• Column B: None of the activities should decrease the quality, economy,

and simplicity perceived by customers.

• Column C: Is focused on how an organization should be always scouting

for new trends like technologies that can enable agility in BPM.

Figure 27 - Agile BPM framework

Through the literature, there are some agile methodologies for BPM that try to

create business processes in an agile way. Silva et al. proposed AGILIPO (2009)

that taking into account that all business processes are incomplete and need to be

83

constantly changed, Rachid Meziani and Rodrigo Magalhães (2009) created a

complementary agile methodology for AGILIPO with five complementary steps,

Ventura and Zacarias (2017) created an agile methodology for improving Business

Processes based on daily practices with iterative processes and people involved.

All those methodologies can be implemented for working in Business Processes

with agility.

This Ph.D. dissertation is focused on methodologies for developing information

systems using a BMPS with low-code platforms.

For this section, we found two Agile BPMS*/PAIS methodologies that can be

applied for developing an information system using a low-code development

platform:

• M1: An agile BPM project methodology (Thiemich & Puhlmann, 2013).

• M2: Applying Agile Principles to BPM (Rosing & Gill, 2015).

• M3: Agile business process development: why, how and when—applying

Nonaka’s theory of knowledge transformation to business process

development (Bider & Jalali, 2016).

• M4: An agile business process improvement methodology (Martins &

Zacarias, 2017).

M1 by Thiemich and Puhlmann (2013) created an Agile BPM Project

Methodology, shown in Figure 28, using the IBPM Methodology, a traditional

waterfall methodology, and the Scrum framework trying to provide sustainable and

continuous improvements. The Agile BPM Project Methodology defines Activities,

Methods, and Artifacts considering Pregame phases such as Scoping, Kick-Off,

and Sprint 0. The Game phase is covered by Sprint 1-n while Postgame Phase has

the Releasesprint. If this methodology merges IBPM Methodology some elements

are necessary to know to implement that can add more difficult to be implemented.

There are some gaps in the documentation some activities, artifacts, and methods

are not clearly described so the users can be implementing in the wrong way the

methodology. Agile BPM Project Methodology was tested with a real service portal

project.

84

Figure 28 - Agile BPM Framework Overview (Thiemich and Puhlmann, 2013).

M2 by von Rosing et al. (2015) (see Figure 29) created an Agile BPM

Methodology that has six phases such as Analyse, Plan, Design, Build, Test, and

Deploy. All those phases contain a clear workflow of the processes with some

common questions and actions that must be performed in every step. Most of the

roles, events, artifacts, and methods are not documented so it is very easy to get

lost trying to implement the methodology. This Agile BPM Methodology was not

tested with a prototype or real-life problem.

85

Figure 29 - Agile BPM Overview (von Rosing et al., 2015).

M3 by Bider and Jalali (2016) (see Figure 30) uses the SECI model created by

Nonaka (1994) and practical knowledge for creating an agile methodology. This

model has 3 phases: Socialization on this phase the stakeholders and the

development team interact and share knowledge so that the development can

cover their needs. Embedment in this phase the BPM specialist work with business

people to create and implement tacit knowledge into real business processes.

Adoption in this phase the BPM is running and the practitioners are gaining

valuable knowledge for sharing for the next business process creationg or to adjust

current processes. Figure 11 displays the SECI Model. This methodology was

tested with real cases and its authors reported some advantages and

disadvantages to using it. This methodology does not report Roles, Activities, and

Artifacts clearly so it would be impractical to implement for any development.

86

Figure 30 - SEA—knowledge transformation in the agile process development (Bider & Jalali, 2016).

M4 by Martins and Zacarias (2017) (see Figure 31) is a proposal from adopting

traditional BPPAM Methodology into Agile to act quickly to changes from non-

experts users. This methodology consists of three phases: Business Process

Discovery (BPD), Business Process Supervision (BPS), and Business Process

Assessment and Improvement (BPAI). Figure 31 represents the Agile BPPAM

methodology.

Phase 1: Business Process Discovery (BPD): The main goal is developing an

organizational profile to understand the business processes of a company. In this

phase, we need to learn about the company and model its business processes.

Phase 2: Business Process Supervision (BPS): Control mechanisms are created

and make sure that stakeholder brings models to real business activities. Phase 3:

87

Business Process Assessment and Improvement (BPAI): In this phase, the

company identifies its strengths, weaknesses, existing improvement activities, and

key areas for improvement.

In this methodology, there are some activities mentioned for Phase 1 like

Learning (Eliciting) Business and Modelling Business, for Phase 2 there are three

activities for controlling mechanisms such as: comparing real business activities

with base business models, annotating/reviewing models, and, identify new

business descriptions. Phase 3 is where the Business Analyst implements

corrections on current processes. There are few details for activities, roles, and

artifacts so that could be very complicated to implement for a practitioner without

detailed documentation.

Figure 31 - Agile BPPAM methodology by Zacarias (2017).

Table 21 has all the information provided for the Agile BPMS Methodologies and
is compared against Scrump- Xp.

88

Table 21 - Aguile BPMS Methodologies Comparative

PHASE-
WORKFLOW

COMPONENTS
CATEGORIES

An Agile BPM Project Methodology
(Thiemich & Puhlmann, 2013).

Applying Agile Principles to
BPM (Rosing & Gill, 2015).

Agile business process
development: why, how and
when—applying Nonaka’s

theory of knowledge
transformation to business

process development (Bider &
Jalali, 2016).

An agile business process
improvement methodology
(Martins & Zacarias, 2017).

Roles

1. BPM Process Owner
2. BPM Master
3. BPM Team

1. Process Owner
2. Agile coach
3. Cross-functional team

No Reported No reported

Activities-Tasks

Scoping: In this phase is where the
project is defined and the stakeholders
are identified. Activities: {1. Define target
parameters. 2. Create project idea. 3.
Define project start/end. 4. Identify
Stakeholder. 5. Evaluate BPM Maturity.}

Agile Analysis: "Agile analysis,
in the context of Agile BPM,
suggests active collaboration
with the stakeholders to identify
the requirements with necessary
details at the release and
iteration levels, instead of trying
to get the complete detailed
requirements up-front". (Rosing &
Gill, 2015, p.564). Activities: {1.
Expectations. 2. Business Goals.
3. Application Goals. 4.
Technology Goals. 5. High Level
Business Requirements. 6. High
Level Application Requirements.
6. High Level Technology
Requirements. }

Socialization: "The nature of the
first phase consists in transferring
tacit knowledge on the desired
process from the stakeholders to
the design team" (Bider & Jalali,
2016, p.17). Activities: No
reported

Business Process
Discovery (BPD): "Aims at
developing an organisational
profile in order to understand
business processes which
contain information about
people, activities, technology
and data" (Martins &
Zacarias, 2017, p.133).
Activities: {1. Learning
(Eliciting) Business. 2.
Modelling Business. }

Kick-Off: Is where the initial parameters
are set and the team is built. Activities:
{1. Define sprint length. 2. Create initial
release plan. 3. Establish architecture
vision. 4. Build team.}

Agile Planning: "Traditional
ways of BPM planning focus on
the detailed up-front planning.
Agile BPM ways of working
require planning at project,
release, iteration, and day level.
Agile BPM focuses on initial high-
level project plan that outlines
number of project releases,
resources, risks, and cost and
benefits estimates". (Rosing &
Gill, 2015, p.565). Activities: {1.
Lead Business Objects. 2. Lead
Application Objects. 3. Lead
Technology Objects. 4. Detailed
Business Requirements. 5.
Detailed Application

Embedment: "In this cycle,
process modeling, system design
and manufacturing are merged
into one phase Support system
manufacturing (Embedment)"
(Bider & Jalali, 2016, p.17).
Activities: No reported

Business Process
Supervision (BPS): "Formal
control mechanisms are
designed in order to ensure
that operational stakeholder
carried out real business
activities as described by
business models" (Martins &
Zacarias, 2017, p.134).
Activities: {1. Compare real
business activities with base
business models. 2.
Annotate/review models. 3.
identify new business
descriptions. }

89

Requirements. 6. Detailed
Technology Requirements. }

Sprint 0: First sprint where is defined all
the elements that are needed in a normal
sprint. Activities: {1. Define Definition of
Done & Definition of Ready. Identify initial
requirements. 3. Define initial architecture.
4. Setup project environment}

Agile Architecture and Design:
"Agile design for BPM can kick
off by reviewing the existing As-Is
process model and identified
requirements for the target To-Be
process model. Instead of a
detailed up-front design, a high-
level design for the To-Be
process can be developed at the
start of the project". (Rosing &
Gill, 2015, p.566). Activities: {1.
To-Be. 2. As-Is. }

Adoption: "one big cycle is
substituted by many smaller and
shorter ones. The system is built
iteratively starting with the basic
functionality that does not limit
flexibility of process participants to
experiment with the new process.
During the usage of the basic
system, better understanding of
the needs is acquired, which is
converted in adding details to the
system in the next cycle." (Bider
& Jalali, 2016, p.17). Activities:
No reported

Business Process
Assessment and
Improvement (BPAI): "Is a
mean for organisations to
identify their strengths,
weaknesses, existing
improvement activities and
key areas for improvement"
(Martins & Zacarias, 2017,
p.134). Activities: No
reported

Sprint 1-n: Iterative Process where
an increment is built working providing
value to the customer. Activities: {1.
Refine process backlog. 2. Plan sprint. 3.
Define tasks. 3. Implement requirements.
4. Get stakeholder feedback. 5. Control
project progress. 6. Run retrospective.}

Agile Build: "Traditional
ways of working focus on big-
bang product or service
development in the build phase.
Agile ways of working focus on
building the product or service
minimum marketable or viable
features in small iterations based
on the just-in-time user stories or
requirements". (Rosing & Gill,
2015, p.567). Activities: {1.
Defining the Product Backlog. 2.
Sprint Planning Meeting. 3.
Defining the Sprint Backlog. 4.
Interrogating and Testing. 5.
Demo Release. 6. Client
Feedback Meeting. 7.
Retrospective. 8. Refactoring. 9.
System Changes. 10. System
Testing. }

90

Releasesprint: Sprint where the team is
focused on releasing done work.
Activities: {1. Append Release Notes. 2.
Train IT operations and end users. 3.
Integration tests. 4. Finish Documentation.
}

Agile Testing: "Although
traditional ways of working
around testing first do the testing
once the whole product or
service is developed, agile ways
of working focus on testing the
product or service minimum
marketable or viable features in
small iterations while the
development is in progress".
(Rosing & Gill, 2015, p.567).
Activities: {1. Deployment to
production. }

Artifacts

Scoping: {1. Project Idea. 2. List of
Stakeholder}

Agile Analysis: No reported. Socialization: No reported Business Process
Discovery (BPD): No
reported

Kick-Off: {1. Architecture Vision. 2. SOA-
MAP. 3. First Releaseplan. Skillmatrix. }

Agile Planning: {1. Definition of
"done". 2. Release plans. 3.
Product Backlog. 4. User story. }

Embedment: No reported Business Process
Supervision (BPS): No
reported

Sprint 0: {1. Def. of Done. 2. Def. of
Ready. 3. Process Backlog. 4. Story
Map.}

Agile Architecture and Design:
{1. ModelTo-Be. 2. Model As-Is. }

Adoption: No reported Business Process
Assessment and
Improvement (BPAI): No
reported.

Sprint 1-n: {1. Sprint Backlog. 2. Process
Increment. 3. Story Map}

Agile Build: {1. System
Changes. 2. System Testing. 3.
Kanban board. 4. Burndown
chart. 5. Burnup chart. 6. Defect
trend. 7. Decision Point. }

Releasesprint: {1. Training documents.
2. Release Notes. 3. Documentation}

Agile Testing: {1. Working
product. }

91

3.2 ANALYSIS OF CONTRIBUTIONS AND LIMITATIONS

Table 22 displays the analysis from related studies with their characteristics and

limitations.

Table 22 - Contributions and are of improvements

Area Contributions Opportunities of Improvement

Software
Engineering

1. Is the basic set of tools that help to
develop software in an orderly way.
2. Research in this area has helped to
improve technology.
3. How to manage the resources for the
software process (phases, activities,
artifacts, and resources (including humans))

1. Lack of research with experience in
the industry.
2. Methodologies for low-code
platforms.
3. Gap between new technologies and
research.

Agile
Methodologies

1. Close work between clients and
developers provides better results.
2. Iterative work with small releases provides
value to the customer.
3. Software is developing faster

1. Sometimes the agile methodologies
are not implemented as intended.
2. Official guides can be very vague
and can leave many doubts to the
practitioners.
3. Lack of limits on the project could
generate chaos.

Business
Process
Management
Systems

1. Develop software with low-code platforms
by people with low programming knowledge
2. Improve development time versus
traditional programing languages.
3. Improve development costs.

1. Lack of methodologies
2. Paid low-code platforms can be very
expensive.
3. Open source low-code platforms can
be difficult to learn.

Non-agile
BPMS*/POIS
Software
Development
Methodologies

1. Good practices for working with BPM
projects.
2. Proven methodologies in real-life projects.
3. Some methodologies can be very simple
to implement for people that have worked on
waterfall methodology.

1. Lack of methodologies for low-code
platforms.
2. Very heavy methodologies that can
be only implemented by BPM experts.
3. Most of the methodologies lack
detailed documentation.

Agile
BPMS*/POIS
Software
Development
Methodologies

1. Use Scrum as the core for implementing a
new agile methodology focused on BPMS.
2. One methodology is well explained and
can be implemented by anyone that knows
Scrum.
3. Propose interesting activities and artifacts
that worth to be considering in future
methodology projects.

1. Lack of proven methodologies in real
projects.
2. Lack of detailed documentation for
practitioners about how to use the
methodologies.
3. Lack of methodologies.

92

4 DEVELOPMENT OF THE SOLUTION

As mentioned in Chapter 2 this Ph.D. The dissertation uses mainly the Design

Science Research Methodology (DSRM) (Peffers et al., 2007) which is detailed in

Table 2.1 and is divided into the next steps:

1. DSRM step 1 - Design problem identification and motivation.

2. DSRM step 2 - Definition of the Design Objectives, Design Restrictions,

Resign Approach, Design Theoretical Sources, and Design Components

for the expected Artifact.

3. DSRM step 3 - Design and development of the artifact.

4. DSRM step 4 - Demonstration of the artifact (Proof of Concept).

5. DSRM step 5 - Evaluation of the artifact.

6. DSRM step 6 - Communication of research results.

4.1 DSRM STEP 1 – DESIGN PROBLEM IDENTIFICATION AND

MOTIVATION

Chapter 1 of this document contains all the detailed information for Problem

Identification and its Motivation.

4.2 DSRM STEP 2 – DEFINITION OF THE DESING OBJECTIVES,

DESING APPROACH, DESIGN THEORETICAL SOURCES, AND

DESING COMPONENTS FOR THE EXPECTED ARTIFACT:

AGILE BPM METHODOLOGY

4.2.1 DEFINITION OF THE DESING OBJECTIVES

The expected Design Objectives (DOs) to be archived in this work are:

1. DO.1 The designed artifact provides an agile (i.e. responsive, flexible,

speedy, lean, simple, lightweight, and fine-grain documented (Conboy,

2009), (Qumer & Henderson-Sellers, 2008)) workflow—i.e. a value

stream—for designing, building, and implementing a new minimum viable

Agile BPM Methodology.

2. DO.2 The designed artifact is useful, easy to use, and valuable (Galvan

et al., 2021) for small companies, software developers, and IT

practitioners.

93

3. DO.3 The designed artifact is fine-grain documented including the roles-

set component, phases-activities set component, and artifacts-templates-

set component.

4.2.2 DESIGN RESTRICTIONS

For Design Restrictions (DRs) we need to take into account parameters such as

time, budget, theoretical sources, and available software. The DRs that were

agreed are:

1. DR.1 The designed artifact must be composed of design building blocks

from relevant design theoretical sources (DTSs).

2. DR.2 The artifact must be designed in a short-term period (at most 6

months) and under the assigned research budget.

3. DR.3 The designed artifact must be documented in an Electronic Process

Guide.

4.2.3 DESIGN THEORITICAL SOURCES

The Design Theoretical sources (DTSs) are the key sources of the design

components that will be chosen to create the artifact. The DTSs selected were

proposed based on the theoretical background and having reviewed the eight

BPMS methodologies.

1. DTS.1 The BPM Lifecycle (Dumas et al., 2018)

2. DTS.2 Scrum-XP (Schwaber & Sutherland, 2020) (Dudziak, 1999)

3. DTS.3 APBM (Thiemich & Puhlmann, 2013).

4. DTS.4 ABPM (Rosing & Gill, 2015).

Every single element such as Roles, Activities, and Artifacts for the DTS will be

considered and discussed with the team to get the Desing Components.

4.2.4 DESIGN COMPONENTS FOR THE EXPECTED ARTIFACT

Evaluating very carefully the DTS, we have selected the potential design

components (DCS) to be used in the design of the artifact. Some components may

be not used in the final design.

Table 23, Table 24, Table 25, and Table 26 have all the Design Components

selected from the four DTS by the research team based on their experience and

94

expertise. An iterative process is going to be performed in order to get de most

important components to design the artifact.

Table 23 - DTS.1 Theoretical rigorous SDLC for BPMS (Dumas et al., 2018)

Design
Component

Design theoretical source (DTS)
Specific elements of the design

component (DC) potentially to be
used in the designed artifact

DC.1
The BPM Lifecycle
Phases

DTS.1 The BPM Lifecycle (Dumas et al.,
2018)

{Process Identification, Process
Discovery}

DC.2
The BPM Lifecycle
Activities

DTS.1 The BPM Lifecycle (Dumas et al.,
2018)

{Process Identification [Process
architecture definition, Process
selection], Process Discovery [Defining
the setting, Gathering the required
information, Modeling the process,
Assuring model quality]}

DC.3
The BPM Lifecycle
Artifacts

DTS.1 The BPM Lifecycle (Dumas et al.,
2018)

{Process Identification [Process
architecture of the selected process],
Process Discovery [As-is business
process model]}

Table 24 - DTS.2 Scrum-XP (Schwaber & Sutherland, 2020) (Dudziak, 1999)

Design Component Design theoretical source (DTS)
Specific elements of the design

component (DC) potentially to be used in
the designed artifact

DC.4
Scrum-XP Roles

DTS.2 Scrum-XP (Schwaber &
Sutherland, 2020) (Dudziak, 1999)

{Customer-Product Owner; Coach-Master;
Development Team}

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP (Schwaber &
Sutherland, 2020) (Dudziak, 1999)

{Exploration, Product Planning, Iteration-
Sprint Planning, Iteration-Sprint, Product
Release}

DC.6
Scrum-XP Activities

DTS.2 Scrum-XP (Schwaber &
Sutherland, 2020) (Dudziak, 1999)

{Exploration [product vision definition;
product backlog (user story set) definition;
product backlog (user story set)
prioritization; optional: spike testing]}
{Product Planning [product backlog (user
story set) effort estimation; product backlog
(user story set) negotiation; optional: style
codifying standard definition]}
{Iteration-Sprint Planning [iteration-sprint
user story selection; iterationsprint user
story task planning iteration-sprint user
story plan negotiation]}
{Iteration-Sprint [stand-up meeting;
customer functional tests elaboration;
simple design; codification and unit testing;
increment integration and customer
functional testing; iteration-sprint review and
retrospective]}
{Product Release [product releasing]}

95

DC.7
Scrum-XP Artifacts

DTS.2 Scrum-XP (Schwaber &
Sutherland, 2020) (Dudziak, 1999)

{Exploration [product vision; product
backlog]}
{Product Planning [product backlog plan]}
{Iteration-Sprint Planning [iteration-sprint
plan]}
{Iteration-Sprint [iteration-sprint Kanban
board; iteration-sprint burndown chart;
customer functional tests; simple
architecture design; unit tests; unit codes;
built increment; iteration-sprint agreements]}
{Product Release [product done]}

Table 25 - DTS.3 APBPM (Thiemich and Puhlmann, 2013)

Design Component Design theoretical source (DTS)
Specific elements of the design component
(DC) potentially to be used in the designed

artifact

DC.8
APBPM Phases

DTS.3 APBPM (Thiemich and
Puhlmann, 2013)

{Project Scoping, Project Kick-Off, Sprint 0,
Sprint 1-n, Release Sprint}

DC.9
APBPM Activities

DTS.3 APBPM (Thiemich and
Puhlmann, 2013)

{Project Scoping [Define target parameters,
Create project idea, Define project start/end,
Identify Stakeholder, Evaluate BPM Maturity],
Project Kick-Off [Define sprint length, Create
initial release plan, Establish architecture vision,
Build team], Sprint 0 [Define Definition of Done
& Definition of Ready, Identify initial
requirements. Define initial architecture, Setup
project environment], Sprint 1-n [Refine process
backlog, Plan sprint, Define tasks, Implement
requirements, Get stakeholder feedback.
Control project progress, Run retrospective],
Release Sprint [Append Release Notes, Train
IT operations and end users, Integration tests,
Finish Documentation.]}

DC.10
APBPM Artifacts

DTS.3 APBPM (Thiemich and
Puhlmann, 2013)

{Project Scoping [Project Idea, List of
Stakeholder], Project Kick-Off [Architecture
Vision, SOA-MAP, First Release plan,
Skillmatrix], Sprint 0 [Def. of Done, Def. of
Ready, Process Backlog, Story Map], Sprint 1-n
[Sprint Backlog, Process Increment, Story
Map], Release Sprint [Training documents,
Release Notes, Documentation]}

96

Table 26 - DTS.4 ABPM (Rosing and Gill, 2015).

Design Component Design theoretical source (DTS)
Specific elements of the design component
(DC) potentially to be used in the designed

artifact

DC.11
ABPM Phases

DTS.4 ABPM (Rosing and Gill,
2015)

{Agile Analysis, Agile Planning, Agile build,
testing, and deployment, Agile build, testing, and
deployment}

DC.12
ABPM Activities

DTS.4 ABPM (Rosing and Gill,
2015)

{Agile Analysis [High Level Business
Requirements], Agile Planning [High-level
project plan], Agile build, testing, and
deployment [Defining the Sprint Backlog, Sprint
Planning, Performing Sprint, Testing, Demo
Increment, Client Feedback Meeting,
Retrospective, Deploying Increment]}

DC.13
ABPM Artifacts

DTS.4 ABPM (Rosing and Gill,
2015)

{Agile Analysis [Selected business process and
sub-processes, High-level user stories, Table of
priorities and estimations], Agile Planning
[Project plan], Agile build, testing, and
deployment, Agile build, testing, and deployment
[Sprint Backlog, Sprint Task Plan, Tests,
Increment, Integrated Release]}

4.3 DSRM STEP 3 – DESING AND DEVELOPMENT OF THE

ARTIFACT

To design the BPMS Methodology the research team applied the Means-Ends

Analysis heuristic (Newell & Simon, 1972) (Greeno et All,1987) in four steps:

• Step 1. To represent the design problem defining an initial state S i, a

pursued final state S f, a set of heuristic operators {HOx(Sy, Sz), …} that

can transform the state Sy to the state S z, a set of design objectives

{DOj, …} and design restrictions {DR k, …} expected to be satisfied by

the final state S f, and two qualitative functions EvalDOs(DO’s) and

EvalDRs(DR’s) to evaluate the logical satisfaction of DO’s and DR’s.

• Step 2. To set up the initial state S i and the pursued final state S f, and

determine the initial qualitative evaluations EvalDOs(DO’s) and

EvalDRs(DR’s) for the initial state Si and the pursued final state Sf.

• Step 3. To apply a sequence of heuristic operators {HO?(Si , S2);

HO?(S2, S3); …; HO?(S?, Sf)}based on a logical analysis of the

operators that can transform the initial state S i in the pursued final state

Sf.

• Step 4. To evaluate the level of compliance of the pursued final state S f,

regarding the design objectives {DOj, …} and design restrictions {DRk,

…}.

97

The first step was selecting the Design Components from the DTSs, with the

first batch of DCs the research team talked about the importance of every single

component. The third iteration removed DCs that were already covered by DTS.2

Scrum-XP (Schwaber & Sutherland, 2020) and complemented with DCs from other

DTSs.

Appendix 10.2 has all the information about this process, with the first and

second iterations of the selected Design Components. Tables 27, 28, and 29

display the final selected DCs for roles, phases/activities, and artifacts. Figure 32

displays the final BPMS Methodology with all selected Desing Components.

98

Figure 32 - BPMS Methodology Conceptual Map.

99

Table 27 - Final Design Components for roles.

Roles

Design Component Source Why this could be helpful
SDLC that is also using it

DTS.1 DTS.2 DTS.3 DTS.4

DC.4
Scrum-XP Roles

DTS.2 Scrum-
XP (Schwaber &
Sutherland,
2020) (Dudziak,
1999)

R.1 Customer-Product Owner: The closest role to the
stakeholders, is the person who knows how to provide value to
the project.

X X X X

R.2 Coach-Master: The person who is in charge of removing all
the obstacles, coaching the team, ensuring transparency, and
promoting self-organization.

X X X X

R.3 Development Team: The cross-functional team can build
the increment every sprint. It is self-organized.

X X X X

Table 28 - Final Design Components for Phases and Activities.

Design Component Source Why this could be helpful
SDLC that is also using it

DTS.1 DTS.2 DTS.3 DTS.4

DC.1
The BPM Lifecycle
Phases

DTS.1 The BPM Lifecycle
(Dumas et al., 2018)

Phase 1 - Process Discovery: Define the team, get
the information of the process, and ensure the quality. X X

DC.2
The BPM Lifecycle
Activities

DTS.1 The BPM Lifecycle
(Dumas et al., 2018)

Activity A.1.1 Defining the setting: Build the
team to work on the process. X

DC.2
The BPM Lifecycle
Activities

DTS.1 The BPM Lifecycle
(Dumas et al., 2018)

Activity A.1.2 Gathering the required
information: Get all the needed information to work
on different processes.

X X X X

DC.2
The BPM Lifecycle
Activities

DTS.1 The BPM Lifecycle
(Dumas et al., 2018)

Activity A.1.3 Modeling the process: Start to
model the processes using BPMN (Business Process
Management Notation).

X X X

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Phase 2 - Exploration / Product Planning: Plan all
the projects and identify the project's needs. X X X

100

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Activity A.2.1 Product vision definition: To
Have a clear vision of the product and what needs to
be developed.

 X X X

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Activity A.2.2 Product backlog (user story set)
definition: Create the user stories or tasks that need
to be developed.

 X X X

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Activity A.2.3 Product backlog (user story set)
prioritization: Set the user stories to prioritize the
tasks for the ones that provide more value.

 X X X

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Activity A.2.4 - Product backlog (user story
set) effort estimation: Estimate every single user
story by the developer, it is possible to use fixed time
or user story points (recommended).

 X X X

DC.9
APBPM Activities

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Activity A.2.5 Define Definition of Done &
Definition of Ready: Create the Definition of Done
and Ready. The definition of Done is all the
parameters needed to accept the tasks as completed.
The definition of Ready is the list of parameters that
need to be met for considering a task as ready to be
developed.

 X X X

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Phase 3 - Iteration-Sprint: Build the increment in an
Iterative process, X X X

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Activity A.3.1 Sprint Planning: Select the most
valuable user stories to be developed during the sprint
by the Product Owner. The development team
chooses the task according to their skills.

 X X X

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Activity A.3.2 Stand-up meeting: Meet with the
team to talk about the progress, the upcoming work,
and any block that can have.

 X X X

DC.9
APBPM Activities

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Activity A.3.3 Implement requirements:
Develop every single user story. X X X

DC.12
ABPM Activities

DTS.4 ABPM (Rosing and
Gill, 2015)

Activity A.3.4 Testing: Test every single
requirement that is developed during the sprint. X X X

101

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Activity A.3.5 Iteration-sprint review and
retrospective: Conduct a retrospective by all the
team to know how what is working, and what is not.
and how to be better in the next sprints.

 X X X

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Phase 4 - Product Release: Release the increment
with the most important features chosen by the
Owner.

 X X X

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Activity A.4.1 Product releasing: Release the
increment. X X X

DC.9
APBPM Activities

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Activity A.4.3 Finish Documentation: Create
the final documentation for the increment. X X X

Table 29 - Final Design Components for Phases and Artifacts.

Design Component Source Why this could be helpful
SDLC that is also using it

DTS.1 DTS.2 DTS.3 DTS.4

DC.1
The BPM Lifecycle
Phases

DTS.1 The BPM Lifecycle
(Dumas et al., 2018) Phase 1 - Process Discovery: Define the team, get

the information of the process, and ensure the quality.

DC.3
The BPM Lifecycle
Artifacts

DTS.1 The BPM Lifecycle
(Dumas et al., 2018)

Artifact T.1.1 Process Idea: A document that
clearly defines the process idea. X

DC.10
APBPM Artifacts

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Artifact T.1.2 Process architecture of the
selected process: The final document of the
architecture of the project.

 X X X

DC.10
APBPM Artifacts

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Artifact T.1.3 List of Stakeholders: A document
having a list of all stakeholders of the project. X X X

DC.10
APBPM Artifacts

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Artifact T.1.4 Architecture Vision: A document
with the vision of the architecture of the project. X

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Phase 2 - Exploration / Product Planning: Plan all
the projects and identify the project's needs.

DC.10
APBPM Artifacts

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Artifact T.2.1 First Release Plan: A document
that details the release plan for the project. X X X

102

DC.10
APBPM Artifacts

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Artifact T.2.2 Def. of Done: A list of parameters
that tasks need to be met for considering tasks as
done.

 X X X

DC.10
APBPM Artifacts

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Artifact T.2.3 Def. of Ready: A list of parameters
that tasks need to be met for consideration as ready for
development.

 X X X

DC.10
APBPM Artifacts

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Artifact T.2.4 Process Backlog / Product
Backlog / Story Map: The backlog of tasks to be
developed.

 X X X

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Phase 3 - Iteration-Sprint: Build the increment in an
Iterative process,

DC.10
APBPM Artifacts

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Artifact T.3.1 Sprint Backlog / Story Map: The
list of tasks to be developed during the sprint. X X X

DC.10
APBPM Artifacts

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Artifact T.3.2 Process Increment: The result of
merging newly developed stories with the past
increment.

 X X X

DC.5
Scrum-XP Phases

DTS.2 Scrum-XP
(Schwaber & Sutherland,
2020) (Dudziak, 1999)

Phase 4 - Product Release: Release the increment
with the most important features chosen by the Owner.

DC.10
APBPM Artifacts

DTS.3 APBPM (Thiemich
and Puhlmann, 2013)

Artifact T.4.1 Documentation: A document with
the final results of sprint review, and sprint
retrospective.

 X X X

DC.13
ABPM Artifacts

DTS.4 ABPM (Rosing
and Gill, 2015)

Artifact T.4.2 Integrated Release: The final
release with the final increment. X X X

103

5 EVALUATION OF RESULTS

5.1 EVALUATION OF AGULEBPM METHODOLOGY DOCUMENT

With the AgileBPM Methodology done and ready, it is time to validate the artifact

following the DSRM step 5 from Design Science Research Methodology (DSRM)

(Peffers et al., 2007). A “Validation of Experts” (Beecham, 2005) was used by

different Software Engineering studies (Saadatmand, 2024); (Abdurrahman et al.,

2024).

This validation technique is necessary for validating the artifact. We consider

“validity of the content” as “the overall level of veracity and congruence with the

overall purpose of the content” (Phillips-Wren et al., 2009). This definition suggests

that 'valid content' is expected to ultimately serve its intended purpose and meet a

reasonable standard of accuracy. It is akin to the concept of a model, where no

entity being validated can achieve 100% accuracy. This is because any model is

merely a partial representation of a real-world scenario, and it is impossible to

create a model that perfectly mirrors reality.

In this section, a 'content validity' technique was employed using a Panel of

Experts, following approaches commonly used in simulation (Sargent, 2013). As

Sargent (Sargent, 2013, p.323) states: 'Conceptual model validation involves

verifying that the theories and assumptions underlying the conceptual model are

correct and that the model’s representation of the problem entity is “reasonable” for

its intended purpose.'

The steps followed for this validation were the following:

1. To have ready the textual document to be validated. A PDF document

was elaborated.

2. To define the criteria for expert inclusion. These criteria were defined as

the people that have SENIOR expertise.

3. To have ready a suitable questionnaire to be applied to the Panel of

Experts. This questionnaire was taken from Mora (Phillips-Wren et al., 2009). This

questionnaire contains two constructs: C1 theoretical validity, and C2 theoretical

consistency. The C1 contains 3 items, and the C2 contains 5 items.

4. To define a list of potential experts to be contacted. A list of 30

international academics and professionals in the discipline of software engineering

104

and BPMS people were contacted to read the AgileBPM Methodology in a given

time of 3 weeks. Table 30 reports the demographic data of the sample of 15

seniors that fulfilled the required experience as asked in point 2.

Table 30 - Demographic Data of the Panel of Experts

Demographic Item
Junior

Evals.
Block %

Senio
r Evals.
Block %

Junior
Evals.

Block %

Senio
r Evals.
Block %

1. Age range:

() <=30 years 3 0 10% 0%

() 31-40 years 8 4 27% 13%

() 41-50 years 1 6 3% 20%

() > 50 years 3 5 10% 17%

2. Highest academic level:

() Bachelor level 4 0 13% 0%

() Bachelor plus Professional Certifications 4 5 13% 17%

() Graduate student 2 7 7% 23%

() Graduate completed level 5 3 17% 10%

3. Main area of formal studies:

() Computer Systems / Informatics 12 14 40% 47%

() Business Management 1 1 3% 3%

() Other professional field 2 0 7% 0%

4. Main work setting:

() Business enterprise 7 12 23% 40%

() University/Research Unit 5 2 17% 7%

() Government Unit 3 1 10% 3%

5. Scope of work setting:

() Regional 9 3 30% 10%

() Nationwide 4 4 13% 13%

() Worldwide 2 8 7% 27%

6. Region of working setting:

() USA/CAN 2 7 7% 23%

() Europe / Asia 0 0 0% 0%

() Latin America 13 8 43% 27%

7. Years in work settings:

105

() 1-5 years 1 0 3% 0%

() 6-10 years 6 0 20% 0%

() 11-15 years 4 2 13% 7%

() 16-20 years 1 6 3% 20%

() 20 or more years . 3 7 10% 23%

8. Main Work Position:

() Academic/Researcher 6 2 20% 7%

() IT Project Manager / IT Consultant 8 7 27% 23%

() Business Manager / Business Consultant 1 3 3% 10%

() IT Senior Developer 0 3 0% 10%

9A. Years involved (i.e. knowing, using, teaching,
investigating or giving consulting) on AGILE PROCESS
(SCRUM and/or XP):

() <1 year 0 0 0% 0%

() 1-3 years 4 0 13% 0%

() 4-6 years 6 0 20% 0%

() 7-9 years 3 0 10% 0%

() 10 or more years 2 15 7% 50%

9B. Years involved (i.e. knowing, using, teaching,
investigating or giving consulting) on BPMS (Business
Process Management Systems) PRACTICES:

() <=5 years 4 0 13% 0%

() 6-10 years 6 0 20% 0%

() 11-15 years 4 3 13% 10%

() 16-20 years 0 4 0% 13%

() >20 years 1 8 3% 27%

10A. Number of projects (academic, training or
consulting ones) involved with AGILE PROCESS (SCRUM
and/or XP):

() 1-3 3 0 10% 0%

() 4-6 5 0 17% 0%

() 7-9 5 0 17% 0%

() 10 or more 2 15 7% 50%

10B. Number of projects (academic, training or
consulting ones) involved on BPMS (Business Process
Management Systems):

() 1-3 5 0 17% 0%

() 4-6 6 0 20% 0%

() 7-9 2 0 7% 0%

() 10 or more 2 15 7% 50%

106

11A. Self-evaluation on the expertise level on AGILE
PROCESS (SCRUM and/or XP):

() very high level of expertise 3 12 10% 40%

() high level of expertise 4 3 13% 10%

() moderate level of expertise 7 0 23% 0%

() low level of expertise 1 0 3% 0%

() very low level of expertise 0 0 0% 0%

11B. Self-evaluation on the expertise level on BPMS
(Business Process Management Systems):

() very high level of expertise 0 8 0% 27%

() high level of expertise 3 7 10% 23%

() moderate level of expertise 10 0 33% 0%

() low level of expertise 2 0 7% 0%

() very low level of expertise 0 0 0% 0%

5. To calculate the level of reliability, convergence validity, and

discriminant validity of the 2 constructs C1 and C2 used in the

applied questionnaire. We use the PLS statistical technique (Esposito

et al., 2010) due to the small data. The composite reliability index

indicates the reliability and the convergent validity with factor loadings

and, finally, discriminant validity using AVE (average variance extracted

for each construct). Esposito et al. (2010) and Wong (2013) recommend

minimal value ranges of 0.60-0.70 for reliability, 0.60-0.70 for convergent

validity, and at least 0.50 for discriminant validity of the constructs.

Additionally, in the test of convergent validity, each factor loading must be

the greatest value in its construct regarding the other factor loading

values. In the test of discriminant validity, the square root of each AVE

(average variance extracted) of each construct must be greater than the

correlations among constructs. It is verified in the correlation matrix where

the values in the diagonal (i.e. the square roots of the AVEs) must be at

least 0.70 and greater than the other values in the off-diagonal. The

values obtained for each construct were satisfactory as shown in Table

31. The calculations were obtained using a free student license from the

software tool SmartPLSv4 (https://www.smartpls.com).

107

Table 31 - Reliability and Validity of Constructs C1 and C2

 C1 THEORETICAL
VALIDITY

C2 THEORETICAL
CONSISTENCY

COMPOSITE RELIABILITY INDEX >= 0.60 0.923 0.897

CONVERGENT
VALIDITY

OF CONSTRUCT
(FACTOR LOADING

FOR
EACH ITEM >= 0.40)

ITEM 1 0.796 0.884

ITEM 2 0.749 0.95

ITEM 3 0.534 0.894

ITEM 4 0.867 0.727

ITEM 5 0.908 0.586

ITEM 6 0.926 0.772

DISCRIMINANT
VALIDITY OF
CONSTRUCT

(SQUARE ROOT OF
AVE >= 0.70)

C1 THEORETICAL VALIDITY 0.901 0.782

C2 THEORETICAL CONSISTENCY 0.782 0.910

Most loadings are above 0.8, with just one item in C2 slightly lower but still

within acceptable limits. The AVE values for both constructs (0.888 for C1 and 0.8

for C2) indicate that each construct captures a large portion of the variance in its

respective items, affirming their reliability and validity. This confirms that both

constructs are robustly measured by their items, with good convergent validity

based on their high AVE values.

6. To calculate the median, mean, and standard deviation of each item in

the questionnaire. Using a Likert scale from 1 to 5 as available options where 1 is

the most negative and 5 is the most positive. Table 32 displays the obtained

values.

Table 32 - Mean, Median, and Standard Deviation of the Constructs/Items C1 and C2.

Construct Item Mean Median Standard Deviation

CV1 1 4.667 5 0.596

CV2 2 4.533 5 0.718

CV3 3 4.667 5 0.596

CV4 4 4.667 5 0.596

CV5 5 4.533 5 0.618

CV6 6 4.533 5 0.618

CV7 7 4.8 5 0.4

108

Both constructs show high mean and median values close to 5, indicating

overall positive responses across items. Most items have standard deviations

below 0.7, suggesting reasonable consistency in responses, with some minor

variations, particularly in CV2’s Items 5 and 6. Items 3 (CV1) and 7 (CV2) stand out

with the lowest standard deviations, indicating high consistency and reliability

within their constructs. This distribution analysis suggests that both constructs are

favorably rated with high consistency among items, providing a strong foundation

for reliability in these constructs.

Furthermore, a one-sample, one-tailed t-test was conducted with the null

hypotheses H0.1: 'The mean of Construct C1 is less than or equal to 3.0' and H0.2:

'The mean of Construct C2 is less than or equal to 3.0.' The free statistical software

MaxStatLite (www.maxstatlite.com) was used for this analysis. Both null

hypotheses were rejected, indicating that the means for Constructs C1 and C2 are

satisfactory. Table 33 presents these results.

Table 33 - Null Hypotheses Tests on Means of Constructs C1 and C2.

Null Hypothesis Mean of Construct Std.Dev of Construct P-Value
Reject

H0?

H0.1 “The mean of the
construct C1 is less or equal
to 3.00”

4.622 0.071 0.00033 Yes

H0.2 “The mean of the
construct C2 is
less or equal to 3.00”

4.633 0.335 0.0000082 Yes

7. To assess the level of validity reached by the AgileBPM Methodology

document. Based on the results of reliability and validity (convergent, and

discriminant) of the instrument used to measure the theoretical validity perceived

by a panel of experts, and results obtained on the means of the constructs C1 and

C2, it can be assessed that the AgileBPM Methodology document is considered

theoretically valid, and thus, it can be used as a source document for elaborating

an AgileBPM Methodology EPG.

5.2 EMPIRICAL USABILITY EVALUATION OF AGILEBPM

METHODOLOGY.

The AgileBPM Methodology was documented in an Electronic Guide using

HTML and hosted in the website https://bit.ly/42s6f6L so this URL was shared with

academics, and practitioners with a questionnaire taken from Gary C. et al. (1991),

Karahanna et al. (1999). The constructs of interest to be evaluated for the sample

of international academics and practitioners are shown in Table 34.

https://bit.ly/42s6f6L

109

We got the participation of 32 practitioners, and academics from Latin America,

the United States, and Canada. All the participants had more than 6 years of

experience and 59% worked for a business enterprise. 59% of the participants had

also a master's and PhD.

We provided the applicants with some time to read the AgileBPM Methodology

documentation and check the templates. Finally, we applied two questionaries,

both with the same questions, the first one related to AgileBPM Methodology, and

the second one related to another BPMS Methodology that the applicant had some

experience. Table 35 shows the results of the questionnaire for AgileBPM

Methodology while Table 34 shows the results of the questionnaire for another

BPMS methodology that applicants had experienced. The results are favorable to

the AgileBPM Methodology in five constructs USEFULNESS, EASE OF USE,

COMPATIBILITY, VALUE, and ATTITUDE.

Table 34 - Constructs to be Evaluated for the Sample of International Academics and Practitioners on the

AgileBPM Methodology

CONSTRUCT ITEMS SCALE

USEFULNESS – is the degree to which using the new

TOOL is perceived as being better than using the current

used TOOL.

4

5-points Likert

(1: strongly disagree to 5:

strongly agree)

EASE OF USE - is the degree to which using the new

TOOL is perceived as being free of effort.
3

5-points Likert

(1: strongly disagree to 5:

strongly agree)

COMPATIBILITY - is the degree to which using a new

TOOL is perceived as compatible with what people do.
3

5-points Likert

(1: strongly disagree to 5:

strongly agree)

VALUE - the degree to which using the new TOOL is

perceived as a value delivery entity for users by savings on

money, time, and the provision of a variety of valuable

resources, and by an overall value.

4

5-points Likert

(1: very low to 5: very

high)

ATTITUDE - it reflects the individual’s positive and

negative evaluations of performing the behavior (of adopting

the evaluated artifact).

3

7-point

Semantic differential

scale (-3 to +3)

We got the participation of 32 practitioners, and academics from Latin America,

the United States, and Canada. For this evaluation, we also applied the same

110

criteria that previous section. The SENIOR filtering were applied and we got 15

people for this set of data.

We provided the applicants with some time to read the AgileBPM Methodology

documentation and check the templates. Finally, we applied two questionnaires,

both with the same questions, the first one related to AgileBPM Methodology, and

the second one related to another BPMS Methodology with the applicant had some

experience.

Figure 33 and Figure 34 displays the PLS model used for calculations for the

Agile Methodology and the Other Methodology known by the user.

Figure 33 - PLS Model for Agile Methodology.

111

Figure 34 - PLS Model for other methodology.

Table 35 and Table 36 display the descriptive statistics, reliability, and

discriminant validity results for the AgileBPM and the alternative methodology,

respectively, based on the evaluation dataset. Descriptive statistics—median,

mean, and standard deviation—were computed using the free JASP software

(JASP, 2025). Reliability (Cronbach’s alpha and composite reliability index) and

discriminant validity (average variance extracted, AVE) were assessed using the

academic version of SmartPLS v4 (SmartPLS, 2025). The results provide

supporting evidence that the four final constructs—USEFULNESS, VALUE, and

ATTITUDE OF POTENTIAL USAGE—were measured with acceptable reliability

and discriminant validity, following established guidelines (Barclay et al., 1995;

Chin, 1998; Russo & Stol, 2021). In both tables, the construct COMPATIBILITY,

and EASE OF USE were excluded due to inadequate reliability and validity

indicators.

112

Table 35 - Reliability and descriptive statistics for Agile Methodology.

Construct Median Mean
Std

Dev.

Cronbach´

s

Alpha >= 0.50

Composite

Reliability

Index >= 0.70

Average

Variance

Extracted

(AVE) >=

0.500

USEFULNESS 4.00 4.33 0.61 0.574 0.712 0.588

VALUE 4.00 4.27 0.52 0.633 0.815 0.695

ATTITUDE OF

POTENTIAL

USAGE

1.00 1.40 1.04 0.631 0.833 0.722

Table 36 - Reliability and descriptive statistics for Other Methodology.

Construct Median Mean
Std

Dev.

Cronbach´

s

Alpha >= 0.50

Composite

Reliability

Index >= 0.70

Average

Variance

Extracted

(AVE) >=

0.500

USEFULNESS 2.00 2.00 0.64 0.828 0.894 0.810

VALUE 2.0 2.20 0.85 0.797 0.881 0790

ATTITUDE OF

POTENTIAL

USAGE

-1.00 -1.33 0.84 0.542 0.733 0.607

Table 37 and Table 38 represent the complementary discriminant validity

statistics for the AgileBPM and the alternative methodology, respectively, based on

the evaluation dataset. These calculations were performed using the free academic

version of SmartPLS v4 software (SmartPLS, 2025). The results from both tables

provide supporting evidence that the four final constructs USEFULNESS, VALUE,

and ATTITUDE OF POTENTIAL USAGE, demonstrate satisfactory discriminant

validity (Barclay et al., 1995; Chin, 1998; Russo & Stol, 2021). In both tables, the

diagonal values—representing the square root of the AVE for each construct—

exceed the corresponding off-diagonal values, indicating that each construct

shares more variance with its own items than with those of other constructs, as

recommended by Barclay et al. (1995).

113

Table 37 - Discriminant Validity of the Usability Constructs for the AgileBPM

ATTITUDE OF

POTENTIAL USAGE
USEFULNESS VALUE

ATTITUDE OF

POTENTIAL USAGE
0.850 0.178 0.348

USEFULNESS 0.178 0.767 0.138

VALUE 0.348 0.138 0.834

Table 38 - Discriminant Validity of the Usability Constructs for the other methodology

ATTITUDE OF

POTENTIAL USAGE
USEFULNESS VALUE

ATTITUDE OF

POTENTIAL USAGE
0.779 0.329 0.210

USEFULNESS 0.329 0.900 0.299

VALUE 0.210 0.299 0.889

Table 39 and Table 40 present the convergent validity statistics for the

AgileBPM and the alternative methodology, respectively, based on the evaluation

dataset. These values were computed using the free academic version of

SmartPLS v4 software (SmartPLS, 2025). The results provide strong evidence of

adequate convergent validity for the four final constructs—USEFULNESS, VALUE,

and ATTITUDE OF POTENTIAL USAGE—following established criteria (Barclay et

al., 1995; Chin, 1998; Russo & Stol, 2021). As shown in both tables, the item

loadings (i.e., correlations between items and their corresponding constructs)

exceed 0.700 and are higher than their cross-loadings (i.e., correlations with items

from other constructs), confirming satisfactory convergent validity (Barclay et al.,

1995).

Additionally, four hypothesis tests were conducted to evaluate whether the

AgileBPM was perceived more positively in terms of the four usability constructs

compared to the alternative methodology. Given the unsatisfactory normality test

results, the non-parametric Wilcoxon Matched-Pairs Signed-Rank test was applied

(Sheskin, 2000). Table 41 presents these results, which were calculated using the

free JASP software (JASP, 2025). The findings indicate that evaluators perceived

the alternative methodology as offering better usability than the BDAS SDLC.

114

Table 39 - Convergent Validity of the Usability Constructs for the AgileBPM

 ATTITUDE OF USAGE USEFULNESS VALUE

ATT1 0.776 0.202 0.176
ATT2 0.917 0.123 0.379
USF1 0.017 0.43 0.152
USF2 0.168 0.996 0.117
VAL1 0.373 0.143 0.956
VAL2 0.131 0.066 0.676

Table 40 - Convergent Validity of the Usability Constructs for other methodology.

 ATTITUDE OF USAGE USEFULNESS VALUE

ATT1 0.993 -0.348 -0.209

ATT2 0.477 0 0.099

USF1 -0.087 0.8 0.024

USF2 -0.368 0.99 0.347

VAL1 -0.235 0.284 0.985

VAL2 -0.064 0.273 0.781

115

Table 41 - Wilcoxon Signed-Rank Tests for the Usability Constructs in AgileBPM vs alternative methodology.

Null Hypothesis

AgileBPM

Median

(med.1)

Alternative

Methodology

Median

(med.2)

P-value Implication

H0.1 For USEFULNESS construct

(med.1<= med.2)
4.00 2.00 < 0.001

H0.1 is rejected, and

thus the

USEFULNESS of

AgileBPM is better.

H0.2 For VALUE construct

(med.1<= med.2)
4.00 2.00 < 0.001

H0.2 is rejected, and

thus the VALUE of

AgileBPM is better.

H0.3 For ATTITUDE OF POTENTIAL

USAGE construct (med.1<= med.2)
1.00 -1.00 < 0.001

H0.3 is rejected, and

thus the ATTITUTE

OF POTENTIAL

USAGE of

AgileBPM is better.

5.3 APPLICATION OF THE AGUILEBPM METHODOLOGY.

To test The AgileBPM Methodology, a case demo was built using a real

business process from a small business. The business process is an Expenses

Claim app that has three main roles: 1) Claimer who can create new expense

claims, 2) Approver the person who checks the claims and can request more

information from the claimer and approve/reject the claim. 3) Finance will receive

the approved claim from the Approver and will verify or reject the claim. Figure 33

shows the business process diagram.

First, the Process Discovery phase started to define all the project needs before

starting the development process. In Activity - A.1.1 Defining the Setting the

template F.1.01 - Process Idea was followed defining basic information from the

process such as process context, process roles, and process flow. There are two

templates for Activity - A.1.2 Gathering the Required Information: 1) F.1.02 -

Process architecture of the selected process. 2) F.1.03 - List of Stakeholders. Both

templates help with following the activity step by step with the Purpose and

116

Objectives, the Process Description, and Process Requirements. It is important to

know that the templates provide a lot of requirements to be filled out, however not

all projects need the same information, and the practitioners could avoid or add

more information accordingly. In Activity - A.1.3 Modeling the Process is the activity

where the process takes form and is ready to continue with the next phase. In this

activity, the template F.1.04 - Architecture Vision was used to fill out the needed

information like the functional/nonfunctional requirements, the description of the

selected technology, the solution overview, the agreement for the sprints, and the

AgileBPM roles description.

In the Exploration / Product Planning phase, there are five activities. Activity -

A.2.1 Product Vision Definition - use the F.1.04 - Architecture Vision template for

elaborating a release plan for the process and a backup plan. In this activity was

also defined the sprint length and the timeline for the development. Activity - A.2.2

Define Definition of Done & Definition of Ready - uses templates F.2.02 -Definition

of Done and F.2.03 – Definition of Ready for defining both concepts to know when

a task is ready to work on and a task is completed. Activity - A.2.3 Product Backlog

(user story set) Definition – the initial backlog was created. The three roles worked

together to create the backlog with user stories that covered the functionality of the

business process, for this activity, we used the F.2.04 – Process Backlog.

Template, online tools like Jira or Trello provide better tools for replacing the

template and project management. Activity - A.2.4 Product backlog (user story set)

Prioritization In this activity the created backlog was prioritized from the most

important to the less important. Finally, the Activity - A.2.5 - Product Backlog (user

story set) Effort Estimation The development team estimated every single user

story using the story points method.

During the Iteration-Sprint phase we implemented the activities Activity - A.3.1

Sprint Planning, Activity - A.3.2 Stand-up meeting, Activity - A.3.3 Implement

requirements, Activity - A.3.4 Testing, and Activity - A.3.5 Iteration-sprint review

and retrospective. This phase implementation uses most of the known activities in

a Scrum-XP methodology. The two sprints began with the Sprint Planning meeting,

117

the team agreed on what user stories could be completed during the sprint, and the

Sprint Backlog was created. Every single day started with the stand-up meeting

where the team discussed progress and any blocks. After finishing the

development of the User Story, the testing began and provided any feedback to the

developers or mark the user story as completed. Finally, the sprint finished after

the Sprint Retrospective meeting for getting feedback from the team and the Sprint

Review shows the increment to the stakeholders.

Finally, the Product Release phase has Activity - A.4.1 Finish Documentation,

and Activity - A.4.2 Product Releasing activities were F.4.01 Process

Documentation template filled out with all the details for the business process

environment, servers, users, and passwords.

Figure 35 - BPMN diagram of the process.

The open-source BPMS/Low-Code platform Joget (https://www.jobget.com/)

was used for the development of this case demo. Figure 34 displays the joget’s

process builder where the business process flow is created, and it is very similar to

the BPMN diagram.

The advantage of using a low-code platform like Joget is that the development

was very quicky without using any line of code, and most of the configuration was

created on the fly using drag-and-drop tools.

118

Figure 36 - Joget's process builder for the Expenses Claim app.

The advantage of using a low-code platform like Joget is that the development

was very quicky without using any line of code, and most of the configuration was

created on the fly using drag-and-drop tools.

119

6 DISCUSSION OF RESULTS

6.1 SUMMARY OF THE RESULTS

We discussed in section 1.3 the General Research Objectives (RO’s), Research

Questions (RQ’s), and Null Hyphotesis (H0’s), the Tables 42, 43, 44, and 45

provide the results got it from this research.

All the got it information for this investigations were obtained until December

from 2024. These references were used for theoretically supporting and

strengthing the scientific methodological validity applied to this research.

Table 42 - Results for Research Question 1

Research Question Hypotheses Results

RQ.1 What is the state of the art –

contributions and limitations- on

agile and non-agile development

methodologies for Business

Process Management systems?

H0.1 There is no need for an agile

development methodology for

Business Process Management

systems

After a Systematic Research

Literature review from year 2010

to 2021 we discovered four non-

agile BPMS and 4 agile BPMS

methodologies. Those

methodologies were studied and

evaluated. After a deep analysis,

we detected a lack of information

and documentation about most of

the methodologies.

If any practitioner desires to adopt

one of those methodologies, they

would face several problems

because there is not all the

information needed to work with

those methodologies. On the other

hand the most important authors

for Business Processes

Management like Dumas (2018)

refers that agility is needed in this

kind of environment.

For that reason, we can reject the

H0.1 and sustain that new Agile

Methodology for Business Process

Management Systems is needed.

120

Table 43 - Results for Research Question 2

Research Question Hypotheses Results

RQ.2 What is the state of the art –

capabilities, and limitations – of

open-source low-code Business

Process Management

development platforms?

H0.2 There are no powerful open-

source low-code Business

Process Management

development platforms.

In section 3.1.3.2 we use Mora et

al. (2016) work that compares

open-source elements based on

Risks Categories like Financial,

Organizational, End User, and

Technical. Using the tool Multi-

Attribute Decision Making (MADM)

for 12 open source platforms:

Capgemini Open Source Maturity

Model, Navica Open Source

Maturity Model (OSMM), Open

Business Readiness Rating

(OpenBRR), Open Business

Quality Rating (OpenBQR),

Quality Model for Open Source

Selection (QMOSS), QualOSS,

Software Quality Observatory for

Open Source Software model

(SQO-OSS), OpenSource Maturity

Model (OMM), QualiPSo—Quality

Platform for Open Source

Software, IRCA Model, Method for

Qualification and Selection of

Open Source Software (QSOSv2),

and the Evaluation Framework for

Free/Open Source Projects

(EFFORT). After the review we

found 3 viable options to work

with: Joget, jBPMN, and

Camunda.

Using Open Decision Maker tool

we found that Joget was the best

open-source platform for BPMS.

However there were more viable

open-source platforms to work

with BPMS and Low-Code in the

market.

For that reason, we can reject

H0.2 and sustain that there are

strong open-source and Low-Code

platforms to work on this project.

121

Table 44 - Results for Research Question 3

Research Question Hypotheses Results

RQ.3 What elements of Agile

Development and Business

Process Management System

Development Methodologies can

be used to elaborate an Agile

Business Process Management

System Development

Methodology that can be

evaluated theoretically valid from a

Panel of Experts?

H0.3 There are no elements of

Agile Development and Business

Process Management System

Development Methodologies that

can be used to elaborate an Agile

Business Process Management

System Development

Methodology that can be

evaluated as theoretically valid by

a Panel of Experts.

In section 4, we disclosed the 4

agile BPMS methodologies found

in the SLR. After a deep review of

the elements of each

methodology, we extract all the

roles, activities, and artifacts. We

also added as a base the BPMS

methodology from Dumas et al.

(2018). Having all this information,

we did an iterative process where,

in the first place, we removed all

the redundancies of roles,

activities, and artifacts. In the

second iteration, we detected the

most used activities, and artifacts,

as well as some key elements that

could help achieve our purpose.

Finally, we got al the elements

from Agile BPMS methodologies

that could help for construct our

AgileBPM Methodology.

In Section 5, we performed a

questionnaire on 30 people for

Latinoamerica and North America

practitioners. Of those 30 persons,

we did a filter by the number of

worked projects and experience to

get 17 people considered as

experts. After conducting a

statistical analysis of the

questionnaire, we found that the

constructs were valid and

theoretically valid.

For that reason, we can reject

H0.3 and prove that there were

elements that can help to build an

Agile BPMS methodology and be

evaluated as theoretically valid by

a Panel of Experts.

122

Table 45 - Results for Research Question 4

Research Question Hypotheses Results

RQ.4 Can the new elaborate Agile

Business Process Management

System Development

Methodology be documented in an

Electronic Process Guide (EPG)

and be evaluated as agile, useful,

easy to use, compatible, and

valuable by a pilot group of

Software Engineering academics

and practitioners?

H0.4.1 The newly elaborated Agile

Business Process Management

System Development

Methodology cannot be

documented in an Electronic

Process Guide (EPG).

H0.4.2 The newly elaborated

Agile Business Process

Management System

Development Methodology is not

considered agile, useful, easy to

use, compatible, and valuable by a

pilot group of Software

Engineering academics and

practitioners.

After creating and validating the

AgileBPM Methodology, we

created an electronic guide using

HTML and hosted it on a website:

https://bit.ly/42s6f6L. This website

is public and has all the needed

information for any practitioner

who would like to work with the

methodology. For that reason, we

can reject H0.4.1.

Finally, in section 5.2 we created a

questionnaire for practitioners and

academics where they have some

time to review the new AgileBPM

Methodology. After that, we apply

the same questionnaire twice,

once for AgileBPM and the other

for any other BPMS methodology

that they knew.

We got positive results for the five

constructs: USEFULNESS, EASE

OF USE, COMPATIBILITY,

VALUE, and ATTITUDE. The

AgileBPM got higher Medians than

other BPMS methodologies, so we

can reject H0.4.2 and confirm that

the AgileBPM was considered as

agile, useful, easy of use, and

compatible by a pilot group.

6.2 DISCUSSION ON RESULTS

AgileBPM Methodology could help practitioners from micro and small companies

find a solution for developing business processes in an agile way. The Low-Code

tools could also help to improve the development time. The results of this study

show that a practitioner could take this AgileBPM Methodology and start working

with it taking advantage of the templates that guide you during the whole process.

The Empirical Evaluation questionaries reflect that most of the participants could

use the AgileBPM Methodology replacing the actual BPMS methodology that they

https://bit.ly/42s6f6L

123

are implementing right now. The reason for this is that most of the Agile BPMS

Methodologies lack online documentation that can help the practitioners in the

process.

6.3 DISCUSSION ON CONTRIBUTIONS TO THE PRAXIS ON AGILE

DEVELOPMENT FOR BPMS

AgileBPM Methodology could help practitioners from micro and small companies

find a solution for developing business processes in an agile way. The Low-Code

tools could also help to improve the development time. The results of this study

show that a practitioner could take this AgileBPM Methodology and start working

with it, taking advantage of the templates that guide you during the whole process.

Agile BPM Methodology combines the planning from BPMS methodology from

Dumas et al. (Dumas et al., 2018) with the best of traditional agile methodologies like

Scrum-XP (Schwaber & Sutherland, 2020) (Dudziak, 1999), 3), the best of Agile BPMS

methodologies (Thiemich & Puhlmann, 2013) (Rosing & Gill, 2015).

Practitioners can start working with AgileBPM Methodology by visiting the site

https://bit.ly/42s6f6L, reading the documentation, and downloading the templates,

which provide a guide for what is needed during every phase and activity. As

mentioned before, the templates are only a guide for the practitioner; every project

could have special needs that can be included in the documentation.

6.4 LIMITATIONS

Despite the positive results of AgileBPM, limitations for future research are

identified. First, its effectiveness in larger, regulated projects has not been

investigated. Second, it was applied on the low-code Joget platform, and it would

be useful to evaluate it on other BPMS tools, both open source and commercial.

However, the results suggest that AgileBPM is a promising option for agile

development.

6.5 CONCLUSIONS

The research evaluated the AgileBPM Methodology for the development of

Business Process Management Systems (BPMS). Roles, activities, and artifacts

were described, and a usability evaluation was conducted with international

practitioners. The results indicated high scores in usability, ease of use, and

https://bit.ly/42s6f6L

124

attitude toward adoption, positioning AgileBPM as a viable alternative to traditional

BPMS methodologies. Key contributions include the integration of agile principles,

creation of accessible documentation and empirical validation with practitioners.

However, limitations were noted, such as the need for testing in larger

environments. AgileBPM promises to improve efficiency and flexibility in business

process management.

7 GLOSSARY

BPMS/PAIS Development Platform.

Software development platform used for designing, building, running, and
monitoring a BPMS/PAIS.

Business Process Management System (BPMS) - Process-Aware Information
System (PAIS)

“Software system for supporting the operation and monitoring of a full
Business Process.” (adapted from Reijers, 2006, p. 390)

Daily Scrum

“The purpose of the Daily Scrum is to inspect progress toward the Sprint
Goal and adapt the Sprint Backlog as necessary, adjusting the upcoming
planned work.” (Schwaber & Sutherland, 2020, p. 9)

Developers

“Developers are the people in the Scrum Team that are committed to creating
any aspect of a usable Increment each Sprint.” (Schwaber & Sutherland, 2020,
p. 5)

eXtreme Programming (XP)

“XP is also a lightweight methodology or what Alistair Cockburn calls a
“Crystal Methodology”. In short, methodologies of this family have high
productivity and high tolerance. Communication is usually strong with short
paths, especially informal (not documented). There the is only a small range

125

of deliverables (artifacts), but these are delivered frequently (releases).
Processes of the Crystal family identify only a few roles and activities.”
(Dudziak, 1999, p. 4)

Increment

“An Increment is a concrete stepping stone toward the Product Goal. Each
Increment is additive to all prior Increments and thoroughly verified,
ensuring that all Increments work together. In order to provide value, the
Increment must be usable.” (Schwaber & Sutherland, 2020, p. 11)

Low-code

 “Application platforms that accelerate app delivery by dramatically reduce
the amount of hand-coding required. Faster delivery is the primary benefit of
these application platforms; they also help firms respond more quickly to
customer feedback after initial software releases and provision mobile and
multichannel apps. Usage of low-code platforms is gaining momentum for
customer-facing applications” (Richardson and Rymer, 2014)

Product Backlog

“The Product Backlog is an emergent, ordered list of what is needed to
improve the product. It is the single source of work undertaken by the Scrum
Team.” (Schwaber & Sutherland, 2020, p. 10)

Product Owner

“The Product Owner is accountable for maximizing the value of the product
resulting from the work of the Scrum Team. How this is done may vary
widely across organizations, Scrum Teams, and individuals.” (Schwaber &
Sutherland, 2020, p. 5)

Scrum

“Scrum is a lightweight framework that helps people, teams and
organizations generate value through adaptive solutions for complex
problems.” (Schwaber & Sutherland, 2020, p. 3)

126

Scrum Master

“The Scrum Master is accountable for establishing Scrum as defined in the
Scrum Guide. They do this by helping everyone understand Scrum theory
and practice, both within the Scrum Team and the organization.” (Schwaber &
Sutherland, 2020, p. 6)
Scrum Team

“The fundamental unit of Scrum is a small team of people, a Scrum Team.
The Scrum Team consists of one Scrum Master, one Product Owner, and
Developers. Within a Scrum Team, there are no sub-teams or hierarchies. It
is a cohesive unit of professionals focused on one objective at a time, the
Product Goal.” (Schwaber & Sutherland, 2020, p. 5)

Software

“Computer programs, procedures and possibly associated documentation
and data pertaining to the operation of a computer system.”
(ISO/IEC/IEEE 24765:2017(en), Systems and software engineering — Vocabulary,
2021)

Software

“Computer software is the product that software professionals build and then
support over the long term. It encompasses programs that execute within a
computer of any size and architecture, content that is presented as the
computer programs execute, and descriptive information in both hard copy
and virtual forms that encompass virtually any electronic media.” (Pressman
& Maxim, 2015, p. 1).

Software Engineering

“Systematic application of scientific and technological knowledge, methods,
and experience to the design, implementation, testing, and documentation of
software.” (ISO/IEC/IEEE 24765:2017(en), Systems and software engineering —
Vocabulary, 2021).

“Encompasses a process, a collection of methods (practice) and an array of
tools that allow professionals to build high-quality computer software.”
(Pressman & Maxim, 2015, p. 14).

127

“Encompasses a process, a collection of methods (practice) and an array of
tools that allow professionals to build high-quality computer software.”
(Pressman & Maxim, 2015, p. 14)

Software Engineering Processes

“Software engineering processes are concerned with work activities
accomplished by software engineers to develop, maintain, and operate
software, such as require meets, design, construction, testing, configuration
management, and other software engineering processes.” (Abran & Moore,
2014, pp. 8–1).

Software Life Cycle

“A software development life cycle (SDLC) includes the software processes
used to specify and transform software requirements into a deliverable
software product. A software product life cycle (SPLC) includes a software
development life cycle plus additional software processes that provide for
deployment, maintenance, support, evolution, retirement, and all other
inception to retirement processes for a software product.” (Abran & Moore,
2014, p. 8–4).

Software Process

“A composition of phases, activities, artifacts, and resources (including the
humans).” (Oktaba & Ibargüengoitia González, 1998, p. 229)

Sprint

“Sprints are the heartbeat of Scrum, where ideas are turned into value. They
are fixed length events of one month or less to create consistency. A new
Sprint starts immediately after the conclusion of the previous Sprint.”
(Schwaber & Sutherland, 2020, p. 7)

Sprint Backlog

128

“The Sprint Backlog is composed of the Sprint Goal (why), the set of Product
Backlog items selected for the Sprint (what), as well as an actionable plan for
delivering the Increment (how).” (Schwaber & Sutherland, 2020, p. 11)

Sprint Planning

“Sprint Planning initiates the Sprint by laying out the work to be performed
for the Sprint. This resulting plan is created by the collaborative work of the
entire Scrum Team.” (Schwaber & Sutherland, 2020, p. 8)
Sprint Retrospective

“The purpose of the Sprint Retrospective is to plan ways to increase quality
and effectiveness.” (Schwaber & Sutherland, 2020, p. 10)

Sprint Review

“The purpose of the Sprint Review is to inspect the outcome of the Sprint and
determine future adaptations. The Scrum Team presents the results of their
work to key stakeholders and progress toward the Product Goal is
discussed.” (Schwaber & Sutherland, 2020, p. 9)

Workflow Management Systems (WFMS)

“A system that defines, creates and manages the execution of workflows
through the use of software, running on one or more workflow engines,
which is able to interpret the process definition, interact with workflow
participants and, where required, invoke the use of IT tools and applications”.
(van der Aalst et al., 2003)

129

8 REFERENCES

A guide to the Scrum Body of knowledge (SBOK Guide) (2013 edition). (2013).

SCRUMstudy, A brand of VMEdu, Inc.

Abdurrahman, H., Nanang, S., & Choirul, H. (2024). Sharia Retail Store Service

Standards Based on Customer Preferences in the Cooperative Ecosystem |

Hakim | Jurnal Aplikasi Manajemen.

https://jurnaljam.ub.ac.id/index.php/jam/article/view/8076

Abrahamsson, P., Oza, N., & Siponen, M. T. (2010). Agile Software Development

Methods: A Comparative Review1. In T. Dingsøyr, T. Dybå, & N. B. Moe

(Eds.), Agile Software Development: Current Research and Future

Directions (pp. 31–59). Springer. https://doi.org/10.1007/978-3-642-12575-

1_3

Abran, A., & Moore, J. W. (2014). Guide to the software engineering body of

knowledge.

Badakhshan, P., Conboy, K., Grisold, T., & vom Brocke, J. (2019). Agile business

process management: A systematic literature review and an integrated

framework. Business Process Management Journal, 26(6), 1505–1523.

https://doi.org/10.1108/BPMJ-12-2018-0347

Barabino, G., Grechi, D., Tigano, D., Corona, E., & Concas, G. (2014). Agile

Methodologies in Web Programming: A Survey. In G. Cantone & M.

Marchesi (Eds.), Agile Processes in Software Engineering and Extreme

130

Programming (pp. 234–241). Springer International Publishing.

https://doi.org/10.1007/978-3-319-06862-6_16

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,

M., Robert C., M., Mellor, S., Thomas, D., James, G., Highsmith, J., Hunt,

A., Jeffries, R., Kern, J., Marick, B., Schwaber, K., & Sutherland, J. (2001).

Manifesto for Agile Software Development. https://agilemanifesto.org/

Beecham. (2005). Using an expert panel to validate a requirements process

improvement model—ScienceDirect.

https://www.sciencedirect.com/science/article/abs/pii/S0164121204000974

Bider, I., & Jalali, A. (2016). Agile business process development: Why, how and

when—applying Nonaka’s theory of knowledge transformation to business

process development. Information Systems and E-Business Management,

14(4), 693–731. https://doi.org/10.1007/s10257-014-0256-1

Boehm, B., & Turner, R. (2003). Using risk to balance agile and plan-driven

methods. Computer, 36(6), 57–66. Computer.

https://doi.org/10.1109/MC.2003.1204376

C., G., Moore, & Benbasat, I. (1991). Development of an Instrument to Measure

the Perceptions of Adopting an Information Technology Innovation |

Information Systems Research.

https://pubsonline.informs.org/doi/abs/10.1287/isre.2.3.192

CMMI for Development, Version 1.3. (n.d.). Retrieved March 23, 2021, from

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9661

131

Conboy, K. (2009). Agility from First Principles: Reconstructing the Concept of

Agility in Information Systems Development. Information Systems Research,

20(3), 329–354. https://doi.org/10.1287/isre.1090.0236

Damij, N., Damij, T., Grad, J., & Jelenc, F. (2008). A methodology for business

process improvement and IS development. Information & Software

Technology, 50, 1127–1141. https://doi.org/10.1016/j.infsof.2007.11.004

Denning, P. J. (1999). COMPUTER SCIENCE: THE DISCIPLINE. Encyclopedia of

Computer Science, 9–23.

Dudziak, T. (1999). eXtreme Programming An Overview. Methoden und

Werkzeuge der Software: produktion WS.

http://csis.pace.edu/~marchese/CS616/Agile/XP/XP_Overview.pdf

Dumas, M., Aalst, W. M. van der, & Hofstede, A. H. ter. (2005). Process-Aware

Information Systems: Bridging People and Software Through Process

Technology. John Wiley & Sons.

Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A. (2018). Introduction to

Business Process Management. In M. Dumas, M. La Rosa, J. Mendling, &

H. A. Reijers (Eds.), Fundamentals of Business Process Management (pp.

1–33). Springer. https://doi.org/10.1007/978-3-662-56509-4_1

Esposito Vinzi, V., Chin, W. W., Henseler, J., & Wang, H. (Eds.). (2010). Handbook

of Partial Least Squares: Concepts, Methods and Applications. Springer

Berlin Heidelberg. https://doi.org/10.1007/978-3-540-32827-8

Galvan, S., Mora, M., & Laporte, C. Y. (2021). Reconciliation of scrum and the

project management process of the ISO/IEC 29110 standard-Entry profile—

132

An experimental evaluation through usability measures | SpringerLink.

https://link.springer.com/article/10.1007/s11219-021-09552-3

Garousi, V., Borg, M., & Oivo, M. (2020). Practical relevance of software

engineering research: Synthesizing the community’s voice. Empirical

Software Engineering, 25(3), 1687–1754. https://doi.org/10.1007/s10664-

020-09803-0

Grand View Research. (2020). Low-Code Application Development Platform

Market Report, 2020-2027. https://www.grandviewresearch.com/industry-

analysis/low-code-application-development-platform-market

Greeno, G., J., Simon, & A., H. (1987). Problem Solving and Reasoning.

https://apps.dtic.mil/sti/citations/tr/ADA219146

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in

Information Systems Research. MIS Quarterly, 28(1), 75–105.

https://doi.org/10.2307/25148625

Hevner, A. R., & Ram, S. (2004). Design science in information systems research.

MIS Quarterly, 75–105.

Hoda, R., Salleh, N., & Grundy, J. (2018). The Rise and Evolution of Agile

Software Development. IEEE Software, 35(5), Article 5.

https://doi.org/10.1109/MS.2018.290111318

Hong, W., Thong, J. Y. L., Chasalow, L. C., & Dhillon, G. (2011). User Acceptance

of Agile Information Systems: A Model and Empirical Test. Journal of

Management Information Systems, 28(1), 235–272.

https://doi.org/10.2753/MIS0742-1222280108

133

Hughes, D. L., Rana, N. P., & Simintiras, A. C. (2017). The changing landscape of

IS project failure: An examination of the key factors. Journal of Enterprise

Information Management, 30(1), 142–165. https://doi.org/10.1108/JEIM-01-

2016-0029

Humphrey, W. S. (1988). The software engineering process: Definition and scope.

Proceedings of the 4th International Software Process Workshop on

Representing and Enacting the Software Process, 82–83.

https://doi.org/10.1145/75110.75122

ISO/IEC/IEEE 24765:2017(en), Systems and software engineering—Vocabulary.

(2021). https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:24765:ed-2:v1:en

Javanmard, M., & Alian, M. (2015). Comparison between Agile and Traditional

software development methodologies. Cumhuriyet Üniversitesi Fen

Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3), Article 3.

Jung, J., Choi, I., & Song, M. (2007). An integration architecture for knowledge

management systems and business process management systems.

Computers in Industry, 58(1), 21–34.

https://doi.org/10.1016/j.compind.2006.03.001

Karagiannis, D. (1995). BPMS: Business process management systems. ACM

SIGOIS Bulletin, 16(1), 10–13. https://doi.org/10.1145/209891.209894

Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information Technology

Adoption Across Time: A Cross-Sectional Comparison of Pre-Adoption and

Post-Adoption Beliefs. MIS Quarterly, 23(2), 183–213.

https://doi.org/10.2307/249751

134

Krafzig, D., Banke, K., & Slama, D. (2005). Enterprise SOA: Service-oriented

Architecture Best Practices. Prentice Hall Professional.

Laanti, M., Similä, J., & Abrahamsson, P. (2013). Definitions of Agile Software

Development and Agility. In F. McCaffery, R. V. O’Connor, & R. Messnarz

(Eds.), Systems, Software and Services Process Improvement (pp. 247–

258). Springer. https://doi.org/10.1007/978-3-642-39179-8_22

Luo, Y., Liang, P., Wang, C., Shahin, M., & Zhan, J. (2021, July 15).

Characteristics and Challenges of Low-Code Development: The

Practitioners’ Perspective. https://doi.org/10.1145/3475716.3475782

Markets and Markets. (2020). Low-Code Development Platform Market Size,

Share and Global Market Forecast to 2025 | MarketsandMarkets.

https://www.marketsandmarkets.com/Market-Reports/low-code-

development-platforms-market-103455110.html

Martins, P. V., & Zacarias, M. (2017). An Agile Business Process Improvement

Methodology. Procedia Computer Science, 121, 129–136.

https://doi.org/10.1016/j.procs.2017.11.018

Meziani, R., & Magalhães, R. (2009). Proposals for an Agile Business Process

Management Methodology. 15.

Mora, M. (2009). Metodo-Conceptual-Dr-Mora-v-2009-OK.pdf.

Mora, M., Gómez, J. M., O’Connor, R. V., & Gelman, O. (2016). An MADM risk-

based evaluation-selection model of free-libre open source software tools.

International Journal of Technology, Policy and Management, 16(4), 326–

354. https://doi.org/10.1504/IJTPM.2016.081665

135

Mu, W., Bénaben, F., & Pingaud, H. (2015). A methodology proposal for

collaborative business process elaboration using a model-driven approach.

Enterprise Information Systems, 9(4), 349–383.

https://doi.org/10.1080/17517575.2013.771410

Mutschler, B., Reichert, M., & Bumiller, J. (2008). Unleashing the Effectiveness of

Process-Oriented Information Systems: Problem Analysis, Critical Success

Factors, and Implications. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 38(3), 280–291. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews). https://doi.org/10.1109/TSMCC.2008.919197

Nascimento, A. R. D., Baldam, R. de L., Costa, L., & Coelho Junior, T. de P.

(2019). Applications of business governance and the Unified BPM Cycle in

public credit recovery activities. Business Process Management Journal,

26(1), 312–330. https://doi.org/10.1108/BPMJ-11-2017-0317

Navarro, A. (2009). A SWEBOK-based Viewpoint of the Web Engineering

Discipline. 32.

Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104). Prentice-hall

Englewood Cliffs, NJ.

http://www.sci.brooklyn.cuny.edu/~kopec/cis718/fall_2005/2/Rafique_2_hum

anthinking.doc

Nonaka, I. (1994). A Dynamic Theory of Organizational Knowledge Creation.

Organization Science, 5(1), 14–37. https://doi.org/10.1287/orsc.5.1.14

136

Oktaba, H., & Ibargüengoitia González, G. (1998). Software Process Modeled with

Objects: Static View.

http://www.repositoriodigital.ipn.mx//handle/123456789/15087

Papazoglou, M. P., & van den Heuvel, W.-J. (2007). Business process

development life cycle methodology. Communications of the ACM, 50(10),

79–85. https://doi.org/10.1145/1290958.1290966

Parnas, D. L. (2010). Risks of undisciplined development. Communications of the

ACM, 53(10), 25–27. https://doi.org/10.1145/1831407.1831419

Paulk, M. C. (2002). Agile Methodologies and Process Discipline.

https://doi.org/10.1184/R1/6620972.v1

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007a). A Design

Science Research Methodology for Information Systems Research. Journal

of Management Information Systems, 24(3), 45–77.

https://doi.org/10.2753/MIS0742-1222240302

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007b). A Design

Science Research Methodology for Information Systems Research. Journal

of Management Information Systems, 24(3), 45–77.

https://doi.org/10.2753/MIS0742-1222240302

Petersen, K., & Wohlin, C. (2009a). A comparison of issues and advantages in

agile and incremental development between state of the art and an

industrial case. Journal of Systems and Software, 82(9), 1479–1490.

https://doi.org/10.1016/j.jss.2009.03.036

137

Petersen, K., & Wohlin, C. (2009b). A comparison of issues and advantages in

agile and incremental development between state of the art and an

industrial case. Journal of Systems and Software, 82(9), 1479–1490.

https://doi.org/10.1016/j.jss.2009.03.036

Phillips-Wren, G., Mora, M., Forgionne, G. A., & Gupta, J. N. D. (2009). An

integrative evaluation framework for intelligent decision support systems.

European Journal of Operational Research, 195(3), 642–652.

https://doi.org/10.1016/j.ejor.2007.11.001

Pressman, R. S., & Maxim, B. R. (2015). Software engineering: A practitioner’s

approach (Eighth edition). McGraw-Hill Education.

Qumer, A., & Henderson-Sellers, B. (2008). An evaluation of the degree of agility in

six agile methods and its applicability for method engineering. Information

and Software Technology, 50(4), 280–295.

https://doi.org/10.1016/j.infsof.2007.02.002

Ravesteyn, P., & Batenburg, R. (2010a). Surveying the critical success factors of

BPM‐systems implementation. Business Process Management Journal,

16(3), 492–507. https://doi.org/10.1108/14637151011049467

Ravesteyn, P., & Batenburg, R. (2010b). Surveying the critical success factors of

BPM‐systems implementation. Business Process Management Journal,

16(3), 492–507. https://doi.org/10.1108/14637151011049467

Reijers, H. A. (2006). Implementing BPM systems: The role of process orientation.

Business Process Management Journal, 12(4), 389–409.

https://doi.org/10.1108/14637150610678041

138

Richardson, C., & Rymer, J. R. (2014, June 9). New Development Platforms

Emerge For Customer-Facing Applications. Forrester: Cambridge.

https://www.forrester.com/report/New+Development+Platforms+Emerge+Fo

r+CustomerFacing+Applications/RES113411

Rodríguez, L., Mora, M., Vargas Martin, M., O’Connor, R., & Rodriguez, F. (2009).

Process Models of SDLCs: Comparison and Evolution. In Handbook of

Research on Modern Systems Analysis and Design Technologies and

Applications (pp. 76–89). https://doi.org/10.4018/978-1-59904-887-1.ch005

Rosing, M. von, & Gill, A. (2015). Applying Agile Principles to BPM (Vol. 1, pp.

553–577). https://doi.org/10.1016/B978-0-12-799959-3.00027-6

Rymer, J. R. (2017). The Forrester WaveTM: Low-Code Development Platforms For

AD&D Pros, Q4 2017. 21.

Saadatmand, M. (2024). A Hierarchical Decision Model for Evaluating the Strategy

Readiness of Quantitative Machine Learning/Data Science-Driven

Investment Strategies—ProQuest.

https://www.proquest.com/openview/12b3151aa6a62d144519cc080f7d3bc9

/1?pq-origsite=gscholar&cbl=18750&diss=y

Sahay, A., Indamutsa, A., Di Ruscio, D., & Pierantonio, A. (2020). Supporting the

understanding and comparison of low-code development platforms. 2020

46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), 171–178.

https://doi.org/10.1109/SEAA51224.2020.00036

139

Sargent, R. G. (2013). An introduction to verification and validation of simulation

models. 2013 Winter Simulations Conference (WSC), 321–327.

https://doi.org/10.1109/WSC.2013.6721430

Schwaber, K. (1997). SCRUM Development Process. In J. Sutherland, C.

Casanave, J. Miller, P. Patel, & G. Hollowell (Eds.), Business Object Design

and Implementation (pp. 117–134). Springer London.

https://doi.org/10.1007/978-1-4471-0947-1_11

Schwaber, K., & Sutherland, J. (2020, January 11). Scrum Guide | Scrum Guides.

https://scrumguides.org/scrum-guide.html

Shankarmani, R., Pawar, R., S. Mantha, S., & Babu, V. (2012). Agile Methodology

Adoption: Benefits and Constraints. International Journal of Computer

Applications, 58(15), 31–37. https://doi.org/10.5120/9361-3698

Shaw, M. (2003). Writing good software engineering research papers. 25th

International Conference on Software Engineering, 2003. Proceedings.,

726–736. https://doi.org/10.1109/ICSE.2003.1201262

Silva, A. R., Meziani, R., Magalhães, R., Martinho, D., Aguiar, A., & Flores, N.

(2009). AGILIPO: Embedding Social Software Features into Business

Process Tools. In S. Rinderle-Ma, S. Sadiq, & F. Leymann (Eds.), Business

Process Management Workshops (pp. 219–230). Springer.

https://doi.org/10.1007/978-3-642-12186-9_21

State of Agile Survey. (2021, March 2). https://stateofagile.com/

140

Taudes, A., Feurstein, M., & Mild, A. (2000). Options Analysis of Software Platform

Decisions: A Case Study. MIS Quarterly, 24(2), 227–243.

https://doi.org/10.2307/3250937

Thiemich, C., & Puhlmann, F. (2013). An Agile BPM Project Methodology. In F.

Daniel, J. Wang, & B. Weber (Eds.), Business Process Management (pp.

291–306). Springer. https://doi.org/10.1007/978-3-642-40176-3_25

Turner, R. (2003). Management Basics People Factors in Software Management:

Lessons From Comparing Agile and Plan-Driven Methods.

van der Aalst, W. M. P., ter Hofstede, A. H. M., & Weske, M. (2003). Business

process management: A survey. Proceedings of the 1st International

Conference on Business Process Management, Volume 2678 of LNCS, 1–

12.

Vincent, P., Iijima, K., Driver, M., Wong, J., & Natis, Y. (2019). Magic quadrant for

enterprise low-code application platforms. https://smallake.kr/wp-

content/uploads/2020/01/gartner-magic-quadrant-for-enterprise-low-code-

application-platforms-august-20191.pdf

Waszkowski, R. (2019). Low-code platform for automating business processes in

manufacturing. IFAC-PapersOnLine, 52(10), 376–381.

https://doi.org/10.1016/j.ifacol.2019.10.060

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A.

(2012). Experimentation in Software Engineering. Springer Science &

Business Media.

141

Wong, K. K.-K. (2013). Partial Least Squares Structural Equation Modeling (PLS-

SEM) Techniques Using SmartPLS.

142

9 APPENDIX

9.1 LOW-CODE DEVELOPMENT PLATFORM OPEN-SOURCE

DECISION-MAKING RESULTS

Figures from 9–1 to 9-14 display the results from the comparison done with

Open Decision Maker software on Low-Code open-source platforms JOGET,

CAMUNDA, and jBPM.

Figure 37 - Results Summary

143

Figure 38 - Organizational Risks

144

Figure 39 - Training results.

145

Figure 40 - Top Management Support results.

146

Figure 41 - Internal Expertise results.

147

Figure 42 - End-User Risks results.

148

Figure 43 - Functionality-Quality results.

149

Figure 44 - Usefulness-Relevance results.

150

Figure 45 - Usability results.

151

Figure 46 - Technical Risks results.

152

Figure 47 - Community Support results.

153

Figure 48 - Documentation results.

154

Figure 49 - Maturity-Longevity results.

155

Figure 50 - Security-Reliability results.

156

9.2 DESIGN OF THE ARTIFACT METHODOLOGY.

Once the Design Theoretical Sources were selected the Design Components

were chosen from the Roles, Activities, and Artifacts that could help to the design

of the BPMS Methodology.

The Table 46, Table 47, and Table 48 show the selected Design Components

for the first selected Design Components. Once the Desing Components were

selected the second iteration of the process reviewed every single component and

asked about its importance to be in the BPMS Methodology.

The second iteration provides the second wave of Desing Components that

could be important to be in the BPMS Methodology. The third and the last

iterations were processed to have the minimal Design Components for the

Methodology. It is also important to say that there were a lot of Desing

Components that are using the same activities and artifacts that use the DTS.2

Scrum-XP (Schwaber & Sutherland, 2020) (Dudziak, 1999) so the Desing

Components for this DTS were selected and complemented with other Activities

and Artifacts.

157

Table 46 - Roles for Desing Components first and second iterations.

Roles

Design Component Source Name Why this could be helpful
SDLC that is also using it

DTS.1 DTS.2 DTS.3 DTS.4

DC.4

Scrum-XP Roles

DTS.2 Scrum-XP

(Schwaber &

Sutherland, 2020)

(Dudziak, 1999)

{Customer-Product

Owner; Coach-Master;

Development Team}

Customer-Product Owner: The closest

role to the stakeholders, is the person who

knows how to provide value to the project.
X X X X

Coach-Master: The person who is in

charge of removing all the obstacles,

coaching the team, ensuring transparency,

and promoting self-organization.

X X X X

Development Team: The cross-functional

team that can build the increment every

sprint. It is self-organized.

X X X X

Table 47 - Phases and Activities for Desing Components first and second iteration.

Design

Component
Source Name Why this could be helpful

SDLC that is also using it Iteration

DTS.1 DTS.2 DTS.3 DTS.4 1 2 2

DC.1

The BPM

Lifecycle

Phases

DTS.1 The BPM

Lifecycle

(Dumas et al.,

2018)

{Process Identification,

Process Discovery}

Process Identification: Take all the

business processes and set clear

criteria for selecting specific processes

for doing improvements.

X X X X X

Process Discovery: Define the team,

get the information of the process, and

ensure the quality.

X X X X X

DC.2

The BPM

Lifecycle

Activities

DTS.1 The BPM

Lifecycle

(Dumas et al.,

2018)

{Process Identification

[Process architecture

definition, Process

selection], Process

Process Identification - Process

architecture definition: Represents

the processes that exist in an

organization.

X X

158

Discovery [Defining

the setting, Gathering

the required

information, Modeling

the process, Assuring

model quality]}

Process Identification - Process

selection: Observe the business

processes to define the basis for

process selection.

X X

Process Discovery - Defining the

setting: Build the team to work on the

process.

X X X X

Process Discovery - Gathering the

required information: Get all the

needed information to work on

different processes.

X X X X X X X

Process Discovery - Modeling the

process: Start to model the processes

using BPMN (Business Process

Management Notation).

X X X X X

Process Discovery - Assuring model

quality: Ensure that the processes

modeled have the needed quality.

X X

DC.5

Scrum-XP

Phases

DTS.2 Scrum-XP

(Schwaber &

Sutherland, 2020)

(Dudziak, 1999)

{Exploration, Product

Planning, Iteration-

Sprint Planning,

Iteration-Sprint,

Product Release}

Exploration: Plan all the projects and

identify the project's needs.
 X X X X X X

Product Planning: Plan the product

according to the needs.
 X X X X X X

Iteration-Sprint Planning: Select the

activities that provide more value to

the project as a priority to be

developed during a fixed time.

 X X X X X X

Iteration-Sprint: Build the increment

in an Iterative process,
 X X X X X X

Product Release: Release the

increment with the most important

features chosen by the Owner.

 X X X X X X

DC.6

Scrum-XP

Activities

DTS.2 Scrum-XP

(Schwaber &

Sutherland, 2020)

(Dudziak, 1999)

{Exploration [product

vision definition;

product backlog (user

story set) definition;

Exploration - Product vision

definition: To Have a clear vision of

the product and what needs to be

developed.

 X X X X X X

159

product backlog (user

story set) prioritization;

optional: spike

testing]}

{Product Planning

[product backlog (user

story set) effort

estimation; product

backlog (user story set)

negotiation; optional:

style codifying standard

definition]}

{Iteration-Sprint

Planning [iteration-

sprint user story

selection; iteration

sprint user story task

planning iteration-

sprint user story plan

negotiation]}

{Iteration-Sprint

[stand-up meeting;

customer functional

tests elaboration;

simple design;

codification and unit

testing; increment

integration and

customer functional

testing; iteration-sprint

review and

retrospective]}

{Product Release

[product releasing]}

Exploration - Product backlog (user

story set) definition: Create the user

stories or tasks that need to be

developed.

 X X X X X X

Exploration - Product backlog (user

story set) prioritization: Set the user

stories to prioritize the tasks for the

ones that provide more value.

 X X X X X X

Exploration - Spike testing: Define

the spikes that need some effort to

have better knowledge to close the

spike and create the needed user

stories.

 X X

Product Planning - Product backlog

(user story set) effort estimation:

Estimate every single user story by the

developer, it is possible to use fixed

time or user story points

(recommended).

 X X X X X X

Product Planning - Product backlog

(user story set) negotiation:

Negotiate as needed in some user

stories. Negotiations with the product

owner can avoid conflicts during the

sprint.

 X X X X

Product Planning - Style codifying

standard definition: Defining

standards in the code could help to

create a better product and be more

maintainable in the feature.

 X X X X

Iteration-Sprint Planning -

Iteration-sprint user story selection:

Select the most valuable user stories

to be developed during the sprint by

the Product Owner. The development

team chooses the task according to

their skills.

 X X X X X

160

Iteration-Sprint Planning -

Iteration-sprint user story task

planning: Planning the user story

selected in terms of what would be the

best approach for doing this task.

 X X X X X

Iteration-Sprint Planning -

Iteration-sprint user story plan

negotiation: Negotiate with the

product owner some items for the

Sprint Planning

 X X X X X

Iteration-Sprint - Stand-up meeting:

Meet with the team to talk about the

progress, the upcoming work, and any

block that can have.

 X X X X X X

Iteration-Sprint - Customer

functional tests elaboration:

Elaborate test cases for every single

user story that is developed.

 X X X X

Iteration-Sprint - Simple design:

Create a simple design of how to

develop the story.

 X X X X

Iteration-Sprint - Codification and

unit testing: Code and test the

selected user story.

 X X X X X

Iteration-Sprint - Increment

integration and customer functional

testing: Merge the finished user's

stories with increment which is a

working version of the product with

the functionality described in the

developed user stories.

 X X X

Iteration-Sprint - Iteration-sprint

review and retrospective: Conduct a

retrospective by all the team to know

how what is working, and what is not.

and how to be better in the next

sprints.

 X X X X X X

161

Product Release - Product

releasing: Release the increment.
 X X X X X X

DC.8

APBPM Phases

DTS.3 APBPM

(Thiemich and

Puhlmann, 2013)

{Project Scoping,

Project Kick-Off,

Sprint 0, Sprint 1-n,

Release Sprint}

Project Scoping: Define the scope of

the project.
 X X X X X

Project Kick-Off: Define the team,

create the initial release plan, and

define the sprint length.

 X X X X X

Sprint 0: Define some parameters that

are going to be used in the next

sprints.

 X X X X

Sprint 1-n: Run a regular Scrum

sprint.
 X X X X X X

Release Sprint: Release the

documentation, the training, and the

product in this phase.

 X X X X X X

DC.9

APBPM

Activities

DTS.3 APBPM

(Thiemich and

Puhlmann, 2013)

{Project Scoping

[Define target

parameters, Create

project idea, Define

project start/end,

Identify Stakeholder,

Evaluate BPM

Maturity], Project

Kick-Off [Define sprint

length, Create initial

release plan, Establish

architecture vision,

Build team], Sprint 0

[Define Definition of

Done & Definition of

Ready, Identify initial

requirements, Define

initial architecture,

Setup project

environment], Sprint 1-

n [Refine process

backlog, Plan sprint,

Project Scoping - Define target

parameters: Define the most

important parameters to be used

during the project.

 X X X X

Project Scoping - Create project

idea: Create the main idea for the

project.

 X X X X X

Project Scoping - Define project

start/end: Define when the project is

going to start and end.

 X X X X X

Project Scoping - Identify

Stakeholder: Define who is going to

be involved during the project beyond

the team and the three main roles.

 X X X X

Project Scoping - Evaluate BPM

Maturity: Evaluate what is the

maturity of the business process.

 X X X

Project Kick-Off - Define sprint

length: Define what would be the

sprint length in week's terms. Every

single sprint is going to have this

duration.

 X X X X X

162

Define tasks,

Implement

requirements, Get

stakeholder feedback.

Control project

progress, Run

retrospective], Release

Sprint [Append Release

Notes, Train IT

operations and end

users, Integration tests,

Finish

Documentation.]}

Project Kick-Off - Create initial

release plan: Define what is going to

be the plan for releasing the increment

after every single sprint length.

 X X X X X

Project Kick-Off - Establish

architecture vision: Define the vision

of the needed architecture for the

project.

 X X X X

Project Kick-Off - Build team: Build

the cross-functional team
 X X X X X

Sprint 0 - Define Definition of Done

& Definition of Ready: Create the

Definition of Done and Ready. The

definition of Done is all the

parameters needed to accept the tasks

as completed. The definition of Ready

is the list of parameters that need to be

met for considering a task as ready to

be developed.

 X X X X X X

Sprint 0 - Identify initial

requirements: Define the initial

requirements to launch the project.

 X X X X X

Sprint 0 - Get stakeholder feedback:

To have any feedback for the people

involved in the project.

 X X X X X

Sprint 0 - Control project progress:

Define the progress of the project until

now.

 X X X

Sprint 0 - Run retrospective: Know

what is working fine, what is not

working, and what could be improved

in the team.

 X X X X X

Sprint 1-n - Refine process backlog:

Refine the backlog with all the tasks

with the needed information.

 X X X X X

163

Sprint 1-n - Plan sprint, Define

tasks: Define every single task that

provide value to the project.

 X X X X X

Sprint 1-n - Implement

requirements: Develop every single

user story.

 X X X X X X

Sprint 1-n - Get stakeholder

feedback: Get the feedback of the

customers when the tasks are

completed.

 X X X X X

Sprint 1-n - Control project

progress: Know What is the progress

of the project? What is the increment

of this sprint?

 X X X

Sprint 1-n - Run retrospective: Run

a Scrum retrospective when the sprint

is over.

 X X X X X

Release Sprint - Append Release

Notes: Create the release notes when a

new increment is built.

 X X X X X

Release Sprint - Train IT operations

and end users: Train the final users if

needed.

 X X X X

Release Sprint - Integration tests:

Create test cases that cover the

functionality of the development.

 X X X X X

Release Sprint - Finish

Documentation: Create the final

documentation for the increment.

 X X X X X X

DC.11

ABPM Phases

DTS.4 ABPM

(Rosing and Gill,

2015)

{Agile Analysis, Agile

Planning, Agile build,

testing, and

deployment}

Agile Analysis: Do all the analysis

before starting the project.
 X X X X

Agile Planning: Elaborate the plan to

develop the project.
 X X X X X

Agile build, testing, and

deployment: Iteratively develop all

agile activities.

 X X X X X X

164

DC.12

ABPM

Activities

DTS.4 ABPM

(Rosing and Gill,

2015)

{Agile Analysis [High-

Level Business

Requirements], Agile

Planning [High-level

project plan], Agile

build, testing, and

deployment [Defining

the Sprint Backlog,

Sprint Planning,

Performing Sprint,

Testing, Demo

Increment, Client

Feedback Meeting,

Retrospective,

Deploying Increment]}

Agile Analysis- High Level Business

Requirements: Create the

requirements for the project.

 X X X X X

Agile Planning - High-level project

plan: Define the high-level plan for

the project.

 X X X X

Agile build, testing, and deployment

- Defining the Sprint Backlog: Take

the most important requirements and

put them in the sprint backlog.

 X X X X X

Agile build, testing, and deployment

- Sprint Planning: Define the plan for

the sprint and all the requirements that

need to be done.

 X X X X X

Agile build, testing, and deployment

- Performing Sprint: Develop the

requirements, and conducting the

Dayli meeting.

 X X X X X

Agile build, testing, and deployment

- Testing: Test every single

requirement that is developed during

the sprint.

 X X X X X X

Agile build, testing, and deployment

- Demo Increment: Demo the

increment to the Product Owner and

the stakeholders.

 X X X X X

Agile build, testing, and deployment

- Client Feedback Meeting: Get any

feedback provided by the stakeholders

during the demo.

 X X X X X

Agile build, testing, and deployment

- Retrospective: When the sprint ends

a retrospective meeting is conducted

so that the team can be better for the

next sprint.

 X X X X X

165

Agile build, testing, and deployment

- Deploying Increment: Deploy the

increment at the end of the sprint with

a working product with all

requirements done during the Sprint

plus past requirements.

 X X X X X

Table 48 - Artifacts for Desing Components first and second iterations.

Design

Component
Source Name Why this could be helpful

SDLC that is also using it Iteration

DTS.

1

DTS.

2

DTS.

3

DTS.

4 1 2 3

DC.3

The BPM

Lifecycle

Artifacts

DTS.1 The BPM

Lifecycle

(Dumas et al.,

2018)

{Process Identification

[Process architecture of

the selected process],

Process Discovery [As-

is business process

model]}

Process Identification - Process

architecture of the selected process:

The final document of the architecture

of the project.

X X X X

Process Identification - As-is business

process model: The current state of the

business process.

X X X X X

DC.10

APBPM

Artifacts

DTS.3 APBPM

(Thiemich and

Puhlmann, 2013)

{Project Scoping

[Project Idea, List of

Stakeholder], Project

Kick-Off [Architecture

Vision, SOA-MAP,

First Release plan,

Skill matrix], Sprint 0

[Def. of Done, Def. of

Ready, Process

Backlog, Story Map],

Sprint 1-n [Sprint

Backlog, Process

Increment, Story Map],

Release Sprint

Project Scoping - Project Idea: A

document that clearly defines the

project idea.

 X X X X X X

Project Scoping - List of

Stakeholders: A document having a

list of all stakeholders of the project.

 X X SS X X X

Project Scoping - Architecture

Vision: A document with the vision of

the architecture of the project.

 X X X X

Project Scoping - SOA-MAP: A map

with the services needed for the project.
 X X X X

Project Scoping - First Release Plan:

A document that details the release plan

for the project.

 X X X X X X

166

[Training documents,

Release Notes,

Documentation]}

Project Scoping - Skill matrix: The

skills that the development team needs

to have to complete the project.

 X X

Sprint 0 - Def. of Done: A list of

parameters that tasks need to be met for

considering tasks as done.

 X X X X X X

Sprint 0 - Def. of Ready: A list of

parameters that tasks need to be met for

consideration as ready for development.

 X X X X X X

Sprint 0 - Process Backlog: The

backlog of tasks to be developed.
 X X X X X X

Sprint 0 - Story Map: A board that

shows all the stories, their status, and

who is working on them.

 X X X X X X

Sprint 1-n - Sprint Backlog: The list

of tasks to be developed during the

sprint.

 X X X X X X

Sprint 1-n - Process Increment: The

result of merging newly developed

stories with the past increment.

 X X X X X X

Sprint 1-n - Story Map: A board that

shows all the stories, their status, and

who is working on them.

 X X X X X X

Release Sprint - Training documents:

Needed documents for training.
 X X X X

Release Sprint - Release Notes: A

document with the final release notes

after the increment is done.

 X X X X X

Release Sprint - Documentation: A

document with the final results of sprint

review, and sprint retrospective.

 X X X X X X

DC.13

ABPM Artifacts

DTS.4 ABPM

(Rosing and Gill,

2015)

{Agile Analysis

[Selected business

process and sub-

processes, High-level

user stories, Table of

Agile Analysis - Selected business

process and sub-processes: A

document with all the business

processes and sub-processes selected to

work on.

 X X X

167

priorities and

estimations], Agile

Planning [Project plan],

Agile build, testing,

and deployment, Agile

build, testing, and

deployment [Sprint

Backlog, Sprint Task

Plan, Tests, Increment,

Integrated Release]}

Agile Analysis - High-level user

stories: A list of high-level user stories.
 X X X X X

Agile Analysis - Table of priorities

and estimations: A board with user

stories estimated and prioritized

 X X X X X

Agile Planning - Project plan: A

document with a detailed project plan. X X X X

Agile Planning - Sprint Backlog: A

list of stories to work on during the

sprint.

 X X X X X

Agile Planning - Sprint Task Plan: A

document with a detailed test plan for

the stories and the increment.

 X X

Agile Planning - Tests: Test cases to

be performed on the stories. X X X X X

Agile Planning - Increment: A

working product with all developed

user stories.

 X X X X X

Agile Planning - Integrated Release:

The final release with the final

increment.

 X X X X X X

	Portada
	INDEX
	INDEX OF TABLES
	INDEX OF FIGURES
	ABSTRACT IN SPANISH
	ABSTRACT IN ENGLISH
	1 INTRODUCTION
	1.1 CONTEXT OF THE RESEARCH PROBLEM
	1.2 MOTIVATION AND RELEVANCE OF THE RESEARCH PROBLEM
	1.3 FORMULATION OF THE RESEARCH PROBLEM
	1.4 GENERAL DESCRIPTION OF THE RESEARCH METHODOLOGY

	2 RESEARCH METHODOLOGY
	2.1 MAIN ACTIVITIES
	2.2 OBJECT AND SUBJECTS OF STUDY
	2.3 MATERIALS AND EQUIPMENT
	2.4 RESEARCH EVALUATION METHODS
	2.5 RESTRICTIONS AND LIMITATIONS

	3 THEORETICAL BACKGROUND
	3.1 THEORETICAL FOUNDATIONS
	3.2 ANALYSIS OF CONTRIBUTIONS AND LIMITATIONS

	4 DEVELOPMENT OF THE SOLUTION
	4.1 DSRM STEP 1 – DESIGN PROBLEM IDENTIFICATION AND MOTIVATION
	4.2 DSRM STEP 2 – DEFINITION OF THE DESING OBJECTIVES, DESING APPROACH, DESIGN THEORETICAL SOURCES, AND DESING COMPONENTS FOR THE EXPECTED ARTIFACT: AGILE BPM METHODOLOGY
	4.3 DSRM STEP 3 – DESING AND DEVELOPMENT OF THE ARTIFACT

	5 EVALUATION OF RESULTS
	5.1 EVALUATION OF AGULEBPM METHODOLOGY DOCUMENT
	5.2 EMPIRICAL USABILITY EVALUATION OF AGILEBPM METHODOLOGY.
	5.3 APPLICATION OF THE AGUILEBPM METHODOLOGY.

	6 DISCUSSION OF RESULTS
	6.1 SUMMARY OF THE RESULTS
	6.2 DISCUSSION ON RESULTS
	6.3 DISCUSSION ON CONTRIBUTIONS TO THE PRAXIS ON AGILE DEVELOPMENT FOR BPMS
	6.4 LIMITATIONS
	6.5 CONCLUSIONS

	7 GLOSSARY
	8 REFERENCES
	9 APPENDIX

