CENTRO DE CIENCIAS BASICAS

DOCTORADO EN
CIENCIAS APLICADAS Y TECNOLOGIA

TESIS

AgileBPM Methodology - an Agile Development Methodology for Business
Process Management Systems

PRESENTA

Roberto Davila Campos

TUTORES
Dr. José Manuel Mora Tavarez

Dra. Paola Yuritzy Reyes Delgado

COMITE TUTORAL
Dra. Gabriela Citlalli L6pez Torres

Dr. Jaime Muioz Arteaga

Cd. Universitaria, junio, 2025

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

AGRADECIMIENTOS

Quisiera primero que nada agradecer a Dios por darme la oportunidad de poder
estar hoy aqui y haber logrado mis metas hasta ahora.

Me gustaria agradecer a todos mis profesores por compartir su tiempo y sus
conocimientos que seran muy Utiles a lo largo de mi vida.

A mis tutores y cotutores por su apoyo y su dedicacién para poder completar
con éxito este doctorado y la realizacion de los tres articulos cientificos.

A mi amigo el Dr. Isaac Medina Sanchez por su apoyo durante la elaboracion
de este trabajo.

Por ultimo, quiero agradecer a mi familia y a mi novia por el apoyo brindado
durante este tiempo y darme la oportunidad de realizar mis estudios.

Gracias a todos por su valioso apoyo.

INDEX

[=3 S 1
INDEX OF TABLESeueeeeeeeeeeeeeereeeeeeesessesessnsss 3
INDEX OF FIGURES a...cueeeeeeeeereeeenireeeesnsseseesssns 5
ABSTRACT IN SPANISH o...c.eeeeeeeeeereeereirreerssseseesssnsssns 7
ABSTRACT IN ENGLISHuuoeeeeeeeeeeerereereeeerersessesresesessussssesssssssssesssssssssssssssssssssssssessssnns 8
d INTRODUCTION......eueeeeeeeeereeenereereeeussessesssssassnsns 9
1.1 CONTEXT OF THE RESEARCH PROBLEM....cceuttitititieirirerererererererereresesesesasasassssssnsnsns 9
1.2 MOTIVATION AND RELEVANCE OF THE RESEARCH PROBLEMcceeevevereeenreriennnenes 10
13 FORMULATION OF THE RESEARCH PROBLEM.....ccccettieieieirirerirererereseresesesesecncacnnnes 12
1.3.1 RESEARCH PROBLEMevvtteeeeetee et et et e eeeee et e e e eeeeseeeeeeeneeeeneeneeseseaseesensanensenseneeseeereeeene 12
1.3.2 RESEARCH QUESTIONS AND HYPOTHESESveeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeenesenenneeeereneene 12
1.3.3 GENERAL AND SPECIFIC RESEARCH OBJECTIVES ...veeevteveeeeeeeeeeeeeeeeeeeeeeeeeeseeseesenesneeeeeenene 13
1.3.4 CONTRIBUTIONS AND DELIVERABLES OF THE RESEARCHiiiviiiiiiiiieiie et 13
14 GENERAL DESCRIPTION OF THE RESEARCH METHODOLOGYccvcvererecececececeenennnns 14
1.4.1 OVERVIEW OF THE RESEARCH METHODOLOGYoveuvreeeeieeereeeeeeeeeeeeeeeessereeseseeessseneessnenes 14
1.4.2 TIMELINE — SEMESTERS, ACTIVITIES, AND DELIVERABLESeeveveeeeteeeeeeeeeseeeeeeeeeneeeeeeeene 16
2 RESEARCH METHODOLOGY ...ccuvvuevuerereeseeeeussussussesesessessasessssssssssssssssssssassassosssnns 17
2.1 IMAIN ACTIVITIES ..ucueniiiiiiiiiererererererererereresesasesesassssssssssssssssssssssssssssssssssasssssnsnsnns 18
2.2 OBJECT AND SUBJECTS OF STUDY ...ututttteeeeeeeeeeeeeeeeerererererereresesesessssssssssssssssssssssnes 19
2.3 MATERIALS AND EQUIPIMENT ..iuteteiererererererererererecesesesesssssssesesesesesssssssssssssssnsasnns 19
2.4 RESEARCH EVALUATION METHODSciuieieieieieieieieieieteietetrereresesesesesesssssssssacasasnes 20
2.5 RESTRICTIONS AND LIMITATIONSccuttetereteteieeeeetesesesesesssresesesesesesesesesesasssssnsnsnes 21
3 THEORETICAL BACKGROUNBD.........c.ceuueeueeeeeerreseesrererssessasenssesssossnssssssssssssassnssnnns 22
3.1 THEORETICAL FOUNDATIONS ...ccctitititiiiiititererererereresesesesesssasssssassssssssssesssesasesesases 22
3.1.1 ON SOFTWARE ENGINEERINGeteeteeteeeeeee ettt eeeee et eeeeeeteee et eeeeeeeeeeeeteseeeseseneeeeneeeeens 22
3.1.2 ON AGILE DEVELOPMENT PARADIGIM ...vouteeieeeeeeeeeeeeeeee et e et et e et e eeeeeeeeeeeeneeeeens 31
3.1.2.1 REVIEW OF FUNDAMENTAL CONCEPTS OF AGILITY c.eveveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeana 31
3.1.2.2 REVIEW OF OFFICIAL SCRUM — MAIN AND MOST USE AGILE SDLC w..vevveveeeeeeeeeeeene. 44
3.1.2.3 REVIEW OF A ROBUST SCRUMctutteeeteeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeteeeeeeaeeeeeeesaeeeeesesseenenas 46

3.1.3 ON BUSINESS PROCESS MANAGEMENT SYSTEMS (BPMS) DEVELOPMENT PLATFORMS,
METHODOLOGIES, AND SOFTWARE APPLICATIONS ...ttt et e st e e et e et eeeaa e e eenan s 56

3.1.3.1 CORE DEFINITIONS (BPMS, WORKFLOW MANAGEMENT SYSTEMS, BPMS

DEVELOPMENT PLATFORMS, BPMS SOFTWARE APPLICATION/PAIS) ...oveeeeeeieeetieeeeeee e 56
3.1.3.2 REVIEW OF BPMS PLATFORMS — OPEN SOURCE VS COMMERCIAL w...evvvveeeeeeeeeeeeeene. 59

3.1.3.3 BPMS*/POIS Systematic Selective Literature REVIEW.........ceeeveeiveecveesieecree e, 68

3.1.34 NON-AGILE BPMS*/POIS SOFTWARE DEVELOPMENT METHODOLOGIES.................. 71

3.1.35 AGILE BPMS*/POIS Sofware development methodologies.........cccceeeveeeerienienieneenne. 82

3.2 ANALYSIS OF CONTRIBUTIONS AND LIMITATIONS.....cccccotttmmniiremmnniirernninnennnsinnenes 91

4 DEVELOPMENT OF THE SOLUTION........ccucvvureurrerrainrneirseissusssssssassrsssssssrsssssasses 92
4.1 DSRM STEP 1 — DESIGN PROBLEM IDENTIFICATION AND MOTIVATION................. 92

4.2 DSRM STEP 2 — DEFINITION OF THE DESING OBJECTIVES, DESING APPROACH,
DESIGN THEORETICAL SOURCES, AND DESING COMPONENTS FOR THE EXPECTED ARTIFACT:

AGILE BPM METHODOLOGY ...cccieuiiunirunirunimnsnnernsresiresioesiasirasisasssssisssssssrsssssssssssssssasssasssnsses 92
4.2.1 Definition of the desing 0bJeCLIVES........cciviiiiiiiiiiee e 92

4.2.2 DESIGN MESIIICTIONS i, 93

4.2.3 DesigN theoritiCal SOUICESueiiiiiiieceiiee ettt e ectt e e et e e e et e e e sta e e e eaaaeeesaaseesatreeessreeesaseeeas 93

4.2.4 design components for the expected artifact........ccccveeiiiiieeciiii e 93

4.3 DSRM STEP 3 — DESING AND DEVELOPMENT OF THE ARTIFACTcccceieeireeninnnnannee 96

5 EVALUATION OF RESULTS....ccccvvuivuieruinruirasisssssssirsssssasssussssssssssssssssssssssssssssnses 103
5.1 EVALUATION OF AGULEBPM METHODOLOGY DOCUMENTccovvueranernncrnnsennnees 103
5.2 EMPIRICAL USABILITY EVALUATION OF AGILEBPM METHODOLOGY.c.ccceeeunnees 108
5.3 APPLICATION OF THE AGUILEBPM METHODOLOGY.ccccetuuirunirenireniensrensransennses 115

6 DISCUSSION OF RESULTScccevuievuieruereeirenssensssusssusssssssssssessssssssssssssssssssssssssses 119
6.1 SUMMARY OF THE RESULTScccctuiiuiiienimenieniinniraiiesieesissiscraersssresssessassrssssnsses 119
6.2 DISCUSSION ON RESULTS ...cuctuiiiuiieniieiiniiiniiieiieeiiessiasissssssessssssssssssasssnsssnssssssees 122

6.3 DISCUSSION ON CONTRIBUTIONS TO THE PRAXIS ON AGILE DEVELOPMENT FOR
BPMS 123

6.4 IIMIITATIONSoie i ciencaen s an s an e nen s snas e samenennan s onens S s 123

6.5 CONCLEUSIONS poeere e meemmmts . o1 2o s e easencasannasasarassasassasasesansanassasasass SUSIEIN ., 123
VAN CTX O VI3 7 ooo0000000000000000000000 NIRRT UUOPUROPO . .| ST 124
8 RESCIENCES ...eeeeeeeeeeeeeerereeeereteerenreseusierenserenssesenssesensesssssessnsssssssssssssessnssesnnnnns 129
9 APPCNAIX «veenereererererereuierenriereniereuietenserenssetensetenssstnnsessnsiessnssssnssesenssesensesennns 142

9.1 LOW-CODE DEVELOPMENT PLATFORM OPEN-SOURCE DECISION-MAKING RESULTS

142
9.2 Design of the artifact Methodology.ccuuceiiieeiiiiiinciirirrccrrreeee e eeeae e eens 156

INDEX OF TABLES

Table 1 - Activity SChedule.ccoo i 16
Table 2 - Design Science Research Methodology (DSRM) with complementary
reSEArCN MELNOAS ... e e e 18
Table 3 - Design Research Evaluation Methods. ... 20
Table 4 - CMMI Categories and their processes with Process Software
(0= 10T [0 1 =1 T 26
Table 5 - Main differences between linear and agile SDLC.cccoeeeevvvennns 32
Table 6 - Emphasis of every single agile principle on the manifesto................. 33
Table 7 - Agile features related to the 12 agile principles.cccccoeevieeeiinnnn, 35
Table 8 - General characteristics for agile methods and traditional methods.... 37
Table 9 - The five critical agility and plan-driven factors.ccccccceeeeiiiiineennn, 39
Table 10 - People level for software development.ccoovvviiiiiinieeeeeeennnnn, 41
Table 11 - SCrum €lemMENTS. ...cooe e 46
Table 12 - SBOK Guide phases and pProCeSSES..........uuueiieeeeeeiieiiiiiiiiieeeeaeeennnnns 47
Table 13 - Phases, processes, roles, and artifacts used for a new methodology.
.. 51
Table 14 - Low-code commercial platforms compared by Sahay etal. 61
Table 15 - Open-source comparative table based on risk.........cccccccoeviiiiiinnnnn, 63
Table 16 - Comparison between Low-code open-sour development platforms
uSing the MADM 100Noooiiiiiii e 64

Table 17 - Systematic Selective Literature Review (SSLR) research method .. 69
Table 18 - Set of 8 studies on Plan-Driven and Agile Development Life Cycles

fOrfEEIRRB PMS.........ccooeeeeneeen . N ... S 70
Table 19 - The BPM lifecycle detailed...............ccooeeiiiiie 77
Table 20 - Non-Agile BPMS Methodologies compared..............cccoeeeiieeeeeeeeeennn. 79
Table 21 - Aguile BPMS Methodologies Comparativecccoeeeeieeeeeieeeeeenn. 88
Table 22 - Contributions and are of improvementsccccovvvviiiiiiieeeeeeeennnn, 91

Table 23 - DTS.1 Theoretical rigorous SDLC for BPMS (Dumas et al., 2018).. 94
Table 24 - DTS.2 Scrum-XP (Schwaber & Sutherland, 2020) (Dudziak, 1999) 94

Table 25 - DTS.3 APBPM (Thiemich and Puhlmann, 2013)cccccccovviiiiinns 95
Table 26 - DTS.4 ABPM (Rosing and Gill, 2015).cccooiiviiiiiiiiiiiceecie e 96
Table 27 - Final Design Components for roles.ccveeiieiiiiiiiciiii e 99
Table 28 - Final Design Components for Phases and Activities........................ 99
Table 29 - Final Design Components for Phases and Artifacts....................... 101
Table 30 - Demographic Data of the Panel of Experts........cc.ccoooovviiiiievinnnnnnn. 104
Table 31 - Reliability and Validity of Constructs C1 and C2...............cccevvvenn.n. 107
Table 32 - Mean, Median, and Standard Deviation of the Constructs/Items C1
=10 0 107
Table 33 - Null Hypotheses Tests on Means of Constructs C1 and C2. 108

Table 34 - Constructs to be Evaluated for the Sample of International Academics

and Practitioners on the AgileBPM Methodologycccovvvviiiiiiiiiiiiiiiiiciee e, 109
Table 35 - Reliability and descriptive statistics for Agile Methodology. 112
Table 36 - Reliability and descriptive statistics for Other Methodology. 112

Table 37 - Discriminant Validity of the Usability Constructs for the AgileBPM 113
Table 38 - Discriminant Validity of the Usability Constructs for the other
(L= 1 ToTo (o] [0 V2P 113
Table 39 - Convergent Validity of the Usability Constructs for the AgileBPM . 114
Table 40 - Convergent Validity of the Usability Constructs for other methodology.

.. 114
Table 41 - Wilcoxon Signed-Rank Tests for the Usability Constructs in AgileBPM
Vs alternative methodOIOgYuueuuuuuiiiiiiiiiiiiiiii e 115
Table 42 - Results for Research QUestion 1..............ccoiiiiiiiiiiiiiiiiiiineeeeeeeeennns 119
Table 43 - Results for Research QUEeStioN 2ccuuuiiiiiieeiiiviiiiiiieeeee e 120
Table 44 - Results for Research QUeStion 3...........couviiiieieiiiiiiiiiiiin e 121
Table 45 - Results for Research QUeStioN 4uuiiiiiieiiiiiieiiiiine e 122
Table 46 - Roles for Desing Components first and second iterations.cccee..... 157
Table 47 - Phases and Activities for Desing Components first and second iteration. . 157
Table 48 - Artifacts for Desing Components first and second iterations. 165

INDEX OF FIGURES

Figure 1 - Low-Code applications market size forecast by Grand View Research,

Lo PP PP 11
Figure 2 - DSRM for information SYStEMS.covvviiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeee 17
Figure 3 - Software Engineering Process breakdown.ccccccoviiiiiiiinnnnenn. 25
Figure 4 - Suggestions to improve software engineering research to make it

FRIBVANT. ... 28
Figure 5 - SDLC evolution and COMPAriSON.eeeeeeeeieeiiiiiiiiiieeeeeeeeeeeeiinn 28
Figure 6 - Comparing project management on agile SDLC methods................ 34
Figure 7 - Polar chart with the five critical factors............ccccoevviiiiiie i, 40
Figure 8 - Boehm and Turner graphic with new methodology approach........... 42
Figure 9 - Most important features on Agile SDLC............cooovviiiiiiieeeeeeeeeiiinn. 43
Figure 10 - Most important features on linear SDLC...........cccccceeiiieieeeveeeennnnnnnn. 43
Figure 11 - Scrum Process Diagram with all its elements taken from Scrum.org.

.. 44
Figure 12 - Scrum Methodology created by Schwaber in 1997.c............ 48
Figure 13 - eXtreme Programing simplified process structure.ccccvvunen... 49
Figure 14 - eXtreme Programing Phases renamed...........cccccccvvvveiiiiiiiienennnnn. 50
Figure 15 - More robuSt SCIrUM PrOCESS.ccvvviiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeens 52
Figure 16 - BPMS (PAIS) division in three main categories.ccccccvvveeeeeennn. 58
Figure 17 - Low-code platform typical architecture.ccccccccvvvviiiiiiiiiiieiennnnn. 59
Figure 18 - Low-code platform cloud-based architecture.cccccccvvvvvveennnnn. 60
Figure 19 - Open Decision Maker tool with values for the FUNCTIONALITY —

QUMD rOPETY . .o ceeerecie e I e 65
Figure 20 - Result tab that shows Joget as the best Low-code Development

PlatfORMMMIR.ccccccnueereeeereieiennieereeeerrerennasssasassseesssennsssses S 66
Figure 21 - Sensitivity Analysis with the values of 50% for ORGANIZATIONAL

RISKS and 25% for END — USER RISKS and TECHNICAL RISKS. 66
Figure 22 - Business Process Development Life Cycle Methodology Roadmap

(Papazoglou & van den Heuvel, 2007)......cccoeeeeiiiiieiiieeeeeeeeeeeeeie e 72
Figure 23 - BPM framework (Macedo de Morais et al., 2014)...........ccccoeeeeeenn. 72
Figure 24 - Collaborative process elaboration methodology (Mu et al., 2015).. 73
Figure 25 - Structure of corporate governance (Nascimento et al., 2019). 74
Figure 26 - The BPM lifecycle (Dumas et al., 2018).........cccccoeeeviiiiiiiiiiiiiieeeeennn, 76
Figure 27 - Agile BPM frameWorkoooiiiiiiiiiii e 82
Figure 28 - Agile BPM Framework Overview (Thiemich and Puhlmann, 2013). 84
Figure 29 - Agile BPM Overview (von Rosing et al., 2015).cccoeevvviiiieennnnn. 85
Figure 30 - SEA—knowledge transformation in the agile process development

(Bider & Jalali, 2016).ccooiiiiiiiiiiii 86
Figure 31 - Agile BPPAM methodology by Zacarias (2017)......cccccceeveeevvvvnnnnnn. 87

5

Figure 32 - BPMS Methodology Conceptual Map.cccoovvvviiiiiiieeeeeeeeeiiinn, 98

Figure 33 - PLS Model for Agile Methodology.ccoevviviiiiiiiiieeeeeeeeen, 110
Figure 34 - PLS Model for other methodology.cccooovvvviiiiiiiiiiie e, 111
Figure 35 - BPMN diagram of the proCess.cccceviiiieiiiiiiiiiiiie e 117
Figure 36 - Joget's process builder for the Expenses Claim app.cccccvveen.. 118
Figure 37 - RESUItS SUMMAIYcoooviiiiiiiiie e 142
Figure 38 - Organizational RISKS..........ccoiiiiiiiiiiiiiii e 143
Figure 39 - Training reSUILS.coooiiiiiice e e 144
Figure 40 - Top Management SUPPOIt reSUltS...........covvvvviiiiiiiiiiiiiiiiiiiiiiceeeeee 145
Figure 41 - Internal EXpPertiSe reSultS. ... 146
Figure 42 - End-User RiSKS reSults.cccccvviiiiiiiiiiiiiiiiiiiieeeee 147
Figure 43 - Functionality-Quality reSUlS..........ccoevviiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeee 148
Figure 44 - Usefulness-Relevance results.ccccccovviiiiiiiiiiiiiiiiiiieniiiieeeeee 149
Figure 45 - Usability reSUltS. ... 150
Figure 46 - Technical RISKS reSultS. ... 151
Figure 47 - Community SUPPOIt reSuUltS.oovvviiiiiiiiiiiiiiieeeeeeeeeeee 152
Figure 48 - Documentation reSullS. ... 153
Figure 49 - Maturity-Longevity reSultS.cccccvviiiiiiiiiiiiiiiieeeeeeeee 154
Figure 50 - Security-Reliability reSUltS........ccccccvvviiiiiiiiiiieeeee 155

ABSTRACT IN SPANISH

Los Sistemas de Gestién de Procesos de Negocio (BPMS) son Sistemas de
Informacién especializados para la definicion, ejecucién y gestiébn de procesos
organizacionales de negocio, integrando la interaccion entre software y personas
(tanto usuarios como gerentes). Para desarrollar BPMS, se han reportado varios
Ciclos de Vida de Desarrollo de Software (SDLCs) rigurosos en la literatura, y
recientemente también se han reportado SDLCs agiles iniciales. Sin embargo, a
pesar del alto interés tedrico y practico en el desarrollo de BPMS desde un
Enfoque Agil, se ha identificado que los SDLCs &giles iniciales para BPMS son
incompletos en cuanto a los roles agiles esperados, actividades y/o artefactos, y
estdn minimamente documentados. Como consecuencia, académicos Yy
profesionales carecen de descripciones completas de ellos para su correcto
aprendizaje y utilizacion practica. En esta investigacion, abordamos esta brecha
de investigacion y reportamos el disefio, la descripcibn completa de roles,
actividades y artefactos, y la validacién conceptual inicial del SDLC AgileBPM - un
SDLC Agil para BPMS— que fue elaborado utilizando una Metodologia de
Investigacion en Ciencia del Disefio (DSRM). Los resultados iniciales de validacion
son satisfactorios, ademas, la investigacion empirica también proporcioné
resultados muy satisfactorios, finalmente se cre6 un caso de demostracion con el
nuevo SDLC AgileBPM con todos los procesos reportados.

ABSTRACT IN ENGLISH

Business Process Management Systems (BPMS) are specialized Information
Systems for the definition, execution, and management of business organizational
processes, integrating the interaction between software and people (both users
and managers). To develop BMPS, several rigorous Software Development Life
Cycles (SDLCs) have been reported in the literature, and recently, initial agile
SDLCs have also been reported. However, despite the high theoretical and
practical interest in BPMS development from an Agile Approach, it has been
identified that the initial agile SDLCs for BPMS are incomplete regarding the
expected agile roles, activities, and/or artifacts and are minimally documented.
Consequently, academics and practitioners lack full descriptions of them for their
correct learning and practical utilization. In this research, we address this research
gap and report the design, the full description of roles, activities, and artifacts, and
initial conceptual validation of AgileBPM SDLC - an Agile SDLC for BPMS- which
was elaborated using a Design Science Research Methodology (DSRM). Initial
validation results are satisfactory, further the empirical research also provided very
satisfactory results, finally a demo case was created with the new AgileBPM SDLC
with all the processes reported.

1 INTRODUCTION

1.1 CONTEXT OF THE RESEARCH PROBLEM

Software Systems have become essential in any business and work of millions
of people around the world. Nowadays, most companies in the world are using a
Software System or are developing one that expects to help in their Business
Process Management. Most of these Software Systems, are currently, based on
Web platforms, and they are well-known as Web Applications that bring all the
benefits from a Software System with the web capabilities such as available
anywhere, not installation required and run on any compatible device with a Web
browser (Navarro, 2009).

Business worldwide organizations are always searching for developing new
useful Software Systems with positive features such as ease of use, secure, and
valuable. However, these expectations are not easily achieved due to the long time
that takes the development of these software systems, the rework by wrong
requirements, and off-budget events. Nowadays fast software system development
approaches play a key role in any industry, and any significant delay could affect
customer satisfaction or break any contractual agreement (Hughes et al., 2017).

To accelerate the software development, in the Software Engineering discipline,
emerged the Agile Methodologies that aim to improve the speed of the application
development with all desirable features like quality, and ease of use (Petersen &
Wohlin, 2009).

The main benefits that Agile Methodologies bring to companies and developers
(Shankarmani et al., 2012) are:

e Created just needed documentation.

e Focus more on the application.

e Iterative development brings helpful feedback from stakeholders.

e Low rework amount.

e Transparency brings real-time updates on the status of development.

Developing fast software is also possible using Low-Code Business Process
Management (BPM) platforms. The expected aim of these development tools
consists of the Software System analyst can implement quickly and easily a simple
but useful Web Software System without too much programming knowledge and in
a shortened period. BPMS are defined “as a (suite of) software application(s)
that enable the modeling, execution, technical and operational monitoring,

9

and user representation of business processes and rules, based on the
integration of both existing and new information systems functionality that is
orchestrated and integrated via services” (Ravesteyn & Batenburg, 2010a, p.
496). Working jointly with Agile Methodologies and BPMS could bring to
organizations the fast software development that current business needs are
demanding.

However, the main problem is that agile practitioners prefer regular software
development using traditional programming languages like Java, JavaScript, PHP,
Phyton, and others (Barabino et al., 2014).

The utilization of these non-agile development tools, thus, can affect the
schedule and the budget of the projects. Additionally, there are a few studies
related to Agile Methodologies for BPMS so that the developers who are trying to
work with Low-Code BPMS platforms encounter many developing problems.
Working without any methodology on BPMS could cause low-quality software due
to the lack of a guided development process.

We believe that an Agile Methodology combined with a Low-Code platform on
BPMS could impact positively the development of Web Software Systems with the
expected attributes of quality, security, and ease of use that fit with the project
schedule and budget.

1.2 MOTIVATION AND RELEVANCE OF THE RESEARCH
PROBLEM

Several global business studies report that the utilization of agile development
methodologies is a frequent practice in large-, medium- and small-sized
organizations (Hoda et al., 2018). Similarly, the market for Low-Code development
BPMS platforms will grow in the next 5 years (2020-2025) (Markets and Markets,
2020). Another professional website reports “The global low-code application
development platform market size was valued at USD 11.45 billion in 2019
and is expected to grow at a compound annual growth rate (CAGR) of 22.7%
from 2020 to 2027. Increasing digital transformation in the IT and telecom
industry, increased responsiveness to the business, and rising need for
customization and scalability are the major factors driving the market
growth.” (Grand View Research, 2020).

Figure 1 shows the Grand View Research Inc. forecast for low-code platforms
with historical data.

10

Figure 1 - Low-Code applications market size forecast by Grand View Research, Inc.

The Forrester Wave research (Rymer, 2017) found that low-code platforms were
growing and after a survey of software development leaders that were using those
platforms, they found three key features of this kind of platform:

e Speed up application and innovation delivery.

e Prove useful for large-scale applications.

e Contribute to AD&D’s (application development and delivery) move to
public clouds.

With these two technological trends, and the current need for multiple Web
Information Software Systems in the organizations for help in their Business
Digitalization process (Petersen & Wohlin, 2009), the business organizations
require agile software development methodologies that can produce useful, easy
use, secure and valuable product software (i.e. to fit the product quality), as well as
they need that these agile software development methodologies help to fit the
project schedule and budget.

11

1.3 FORMULATION OF THE RESEARCH PROBLEM

1.3.1 RESEARCH PROBLEM

Consequently, based on the previous research context described, we can
identify the research problem directly as “the lack of development
methodologies for Web Software Systems -of type BPMS- that be considered
by the software developers as agile, ease of use, useful, compatible, and
valuable”.

1.3.2 RESEARCH QUESTIONS AND HYPOTHESES

RQ.1 What is the state of the art — contributions and limitations- on agile and
non-agile development methodologies for Business Process Management
systems?

HO.1 There is no need for an agile development methodology for Business
Process Management systems

RQ.2 What is the state of the art — capabilities, and limitations — of open-source
low-code Business Process Management development platforms?

HO.2 There are no powerful open-source low-code Business Process
Management development platforms.

RQ.3 What elements of Agile Development and Business Process Management
System Development Methodologies can be used to elaborate an Agile Business
Process Management System Development Methodology that can be evaluated
theoretically valid from a Panel of Experts?

HO.3 There are no elements of Agile Development and Business Process
Management System Development Methodologies that can be used to elaborate
an Agile Business Process Management System Development Methodology that
can be evaluated theoretically valid by a Panel of Experts.

RQ.4 Can the new elaborated Agile Business Process Management System

Development Methodology be documented in an Electronic Process Guide (EPG)

12

and be evaluated as agile, useful, easy to use, compatible, and valuable by a pilot

group of Software Engineering academics and practitioners?

HO.4.1 The newly elaborated Agile Business Process Management System
Development Methodology cannot be documented in an Electronic Process Guide
(EPG).

HO0.4.2 The newly elaborated Agile Business Process Management System
Development Methodology is not considered agile, useful, easy to use, compatible,

and valuable by a pilot group of Software Engineering academics and practitioners.

1.3.3 GENERAL AND SPECIFIC RESEARCH OBJECTIVES

To design conceptually a development methodology for Business Process
Management systems, and document it in an Electronic Process Guide, that be
evaluated as agile, useful, easy to use, compatible, and valuable for a pilot group
of Software Engineering academics and practitioners.

1.3.4 CONTRIBUTIONS AND DELIVERABLES OF THE RESEARCH

In this research proposal, it is expected to produce the following products:
For the Software Engineering Theory:

. One research paper for an indexed journal with the theoretical analysis on
“The State of the Art on Open-Source Business Process Management
Low-Code Platforms”

. One research paper for an indexed journal with the theoretical analysis on
“The State of the Art on Development Methodologies for Business
Process Management Systems”

. One submitted research paper for an indexed journal with the theoretical
analysis and empirical evaluation of the AgileBPM Methodology — an
agile Methodology for BPM Systems

For the Software Engineering Practice:

. A new AgileBPM Methodology — an agile Methodology for BPM
Systems, available in a web-based free-cost access EPG (Electronic
Process Guideline)

. A new Ph.D. graduate in the Software Engineering area

13

1.4 GENERAL DESCRIPTION OF THE RESEARCH
METHODOLOGY

In this research, it is proposed to use a Design Science Research approach (van
Brocke et al., 2020; Peffers et al., 2007). “Design Science Research (DSR) is a
problem-solving paradigm that seeks to enhance technology and science
knowledge bases via the creation of innovative artifacts that solve problems and
improve the environment in which they are instantiated. The results of DSR include
both the newly designed artifacts - represented by constructs, and/or models,
and/or methods, and/or instantiations -, and design knowledge (DK)".

141 OVERVIEW OF THE RESEARCH METHODOLOGY

The specific DSR methodology to conduct is the Design Science Research
Methodology proposed by Peffers et al. (2007a). It has six activities as follows:

. Activity 1: Problem identification and motivation. “Define the specific
research problem and justify the value of a solution. Justifying the
value of a solution accomplishes two things: it motivates the
researcher and the audience of the research to pursue the solution
and to accept the results and it helps to understand the reasoning
associated with the researcher’s understanding of the problem”.

. Activity 2.1: Define the objectives for a solution. “Infer the objectives of
a solution from the problem definition and knowledge of what is
possible and feasible. The objectives can be quantitative, such as
terms in which a desirable solution would be better than current
ones, or qualitative, such as a description of how a new artifact is
expected to support solutions to problems not hitherto addressed”.

. Activity 2.2: Review the State of the Art. Review the state of the art on
the main element to be designed and identify the main contributions and
limitations.

. Activity 3: Design and development. “Create the artifact. Such

artifacts are potentially constructing, models, methods, or
instantiations (each defined broadly). Conceptually, a design
research artifact can be any designed object in which a research
contribution is embedded in the design. This activity includes
determining the artifact’s desired functionality and its architecture
and then creating the actual artifact”.

14

Activity 4: Demonstration. “Demonstrate the use of the artifact to
solve one or more instances of the problem. This could involve its
use in experimentation, simulation, case study, proof, or other
appropriate activity”.
Activity 5. Evaluation. “Observe and measure how well the artifact
supports a solution to the problem. This activity involves
comparing the objectives of a solution to actual observed results
from use of the artifact in the demonstration. At the end of this
activity the researchers can decide whether to iterate back to
activity 3 to try to improve the effectiveness of the artifact or to
continue to communication and leave further improvement to
subsequent projects”. The specific Evaluation methods to be used will
be:
o Evaluation Conceptual from a Panel of Experts.
o Evaluation from a Proof of Concept.
o Empirical survey-based evaluation from a pilot sample of Software
Engineering professionals.
Activity 6: Communication. “Communicate the problem and its
importance, the artifact, its utility and novelty, the rigor of its
design, and its effectiveness to researchers and other relevant
audiences such as practicing professionals, when appropriate”.

15

1.4.2 TIMELINE - SEMESTERS, ACTIVITIES, AND DELIVERABLES

Table 1 displays the timeline and schedule expected to work in the activities

described.

Table 1 - Activity schedule.

Phases

2021

2022

2023

2024

Activities 1 and 2.1

a) Background and history of the problem.

b) Problematic situation.

¢) Type and purpose of research.

d) Relevance.

e) Objectives, questions, and
hypotheses/research propositions.

Activity 2.2 Review the State of the Art
a) Theories bases.
b) Studies related.
c) Contributions and limitations of related
studies.

Activity 3 Design and Development of
Artifact

a) Application or creative-deductive
relational conceptual design model.

Activities 4 and 5 — Demonstration and
Evaluation

a) Validation of content by a panel of
experts.

b) Validation by logical argument.

c¢) Validation for proof of concept of the
artifact.

Activities 6 — Communication
a) Write and submit research paper 1.
b) Write and submit research paper 2.
¢) Write and submit research paper 3.

16

2 RESEARCH METHODOLOGY

This Ph.D. research uses an adapted Design Research Methodology from two
core studies on Design Science Research (Hevner et al., 2004) (Peffers et al.,
2007) complemented with additional research steps: Selective Systematic
Literature Review method (Cooper 1988), Conceptual Design (Mora, 2009)
Conceptual Validation from Panel of Experts (Beecham et al. 2005), Empirical
Validation with Statistical Analysis (Wohlin et al., 2012), and Guide for Scientific
Reports in Software Engineering (Shaw, 2003). Figure 2 displays the steps for
DSR.

Table 2 summarizes steps, purpose, complementary research methods, and
expected outcomes.

Process Iteration

Identify » Defive [™P| Design& > Demonstration [P Evaluation ™| Communication
Problem Objectives of Development 0
Motivat i -] I
_ Gl g g | ® Sy .] © | Findsutable % g Omv':’w 28| schomy
Nominal process Define problem g g Atifact S context c3 fciaal 5 3 publications
2 | Whatwouida z <2 < a3
sequence ston | & | peterariact | E ¢ . i3 32 -
Importance £ accomplish? Useartifactto | & 5 fterate backto | 9 ¥ Professional
8 solve problem g design publications
I

Problem- Objective- Design & Client/
Centered Centered Development Context

Initiation Solution Centered Intiated
Initiation

Possible Research Entry Points

Figure 2 - DSRM for information systems.

17

Table 2 - Design Science Research Methodology (DSRM) with complementary research methods

DSRM Steps

Purpose

Complementary research

methods

Outcomes

Step 1) Design
problem identification
and motivation.

To state the expected overall
research goal that delimits the
scope of the research, the research
questions that focus on the
knowledge gaps of interest, and the
motivations to pursue the research
design. (For these aims is required
to conduct a Review of the State of
the Art on the specific problem.).

Conceptual Literature
Review (CLR), or
Systematic Literature
Review (SLR), or
Selective Systematic
Literature Review
(SSLR).

Research overall goal
statement.

Research questions.
Research motivation
statements.

Review of the State of
the Art.

Step 2) Definition of
the design objectives
and restrictions for
the expected artifact.

To define the specific design
objectives (i.e. expected qualities in
the designed artifact), design
restrictions (i.e. the limitations on
time, cost and resources utilized to
design the artifact), design approach
(i.e. analytics, axiomatic or
heuristic), design theoretical sources
(i.e. the design materials), and
design components (i.e. the specific
design building-blocks).

Conceptual Design.

Design problem
identification and
motivation.
Definition of the Design
Objectives, Design
Restrictions, Resign
Approach, Design
Theoretical Sources,
and Design
Components for the
expected Artifact.

Step 3) Design and
development of the
artifact.

To design and implement the
expected artifact guided-controlled
by the design objectives and
restrictions, and using the agreed
design approach, design theoretical
sources and design components.

Heuristic Design.

Conceptual designed
artifact.

Implemented designed
artifact.

Step 4)
Demonstration of the
artifact (Proof of

To demonstrate the designed and
implemented artifact and conduct
initial verification.

Verification by a Panel
of Experts

Conceptual Verification
by a Panel of Experts.

Concept).

Step 5) Evaluation of | To conduct empirical evaluation of e Survey or Experimental o Empirical Validation

the artifact. the designed and implemented Methods. with Statistical
artifact. Analysis.

Step 6) To generate a structured scientific e Scientifc writing e Structured Scientific

Communication of
research results.

report (i.e. Thesis, Technical Report,
Chapter, Conference Proceeding
document, or Journal article) of
results and communicate them in
academic outlets.

guidelines.

Report.

2.1 MAIN ACTIVITIES

For Activities 1 and 2.1 the following actions will be implemented:

e Background and history of the problem.
e Problematic situation.

e Type and purpose of research.
e Relevance.

¢ Objectives, questions, and hypotheses/research propositions.

For Activity 2.2 the following actions will be implemented:

e Theories bases.

18

e Studies related.
e Contributions and limitations of related studies.

For Activity 3 the following actions will be implemented:
e Application or creative-deductive relational conceptual design model.
For Activities 4 and 5 the following actions will be implemented:

e Validation of content by a panel of experts.
e Validation by logical argument.
e Validation for proof of concept of the artifact.

For Activities 6 the following actions will be implemented:

e Write and submit research paper 1.
e Write and submit research paper 2.
e Write and submit research paper 3.

For more details about the Activities please check Table 1-1.

2.2 OBJECT AND SUBJECTS OF STUDY

This Ph.D. dissertation has the following objects of study:

e Scrum — Agile development framework.
e eXtreme Programming (XP) — Agile development.
e BPMS - Business Process Management Systems.

The subjects of study are:

e Practitioners and academics are interested in agile BPMS development
methods.
e Pilot sample software.

Agile methodologies, Business Process Management Systems are the based for
this research, a pilot sample software is going to be developed, and will be
evaluating with practitioners and academics interested in the BPMS topic.

2.3 MATERIALS AND EQUIPMENT

19

For this work we are going to use the following materials and equipment:

e Articles of research, chapters, conference papers, and book related to the
topics of Software Engineering, Software Development, Agile
Methodologies, BPM, and BPMS.

e VM Server

e Laptop/PC

e Open-source tools:

0 ProcessEdit
o Joget
o Visual Studio Code

2.4 RESEARCH EVALUATION METHODS

“The utility, quality, and efficacy of a design artifact must be rigorously
demonstrated via well-executed evaluation methods.” (Hevner & Ram, 2004, p.
85). “IT artifacts can be evaluated in terms of functionality, completeness,
consistency, accuracy, performance, reliability, usability, fit with the
organization, and other relevant quality attributes. When analytical metrics
are appropriate, designed artifacts may be mathematically evaluated.”
(Hevner & Ram, 2004, p. 85). Table 3 shows different evaluation methods for the
Design Research created by Hevner (2004). An experimental evaluation method is
selected to evaluate the new AgileBPM Methodology.

Table 3 - Design Research Evaluation Methods.

Design Evaluation Methods

1. Observational Case Study: Study artifact in depth in business environment.
Field Study: Monitor use of artifact in multiple projects.

2. Analytical Static Analysis: Examine structure of artifact for static qualities
(e.g., complexity)

Architecture Analysis: Study fit of artifact into technical 1S
architecture

Optimization: Demonstrate inherent optimal properties of
artifact or provide optimality bounds on artifact behavior

Dynamic Analysis: Study artifact in use for dynamic qualities
(e.g., performance)

3. Experimental Controlled Experiment: Study artifact in controlled environment
for qualities (e.g., usability)
Simulation - Execute artifact with artificial data

20

Design Evaluation Methods

4. Testing Functional (Black Box) Testing: Execute artifact interfaces to
discover failures and identify defects

Structural (White Box) Testing: Perform coverage testing of
some metric (e.g., execution paths) in the artifact
implementation

5. Descriptive Informed Argument: Use information from the knowledge base

(e.g., relevant research) to build a convincing argument for the
artifact's utility

Scenarios: Construct detailed scenarios around the artifact to
demonstrate its utility

Based on methodological recommendations we are going to apply the specific
techniques:

e Validation of Content by a Panel of Experts.

e Validation by Proof of Concept of Designed Artifact.

e Empirical Validation by a Pilot Survey Study / Demo Case Scenario (with
an international sample of software academicians and practitioners).

2.5 RESTRICTIONS AND LIMITATIONS

Time will be the biggest limitation for this work, there are only 3 or 4 years
available to finish the project. The budget will be also a limitation for this Ph.D.
study.

The scope for this AgileBPM Methodology is for micro and small projects with
five to ten people and three to six months within $10,000 to USD 20,000 of budget.

21

3 THEORETICAL BACKGROUND

3.1 THEORETICAL FOUNDATIONS

3.1.1 ON SOFTWARE ENGINEERING

Software is the key element for this research and the root of the Software
Engineering discipline, software is defined by IEEE (2021) as “computer
programs, procedures and possibly associated documentation and data
pertaining to the operation of a computer system”, Pressman & Maxim (2015)
defines computer software as “the product that software professionals build
and then support over the long term. It encompasses programs that execute
within a computer of any size and architecture, content that is presented as
the computer programs execute, and descriptive information in both hard
copy and virtual forms that encompass virtually any electronic media”.

Software Engineering is a branch of Computer Science that splits into twelve
different areas as Algorithms & Data Structures, Programming Languages,
Architecture Operating Systems and Networks, Software Engineering, Databases
& Information Retrieval, Artificial Intelligence & Robotics, Graphics, Human-
Computer Interaction, Computational Science, Organizational Informatics, and
Bioinformatics (Denning, 1999). In this Ph.D. dissertation, we will focus only on
Software Engineering which has all the foundations that our research needs to be
done.

There are many Software Engineering definitions provided by different authors.
For instance, S.W. Humphrey stated (1988, p. 82) that Software Engineering
‘refers to the disciplined application of engineering, scientific, and
mathematical principles and methods to the economical production of
quality software.”. Abran and Moore (2014, p. xxxi) defined Software
Engineering as “the application of a systematic, disciplined, quantifiable,
approach to the development, operation, and maintenance of software; that
is, the application of engineering to software”. Finally, for Pressman and
Maxim (2015, p. 14) Software Engineering “encompasses a process, a
collection of methods (practice) and an array of tools that allow
professionals to build high-quality computer software.” IEEE (2021) states that
Software Engineering is a “systematic application of scientific and
technological knowledge, methods, and experience to the design,
implementation, testing, and documentation of software”.

22

SWEBOK (Abran & Moore, 2014) divides Software Engineering into fifteen
Knowledge Areas (KA) that are: Software Requirements, Software Design
Software Construction, Software Testing, Software Maintenance, Software
Configuration Management, Software Engineering Management, Software
Engineering processes, Software Engineering Models and Methods, Software
Quality, Software Engineering Professional Practice, Software Engineering
Economics, Computing Foundations, Mathematical Foundations, and Engineering
Foundations.

In this Ph.D. dissertation, we need to focus on Software Engineering
Processes KA which is defined such “software engineering processes are
concerned with work activities accomplished by software engineers to
develop, maintain, and operate software, such as require meets, design,
construction, testing, configuration management, and other software
engineering processes.” (Abran & Moore, 2014, pp. 8-1).

Software Engineering Process is divided into five areas (see Figure. 3)
described by the SWEBOK as Software Process Definition, Software Life Cycles,
Software Process Assessment and Improvement, Software Measurement, and
Software Engineering Process Tools. Every process has also its subprocesses.

Software Process Definition is where all the processes are defined, every
process has an input and output, and the decomposition of the work activities.
Software Life Cycles is where the software requirements are transformed into
deliverable products, we will talk more about this area below. The software
Process Assessment and Improvements area is meant to evaluate the software
processes and improve every cycle implementing the Plan-Do-Check-Act model.
Software Measurement is the area where the baselines are created before
implementing a new process to know what process is providing betters results
(Abran & Moore, 2014).

Oktaba and Gonzalez defined Software Process as “a composition of
phases, activities, artifacts, and resources (including the humans)” (1998, p.
229). Every single process needs a set of tools and resources to be accomplished,
humans are part of those resources, and they must correctly manage the activities.

The software Life Cycle area is our focus in this Ph.D. dissertation, “a
software development life cycle (SDLC) includes the software processes
used to specify and transform software requirements into a deliverable
software product. A software product life cycle (SPLC) includes a software
development life cycle plus additional software processes that provide for
deployment, maintenance, support, evolution, retirement, and all other
inception to retirement processes for a software product.” (Abran & Moore,
2014, p. 8-4). In this area the relationship and temporal ordering from the
processes are defined, some processes may be run at the same time to provide a

23

shared output while other processes must wait for that output so that they can start
working.

Categories of Software Processes defined four categories: Primary processes
are for the development, operation, and maintenance of software. Supporting
processes support primary processes when needed like configuration
management, quality assurance, and verification and validation. Organizational
processes support the software engineering inside an organization and include
training, process measurement analysis, infrastructure management, portfolio, and
reuse management, organizational process improvement, and management of
software life cycle models. The cross-project process works on two or more
projects; reuse, software product line, and domain engineering are part of this
category. Project management processes include planning and estimating,
resource management, measuring and controlling, leading, managing risk,
managing stakeholders, and coordinating the primary, supporting, organizational,
and cross-project processes of software development and maintenance projects.
Depending on the organization it could also be more processes to be developed to
cover all the needs like process activities focusing on software quality (Abran &
Moore, 2014).

To have a better understanding of Software processes from SWEBOK (Abran &
Moore, 2014), it is possible to see similarities with the four categories from CMMI
Project Management, Engineering, Support, and Process Management (Capability
Maturity Model Integration) (CMMI for Development, Version 1.3, n.d.). Table 4
shows the CMMI categories and their process with Software Processes defined in
SWEBOOK (Abran & Moore, 2014).

24

Software

Engineering Process

Software Process
Definition

Software Life
Cycles

Software Process
Assessment and
Improvement

]

Software
Measurement

Software
Engineering
Process Tools

Softwarc Process
Management

Software Process
Infrastructure

Categories of
—» Software
Processes

Software Life
Cycle Models

Software Process
Adaptation

Practical
Considerations

Software Process
—» Assessment
Maodels

Software Process
—» Assessment
Methods

Software Process
—» [mprovement
Models

Continuous and
—» Staged Software
Process Ratings

Software Process
—» and Product
Measurement

Quality of
—» Measurement
Results

Software
—» Information
Models

Software Process

—» Measurement
Techniques

Figure 3 - Software Engineering Process breakdown.

25

Table 4 - CMMI Categories and their processes with Process Software categories.

CMMI Category CMMI Process Area Software Process
Category
Project Management Integrated Project Management (IPM) Cross-project Process

Project Monitoring and Control (PMC)
Project Planning (PP)

Quantitative Project Management (QPM)
Requirements Management (REQM)
Risk Management (RSKM)

Supplier Agreement Management (SAM)

Engineering Product Integration (PI) Primary Processes
Requirements Development (RD)
Technical Solution (TS)
Validation (VAL)

Verification (VER)

Support Causal Analysis and Resolution (CAR) Supporting Processes
Configuration Management (CM)
Decision Analysis and Resolution (DAR)
Measurement and Analysis (MA)
Process and Product Quality Assurance
(PPQA)

Process Management Organizational Process Definition (OPD) Organizational Processes
Organizational Process Focus (OPF)
Organizational Process Performance (OPP)
Organizational Performance Management
(OPM)

Organizational Training (OT)

The software allows a great variety of Software Life Cycles; linear models have
different phases of software development that need to be completed sequentially,
software requirements are rigorously controlled, and every change needs to
supervise and authorized by Software Configuration Management KA. Agile SDLC
defined the requirements as a high-level state and that requirements can be
detailed or changed during the development to facilitate the evolution of the
software (Abran & Moore, 2014).

Software Process Adaptation defines software development life cycles and the
software product life cycles, and the individual process often needs to be adapted.
Sometimes does not makes sense to implement all the process defined in the
cycles due to business rules, culture, and size of the company. There are

26

situations where it is necessary to put more control on the processes, so they put
more processes into the development cycles (Abran & Moore, 2014).

There should be a lot of Practical Considerations a lot of software processes
should be recognized as idealizations that must be adapted to reflect the realities
of software development within the organization and business context. Most of the
time the software development cycles need to be adapted to every organization to
have a better solution for the business (Abran & Moore, 2014).

The software has become a basic need almost in every human activity for that
reason the software demand has increased year by year and is very important that
software engineers can accomplish every software development in time, Software
Engineering defines Tools, Methods, Processes, and Quality Tools (Pressman &
Maxim, 2015): Tools can be automated or semi-automated that are integrated with
the methods and provide support to them. Methods provide a how-to create the
software step by step, every method has different phases, and every phase has
some tasks that every role must implement. A Process is the set of activities,
actions or tasks to be completed to create a product. It is important to say that a
Process is not rigid, this means that the software engineers can select the
appropriate activities, actions, or tasks that best fit into the developed product. The
Quality Focus establish that all the Tools, Methods, and Process should be always
implemented with the quality in mind to satisfy the stakeholders that sponsored the
project.

Parnas (2010) stated that software development is lacking disciplined, most of
the time software developers do not follow any rules, predefined steps, or
methodologies or they use risky shortcuts in the development. All these errors
produce sloppy software and can produce major problems for the users and
companies.

As we have seen Software Engineering is very important in software
development and must be implemented in every development and better practices
need to be created in the future to improve current results. Garousi et al. (2020)
studied the relevance of Software Engineering research after 50 years of SE. The
authors found some root causes that made the research irrelevant and made some
suggestions. Figure 4 created by Garousi et al. (2020) maps the root causes with
the suggestions.

There have been a lot of SDLC processes through time, Rodriguez et al. (2009)
compared and classified different processes with the key values of “specification
rigor” and “agility” (see Figure. 5). The results showed that most of the
methodologies have a medium value for both references. It is very important to
mention that there was not an SDLC that fulfilled high agility with specification
rigor. In this Ph.D. dissertation, we will try to fill the gap, or get the closest as
possible, between both key values.

27

Figure 4 - Suggestions to improve software engineering research to make it relevant.

Figure 5 - SDLC evolution and comparison.

Hence, this section provides the following important concepts:

Software

28

“Computer programs, procedures and possibly associated documentation
and data pertaining to the operation of a computer system.”
(ISO/IEC/IEEE 24765:2017(En), Systems and Software Engineering —
Vocabulary, 2021)

“‘Computer software is the product that software professionals build and
then support over the long term. It encompasses programs that execute
within a computer of any size and architecture, content that is presented as
the computer programs execute, and descriptive information in both hard
copy and virtual forms that encompass virtually any electronic media.”
(Pressman & Maxim, 2015, p. 1).

Software Engineering

“Systematic application of scientific and technological knowledge,
methods, and experience to the design, implementation, testing, and
documentation of software.” (ISO/IEC/IEEE 24765:2017(En), Systems and
Software Engineering — Vocabulary, 2021).

‘Encompasses a process, a collection of methods (practice) and an array
of tools that allow professionals to build high-quality computer software.”
(Pressman & Maxim, 2015, p. 14)

‘Encompasses a process, a collection of methods (practice) and an array
of tools that allow professionals to build high-quality computer software.”
(Pressman & Maxim, 2015, p. 14).

Software Engineering Processes

“Software engineering processes are concerned with work activities
accomplished by software engineers to develop, maintain, and operate
software, such as require meets, design, construction, testing, configuration
management, and other software engineering processes.” (Abran & Moore,
2014, pp. 8-1).

Software Process

‘A composition of phases, activities, artifacts, and resources (including
the humans).” (Oktaba & Ibarglengoitia Gonzalez, 1998, p. 229)

Software Life Cycle

‘A software development life cycle (SDLC) includes the software
processes used to specify and transform software requirements into a
deliverable software product. A software product life cycle (SPLC) includes a
software development life cycle plus additional software processes that
provide for deployment, maintenance, support, evolution, retirement, and all

29

other inception to retirement processes for a software product.” (Abran &
Moore, 2014, p. 8-4).

30

3.1.2 ON AGILE DEVELOPMENT PARADIGM

3.1.2.1 REVIEW OF FUNDAMENTAL CONCEPTS OF AGILITY

Over the last years, the Agile Methodologies have been chosen as high-speed
methodologies for developing volatile internet applications, and web development
(Paulk, 2002). Following the Agile manifesto (Beck et al., 2001) these
methodologies focus on people, working software, customer collaboration, and
responding to change in a very easy way. Following the four principles from the
Agile manifesto, it is possible to work on the most important things, when
software development is in progress, improves the development time, and keeps
the work aligned with the company’s budget.

Linear SDLC and Agile SDLC have a lot of differences, Hong et al. (2011) listed
most of them (see Table 5) between those two software development cycles. Agile
SDLC supports short development cycles and can be adapted very quickly to any
change, instead linear SDLC have very long cycles so that any change could have
a big impact on the development. IEEE (2021) defines agile development as
“software development approach based on iterative development, frequent
inspection and adaptation, and incremental deliveries, in which requirements
and solutions evolve through collaboration in cross-functional teams and
through continuous stakeholder feedback”.

Both SDLC must have their rigid steps even though agile models are more
flexible it is very important to follow the necessary steps to have the desire results.
The short development cycles allow to the stakeholders know the direction of the
project in almost real-time so that they can make any adjustment avoiding
unnecessary rework and waste of time. A key difference is the management of the
user requirements, it is not very common that stakeholders have all the
requirements at the beginning of the project, they can cause a lot of problems in a
linear SDLC, something that can be more manageable in an agile SDLC.

In the late 1990s, agile methods emerged and offered lightweight processes with
a focus on people and interactions (Hoda et al., 2018). Nowadays the last State of
Agile survey (State of Agile Survey, 2021) reported that 95% of the surveyed
companies are applying agile methods within the organization. 18% of them have
all their teams working with agile methods, and 33% of the companies have more
than half of their teams working with agile. Finally, the report stated that 75% of the
respondents are using Scrum. Hoda et al. (2018) expect that agile software
development continues growing working together with the new technologies and
trends like the Internet of Things, Big Data, Virtua-Reality, and more.

31

Table 5 - Main differences between linear and agile SDLC.

Agile IS

Non agile IS

Applicable context

More fluid user requirements

Relatively stable user requirements.

Identification of user
requirements

Users are constantly solicited for
new requirements; emphasis on
adaptivity to changing
environments

User requirements are typically identified at
the start of the development cycle, with
emphasis on planning and predicting.

Number of development
cycles

Many short development cycles

One long development cycle

Development steps within
each development cycle

Rigid steps

Rigid steps

Functions available when
system is first released.

System only provides a limited
set of functions when first
released

System is expected to deliver a full set of
functions when first released

Goal in each development
cycle

Each release has limited scope,
i.e., each release delivers only a
few valuable functions.

A major release that comes with a complete
set of functions.

Typical release frequency

Frequent; typically, every few
weeks to every few months.

Infrequent; typically, after a few years.

Example systems

iPhone apps, company intranets,
Web-based systems, software as
a service, etc.

Operational systems, enterprise resource
planning, office automation systems, etc.

The Agile manifesto is based on twelve principles (Beck et al., 2001), every
principle does emphasis different situations that make agile work as a discipline.
Laanti et al. (2013) analyzed every principle from the agile manifesto as showed in

Table 7.

32

Table 6 - Emphasis of every single agile principle on the manifesto.

Agile Principle Emphasis

Customer satisfaction,
Continuous delivery,
value, early deliveries

Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for the Adaptability, competitiveness, customer benefit
customer's competitive advantage.

Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference for the Frequent deliveries
shorter timescale.

Business people and developers must work together daily

throughout the project. Ciol clerEin

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get
the job done.

Motivated individuals, good environment,
support, trust

The most efficient and effective method of conveying
information to and within a development team is face- Efficiency, communication
toface conversation.

Working software is the primary measure of progress. Measure progress via deliverables

Agile processes promote sustainable development. The
sponsors, developers, and users should be able to Sustainability, people
maintain a constant pace indefinitely.

Continuous attention to technical excellence and good

) i Focus on technical excellence,
design enhances agility.

Simplicity — the art of maximizing the amount of work not

donEEe. o Simplicity, optimize work

The best architectures, requirements, and designs emerge

. Self-organization
from self-organizing teams.

At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior Built-in improvement of efficiency and behavior
accordingly.

Laanti et al. (2013) recollected some definitions of “Agile” found in literature,
Ambler (2007) defined it as the ‘“iterative and incremental (evolutionary)
approach to software development which is performed in a highly
collaborative manner by self-organizing teams with “just enough” ceremony
that produces high-quality software in a cost-effective and timely manner
which meets the changing needs of its stakeholders”. Schuh (2004) “Building
software by empowering and trusting people. Acknowledging change as a
norm, and promoting constant feedback. Producing more valuable
functionality faster.”

33

||||||||| == o
R - =
- e || e
-
e e bl o e e

DSDM

A

==

L
L
L

T
System
in use

test

System Acceptance

test test

I
Integration

Unit test

specification

L
Requirements

I
Project
inception

Project management supported

Offers concrete guidance

&
-

Process described ——» [——

Figure 6 - Comparing project management on agile SDLC methods

34

Several Agile Methodologies acknowledge the high-quality software and
customer satisfaction (Javanmard & Alian, 2015), Adaptive Software Development
(ASD), Agile Modeling, Crystal Methods, Dynamic System Development, Lean
Development, and Scrum are some examples of agile methodologies. Most of the
times the agile methodologies must be using combining other practices or methods
to cover the whole cycle, Abrahamsson et al (2010) analyzed most of the agile
SDLC (see Figure 6) trying to find if they can support project management support,
a process described and offers concrete guidance. Abrahamsson et al (2010)
concluded that the lack of project management and concrete guidance could be a
problem for different situations in development phases.

Laanti et al. (2013) recollected some definitions of agile with different authors
and found some words that make emphasis from them. Table 7 represents every
agile feature found by Laanti and connects to the twelve principles of agile software
from the manifesto (Beck et al., 2001).

Table 7 - Agile features related to the 12 agile principles.

Concept Twelve Principles of Relation Reference

Effective Working software is the primary measure of Cockburn 2001
progress.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

Steerable Agile processes promote sustainable Cockburn 2001
development. The sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

Rule-based Agile processes promote sustainable Cockburn 2001
development. The sponsors, developers, and
users should be able to maintain a constant pace

indefinitely.
Speed Deliver working software frequently, from a Anderson 2003, Larman 2003,
couple of weeks to a couple of months, with a Schuh 2004, Ambler 2007,

preference to the shorter timescale.

Working software is the primary measure of
progress.

Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

35

People

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals. Give
them the environment and support they need,
and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a
development team is face-to-face conversation.

Cockburn 2001, Schuh 2004,

Empowerment

At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

Schuh 2004,

Change

Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

Schuh 2004

Value

Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software.

Working software is the primary measure of
progress.

Schuh 2004

Delivery

Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Lyytinen 2006

Innovations

Continuous attention to technical excellence and
good design enhances agility.

Lyytinen 2006

Feedback

Continuous attention to technical excellence and
good design enhances agility.

At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

Schuh 2004, Subramaniam
2005

Adaptability

Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

Continuous attention to technical excellence and
good design enhances agility.

Subramaniam 2005

Collaboration

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals. Give
them the environment and support they need,
and trust them to get the job done.

Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

Subramaniam 2005

Iterative At regular intervals, the team reflects on how to Ambler 2007, IEEE 2007,
become more effective, then tunes and adjusts its | Wikipedia 2007
behavior accordingly.

Incremental At regular intervals, the team reflects on how to Ambler 2007,

become more effective, then tunes and adjusts its
behavior accordingly.

36

Selforganizing The best architectures, requirements, and Ambler 2007,
designs emerge from self-organizing teams.

Less processdriven Working software is the primary measure of Ambler 2007,
progress.
Collaborative Business people and developers must work Ambler 2007,

together daily throughout the project.

Build projects around motivated individuals. Give
them the environment and support they need,
and trust them to get the job done.

Cost-conscious Deliver working software frequently, from a Ambler 2007,
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Customer-driven Welcome changing requirements, even late in Ambler 2007,
development. Agile processes harness change
for the customer's competitive advantage.

Responsiveness Welcome changing requirements, even late in Larman 2003, Lyytinen 2006,
development. Agile processes harness change Nerur and Balijepally 2007
for the customer's competitive advantage.

Flexibility Welcome changing requirements, even late in Larman 2003, Nerur and
development. Agile processes harness change Balijepally 2007
for the customer's competitive advantage.

Responsive Welcome changing requirements, even late in IEEE 2007
development. Agile processes harness change
for the customer's competitive advantage.

Conceptual Wikipedia 2007
framework

Boehm and Turner (2003) analyzed some characteristics of agile and traditional
methods (see Table 8) using the Application, Management, Technical, and
Personnel constructors. The differences are clear: Delivering value to the customer
as quickly as possible in short increments is the key element of agile methods.

Table 8 - General characteristics for agile methods and traditional methods

Project characteristics Agile home ground Plan-driven home ground

Application

Primary goals Rapid value, responding to Predictability, stability, high
change assurance

Size Smaller teams and projects Larger teams and projects

Environment Turbulent, high change, project | Stable, low change, project
focused and organization focused

Management

Customer relations Dedicated onsite customers, As-needed customer
focused on prioritized interactions, focused on
increments contract provisions

Planning and control Internalized plans, qualitative Documented plans,
control guantitative control

Communications Tacit interpersonal knowledge Explicit documented

knowledge
Technical

37

Project characteristics

Agile home ground

Plan-driven home ground

Requirements

Prioritized informal stories and
test cases, undergoing
unforeseeable change

Formalized project, capability,
interface, quality, foreseeable
evolution requirements

Development

Simple design, short increments,
refactoring assumed

Extensive design, longer
increments, refactoring

inexpensive assumed expensive

Test Executable test cases define Documented test plans and
requirements, testing procedures

Personnel

Customers Dedicated, colocated Crack Crack* performers, not
(Collaborative, representative, always colocated
authorized, committed, and
knowledgeable) performers

Developers At least 30% full-time Cockburn |50% Cockburn Level 3s early;
Level 2 and 3 experts; no Level |10% throughout; 30% Level
1B or Level -1 personnel (See 1B’s workable; no Level —1s
the “Cockburn’s Three Levels of | (See the “Cockburn’s Three
Software Understanding) Levels of Software

Understanding)
Culture Comfort and empowerment via | Comfort and empowerment

many degrees of freedom
(thriving on chaos)

via framework of policies and
procedures (thriving on order)

Boehm and Turner (2003) also created the five critical agility and plan-driven
factors (see Table 9) where is possible to know if projects fit into an agile or a
traditional methodology. Finally, Figure 7 shows a polar chart where the five factors
can be graphed and provides information about what methodology should be

chosen.

38

Table 9 - The five critical agility and plan-driven factors.

Factor Agility discriminators Plan-driven discriminators

Size Well matched to small products and Methods evolved to handle large
teams; reliance on tacit knowledge limits | products and teams; hard to tailor
scalability. down to small projects.

Criticality Untested on safety-critical products; Methods evolved to handle highly
potential difficulties with simple design critical products; hard to tailor down
and lack of documentation. efficiently to low-criticality products.

Dynamism Simple design and continuous Detailed plans and “big design up
refactoring are excellent for highly front” excellent for highly stable
dynamic environments but present a environment, but a source of
source of potentially expensive rework expensive rework for highly dynamic
for highly stable environments. environments.

Personnel Require continuous presence of a critical | Need a critical mass of scarce
mass of scarce Cockburn Level 2 or 3 Cockburn Level 2 and 3 experts
experts; risky to use nonagile Level 1B during project definition, but can
people. work with fewer later in the project—

unless the environment is highly
dynamic. Can usually accommodate
some Level 1B people.

Culture Thrive in a culture where people feel Thrive in a culture where people feel

comfortable and empowered by having
many degrees of freedom; thrive on
chaos.

comfortable and empowered by
having their roles defined by clear
policies and procedures; thrive on
order.

39

Figure 7 - Polar chart with the five critical factors.

To have success, it is very important to classify the level of expertise for every
developer of the team. Cockburn (2002) identified three levels of people that can
be sort inside a software method, Boehm and Turner (2003) modified their work
splitting level 1 to make difference between Agile and plan-driven methods and
added level (see Table 10). Level -1 people should be identified as soon as
possible to be reassigned to other activities rather than development. Level 1B
people are average and below, with a stable project they can work without any
problem, but sometimes can slow the team on urgency changes. Level 1A people
can work very well if they are enough people level 2 to guide them. Level 2 people
can manage small teams with the guide of Level 3 people, with some experience
they can become Level 3. Level 3 people are the most experienced people, able to
manage large projects.

40

Table 10 - People level for software development.

Level Characteristics
3 Is able to revise a method (break its rules) to fit an unprecedented new situation.
2 Is able to tailor a method to fit a precedented new situation.
1A With training, is able to perform discretionary method steps (e.g., sizing stories to fit increments,

composing patterns, compound refactoring, and complex COTS integration).
Can become Level 2 with experience.

1B With training, is able to perform procedural method steps (e.g., coding a simple method, simple
refactoring, following coding standards and capability model procedures, and running tests). Can
master some Level 1A skills with experience.

-1 May have technical skills, but is unable or unwilling to collaborate or follow shared methods.

Having all above information from Boehm and Turner (2003) on this PhD
Dissertation we will try to keep Personnel with 30% 1B and 20% with level 2 or 3.
Criticality should be at the middle of the bar or below with projects that have not
high impact. Dynamism allows changes up to 5% per month so that the project can
keep a balancing. Culture stated at the middle of the bar because an order should
be implemented even though we are talking about Agile development. Size of the
team should be small and there should be no more than 15 people, if the project
needs more people, it must be divided in smaller teams to be more manageable.
Figure 8 shows the graphic made by Boehm and Turner (2003) with the approach
for our methodology presented on this document.

41

Figure 8 - Boehm and Turner graphic with new methodology approach.

Agile and traditional have unique features, each of them can have one value
from ten to one to see the weight that has every feature inside the SDLC. Figure 9
represents a word cloud with the ten most valuable features in Agile development
while Figure 10 represents a word cloud with the ten most valuable features inside
traditional development.

42

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

3.1.2.2 REVIEW OF OFFICIAL SCRUM — MAIN AND MOST USE AGILE SDLC

During the State of Agile survey (2021) the 75% of the respondents said that
they are using Scrum as Agile framework. Scrum is one of the most popular Agile
frameworks because it is very easy to learn and simple. Schwaber and Sutherland
(2020) created the Scrum Guide that includes only thirteen pages and explains alll
the roles, events, and artifacts. Figure 11 shows the Scrum process (Scrum.org,
2021) with all its elements. The Scrum Guide (Schwaber & Sutherland, 2020)
defines Scrum as “a lightweight framework that helps people, teams, and
organizations generate value through adaptive solutions for complex
problems”.

Figure 11 - Scrum Process Diagram with all its elements taken from Scrum.org.

Scrum defines only three roles that work together all the time to provide the max
value to the project. The Product Owner is the person who is accountable to
maximize the value of every task, this role is in charge of the product backlog
where he or she put the tasks to be done sorted by the most important to the less
important task. The Developers are the people that have to complete every task
put inside the Sprint Backlog, they manage all those tasks and do the plan every
Sprint so that they make sure that every iteration has the reasonable tasks to be

44

developed in time. The Scrum Master is the person who is responsible to
implement every Scrum element as it is defined in the Scrum Guide, the Scrum
Master also coaches the team and removes every blocker that the developers
must continue.

The Scrum artifacts represent the work or the value and are available for
everyone to make all the team’s work transparent. Product Backlog has all the
tasks manage by the Product Owner and are sorted by the most to the less
important. The Sprint Backlog is created every Sprint by the developers, they take
the number of tasks that can be complete in a certain period, when the Sprint ends,
the completed tasks are added to the Increment that is the sum of all completed
tasks in previous Sprints, this Increment should be functional.

Finally, every Scrum event “is a formal opportunity to inspect and adapt
Scrum artifacts. These events are specifically designed to enable the
transparency required. Failure to operate any events as prescribed results in
lost opportunities to inspect and adapt. Events are used in Scrum to create
regularity and to minimize the need for meetings not defined in Scrum.
Optimally, all events are held at the same time and place to reduce
complexity” (Schwaber & Sutherland, 2020). The Sprint is where all the work is
done, it has a fixed timeframe, every time that a Sprint is over a new one Starts
immediately. Sprint Planning starts every Sprint and it's a meeting where the
developers plan the work to be done during the timeframe choosing the most
important tasks from the Product Backlog and create a Sprint Backlog. Daily Scrum
is a fifteen-minute meeting that occurs every day to “improve communications,
identify impediments, promote quick decision-making, and consequently
eliminate the need for other meetings” (Schwaber & Sutherland, 2020). Sprint
Review occurs when the Sprint is almost over, the Scrum Team shows the results
of their work and the progress to the Stakeholders. Sprint Retrospective is where
the Scrum Team “identifies the most helpful changes to improve its
effectiveness” (Schwaber & Sutherland, 2020), the feedback from the team is very
valuable to enhance the quality of the “individuals, interactions, processes,
tools, and their Definition of Done” (Schwaber & Sutherland, 2020).

Table 11 shows every Scrum element described above divided into Roles,
Events, and Artifacts.

45

Table 11 - Scrum elements.

Roles Events Artifacts
Product Owner Sprint Product Backlog
Scrum Master Sprint Planning Sprint Backlog
Scrum Team Daily Scrum Meeting Product Increment

Sprint Review

Sprint Retrospective

3.1.2.3 REVIEW OF A ROBUST SCRUM

The official Scrum Guide (Schwaber & Sutherland, 2020) is a good start to learn
the Scrum principles, roles, events, and artifacts but on the other hand, it is difficult
to start a new project just with the knowledge provided by that guide.

SCRUMstudy organization created an SBOK Guide (2013) as a “guide for
organizations and project management practitioners who want to implement
Scrum, as well as those already doing so who want to make needed
improvements to their processes. It is based on experience drawn from
thousands of projects across a variety of organizations and industries. The
contributions of many Scrum experts and project management practitioners
have been considered in its development.”

The SBOK Guide (2013) is composed of six phases: Initiate, Plan and Estimate,
Implement, Review and Retrospect, and Release. Every single phase has its
processes. Table 12 shows the phases and the processes proposed by the SBOK
Guide.

Every single element from Scrum is included in the SBOK Guide (2013) and
every process is explained step by step so that it is easier to start working with
Scrum in a more organized way.

Schwaber (1997) proposed three different phases for Scrum called Pregame,
Game, and Postgame. Every single had the different Scrum processes defined in
1997 that are very similar to the current Scrum processes. Figure 12 displays the
Scrum Methodology defined by Schwaber (1997).

46

Table 12 - SBOK Guide phases and processes.

Phase

Processes

Initiate

Create Project Vision

Identify Scrum Master and Stakeholder(s)
Form Scrum Team

Develop Epic(s)

Create Prioritized Product Backlog
Conduct Release Planning

Plan and Estimate

Create User Stories

Approve, Estimate, and Commit User Stories
Create Tasks

Estimate Tasks

Create Sprint Backlog

Implement

Create Deliverables
Conduct Daily Standup
Groom Prioritized Product Backlog

Review and Retrospect

Convene Scrum of Scrums
Demonstrate and Validate Sprint
Retrospect Sprint

Release

Ship Deliverables
Retrospect Project

a7

Figure 12 - Scrum Methodology created by Schwaber in 1997.

Using the SBOK Guide (2013) and following the Schwaber (1997) proposal, we
are proposing three different phases: Pregame, Game, and Postgame. Every
single phase is composed of different processes that help to maintain order with
the agility that we need.

We can match the three phases with the phases inside eXtreme Programing
Agile Methodology proposed by Dudziak (1999): Exploration, Releases Planning,
Iteration Planning, Implementation, Functional Test, and Release. Figure 13 shows
the eXtreme Programing simplified structure created by Dudziak (1999).

48

Figure 13 - eXtreme Programing simplified process structure.

To match Scrum and eXtreme Programing phases is it possible to rename
Planning Game as Pregame, Iteration Planning Game as Game, and Release as
Postgame. Table 13 displays the three proposed phases with their processes and
the corresponding eXtreme Programing phase. It is also possible to use the
Implementation phase where the user stories are developed.

The Pregame phase is where basics are created, the Create Project Vision
process is conducted by the Product Owner so that it will provide inspiration and
focus for the whole project. Develop Epics is a process where all the team meets to
create appropriate Epics for the project. Once the Epics are created it is necessary
to follow the Created Prioritized Product Backlog where the Epics are refined,
elaborated, and sorted from the most valuable to the less valuable. Conduct
Release Planning process is where the length of the Sprint is defined, the Release
Planning Schedule is created, and the deployment scheduled can be shared with
stakeholders.

49

Figure 14 - eXtreme Programing Phases renamed.

The Game phase is the iterative part of the project where every Sprint starts and
ends with all Scrum ceremonies. Create Sprint Backlog process runs when the
new Sprint starts and provides the necessary tasks to complete during that period.
Conduct Daily Standup process is the daily Scrum ceremony where every Scrum
Team member updates their process and report any impediment. The Groom
Prioritized Product Backlog process is vital for having a healthy Sprint Backlog for
the next Sprints, is where the team meets to update and maintain the Product
Backlog. Build Sprint Increment process is the time where developers work on user
stories and the development is done. Demonstrate and Validate Sprint process is
where the Sprint Review ceremony is conducted to show the progress from the
team during that Sprint. Finally, the Retrospective Sprint process has the Sprint
Retrospective ceremony so that the team can identify opportunities areas to
improve during the next Sprints.

The Postgame phase represents the deliverables where the increment is
delivered and deployed. This phase only has the Ship Deliverables process. Figure
14 represents this approach.

Figure 15 displays a more robust Scrum process using the three defined phases
and their processes. Please note that the Game phase is the iterative part that
must be repeated until the project is done.

50

Table 13 - Phases, processes, roles, and artifacts used for a new methodology.

Roles
Phase eXtreme Programing phase Processes Principal Support Artifacts
Pregame Exploration Create Project Vision Product Owner Scrum Master Project Vision Statement
Develop Epics Product Owner Scrum Master Product Backlog
Scrum Team
Create User Stories Product Owner Scrum Master User Stories
Scrum Team
Release Planning Created Prioritized Product Product Owner Scrum Master Prioritized Product Backlog
Backlog Scrum Team
Conduct Release Planning Product Owner Scrum Master Release Planning Schedule
Scrum Team
Game Iteration Planning + Create Sprint Backlog Scrum Team Product Owner | Sprint Backlog
Implementation + Functional Scrum Master
Testing
Conduct Daily Standup Scrum Team Product Owner | Kanban board
Scrum Master
Build Sprint Increment Scrum Team Scrum Master Updated User Stories
Demonstrate and Validate Sprint | Scrum Team Product Owner Increment
Scrum Master
Retrospective Sprint Scrum Team Product Owner | Agreed Actionable Improvements
Scrum Master
Postgame Release Ship Deliverables Scrum Team Scrum Master Working Deliverables Agreement

51

TESIS TESIS TESIS

TESIS

Figure 15 - More robust Scrum process.

TESIS TESIS TESIS

TESIS

TESIS

TESIS

52

Hence, this section provides the following important concepts:
Scrum

“Scrum is a lightweight framework that helps people, teams and
organizations generate value through adaptive solutions for complex
problems.” (Schwaber & Sutherland, 2020, p. 3)

Scrum Team

“The fundamental unit of Scrum is a small team of people, a Scrum Team.
The Scrum Team consists of one Scrum Master, one Product Owner, and
Developers. Within a Scrum Team, there are no sub-teams or hierarchies. It
is a cohesive unit of professionals focused on one objective at a time, the
Product Goal.” (Schwaber & Sutherland, 2020, p. 5)

Product Owner

“The Product Owner is accountable for maximizing the value of the
product resulting from the work of the Scrum Team. How this is done may
vary widely across organizations, Scrum Teams, and individuals.” (Schwaber
& Sutherland, 2020, p. 5)

Scrum Master

“The Scrum Master is accountable for establishing Scrum as defined in the
Scrum Guide. They do this by helping everyone understand Scrum theory
and practice, both within the Scrum Team and the organization.” (Schwaber &
Sutherland, 2020, p. 6)

Developers

“‘Developers are the people in the Scrum Team that are committed to
creating any aspect of a usable Increment each Sprint.” (Schwaber &
Sutherland, 2020, p. 5)

53

Sprint

“Sprints are the heartbeat of Scrum, where ideas are turned into value.
They are fixed length events of one month or less to create consistency. A
new Sprint starts immediately after the conclusion of the previous Sprint.”
(Schwaber & Sutherland, 2020, p. 7)

Sprint Planning

“‘Sprint Planning initiates the Sprint by laying out the work to be performed
for the Sprint. This resulting plan is created by the collaborative work of the
entire Scrum Team.” (Schwaber & Sutherland, 2020, p. 8)

Daily Scrum

“The purpose of the Daily Scrum is to inspect progress toward the Sprint
Goal and adapt the Sprint Backlog as necessary, adjusting the upcoming
planned work.” (Schwaber & Sutherland, 2020, p. 9)

Sprint Review

“The purpose of the Sprint Review is to inspect the outcome of the Sprint
and determine future adaptations. The Scrum Team presents the results of
their work to key stakeholders and progress toward the Product Goal is
discussed.” (Schwaber & Sutherland, 2020, p. 9)

Sprint Retrospective

“The purpose of the Sprint Retrospective is to plan ways to increase
quality and effectiveness.” (Schwaber & Sutherland, 2020, p. 10)

Product Backlog

“The Product Backlog is an emergent, ordered list of what is needed to
improve the product. It is the single source of work undertaken by the Scrum
Team.” (Schwaber & Sutherland, 2020, p. 10)

54

Sprint Backlog

“The Sprint Backlog is composed of the Sprint Goal (why), the set of
Product Backlog items selected for the Sprint (what), as well as an actionable
plan for delivering the Increment (how).” (Schwaber & Sutherland, 2020, p. 11)

Increment

“An Increment is a concrete stepping stone toward the Product Goal. Each
Increment is additive to all prior Increments and thoroughly verified,
ensuring that all Increments work together. In order to provide value, the
Increment must be usable.” (Schwaber & Sutherland, 2020, p. 11)

eXtreme Programming (XP)

“XP is also a lightweight methodology or what Alistair Cockburn calls a
“Crystal Methodology”. In short, methodologies of this family have high
productivity and high tolerance. Communication is usually strong with short
paths, especially informal (not documented). There the is only a small range
of deliverables (artifacts), but these are delivered frequently (releases).
Processes of the Crystal family identify only a few roles and activities.”
(Dudziak, 1999, p. 4)

55

3.1.3 ON BUSINESS PROCESS MANAGEMENT SYSTEMS (BPMS)
DEVELOPMENT PLATFORMS, METHODOLOGIES, AND SOFTWARE
APPLICATIONS

3.1.3.1 CORE DEFINITIONS (BPMS, WORKFLOW MANAGEMENT SYSTEMS, BPMS
DEVELOPMENT PLATFORMS, BPMS SOFTWARE APPLICATION/PAIS)

Before going deeper into BPMS and its methodologies, it is important to have a
clear definition of the most important elements that will be used in this Ph.D.
Dissertation from now on.

In the decade of the nineties, there were Workflow Management Systems
(WFMS) that helped to integrate existing applications and isolate the management
of the business process into another component. The Workflow Management
Coalition (WfMC), cited by van der Aalst et al. (2003), defined WFMS as “A
system that defines, creates and manages the execution of workflows
through the use of software, running on one or more workflow engines,
which is able to interpret the process definition, interact with workflow
participants and, where required, invoke the use of IT tools and applications”.
van der Aalst et al. (2003) refer to the WFMS as the essence of BPMS even
Reijers (2006) uses WFMS and BPMS as synonymous.

Karagiannis (1995, p. 10) defines the BPMS as "Information systems dealing
with the definition, administration, customization, and evaluation of tasks
evolving from business processes as well as from organizational structures
are called Business Process Management Systems."” Business Process
Management Initiative (BPMI), cited by Jung et al. (2007, p. 22), says that BPMS
‘is to integrate systems, automate routine activities, manage all phases of
processes, deploy process seamlessly, and provide end-to-end visibility and
control”. Finally, Reijers (2006, p. 390) described a BPMS as a “piece of generic
software that supports activities such as the modeling, analysis and
enactment of business processes.”

Mutschler et al. (2008) divide the information systems into Process-oriented
Information Systems (POIS) and Process-aware Information Systems (PAIS).
POIS are developed taking into account the process of the company so that those
information systems (IS) could be obsoleted once the processes are updated. On
the other hand, PAIS “does not contain any information about the structure
and the processes of a particular organization. Instead, an organization
needs to configure the PAIS by specifying processes, organizational entities,

56

and business objects” (Mutschler et al., 2008, p. 7). The PAIS was defined as “a
software system that manages and executes operational processes involving
people, applications, and/or information sources on the basis of processes
models” by Dumas et al. (2005, p. 7).

Krafzig et al. (2005) refer that BPMS projects can be developed with a standard
software development methodology while Ravesteyn and Batenburg (2010a, p. 2)
signs that “standard software development methodologies, however — such as
the waterfall method, rapid application development or rational unified
process — ignore the business or organizational aspects.”

In this Ph.D. dissertation, we are taking BPMS/PAIS as a “Software system for
supporting the operation and monitoring of a full Business Process.”
(adapted from Reijers, 2006, p. 390). We also consider WFMS as the heart of
BPMS, in this modern era both are synonymous. BPMS can be also a Process-
aware Information system (PAIS) because they do not have any hardcoded logic
for the organization and the customer is the one that must configure every aspect
of his organization.

With BPMS already defined, it is important to know that a platform is defined as
“a bundle of functions that can serve as the basis of certain applications
whose value changes over time” (Taudes et al., 2000, p. 228) so that a
BPMS/PAIS Development Platform can be defined as "Software development
platform wused for designing, building, running, and monitoring a
BPMS/PAIS.". Finally, a BPMS Application is the information system developed
with the help of a BMPS Development Platform.

With all the main terms defined we can divide BPMS into three main important
elements: BPMS (PAIS) Business Methodologies that can be classic or agile,
BPMS (PAIS) Business Development Platforms that can be modern or classic,
and BPMS (PAIS) Business Software Applications that can be developed for
small enterprises, medium enterprises, and large enterprises. Figure 16 displays a
conceptual map that represents the BPMS (PAIS) division. The main objective of
this work is to help small enterprises with low-budget.

It is important to know the difference between a Business Process Platform and
a Business Software Application; The first is a piece of generic software where the
developer creates all the business process workflow and configures the data,
interfaces, and functions to create a Business Software Application. This
application will be used by the final users and will have all the functionality, data,
and processes already configured by the developers.

57

TESIS TESIS TESIS TESIS TESIS

TESIS TESIS TESIS TESIS TESIS

3.1.3.2 REVIEW OF BPMS PLATFORMS — OPEN SOURCE VS COMMERCIAL

Being able to be defined BPMS now it is important to clearly define Low-code
platforms. The term “low-code” was referred to by Richardson and Rymer (2014, p.
1) as “application platforms that accelerate app delivery by dramatically
reducing the amount of hand-coding required. Faster delivery is the primary
benefit of these application platforms; they also help firms respond more
quickly to customer feedback after initial software releases and provision
mobile and multichannel apps. Usage of low-code platforms is gaining
momentum for customer-facing applications”. While Waszkowski (2019, p. 1)
stated that Low-Code “Programming enables the programmer to spend less
time thinking about the syntax of the code and to put more emphasis on
designing the aesthetics and functionality of the application, so reducing the
amount of time spent on troubleshooting and implementing”. Nowadays Low-
code development platforms can be local or cloud-based so that it is possible for
the development, and deployment of functional software with minimal or no code
(Sahay et al., 2020).

As a cloud-based environment, the low-code platforms have an architecture
where everything is connected to a server where it handles the calls to different
internal and external services, repositories, databases, compilers, code generators,
and optimizers. Sahay et al. (2020) represented the typical low-code platform
architecture as shown in Figures 17 and Figure 18 for traditional and cloud-based
low-code platforms.

Figure 17 - Low-code platform typical architecture.

59

Figure 18 - Low-code platform cloud-based architecture.

There are commercial and open-source Low-code platforms so we are going to
compare three of the most important platforms in both categories. Using Magic
Quadrant for Enterprise Low-Code Application Platforms by Gartner (2019) we will
take three low-code platforms from the LEADERS quadrant that are Appian,
OutSystems, and Mendix.

Sahay et al. (2020) created a taxonomy for Low-Code Development Platforms
that compared different platforms with different constructors like graphical user
interface, interoperability support, security support, collaborative development
support, reusability support, scalability, business logic specification mechanisms,
application build mechanisms, deployment support, and kinds of supported

60

applications. Table 14 displays the work done by Sahay et al. (2020) comparing
Appian, OutSystems, and Mendix.

For Low-Code Platforms open-source it is needed to take another approach, we
cannot compare with the same parameters used in Table 3-11 because used to
have fewer functionalities with the great advantage that are free and can be used
by small enterprises with low-budget that are our main objective for this work. To
compare open-source platforms we use Mora et al. (2016) work that compares
open-source elements based on Risks Categories like Financial, Organizational,
End User, and Technical. The work created a tool called Multi-Attribute Decision
Making (MADM) after evaluating 12 frameworks: Capgemini Open Source Maturity
Model, Navica Open Source Maturity Model (OSMM), Open Business Readiness
Rating (OpenBRR), Open Business Quality Rating (OpenBQR), Quality Model for
Open Source Selection (QMOSS), QualOSS, Software Quality Observatory for
Open Source Software model (SQO-0OSS), OpenSource Maturity Model (OMM),
QualiPSo—Quiality Platform for Open Source Software, IRCA Model, Method for
Qualification and Selection of Open Source Software (QSOSv2), and the
Evaluation Framework for Free/Open Source Projects (EFFORT). Table 15
represents Mora's comparative table for open-source platforms.

In this document, we will focus on open-source low-code development platforms
so that the user cannot be worried about rising prices, having no control of the
code, and unexpected platforms shut down even though commercial platforms can
offer advanced functionalities (Luo et al., 2021).

Table 14 - Low-code commercial platforms compared by Sahay et al.

Feature OutSystems Mendix Appian

Graphical user interface

Drag-and-drop designer Yes Yes Yes
Point and click approach No No No
Pre-built forms/reports Yes Yes Yes
Pre-built dashboards Yes No No
Forms No No No
Progress tracking Yes Yes Yes
Advanced reporting No No No
Built-in workflows No No No
Configurable workflows No No No

Interoperability support

Interoperability with external service Yes Yes Yes

Connection with data sources Yes Yes Yes

Security Support

61

Feature OutSystems Mendix Appian
Application security Yes Yes Yes
Platform security Yes Yes Yes
Collaborative development support
Off-line collaboration Yes Yes Yes
On-line collaboration Yes Yes Yes
Reusability support
Built-in workflows No No No
Pre-built forms/reports Yes Yes Yes
Pre-built dashboards Yes No No
Scalability
Scalability on number of users Yes Yes Yes
Scalability on data traffic Yes Yes No
Scalability on data storage Yes Yes No
Business logic specification mechanisms
Business rules engine Yes Yes Yes
Graphical workflow editor Yes Yes No
Al enabled business logic Yes No Yes
Application build mechanisms
Code generation Yes No No
Models at run-time No Yes Yes
Deployment support
Deployment on cloud Yes Yes Yes
Deployment on local infrastructures Yes Yes Yes
Kinds of supported applications
Event monitoring Yes Yes Yes
Process automation Yes No Yes
Approval process control No No No
Escalation management No No No
Inventory management Yes Yes Yes
Quality management No Yes Yes
Workflow management Yes Yes Yes

62

Table 15 - Open-source comparative table based on risk.

Risk Attributeure Definition Risk Category Null risk Low-risk Moderate Hight risk Certain risk
value value risk value value value

New business Extent of introducing an innovative business Financial Very high High Moderate Low Very low

opportunity process supported by the tool.

Switching costs Extent of overall costs caused for the FLOSS Financial Very high High Moderate Low Very low
adoption.

Training Availability of free or affordable user and Organizational Very high High Moderate Low Very low
technical courses.

Top management | Extent of the economic and political support from | Organizational Very high High Moderate Low Very low

support the highest level of management.

Internal expertise | Existence of FLOSS expertise in the Organizational Very high High Moderate Low Very low
organization.

Functionality - Extent of expected and enhanced functionalities | End user Very high High Moderate Low Very low

quality provided by the tool.

Usefulness - Extent of advantage is relatively perceived by End user Very high High Moderate Low Very low

relevance users of the FLOSS tool.

Usability Easiness of installation, learning and utilization End user Very high High Moderate Low Very low
of the tool.

Community Availability of technical support for tool Technical Very high- High-low | Sufficient- Scarce-high None-high

support utilization. low cost high cost cost

cost cost

Documentation Availability of technical and user manuals and Technical Very high High Moderate Low Very low
extra documents.

Maturity — Period of first release of tool. Technical Decades Several One year Few months One month

longevity years

Security - Extent of error-free status and hiddenflaws of the | Technical Very high High Moderate Low Very low

reliability tool.

63

The Low-code open-source development platforms chosen for this work are
Joget, BPM, and Camunda. The comparison using the Mora et al. (2016) tool
Multi-Attribute Decision Making (MADM) based on risks is displayed in Table 15.

Table 16 - Comparison between Low-code open-sour development platforms using the MADM tool.

Risk Attribute Risk Category Joget jBPM Camunda

New business opportunity Financial High High High

Switching costs Financial Low Moderate Very high
Training Organizational Low Moderate Moderate
Top management support Organizational Moderate Moderate Moderate
Internal expertise Organizational Very high Very high Very high
Functionality - quality End user Low Moderate Very low
Usefulness - relevance End user Moderate Moderate Moderate
Usability End user Moderate Moderate Moderate
Community support Technical Low Moderate High

Documentation Technical Low High Moderate
Maturity — longevity Technical Very low High Moderate
Security - reliability Technical Low High Low

Using an open-source Decision Making Support software named “Open
Decision Maker” it is possible to insert the attributes and their values so that we
can have the answer to which Low-code Development Platform will work better for
our needs using the values 1 to 9 from against every alternative if number 1 is
used it means that both alternatives are equal in that property. To keep the
consistency of Table 16 there will be added two numbers to represent every
difference between the scale of the table. It means that if Joget vs Camunda on
Documentation property is Low vs Moderate the Joget part will be on value 3 for
representing one value from the table scale of difference. The risks have three
different categories Organizational Risks, End-User Risks, and Technical Risks We
weighted Technical Risks with a value of 50% while End-User Risks and
Organizational Risks are getting a value of 25%. We consider that Community
support, Documentation, Maturity — Longevity, and Security - Reliability play a key
role in the decision-making but could be variable according to every project's
needs. Figure 19 displays the Open Decision Maker tool with the values provided
to the FUNCTIONALITY - QUALITY property.

64

"' Open Decision Maker - m} *
Wl File @ Help @ About

Goal Alternatives Criteria Weighting Criteria Weighting Alternatives Result
Step 3 Weighting the alternatives,

Select only the lowest level criteria, Comments

~ SELECT FLOSS PLATFORM FOR PHD THESIS

~ ORGANIZATIOMAL RISKS
TRAINING
TOP MANAGEMENT SUPPORT

o EN[;’iJJEES';\\ILSE;PERTISE Weighting: FUNCTIONALITY-QUALITY
FUMCTIOMALITY-QUALITY
USEFULMESS-RELEVANCE
USABILITY

TECHNICAL RISKS JBPM I JOGET
somewhat better
=
CAMUNDA I JOGET
somewhat better
5
CAMUNDA I JBPM

definitely better

Back Next ?

Figure 19 - Open Decision Maker tool with values for the FUNCTIONALITY — QUALITY property.

By getting the results from the tool it is possible to see Joget as the winner with
a value of 57.46%, Camunda gets second place with 25.62%, and jBPM with a
value of 16.92%. The consistency ratios have a limit value of 0.1 and the values
that got a small CR value are FUNCTIONALITY — QUALITY with a value of 0.0332,
COMMUNITY SUPPORT with a value of 0.0332, DOCUMENTATION with a value
of 0.0332, and MATURITY — LONGEVITY with 0.0559. Figures 20 and 21 display
the results tab and the sensitivity analysis from the tool.

Following the results returned by the tool, we can see that using the Low-code
open-source Development Platform Joget can reduce the risk due to the low costs,
community support, documentation, and maturity of the project. In this Ph.D.
dissertation, we are going to use Joget in the next chapters.

65

m Open Decision Maker
i File @ Help @ About

Goal Alternatives Criteria Weighting Criteria Weighting Alternatives

Step 6: Result

Result/Ranking

Ranking Alternative

1 JOGET
2 CAMUNDA
jBPM

Value

57.46%
25.62%
16.92%

Alternative/ Criterion Matrix

Consistency Ratios CRs:

Mame

SELECT FLOSS PLATFOR...
ORGANIZATIONAL RISKS
TRAIMING

TOP MAMAGEMENT SUP...
INTERNAL EXPERTISE
EMD-USER RISKS
FUNCTIONALITY-CQUALITY
USEFULMESS-RELEVANCE

<

CR Value

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0332
0.0000

L)

Alternative/Criterion
JOGET

jBPM

CAMUNDA

ORGAMIZATIO... EMD-USER RISKS

51.11% 54.30%
24,44% 1841%
24,44% 27.28%

TECHMICAL Rl...
62.22%
1241%
25.38%

E.l Show Sen si‘kivil:‘

@ Create Pdf

el

I: Back

Figure 20 - Result tab that shows Joget as the best Low-code Development Platform.

Figure 21 - Sensitivity Analysis with the values of 50% for ORGANIZATIONAL RISKS and 25% for END —
USER RISKS and TECHNICAL RISKS.

66

Hence, this section provides the following important concepts:

Workflow Management Systems (WFMS)

‘A system that defines, creates and manages the execution of workflows
through the use of software, running on one or more workflow engines,
which is able to interpret the process definition, interact with workflow
participants and, where required, invoke the use of IT tools and applications”.
(van der Aalst et al., 2003)

Business Process Management System (BPMS) - Process-Aware Information
System (PAIS)

“‘Software system for supporting the operation and monitoring of a full
Business Process.” (adapted from Reijers, 2006, p. 390)

BPMS/PAIS Development Platform.

Software development platform used for designing, building, running, and
monitoring a BPMS/PAIS.

Low-code

“‘Application platforms that accelerate app delivery by dramatically reduce
the amount of hand-coding required. Faster delivery is the primary benefit of
these application platforms; they also help firms respond more quickly to
customer feedback after initial software releases and provision mobile and
multichannel apps. Usage of low-code platforms is gaining momentum for
customer-facing applications” (Richardson and Rymer, 2014)

67

3.1.3.3 BPMS*/POIS SYSTEMATIC SELECTIVE LITERATURE REVIEW

A SSLR differs from Systematic Literature Review (SLR) (Kitchenham et al.
2009) and Mapping Study (MS) (Petersen et al. 2008) research methodologies in
the objective of the research, the scope of the research questions, the vastness of
the sources of information sought, as well as the studies analyzed (Paré et al.
2015; Boell and Cecez-Kecmanovic 2015). SLR and MS methodologies are usually
suitable for specific and mature research topics on which there is extensive
literature. SLR pursues quantitative evidence summative purpose on research
guestions of narrow scope covering exhaustively all available studies — filtered by
predefined inclusion and exclusion criteria — and usually are based on many
studies. MS is similar to SLR but MS adds a visual multidimensional classification
of topics regarding the dimensions of interest for the researchers. In contrast,
SSLR method can be used to identify seminal studies on research fields still under
maturation or reactivated after a diminished period of research. These seminal
studies can be complemented with the selection of illustrative applied studies— also
filtered by predefined inclusion and exclusion criteria —, and usually are based on a
small number of studies and sources of studies. SLR and MS research methods,
thus, are suitable for mature specific research topics where a vast literature on
them exists, whereas SSLR is appropriate for research topics still under
development or renewed.

Based in Cooper (1988), a Literature Review research methodology can be
customized by defining its goal pursuing integration, critique or identification of
central of toral issues; its focus on theoretical findings or empirical practices; its
perspective as neutral or positional; its coverage through systematic exhaustive
search, systematic selective search or representative search; its organization
based on historical development or methodological grouped by similar topics; and
its expected audience as research or professional community in the domain
reviewed. This conceptual review aims the dual goal of knowledge integration and
critigue - on plan-driven and agile development life cycles for BPMS against two
generic life cycles templates -; it is focused on practices — i.e. empirical
professional development methodologies for BPMS -; it is realized from a non-
neutral perspective — it aims to describe and compare the main identified plan-
driven and agile development methodologies against a generic plan-driven BPMS
life cycle and a generic agile Scrum-XP life cycle -; it uses a systematic selective
coverage — it reviews only the plan-driven and agile development life cycles for
BPMS found in a high-quality selective set of scientific publications for the 2000-
2023 period-; its organization is methodological — it is uses a generic plan-driven
and an agile development life cycle for BPMS as templates for the review -; and it
is elaborated for a dual audience — academics doing research on BPMS and
professionals developing BPMS -.

68

This SSLR method was carried out following the three main steps shown in
Table 17 (Cooper, 1988; Paré et al. 2015; Templier and Paré 2015).

Table 17 - Systematic Selective Literature Review (SSLR) research method

Step Purpose Outcomes Qutcomes in this research

1) To formulate | To state the | e Research goal |e To contribute to the literature with a

the research goal. | expected statement. conceptual descriptive-comparative review
research goal of two — one classic and one lightweight type
indicating the - relevant development methodologies for
theoretical, or BDAS, and provide to the practice useful
practical or both recommendations regarding both
ones expected development methodologies.
contributions.

2) To define data | To identify and | e List of data The two development methodologies for

sources and | agree the set of sources. BDAS were selected according to the next

selective criteria. data sources to | e Selection criteria: 1) to select the classic methodology
collect the criteria most cited in the literature; and 2) to select a
studies, as well statements. modern and complete - i.e. it includes roles,

as to define the

phases, activities, and artifacts -lightweight

selection development methodology reported from
criteria. 2015-2022 period.
3) To collect| To get the | e Set of selected To methodologies were identified, and theirs
studies. studies. studies. published references [13,14] were obtained.
4) To review and | To conduct the | e Structured We elaborated a generic lightweight
synthetize the | analysis and schema of development methodology using the
findings from the | integration of findings. ISO/IEC 29110 basic profile standard.
collected studies. finding.
5) To elaborate | To produce | e Research e This chapters was elaborated.
report of findings. | visible results. results.

Tables 18 reports the set of the 8 studies on plan-driven or agile development
life cycles for BPMS found in the set of the 25 selected high-quality scientific
publications from the disciplines of Information Systems (18 publications), and
Software Engineering (7 publications). Table 18 reports type of development life
cycle between plan-driven or agile, publication domain, publication name, type of
publication — JCR journal or book-, publication impact factor if available, publication
year, study title, and number of citations. Table 18 reports firstly the 4 plan-driven
studies and secondly the 4 agile ones.

69

Table 18 - Set of 8 studies on Plan-Driven and Agile Development Life Cycles for PAIS/BPMS

Type of o I L .
Publication Publication Type of Publication Publication . o
PAIS/|BPMS : ype o Study Title Citations
. Domain Name Publication IF Year
Life Cycle
Heavyweight Information CACM JCR journal 2007 Business process development life cycle 114
Systems methodology.
Heavyweight Softyvare_ IST JCR journal 2008 A methodology for business process improvement 103
Engineering and IS development.
Information A methodology proposal for collaborative business
Heavyweight EIS JCR journal 2015 process elaboration using a model-driven 19
Systems
approach.
Information Applications of business governance and the
Heavyweight BPMJ JCR journal 2020 Unified BPM Cycle in public credit recovery 4
Systems H
activities.
Information Book An agile BPM project methodology.
Agile BPM CONF (Conference 2013 63
Systems]
Proceedings)
. Information BPM Applying agile principles to BPM.
Agile Systems HANDBOOK Bogk - 18
Information Agile business process development: why, how and
Agile ISEBM JCR journal 2016 when—applying Nonaka'’s theory of knowledge 81
Systems . .
transformation to business process development.
. Book An agile business process improvement
. Information
Agile Systems PROCEDIA (Conference 2017 methodology. 50

Proceedings)

70

3.1.3.4 NON-AGILE BPMS*/POIS SOFTWARE DEVELOPMENT METHODOLOGIES

It is important to analyze plan-driven software development life cycles
(methodologies) for BPMS so that We can have a good perspective of what was
doing in the BPMS*/PAIS field. To find methodologies that can help this research
we found three that are:

e MZ1: Business Process Development Life Cycle Methodology (Papazoglou
& van den Heuvel, 2007).

e M2: A methodology for business process improvement and IS
development (Damij et al., 2008).

e M3: A methodology proposal for collaborative business process
elaboration using a model-driven approach (Mu et al., 2015).

e M4: Applications of business governance and the Unified BPM Cycle in
public credit recovery activities (Nascimento et al., 2019).

M1 by Papazoglou and van den Heuvel (2007) (represented in Figure 22)
describes every single phase, there is a lack of information in some activities, the
artifacts are not reported and should be deduced by the reader, the roles are not
clearly defined and it does not describe what activities must be implemented by
any role. The classic style of this methodology denotes a lot of extra work that can
be not acceptable in an agile environment. This methodology was not implemented
in a real-world application. The Phases for this methodology are Planning, Services
and Process Analysis and Design, Construction and Testing, Provisioning,
Deployment, and Execution and Monitoring. This methodology could be
implemented easily by people who are used to working with waterfall.

M2 by Damij et al. (2008) is simply called TAD methodology that contains six
phases: Business process identification, Business process modeling, Business
process improvement, Object model development, Design, and Implementation.
This methodology has its processes and artifacts very well defined. The authors
specified in the article all the steps that should be followed in case you want to
implement it. The extra work that needs to be implemented with this methodology
could be very heavy. The authors provide an example of how to implement the
methodology but requires a deeper knowledge of the business processes.

71

Figure 22 - Business Process Development Life Cycle Methodology Roadmap (Papazoglou & van den
Heuvel, 2007)

Figure 23 - BPM framework (Macedo de Morais et al., 2014)

72

M3 by Mu et al. (2015) defines four phases: Organizational, Functional,
Informational, and Process. It also defines a Collaborative Meta-Model which
represents the roles and their functions. The organizational phase defines the
roles, the relationships between the partners, and the objectives of the main
network. In the Functional phase the tasks are defined defining the inputs and the
outputs. The Information phase is where all messages are modeled and
transferred between functions. The Process phase is where the BPM is modeled
with all their characteristics and relationships between partners. Finally, the
Collaborative Meta-Model is divided into four packages that divide the vision in
views for organizational, functional, informational, and process. This methodology
has a deeper description of all the phases, processes, and artifacts. It is important
to have a very strong knowledge of UML and BPN to create all the needed
documentation across all phases. Figure 24 represents the methodology created
by Mu et al. (2015).

Figure 24 - Collaborative process elaboration methodology (Mu et al., 2015).

73

M4 by Nascimento et al. (2019) uses Governance Structure for preparatory
stages to implement BPM, uses information from PMBOK and NBR ISO 10013 to
implement the BPM actions following best practices, and finally uses the Unified
BPM Cycle by Baldam et al. (2014) with its four phases: Planning, Analysis and
Modeling, Implementation, and Monitoring. Figure 10 displays all those phases and
how they interact. Governance Structure is the phase where all the organization
structure is understood. The second phase uses the PMBOK and NBR I1SO 10013
guidelines to define the BPM processes. The planning phase prioritizes the
activities to be done by the team. Analysis and modeling phases understand the
current state of the BPM and create possible improvements. The implementation
phase is where all the actions are implemented. Monitoring phases are where all
done activities are under visualization to ensure the quality of the implemented
activities. The authors implemented the methodology in a real-life example even
though there is not a deep explanation of every single phase and the information
about roles, activities or artifacts is not available. Figure 25 represents this
methodology.

Figure 25 - Structure of corporate governance (Nascimento et al., 2019).

74

Dumas et al. (2018) defined the PAIS life cycle with six phases: Process
Identification, Process Discovery, Process Analysis, Process Redesign, Process
Implementation, and Process Monitoring. Process lIdentification is where the
business problem is addressed, the outcome is a new or updated business
process. Process Discovery is the phase where the process is documented.
Process Analysis is where all the issues are discovered and prioritized in a list to
resolve them. Process Redesign is where the processes are improved to resolve
issues and fulfill the desired performance. The Process Implementation phase is
where the issues are resolved based on the discovery phase. Process Monitoring
is the phase where the redesigned processes are measured to find out if the
desired performance is met.

The BPM lifecycle by Dumas et al. (2018) is represented in Figure 26, it helps us
to understand what is the role of technology in BPM and is a key instrument to
improve business processes.

To obtain the rationale and related studies of the relevance, need and most
important plan-driven and agile development life cycles for BPMS, a Systematic
Selective Literature Review (SSLR) research method was conducted. SSLR
method is a research method in the descriptive-interpretative research approach,
i.e., literature review, uses bibliographic research methods and conceptual analysis
(Cooper 1988; Glass et al. 2004; Paré et al. 2015; Templier and Paré 2015).

75

Figure 26 - The BPM lifecycle (Dumas et al., 2018).

Table 29 is an overview of the The BPM lifecycle detailing all Roles. Activities,
and Artifacts reported by Dumas (2018).

To compare those methodologies we can use the BPM lifecycle (Dumas et al.,
2018) to match their phases represented in Table 20

76

Table 19 - The BPM lifecycle detailed.

PHASE-WORKFLOW

The BPM lifecycle (Dumas et al., 2018).

COMPONENTS PHASE-WORKFLOW COMPONENT DESCRIPTION
CATEGORIES

. Management Team

. Process Owners

. Process Participants
Roles . Process Analysts

. Process Methodologist
. System Engineers
. BPM Group

NOoO O~ WNPRP

Activities-Tasks

Process Identification: "Process identification refers to those
management activities that aim to systematically define the set of business
processes of an organization and establish clear criteria for selecting
specific processes for improvement. The output of process identification is
a process architecture, which represents the processes and their
interrelations." (Dumas et al., 2018, p. 35). Activities: {1. Process
architecture definition. 2. Process selection}

Process Discovery: "The current state of each of the relevant processes
is documented, typically in the form of one or several as-is process
models." (Dumas et al., 2018, p. 22). Activities: {1. Defining the Setting. 2.
Gathering the Required Information. 3. Modeling the Process. 4. Assuring
Model Quality}

Quantitative Process Analysis: "There is not a single way of producing a
good process analysis, but rather a range of principles and techniques that
tell us which practices typically lead to a “good” process analysis". (Dumas
et al., 2018, p. 35). Activities: {1.Value-Added Analysis. 2. Waste Analysis.
3. Stakeholder Analysis and Issue Documentation. 4. Root Cause Analysis.

}

Qualitative Process Analysis: "Qualitative analysis is a valuable tool to
gain systematic insights into a process. However, the results obtained from
gualitative analysis are sometimes not detailed enough to provide a solid
basis for decision making". (Dumas et al., 2018, p. 255). Activities: {1.Flow
Analysis. 2. Queues 3. Simulation. 4. }

Process Redesign: "The thorough analysis of a business process may
lead to the identification of a range of issues. For example, bottlenecks
slow down the process or the cost of process execution is too high".
(Dumas et al., 2018, p. 297). Activities: {1. Transactional Methods. 2.
Transformational Methods. }

Process Implementation: "Conceptual process models must be
systematically reworked into executable process models to be interpreted
and automatically executed by a software system, such as a BPMS.".
(Dumas et al., 2018, p. 371). Activities: {1. Identify the automation
boundaries. 2. Review manual tasks. Complete the process model. 3. Bring
the process model to an adequate level of granularity. 4.Specify execution
properties}

Process Monitoring: "Process monitoring is about using the data
generated by the execution of a business process in order to extract
insights about the actual performance of the process and to verify its
conformance with respect to norms, policies, or regulations.”. (Dumas et
al., 2018, p. 371). Activities: {1. Offline Process Monitoring. 2.0nline
Process Monitoring}

Artifacts

Process Identification: {1. Process Architecture}

Process Discovery: {1. Business Process modeled in BPMN}

Qualitative Process Analysis: {1. Classification of Steps tables. 2.- Issue
Register Documents. 3. Pareto Charts. 4. PICK Charts. 5. Cause-Effect
Diagrams. 6. Why-Why Diagrams. }

s

Quantitative Process Analysis: {1. Cycle Times Tables. 2.- Processing
Times Tables. 3. Task Cycle Times Tables. 4. Analysis of Cycle Times. 5.
Cost Calculation Tables. 6. Histograms Simulation Charts.}

Process Redesign: {1. Devil's Quadrangle. 2. The Process Model Canvas.

3. Product Data Model}

Process Implementation: {1. Executable Models with BPMS}

Process Monitoring: {1. Operational Dashboard. Tactical Dashboards. 2.
Strategic Dashboards. 3. Event Logs. 4. Dependency Graphs. 5.Dotted
Chart. 6. Timeline

Chart. }

78

Table 20 - Non-Agile BPMS Methodologies compared.

PHASE- Business Process A methodology for business process A methodology proposal for Applications of business
WORKFLOW Development Life Cycle improvement and IS development collaborative business governance and the Unified
COMPONENTS Methodology (Damij et al., 2008). process elaboration using a BPM Cycle in public credit
CATEGORIES (Papazoglou & van den PHASE-WORKFLOW COMPONENT model-driven approach. (Mu recovery activities.
Heuvel, 2007). DESCRIPTION et al., 2015). (Nascimento et al., 2019).
PHASE-WORKFLOW PHASE-WORKFLOW PHASE-WORKFLOW
COMPONENT COMPONENT DESCRIPTION COMPONENT DESCRIPTION
DESCRIPTION
Roles No reported No reported No reported No reported

Activities-Tasks

Planning Phase:
"Planning sets the scene
for all ensuing phases by
analyzing the business
case of all viable mixtures
of development
approaches and realization
strategies”. (Papazoglou &
van den Heuvel, 2007,
p.4). Activities: {1. Gap
Analysis, 2.Scenario
Analysis, 3. Planning}

Service and Process
Analysis and Design:
"Service analysis aims at
identifying, conceptualizing
and rationalizing business
processes as a set of
interacting Web services".
. Activities: {1. Service
Analysis and Design, 2.
Service Specification, 3.
Identifying Processes, 4.
Specifying Processes}

Business process identification: "The
first phase deals with identifying the
business processes of the enterprise
discussed. To do that, we have to conduct
interviews with the management at
different levels". (Damij et al., 2008,
p.1130). Activities: {1. Business
processes, 2. Work processes, 3. Process
table}

Business process modelling: "Most of
problems faced by enterprises concern
internal business procedures that are
neither well defined nor particularly
efficient. The business process modelling
system is a computer-based, potential
solution to these problems. It is a system
for managing a series of tasks (actions)
defined for one or more procedures”.

(Damij et al., 2008, p.1131). Activities: {1.

Create Activity table, 2. Create Property
table.}

Organizational:
"Organizational modeling is
not a new subject in enterprise
modeling. But most of the
organizational models only
define the organization chart of
enterprises, in terms of
responsibilities, departments
and workers. In a collaborative
situation, the structure is a
graph (in discrete mathematics
terms) rather than a tree". (Mu
et al., 2015, p.7). Activities:
{1. Building a collaborative
network model}

Functional: "The
requirements for the functional
model are to obtain partner
functions, to simplify user
modeling tasks and to
decrease user workload. The
functional model only collects
functions that partners want to
share and which can be
published to other partners".
(Mu et al., 2015, p.10).
Activities: {1.Create IDEF1
Model Unit.}

Governance Structure: "To
achieve the proposed objectives,
preliminary consultations were
required for all available
collections of official documents
(laws, ordinances, instructions
and dispatches of administrative-
managerial content) because they
were a very rich and stable
source of data". (Nascimento et
al., 2019, p.316). Activities: {1.
Construction of Institutional
Model, 2. Analysis of Typical
Dysfunctions, 3. Analysis of
Environment.}

BPM Management Manual:
Uses the PMBOK and NBR ISO
10013 guidelines to define the
BPM processes. Activities: {1.
Organization and visibility of BPM
management, 2. Kmplementation
actions.}

79

Realization: "Once the
service- and process
specifications have
reached a steady state,
they need to be
transformed into service
implementations".
(Papazoglou & van den
Heuvel, 2007, p.9).
Activities: {1. Code Web
Services, Code Business
Processes}

Deployment: In this
phase the new services
are deployed. Activities:
{1. Publish the service
interface. 2. Deploy the
Web service and business
process. 3. Publish service
implementation details}
Excecution: "During the
execution phase, the
business processes and
supporting Web services
are fully deploye and made
operational". (Papazoglou
& van den Heuvel, 2007,
p.9). Activities:

Business process improvement: "The
relationship between the essence of
business process modelling and overall
business effectiveness and the efficiency
of the organization depends on the
consumer’s satisfaction with the desired
output". (Damij et al., 2008, p.1136).
Activities: {1. Process analysis. 2.
Process simulation.}

Object model development: "This model
is developed using the information
collected in the tables, particularly the
property table". (Damij et al., 2008,
p.1138). Activities: {1. Initial object
model. 2. Final object model}

Design: "Deals with designing the system
and preparing it for implementation”.

(Damij et al., 2008, p.1140). Activities: {1.

Operations, Design model, 3. Algorithms}

Implementation: "Deals with the
implementation of the models developed
in the previous phases. The inputs to the
implementation phase are the object
model and design model". (Damij et al.,
2008, p.1141). Activities: {}

Informational: "The basic
need for the informational
model of MISE 2.0 is to model
messages, which are
transferred among business
functions, and to model the
properties of each message,
which are reused in the BPEL
transformation. IDEF1 [22] and
UML class diagrams are both
suitable for modeling
informational”. (Mu et al.,
2015, p.12). Activities: {1.
Model Messages. }

Process: "In the process
modeling domain, a number of
models have been defined,
such as flow charts IDEF3,
Petri nets, Event Process
Chains of ARIS, activity
diagrams of UML and, more
recently, BPMN". (Mu et al.,
2015, p.10). Activities: {1.
Create BPMN Models}

Planning: Prioritizes the activities
to be done by the team.
Activities: {1. Create BPM
Management Manual.}

Analysis and modelling:
Understand the current state of
the BPM and create possible
improvements. Activities: {1.
Evaluate}

Implementation: Is where all the
actions are implemented.
Activities: {1. Implementation of
audit activities, 2. Information
collection and verification, 3.
Management of findings, 4.
Preparation of conclusions. }
Monitoring: is where all done
activities are under visualization
to ensure the quality of the
implemented activities.
Activities: {1. Monitoring}

80

Artifacts

Planning Phase: No
reported

Service and Process
Analysis and Design: No
reported

Realization: No reported

Deployment: No reported

Excecution: No reported

Business process identification: {1. List
of strategic goals, 2. List of business
processes, 3. Organizational scheme of
the enterprise, 4. plan of interviews with
management at operational level }

Business process modelling: {1. Activity
table, 2. Property table, 3. Flowchart}

Business process improvement:
{1.0bject model}

Object model development: No reported
Design: {1. Design Model}

Implementation: {1. Program Codes}

Organizational: {1.
Collaborative network model}

Functional: {1. Functional
Model}

Informational: {1.
Informational Model}

Process: {1.BPMN Models}

Governance Structure: {1.
Canvas Business Model, 2.
Current Reality Tree, 3. SWOT
Analysis, 4. Process
Classification Structure}

BPM Management Manual: {1.
PMBOK-PMI, 2. NBR ISO
10013}

Planning: {1. BPM Management
Manual}

Analysis and modelling: No
reported

Implementation: No reported

Monitoring: No reported

81

3.1.3.5 AGILE BPMS*/POIS SOFWARE DEVELOPMENT METHODOLOGIES

Agility is needed for BPM to deal with challenges and able to deal with process
change (Badakhshan et al., 2019). “Emerging technologies in BPM, such as
process mining, machine learning, and the Internet of Things (loT), enable
organizations to evaluate processes on a real-time basis through real-time
connectivity, so process criteria like time, quality, and cost can be evaluated
on an ongoing basis. Modern technologies help organizations to identify and
prioritize processes rapidly, initiate necessary process changes, and manage
process models timely” (Badakhshan et al., 2019, p. 9).

To be considered agile a process needs to have Flexibility, Leanness, and
Continuity (Badakhshan et al., 2019). Figure 27 displays the Agile BPM Framework
created by Badakhshan et al. (2019) propose three columns:

e Column A: Talks about how an organization should be ready for process
change.

e Column B: None of the activities should decrease the quality, economy,
and simplicity perceived by customers.

e Column C: Is focused on how an organization should be always scouting
for new trends like technologies that can enable agility in BPM.

Figure 27 - Agile BPM framework

Through the literature, there are some agile methodologies for BPM that try to
create business processes in an agile way. Silva et al. proposed AGILIPO (2009)
that taking into account that all business processes are incomplete and need to be

82

constantly changed, Rachid Meziani and Rodrigo Magalhdes (2009) created a
complementary agile methodology for AGILIPO with five complementary steps,
Ventura and Zacarias (2017) created an agile methodology for improving Business
Processes based on daily practices with iterative processes and people involved.
All those methodologies can be implemented for working in Business Processes
with agility.

This Ph.D. dissertation is focused on methodologies for developing information
systems using a BMPS with low-code platforms.

For this section, we found two Agile BPMS*/PAIS methodologies that can be
applied for developing an information system using a low-code development
platform:

e M1: An agile BPM project methodology (Thiemich & Puhlmann, 2013).

e M2: Applying Agile Principles to BPM (Rosing & Gill, 2015).

e MS3: Agile business process development: why, how and when—applying
Nonaka’s theory of knowledge transformation to business process
development (Bider & Jalali, 2016).

e M4: An agile business process improvement methodology (Martins &
Zacarias, 2017).

M1 by Thiemich and Puhlmann (2013) created an Agile BPM Project
Methodology, shown in Figure 28, using the IBPM Methodology, a traditional
waterfall methodology, and the Scrum framework trying to provide sustainable and
continuous improvements. The Agile BPM Project Methodology defines Activities,
Methods, and Artifacts considering Pregame phases such as Scoping, Kick-Off,
and Sprint 0. The Game phase is covered by Sprint 1-n while Postgame Phase has
the Releasesprint. If this methodology merges IBPM Methodology some elements
are necessary to know to implement that can add more difficult to be implemented.
There are some gaps in the documentation some activities, artifacts, and methods
are not clearly described so the users can be implementing in the wrong way the
methodology. Agile BPM Project Methodology was tested with a real service portal
project.

83

Figure 28 - Agile BPM Framework Overview (Thiemich and Puhlmann, 2013).

M2 by von Rosing et al. (2015) (see Figure 29) created an Agile BPM
Methodology that has six phases such as Analyse, Plan, Design, Build, Test, and
Deploy. All those phases contain a clear workflow of the processes with some
common questions and actions that must be performed in every step. Most of the
roles, events, artifacts, and methods are not documented so it is very easy to get
lost trying to implement the methodology. This Agile BPM Methodology was not
tested with a prototype or real-life problem.

84

Figure 29 - Agile BPM Overview (von Rosing et al., 2015).

M3 by Bider and Jalali (2016) (see Figure 30) uses the SECI model created by
Nonaka (1994) and practical knowledge for creating an agile methodology. This
model has 3 phases: Socialization on this phase the stakeholders and the
development team interact and share knowledge so that the development can
cover their needs. Embedment in this phase the BPM specialist work with business
people to create and implement tacit knowledge into real business processes.
Adoption in this phase the BPM is running and the practitioners are gaining
valuable knowledge for sharing for the next business process creationg or to adjust
current processes. Figure 11 displays the SECI Model. This methodology was
tested with real cases and its authors reported some advantages and
disadvantages to using it. This methodology does not report Roles, Activities, and
Artifacts clearly so it would be impractical to implement for any development.

85

Figure 30 - SEA—knowledge transformation in the agile process development (Bider & Jalali, 2016).

M4 by Martins and Zacarias (2017) (see Figure 31) is a proposal from adopting
traditional BPPAM Methodology into Agile to act quickly to changes from non-
experts users. This methodology consists of three phases: Business Process
Discovery (BPD), Business Process Supervision (BPS), and Business Process
Assessment and Improvement (BPAI). Figure 31 represents the Agile BPPAM
methodology.

Phase 1: Business Process Discovery (BPD): The main goal is developing an
organizational profile to understand the business processes of a company. In this
phase, we need to learn about the company and model its business processes.
Phase 2: Business Process Supervision (BPS): Control mechanisms are created
and make sure that stakeholder brings models to real business activities. Phase 3:

86

Business Process Assessment and Improvement (BPAI): In this phase, the
company identifies its strengths, weaknesses, existing improvement activities, and
key areas for improvement.

In this methodology, there are some activities mentioned for Phase 1 like
Learning (Eliciting) Business and Modelling Business, for Phase 2 there are three
activities for controlling mechanisms such as: comparing real business activities
with base business models, annotating/reviewing models, and, identify new
business descriptions. Phase 3 is where the Business Analyst implements
corrections on current processes. There are few details for activities, roles, and
artifacts so that could be very complicated to implement for a practitioner without
detailed documentation.

Figure 31 - Agile BPPAM methodology by Zacarias (2017).

Table 21 has all the information provided for the Agile BPMS Methodologies and
is compared against Scrump- Xp.

87

Table 21 - Aguile BPMS Methodologies Comparative

PHASE- An Agile BPM Project Methodology Applying Agile Principles to Agile business process An agile business process
WORKFLOW (Thiemich & Puhlmann, 2013). BPM (Rosing & Gill, 2015). development: why, how and improvement methodology
COMPONENTS when—applying Nonaka’s (Martins & Zacarias, 2017).
CATEGORIES theory of knowledge
transformation to business
process development (Bider &
Jalali, 2016).
1. BPM Process Owner 1. Process Owner No Reported No reported
Roles 2. BPM Master 2. Agile coach

3. BPM Team

3. Cross-functional team

Activities-Tasks

Scoping: In this phase is where the
project is defined and the stakeholders
are identified. Activities: {1. Define target
parameters. 2. Create project idea. 3.
Define project start/end. 4. Identify
Stakeholder. 5. Evaluate BPM Maturity.}

Agile Analysis: "Agile analysis,
in the context of Agile BPM,
suggests active collaboration
with the stakeholders to identify
the requirements with necessary
details at the release and
iteration levels, instead of trying
to get the complete detailed
requirements up-front". (Rosing &
Gill, 2015, p.564). Activities: {1.
Expectations. 2. Business Goals.
3. Application Goals. 4.
Technology Goals. 5. High Level
Business Requirements. 6. High
Level Application Requirements.
6. High Level Technology
Requirements. }

Socialization: "The nature of the
first phase consists in transferring
tacit knowledge on the desired
process from the stakeholders to
the design team" (Bider & Jalali,
2016, p.17). Activities: No
reported

Business Process
Discovery (BPD): "Aims at
developing an organisational
profile in order to understand
business processes which
contain information about
people, activities, technology
and data" (Martins &
Zacarias, 2017, p.133).
Activities: {1. Learning
(Eliciting) Business. 2.
Modelling Business. }

Kick-Off: Is where the initial parameters
are set and the team is built. Activities:
{1. Define sprint length. 2. Create initial
release plan. 3. Establish architecture
vision. 4. Build team.}

Agile Planning: "Traditional
ways of BPM planning focus on
the detailed up-front planning.
Agile BPM ways of working
require planning at project,
release, iteration, and day level.
Agile BPM focuses on initial high-
level project plan that outlines
number of project releases,
resources, risks, and cost and
benefits estimates”. (Rosing &
Gill, 2015, p.565). Activities: {1.
Lead Business Objects. 2. Lead
Application Objects. 3. Lead
Technology Objects. 4. Detailed
Business Requirements. 5.
Detailed Application

Embedment: "In this cycle,
process modeling, system design
and manufacturing are merged
into one phase Support system
manufacturing (Embedment)"
(Bider & Jalali, 2016, p.17).
Activities: No reported

Business Process
Supervision (BPS): "Formal
control mechanisms are
designed in order to ensure
that operational stakeholder
carried out real business
activities as described by
business models" (Martins &
Zacarias, 2017, p.134).
Activities: {1. Compare real
business activities with base
business models. 2.
Annotate/review models. 3.
identify new business
descriptions. }

88

Requirements. 6. Detailed
Technology Requirements. }

Sprint O: First sprint where is defined all
the elements that are needed in a normal
sprint. Activities: {1. Define Definition of
Done & Definition of Ready. Identify initial

requirements. 3. Define initial architecture.

4. Setup project environment}

Agile Architecture and Design:
"Agile design for BPM can kick
off by reviewing the existing As-Is
process model and identified
requirements for the target To-Be
process model. Instead of a
detailed up-front design, a high-
level design for the To-Be
process can be developed at the
start of the project”. (Rosing &
Gill, 2015, p.566). Activities: {1.
To-Be. 2. As-Is. }

Sprint 1-n: lterative Process where
an increment is built working providing
value to the customer. Activities: {1.
Refine process backlog. 2. Plan sprint. 3.
Define tasks. 3. Implement requirements.
4. Get stakeholder feedback. 5. Control
project progress. 6. Run retrospective.}

Agile Build: "Traditional
ways of working focus on big-
bang product or service
development in the build phase.
Agile ways of working focus on
building the product or service
minimum marketable or viable
features in small iterations based
on the just-in-time user stories or
requirements"”. (Rosing & Gill,
2015, p.567). Activities: {1.
Defining the Product Backlog. 2.
Sprint Planning Meeting. 3.
Defining the Sprint Backlog. 4.
Interrogating and Testing. 5.
Demo Release. 6. Client
Feedback Meeting. 7.
Retrospective. 8. Refactoring. 9.
System Changes. 10. System
Testing. }

Adoption: "one big cycle is
substituted by many smaller and
shorter ones. The system is built
iteratively starting with the basic
functionality that does not limit
flexibility of process participants to
experiment with the new process.
During the usage of the basic
system, better understanding of
the needs is acquired, which is
converted in adding details to the
system in the next cycle." (Bider
& Jalali, 2016, p.17). Activities:
No reported

Business Process
Assessment and
Improvement (BPAI): "Is a
mean for organisations to
identify their strengths,
weaknesses, existing
improvement activities and
key areas for improvement
(Martins & Zacarias, 2017,
p.134). Activities: No
reported

89

Releasesprint: Sprint where the team is
focused on releasing done work.
Activities: {1. Append Release Notes. 2.
Train IT operations and end users. 3.
Integration tests. 4. Finish Documentation.

}

Agile Testing: "Although
traditional ways of working
around testing first do the testing
once the whole product or
service is developed, agile ways
of working focus on testing the
product or service minimum
marketable or viable features in
small iterations while the
development is in progress".
(Rosing & Gill, 2015, p.567).
Activities: {1. Deployment to
production. }

Artifacts

Scoping: {1. Project Idea. 2. List of
Stakeholder}

Agile Analysis: No reported.

Socialization: No reported

Business Process
Discovery (BPD): No
reported

Kick-Off: {1. Architecture Vision. 2. SOA-
MAP. 3. First Releaseplan. Skillmatrix. }

Agile Planning: {1. Definition of
"done". 2. Release plans. 3.
Product Backlog. 4. User story. }

Embedment: No reported

Business Process
Supervision (BPS): No
reported

Sprint 0: {1. Def. of Done. 2. Def. of
Ready. 3. Process Backlog. 4. Story
Map.}

Agile Architecture and Design:
{1. ModelTo-Be. 2. Model As-Is. }

Sprint 1-n: {1. Sprint Backlog. 2. Process
Increment. 3. Story Map}

Agile Build: {1. System
Changes. 2. System Testing. 3.
Kanban board. 4. Burndown
chart. 5. Burnup chart. 6. Defect
trend. 7. Decision Point. }

Releasesprint: {1. Training documents.
2. Release Notes. 3. Documentation}

Agile Testing: {1. Working
product. }

Adoption: No reported

Business Process
Assessment and
Improvement (BPAI): No
reported.

90

3.2 ANALYSIS OF CONTRIBUTIONS AND LIMITATIONS

Table 22 displays the analysis from related studies with their characteristics and

limitations.

Table 22 - Contributions and are of improvements

Area Contributions Opportunities of Improvement
Software 1. Is the basic set of tools that help to 1. Lack of research with experience in
Engineering develop software in an orderly way. the industry.
2. Research in this area has helped to 2. Methodologies for low-code
improve technology. platforms.
3. How to manage the resources for the 3. Gap between new technologies and
software process (phases, activities, research.
artifacts, and resources (including humans))

Agile 1. Close work between clients and 1. Sometimes the agile methodologies

Methodologies

developers provides better results.

2. lterative work with small releases provides
value to the customer.

3. Software is developing faster

are not implemented as intended.
2. Official guides can be very vague
and can leave many doubts to the
practitioners.

3. Lack of limits on the project could
generate chaos.

Business 1. Develop software with low-code platforms | 1. Lack of methodologies

Process by people with low programming knowledge 2. Paid low-code platforms can be very

Management 2. Improve development time versus expensive.

Systems traditional programing languages. 3. Open source low-code platforms can
3. Improve development costs. be difficult to learn.

Non-agile 1. Good practices for working with BPM 1. Lack of methodologies for low-code

BPMS*/POIS projects. platforms.

Software 2. Proven methodologies in real-life projects. | 2. Very heavy methodologies that can

Development
Methodologies

3. Some methodologies can be very simple
to implement for people that have worked on
waterfall methodology.

be only implemented by BPM experts.
3. Most of the methodologies lack
detailed documentation.

Agile
BPMS*/POIS
Software
Development
Methodologies

1. Use Scrum as the core for implementing a
new agile methodology focused on BPMS.
2. One methodology is well explained and
can be implemented by anyone that knows
Scrum.

3. Propose interesting activities and artifacts
that worth to be considering in future
methodology projects.

1. Lack of proven methodologies in real
projects.

2. Lack of detailed documentation for
practitioners about how to use the
methodologies.

3. Lack of methodologies.

91

4 DEVELOPMENT OF THE SOLUTION

As mentioned in Chapter 2 this Ph.D. The dissertation uses mainly the Design
Science Research Methodology (DSRM) (Peffers et al., 2007) which is detailed in
Table 2.1 and is divided into the next steps:

1.
2.

o QI = @9

DSRM step 1 - Design problem identification and motivation.

DSRM step 2 - Definition of the Design Objectives, Design Restrictions,
Resign Approach, Design Theoretical Sources, and Design Components
for the expected Artifact.

DSRM step 3 - Design and development of the artifact.

DSRM step 4 - Demonstration of the artifact (Proof of Concept).

DSRM step 5 - Evaluation of the artifact.

DSRM step 6 - Communication of research results.

4.1 DSRM STEP 1 — DESIGN PROBLEM IDENTIFICATION AND
MOTIVATION

Chapter 1 of this document contains all the detailed information for Problem
Identification and its Motivation.

4.2 DSRM STEP 2 — DEFINITION OF THE DESING OBJECTIVES,
DESING APPROACH, DESIGN THEORETICAL SOURCES, AND
DESING COMPONENTS FOR THE EXPECTED ARTIFACT:
AGILE BPM METHODOLOGY

4.2.1 DEFINITION OF THE DESING OBJECTIVES

The expected Design Objectives (DOs) to be archived in this work are:

1.

DO.1 The designed artifact provides an agile (i.e. responsive, flexible,
speedy, lean, simple, lightweight, and fine-grain documented (Conboy,
2009), (Qumer & Henderson-Sellers, 2008)) workflow—i.e. a value
stream—for designing, building, and implementing a new minimum viable
Agile BPM Methodology.

DO.2 The designed artifact is useful, easy to use, and valuable (Galvan
et al., 2021) for small companies, software developers, and IT
practitioners.

92

3. DO.3 The designed artifact is fine-grain documented including the roles-
set component, phases-activities set component, and artifacts-templates-
set component.

4.2.2 DESIGN RESTRICTIONS

For Design Restrictions (DRs) we need to take into account parameters such as
time, budget, theoretical sources, and available software. The DRs that were
agreed are:

1. DR.1 The designed artifact must be composed of design building blocks
from relevant design theoretical sources (DTSSs).

2. DR.2 The artifact must be designed in a short-term period (at most 6
months) and under the assigned research budget.

3. DR.3 The designed artifact must be documented in an Electronic Process
Guide.

4.2.3 DESIGN THEORITICAL SOURCES

The Design Theoretical sources (DTSs) are the key sources of the design
components that will be chosen to create the artifact. The DTSs selected were
proposed based on the theoretical background and having reviewed the eight
BPMS methodologies.

DTS.1 The BPM Lifecycle (Dumas et al., 2018)

DTS.2 Scrum-XP (Schwaber & Sutherland, 2020) (Dudziak, 1999)
DTS.3 APBM (Thiemich & Puhlmann, 2013).

4. DTS.4 ABPM (Rosing & Gill, 2015).

W e

Every single element such as Roles, Activities, and Artifacts for the DTS will be
considered and discussed with the team to get the Desing Components.

4.2.4 DESIGN COMPONENTS FOR THE EXPECTED ARTIFACT

Evaluating very carefully the DTS, we have selected the potential design
components (DCS) to be used in the design of the artifact. Some components may
be not used in the final design.

Table 23, Table 24, Table 25, and Table 26 have all the Design Components
selected from the four DTS by the research team based on their experience and

93

expertise. An iterative process is going to be performed in order to get de most
important components to design the artifact.

Table 23 - DTS.1 Theoretical rigorous SDLC for BPMS (Dumas et al., 2018)

Design
Component

Design theoretical source (DTS)

Specific elements of the design
component (DC) potentially to be
used in the designed artifact

DC.1
The BPM Lifecycle
Phases

DTS.1 The BPM Lifecycle (Dumas et al.,
2018)

{Process Identification, Process
Discovery}

DC.2
The BPM Lifecycle
Activities

DTS.1 The BPM Lifecycle (Dumas et al.,
2018)

{Process Identification [Process
architecture definition, Process
selection], Process Discovery [Defining
the setting, Gathering the required
information, Modeling the process,
Assuring model quality]}

DC.3
The BPM Lifecycle
Artifacts

DTS.1 The BPM Lifecycle (Dumas et al.,
2018)

{Process Identification [Process
architecture of the selected process],
Process Discovery [As-is business
process model]}

Table 24 - DTS.2 Scrum-XP (Schwaber & Sutherland, 2020) (Dudziak, 1999)

Design Component

Design theoretical source (DTS)

Specific elements of the design
component (DC) potentially to be used in
the designed artifact

Scrum-XP Phases

Sutherland, 2020) (Dudziak, 1999)

DC.4 DTS.2 Scrum-XP (Schwaber & {Customer-Product Owner; Coach-Master;
Scrum-XP Roles Sutherland, 2020) (Dudziak, 1999) Development Team}
DC.5 DTS.2 Scrum-XP (Schwaber & {Exploration, Product Planning, Iteration-

Sprint Planning, Iteration-Sprint, Product
Release}

DC.6
Scrum-XP Activities

DTS.2 Scrum-XP (Schwaber &
Sutherland, 2020) (Dudziak, 1999)

{Exploration [product vision definition;
product backlog (user story set) definition;
product backlog (user story set)
prioritization; optional: spike testing]}
{Product Planning [product backlog (user
story set) effort estimation; product backlog
(user story set) negotiation; optional: style
codifying standard definition]}
{lteration-Sprint Planning [iteration-sprint
user story selection; iterationsprint user
story task planning iteration-sprint user
story plan negotiation]}

{lteration-Sprint [stand-up meeting;
customer functional tests elaboration;
simple design; codification and unit testing;
increment integration and customer
functional testing; iteration-sprint review and
retrospective]}

{Product Release [product releasing]}

94

DC.7
Scrum-XP Artifacts

DTS.2 Scrum-XP (Schwaber &
Sutherland, 2020) (Dudziak, 1999)

{Exploration [product vision; product
backlog]}

{Product Planning [product backlog plan]}
{lteration-Sprint Planning [iteration-sprint
plan]}

{lteration-Sprint [iteration-sprint Kanban
board; iteration-sprint burndown chart;
customer functional tests; simple
architecture design; unit tests; unit codes;
built increment; iteration-sprint agreements]}
{Product Release [product done]}

Table 25 - DTS.3 APBPM (Thiemich and Puhlmann, 2013)

Design Component

Design theoretical source (DTS)

Specific elements of the design component
(DC) potentially to be used in the designed
artifact

APBPM Activities

Puhlmann, 2013)

DC.8 DTS.3 APBPM (Thiemich and {Project Scoping, Project Kick-Off, Sprint 0,
APBPM Phases Puhlmann, 2013) Sprint 1-n, Release Sprint}
DC.9 DTS.3 APBPM (Thiemich and {Project Scoping [Define target parameters,

Create project idea, Define project start/end,
Identify Stakeholder, Evaluate BPM Maturity],
Project Kick-Off [Define sprint length, Create
initial release plan, Establish architecture vision,
Build team], Sprint 0 [Define Definition of Done
& Definition of Ready, Identify initial
requirements. Define initial architecture, Setup
project environment], Sprint 1-n [Refine process
backlog, Plan sprint, Define tasks, Implement
requirements, Get stakeholder feedback.
Control project progress, Run retrospective],
Release Sprint [Append Release Notes, Train
IT operations and end users, Integration tests,
Finish Documentation.]}

DC.10
APBPM Artifacts

DTS.3 APBPM (Thiemich and
Puhlmann, 2013)

{Project Scoping [Project Idea, List of
Stakeholder], Project Kick-Off [Architecture
Vision, SOA-MAP, First Release plan,
Skillmatrix], Sprint O [Def. of Done, Def. of
Ready, Process Backlog, Story Map], Sprint 1-n
[Sprint Backlog, Process Increment, Story
Map], Release Sprint [Training documents,
Release Notes, Documentation]}

95

Table 26 - DTS.4 ABPM (Rosing and Gill, 2015).

Specific elements of the design component

Design Component | Design theoretical source (DTS) (DC) potentially to be used in the designed

artifact

DC.11

DTS.4 ABPM (Rosing and Gill, {Agile Analysis, Agile Planning, Agile build,

ABPM Phases 2015) testing, and deployment, Agile build, testing, and

deployment}

DC.12

DTS.4 ABPM (Rosing and Gill, {Agile Analysis [High Level Business

ABPM Activities 2015) Requirements], Agile Planning [High-level

project plan], Agile build, testing, and
deployment [Defining the Sprint Backlog, Sprint
Planning, Performing Sprint, Testing, Demo
Increment, Client Feedback Meeting,
Retrospective, Deploying Increment]}

DC.13

DTS.4 ABPM (Rosing and Gill, {Agile Analysis [Selected business process and

ABPM Artifacts 2015) sub-processes, High-level user stories, Table of

priorities and estimations], Agile Planning
[Project plan], Agile build, testing, and
deployment, Agile build, testing, and deployment
[Sprint Backlog, Sprint Task Plan, Tests,
Increment, Integrated Release]}

4.3 DSRM STEP 3 - DESING AND DEVELOPMENT OF THE
ARTIFACT

To design the BPMS Methodology the research team applied the Means-Ends
Analysis heuristic (Newell & Simon, 1972) (Greeno et All,1987) in four steps:

Step 1. To represent the design problem defining an initial state S i, a
pursued final state S f, a set of heuristic operators {HOx(Sy, Sz), ...} that
can transform the state Sy to the state S z, a set of design objectives
{DQj, ...} and design restrictions {DR k, ...} expected to be satisfied by
the final state S f, and two qualitative functions EvalDOs(DO’s) and
EvalDRs(DR’s) to evaluate the logical satisfaction of DO’s and DR’s.

Step 2. To set up the initial state S i and the pursued final state S f, and
determine the initial qualitative evaluations EvalDOs(DO’s) and
EvalDRs(DR’s) for the initial state Si and the pursued final state Sf.

Step 3. To apply a sequence of heuristic operators {HO?(Si , S2);
HO?(S2, S3); ...; HO?(S?, Sf)lbased on a logical analysis of the
operators that can transform the initial state S i in the pursued final state
Sf.

Step 4. To evaluate the level of compliance of the pursued final state S f,
regarding the design objectives {DOj, ...} and design restrictions {DRK,

)

96

The first step was selecting the Design Components from the DTSs, with the
first batch of DCs the research team talked about the importance of every single
component. The third iteration removed DCs that were already covered by DTS.2
Scrum-XP (Schwaber & Sutherland, 2020) and complemented with DCs from other
DTSs.

Appendix 10.2 has all the information about this process, with the first and
second iterations of the selected Design Components. Tables 27, 28, and 29
display the final selected DCs for roles, phases/activities, and artifacts. Figure 32
displays the final BPMS Methodology with all selected Desing Components.

97

TESIS TESIS TESIS TESIS

Figure 32 - BPMS Methodology Conceptual Map.

TESIS TESIS TESIS TESIS

TESIS

TESIS

98

Table 27 - Final Design Components for roles.

Roles
. . SDLC that is also using it
Designh Component Source Why this could be helpful DTS1 | DTS2 | DTS3 | DTS4
DC.4 DTS.2 Scrum- R.1 Customer-Product Owner: The closest role to the
Scrum-XP Roles XP (Schwaber & | stakeholders, is the person who knows how to provide value to X X X X
Sutherland, the project.
2020) (Dudziak, . -
1999) R.2 Coach-Master: The person who is in charge of removing all
the obstacles, coaching the team, ensuring transparency, and X X X X
promoting self-organization.
R.3 Development Team: The cross-functional team can build X X X X

the increment every sprint. It is self-organized.

Table 28 - Final Design Components for Phases and Activities.

: . SDLC that is also using it
Desigh Component Source Why this could be helpful DTS1 | DTS2 | DTS3 | DTS4
DC.1 DTS.1 The BPM Lifecycle | Phase 1 - Process Discovery: Define the team, get
The BPM Lifecycle (Dumas et al., 2018) the information of the process, and ensure the quality. X X
Phases
DC.2 DTS.1 The BPM Lifecycle Activity A.1.1 Defining the setting: Build the
The BPM Lifecycle (Dumas et al., 2018) team to work on the process. X
Activities
DC.2 DTS.1 The BPM Lifecycle Activity A.1.2 Gathering the required
The BPM Lifecycle (Dumas et al., 2018) information: Get all the needed information to work X X X X
Activities on different processes.

DC.2 DTS.1 The BPM Lifecycle Activity A.1.3 Modeling the process: Start to

The BPM Lifecycle (Dumas et al., 2018) model the processes using BPMN (Business Process X X X

Activities Management Notation).

DC.5 DTS.2 Scrum-XP Phase 2 - Exploration / Product Planning: Plan all

Scrum-XP Phases (Schwaber & Sutherland, the projects and identify the project's needs. X X X
2020) (Dudziak, 1999)

99

DC.5 DTS.2 Scrum-XP Activity A.2.1 Product vision definition: To
Scrum-XP Phases (Schwaber & Sutherland, Have a clear vision of the product and what needs to X
2020) (Dudziak, 1999) be developed.
DC.5 DTS.2 Scrum-XP Activity A.2.2 Product backlog (user story set)
Scrum-XP Phases (Schwaber & Sutherland, definition: Create the user stories or tasks that need X
2020) (Dudziak, 1999) to be developed.
DC.5 DTS.2 Scrum-XP Activity A.2.3 Product backlog (user story set)
Scrum-XP Phases (Schwaber & Sutherland, prioritization: Set the user stories to prioritize the X
2020) (Dudziak, 1999) tasks for the ones that provide more value.
DC.5 DTS.2 Scrum-XP Activity A.2.4 - Product backlog (user story
Scrum-XP Phases (Schwaber & Sutherland, set) effort estimation: Estimate every single user
2020) (Dudziak, 1999) story by the developer, it is possible to use fixed time X
or user story points (recommended).
DC.9 DTS.3 APBPM (Thiemich Activity A.2.5 Define Definition of Done &
APBPM Activities and Puhimann, 2013) Definition of Ready: Create the Definition of Done
and Ready. The definition of Done is all the
parameters needed to accept the tasks as completed. X
The definition of Ready is the list of parameters that
need to be met for considering a task as ready to be
developed.
DC.5 DTS.2 Scrum-XP Phase 3 - Iteration-Sprint: Build the increment in an
Scrum-XP Phases (Schwaber & Sutherland, Iterative process, X
2020) (Dudziak, 1999)
DC.5 DTS.2 Scrum-XP Activity A.3.1 Sprint Planning: Select the most
Scrum-XP Phases (Schwaber & Sutherland, valuable user stories to be developed during the sprint
2020) (Dudziak, 1999) by the Product Owner. The development team X
chooses the task according to their skills.
DC.5 DTS.2 Scrum-XP Activity A.3.2 Stand-up meeting: Meet with the
Scrum-XP Phases (Schwaber & Sutherland, team to talk about the progress, the upcoming work, X
2020) (Dudziak, 1999) and any block that can have.
DC.9 DTS.3 APBPM (Thiemich Activity A.3.3 Implement requirements:
APBPM Activities and Puhlmann, 2013) Develop every single user story. X
DC.12 DTS.4 ABPM (Rosing and Activity A.3.4 Testing: Test every single X

ABPM Activities

Gill, 2015)

requirement that is developed during the sprint.

100

DC.5 DTS.2 Scrum-XP Activity A.3.5 Iteration-sprint review and

Scrum-XP Phases (Schwaber & Sutherland, retrospective: Conduct a retrospective by all the X X X
2020) (Dudziak, 1999) team to know how what is working, and what is not.

and how to be better in the next sprints.

DC.5 DTS.2 Scrum-XP Phase 4 - Product Release: Release the increment

Scrum-XP Phases (Schwaber & Sutherland, with the most important features chosen by the X X X
2020) (Dudziak, 1999) Owner.

DC.5 DTS.2 Scrum-XP Activity A.4.1 Product releasing: Release the

Scrum-XP Phases (Schwaber & Sutherland, increment. X X X
2020) (Dudziak, 1999)

DC.9 DTS.3 APBPM (Thiemich Activity A.4.3 Finish Documentation: Create

APBPM Activities and Puhlmann, 2013) the final documentation for the increment. X X X

Table 29 - Final Design Components for Phases and Artifacts.

Design Component

Source

Why this could be helpful

SDLC that is also using it

DTS.1 | DTS.2 | DTS.3 | DTS.4
DC.1 DTS.1 The BPM Lifecycle
The BPM Lifecycle (Dumas et al., 2018) Phase 1 - Process Discovery: Define the team, get
Phases the information of the process, and ensure the quality.
DC.3 DTS.1 The BPM Lifecycle Artifact T.1.1 Process Idea: A document that
The BPM Lifecycle (Dumas et al., 2018) clearly defines the process idea. X
Artifacts
DC.10 DTS.3 APBPM (Thiemich Artifact T.1.2 Process architecture of the
APBPM Atrtifacts and Puhlmann, 2013) selected process: The final document of the X X X
architecture of the project.
DC.10 DTS.3 APBPM (Thiemich Artifact T.1.3 List of Stakeholders: A document
APBPM Artifacts and Puhimann, 2013) having a list of all stakeholders of the project. X X X
DC.10 DTS.3 APBPM (Thiemich Artifact T.1.4 Architecture Vision: A document
APBPM Artifacts and Puhlmann, 2013) with the vision of the architecture of the project. X
DC.5 DTS.2 Scrum-XP Phase 2 - Exploration / Product Planning: Plan all
Scrum-XP Phases (Schwaber & Sutherland, | the projects and identify the project's needs.
2020) (Dudziak, 1999)
DC.10 DTS.3 APBPM (Thiemich Artifact T.2.1 First Release Plan: A document
APBPM Artifacts and Puhlmann, 2013) that details the release plan for the project. X X X

101

DC.10 DTS.3 APBPM (Thiemich Artifact T.2.2 Def. of Done: A list of parameters

APBPM Artifacts and Puhlmann, 2013) that tasks need to be met for considering tasks as X
done.

DC.10 DTS.3 APBPM (Thiemich Artifact T.2.3 Def. of Ready: A list of parameters

APBPM Artifacts and Puhlmann, 2013) that tasks need to be met for consideration as ready for X
development.

DC.10 DTS.3 APBPM (Thiemich Artifact T.2.4 Process Backlog / Product

APBPM Artifacts and Puhlmann, 2013) Backlog / Story Map: The backlog of tasks to be X
developed.

DC.5 DTS.2 Scrum-XP Phase 3 - Iteration-Sprint: Build the increment in an

Scrum-XP Phases (Schwaber & Sutherland, | lterative process,

2020) (Dudziak, 1999)

DC.10 DTS.3 APBPM (Thiemich Artifact T.3.1 Sprint Backlog / Story Map: The

APBPM Artifacts and Puhimann, 2013) list of tasks to be developed during the sprint. X

DC.10 DTS.3 APBPM (Thiemich Artifact T.3.2 Process Increment: The result of

APBPM Artifacts and Puhlmann, 2013) merging newly developed stories with the past X
increment.

DC.5 DTS.2 Scrum-XP Phase 4 - Product Release: Release the increment

Scrum-XP Phases (Schwaber & Sutherland, | with the most important features chosen by the Owner.

2020) (Dudziak, 1999)

DC.10 DTS.3 APBPM (Thiemich Artifact T.4.1 Documentation: A document with

APBPM Artifacts and Puhlimann, 2013) the final results of sprint review, and sprint X
retrospective.

DC.13 DTS.4 ABPM (Rosing Artifact T.4.2 Integrated Release: The final X

ABPM Artifacts

and Gill, 2015)

release with the final increment.

102

5 EVALUATION OF RESULTS

5.1 EVALUATION OF AGULEBPM METHODOLOGY DOCUMENT

With the AgileBPM Methodology done and ready, it is time to validate the artifact
following the DSRM step 5 from Design Science Research Methodology (DSRM)
(Peffers et al., 2007). A “Validation of Experts” (Beecham, 2005) was used by
different Software Engineering studies (Saadatmand, 2024); (Abdurrahman et al.,
2024).

This validation technique is necessary for validating the artifact. We consider
“‘validity of the content” as “the overall level of veracity and congruence with the
overall purpose of the content” (Phillips-Wren et al., 2009). This definition suggests
that 'valid content' is expected to ultimately serve its intended purpose and meet a
reasonable standard of accuracy. It is akin to the concept of a model, where no
entity being validated can achieve 100% accuracy. This is because any model is
merely a partial representation of a real-world scenario, and it is impossible to
create a model that perfectly mirrors reality.

In this section, a 'content validity' techniqgue was employed using a Panel of
Experts, following approaches commonly used in simulation (Sargent, 2013). As
Sargent (Sargent, 2013, p.323) states: 'Conceptual model validation involves
verifying that the theories and assumptions underlying the conceptual model are
correct and that the model’s representation of the problem entity is “reasonable” for
its intended purpose.’

The steps followed for this validation were the following:

1. To have ready the textual document to be validated. A PDF document
was elaborated.

2. To define the criteria for expert inclusion. These criteria were defined as
the people that have SENIOR expertise.

3. To have ready a suitable questionnaire to be applied to the Panel of
Experts. This questionnaire was taken from Mora (Phillips-Wren et al., 2009). This
questionnaire contains two constructs: C1 theoretical validity, and C2 theoretical
consistency. The C1 contains 3 items, and the C2 contains 5 items.

4. To define a list of potential experts to be contacted. A list of 30
international academics and professionals in the discipline of software engineering

103

and BPMS people were contacted to read the AgileBPM Methodology in a given
time of 3 weeks. Table 30 reports the demographic data of the sample of 15
seniors that fulfilled the required experience as asked in point 2.

Table 30 - Demographic Data of the Panel of Experts

Junior Senio Junior Senio
Demographic Item Evals. r Evals. Evals. r Evals.
Block % Block % Block % Block %
1. Age range:
() <=30years 3 0 10% 0%
() 31-40 years 8 4 27% 13%
() 41-50 years 1 6 3% 20%
() >50years 3 5 10% 17%
2. Highest academic level:
() Bachelor level 4 0 13% 0%
() Bachelor plus Professional Certifications 4 5 13% 17%
() Graduate student 2 7 7% 23%
() Graduate completed level 5 3 17% 10%
3. Main area of formal studies:
() Computer Systems / Informatics 12 14 40% 47%
() Business Management 1 1 3% 3%
() Other professional field 2 0 7% 0%
4. Main work setting:
() Business enterprise 7 12 23% 40%
(') University/Research Unit 5 2 17% 7%
() Government Unit 3 1 10% 3%
5. Scope of work setting:
() Regional 9 3 30% 10%
() Nationwide 4 4 13% 13%
() Worldwide 2 8 7% 27%
6. Region of working setting:
() USA/CAN 2 7 7% 23%
() Europe / Asia 0 0 0% 0%
() Latin America 13 8 43% 27%
7. Years in work settings:

104

() 1-5years 1 0 3% 0%
() 6-10 years 6 0 20% 0%
() 11-15 years 4 2 13% 7%
() 16-20 years 1 6 3% 20%
() 20 or more years . 3 7 10% 23%
8. Main Work Position:
() Academic/Researcher 6 2 20% 7%
() IT Project Manager / IT Consultant 8 7 27% 23%
() Business Manager / Business Consultant 1 3 3% 10%
() IT Senior Developer 0 3 0% 10%
9A. Years involved (i.e. knowing, using, teaching,

investigating or giving consulting) on AGILE PROCESS

(SCRUM and/or XP):
() <lyear 0 0 0% 0%
() 1-3years 4 0 13% 0%
() 4-6 years 6 0 20% 0%
() 7-9 years 3 0 10% 0%
() 10 or more years 2 15 7% 50%
9B. Years involved (i.e. knowing, using, teaching,

investigating or giving consulting) on BPMS (Business

Process Management Systems) PRACTICES:
() <=byears 4 0 13% 0%
() 6-10 years 6 0 20% 0%
() 11-15 years 4 3 13% 10%
() 16-20 years 0 4 0% 13%
() >20years 1 8 3% 27%
10A. Number of projects (academic, training or

consulting ones) involved with AGILE PROCESS (SCRUM

and/or XP):
()13 3 0 10% 0%
()4-6 5 0 17% 0%
()79 5 0 17% 0%
()10 or more 2 15 7% 50%
10B. Number of projects (academic, training or

consulting ones) involved on BPMS (Business Process

Management Systems):
()13 5 0 17% 0%
()46 6 0 20% 0%
()79 2 0 7% 0%
() 10 or more 2 15 7% 50%

105

11A. Self-evaluation on the expertise level on AGILE

PROCESS (SCRUM and/or XP):
() very high level of expertise 3 12 10% 40%
() high level of expertise 4 3 13% 10%
() moderate level of expertise 7 0 23% 0%
() low level of expertise 1 0 3% 0%
() very low level of expertise 0 0 0% 0%
11B. Self-evaluation on the expertise level on BPMS

(Business Process Management Systems):
() very high level of expertise 0 8 0% 27%
() high level of expertise 3 7 10% 23%
() moderate level of expertise 10 0 33% 0%
() low level of expertise 2 0 7% 0%
() very low level of expertise 0 0 0% 0%

5. To calculate the level of reliability, convergence validity, and
discriminant validity of the 2 constructs C1 and C2 used in the
applied questionnaire. We use the PLS statistical technique (Esposito
et al.,, 2010) due to the small data. The composite reliability index
indicates the reliability and the convergent validity with factor loadings
and, finally, discriminant validity using AVE (average variance extracted
for each construct). Esposito et al. (2010) and Wong (2013) recommend
minimal value ranges of 0.60-0.70 for reliability, 0.60-0.70 for convergent
validity, and at least 0.50 for discriminant validity of the constructs.
Additionally, in the test of convergent validity, each factor loading must be
the greatest value in its construct regarding the other factor loading
values. In the test of discriminant validity, the square root of each AVE
(average variance extracted) of each construct must be greater than the
correlations among constructs. It is verified in the correlation matrix where
the values in the diagonal (i.e. the square roots of the AVES) must be at
least 0.70 and greater than the other values in the off-diagonal. The
values obtained for each construct were satisfactory as shown in Table
31. The calculations were obtained using a free student license from the
software tool SmartPLSv4 (https://www.smartpls.com).

106

Table 31 - Reliability and Validity of Constructs C1 and C2

C1 THEORETICAL C2 THEORETICAL
VALIDITY CONSISTENCY
COMPOSITE RELIABILITY INDEX >=0.60 0.923 0.897
ITEM 1 0.796 0.884
CONVERGENT ITEM 2 0.749 0.95
VALIDITY
OF CONSTRUCT ITEM 3 0.534 0.894
(FACTOR LOADING ITEM 4 0.867 0.727
FOR
EACH ITEM >= 0.40) ITEM 5 0.908 0.586
ITEM 6 0.926 0.772
DISCRIMINANT
1 THEORETICAL VALIDITY 901 782
VALIDITY OF c © c 0.90 0.78
CONSTRUCT
(SQUARE ROOT OF
AVE >=0.70) C2 THEORETICAL CONSISTENCY 0.782 0.910

Most loadings are above 0.8, with just one item in C2 slightly lower but still
within acceptable limits. The AVE values for both constructs (0.888 for C1 and 0.8
for C2) indicate that each construct captures a large portion of the variance in its
respective items, affirming their reliability and validity. This confirms that both
constructs are robustly measured by their items, with good convergent validity
based on their high AVE values.

6. To calculate the median, mean, and standard deviation of each item in
the questionnaire. Using a Likert scale from 1 to 5 as available options where 1 is
the most negative and 5 is the most positive. Table 32 displays the obtained

values.

Table 32 - Mean, Median, and Standard Deviation of the Constructs/ltems C1 and C2.

Construct Item Mean Median Standard Deviation
CVi 1 4.667 5 0.596
CVv2 2 4.533 5 0.718
CvV3 3 4.667 5 0.596
CV4 4 4.667 5 0.596
CV5 5 4.533 5 0.618
CV6 6 4.533 5 0.618
CVv7 7 4.8 5 0.4

107

Both constructs show high mean and median values close to 5, indicating
overall positive responses across items. Most items have standard deviations
below 0.7, suggesting reasonable consistency in responses, with some minor
variations, particularly in CV2’s ltems 5 and 6. Items 3 (CV1) and 7 (CV2) stand out
with the lowest standard deviations, indicating high consistency and reliability
within their constructs. This distribution analysis suggests that both constructs are
favorably rated with high consistency among items, providing a strong foundation
for reliability in these constructs.

Furthermore, a one-sample, one-tailed t-test was conducted with the null
hypotheses HO.1: 'The mean of Construct C1 is less than or equal to 3.0' and HO.2:
"The mean of Construct C2 is less than or equal to 3.0."' The free statistical software
MaxStatLite (www.maxstatlite.com) was used for this analysis. Both null
hypotheses were rejected, indicating that the means for Constructs C1 and C2 are
satisfactory. Table 33 presents these results.

Table 33 - Null Hypotheses Tests on Means of Constructs C1 and C2.

Null Hypothesis Mean of Construct Std.Dev of Construct P-Value R|_e|joe7ct
HO0.1 “The mean of the
construct Clis less or equal 4.622 0.071 0.00033 Yes
to 3.00”
HO0.2 “The mean of the
construct C2is 4,633 0.335 0.0000082 Yes
less or equal to 3.00”

7. To assess the level of validity reached by the AgileBPM Methodology
document. Based on the results of reliability and validity (convergent, and
discriminant) of the instrument used to measure the theoretical validity perceived
by a panel of experts, and results obtained on the means of the constructs C1 and
C2, it can be assessed that the AgileBPM Methodology document is considered
theoretically valid, and thus, it can be used as a source document for elaborating
an AgileBPM Methodology EPG.

5.2 EMPIRICAL USABILITY EVALUATION OF AGILEBPM
METHODOLOGY.

The AgileBPM Methodology was documented in an Electronic Guide using
HTML and hosted in the website https://bit.ly/42s6f6L so this URL was shared with

academics, and practitioners with a questionnaire taken from Gary C. et al. (1991),

Karahanna et al. (1999). The constructs of interest to be evaluated for the sample

of international academics and practitioners are shown in Table 34.

108

https://bit.ly/42s6f6L

We got the participation of 32 practitioners, and academics from Latin America,
the United States, and Canada. All the participants had more than 6 years of
experience and 59% worked for a business enterprise. 59% of the participants had

also a master's and PhD.

We provided the applicants with some time to read the AgileBPM Methodology
documentation and check the templates. Finally, we applied two questionaries,
both with the same questions, the first one related to AgileBPM Methodology, and
the second one related to another BPMS Methodology that the applicant had some
experience. Table 35 shows the results of the questionnaire for AgileBPM
Methodology while Table 34 shows the results of the questionnaire for another
BPMS methodology that applicants had experienced. The results are favorable to
the AgileBPM Methodology in five constructs USEFULNESS, EASE OF USE,
COMPATIBILITY, VALUE, and ATTITUDE.

Table 34 - Constructs to be Evaluated for the Sample of International Academics and Practitioners on the
AgileBPM Methodology

CONSTRUCT ITEMS SCALE
USEFULNESS - is the degree to which using the new 5-points Likert
TOOL is perceived as being better than using the current 4 (1: strongly disagree to 5:
used TOOL. strongly agree)

5-points Likert
3 (1: strongly disagree to 5:
strongly agree)

EASE OF USE - is the degree to which using the new
TOOL is perceived as being free of effort.

5-points Likert
3 (1: strongly disagree to 5:
strongly agree)

COMPATIBILITY - is the degree to which using a new
TOOL is perceived as compatible with what people do.

VALUE - the degree to which using the new TOOL is

. . . . -points Liker
perceived as a value delivery entity for users by savings on S-points Likert

money, time, and the provision of a variety of valuable 4 (1- very Ir?iwht)o 5t very
resources, and by an overall value. 9
ATTITUDE - it reflects the individual’'s positive and 7-point
negative evaluations of performing the behavior (of adopting 3 Semantic differential
the evaluated artifact). scale (-3 to +3)

We got the participation of 32 practitioners, and academics from Latin America,

the United States, and Canada. For this evaluation, we also applied the same

109

criteria that previous section. The SENIOR filtering were applied and we got 15

people for this set of data.

We provided the applicants with some time to read the AgileBPM Methodology
documentation and check the templates. Finally, we applied two questionnaires,
both with the same questions, the first one related to AgileBPM Methodology, and
the second one related to another BPMS Methodology with the applicant had some

experience.

Figure 33 and Figure 34 displays the PLS model used for calculations for the
Agile Methodology and the Other Methodology known by the user.

Figure 33 - PLS Model for Agile Methodology.

110

Figure 34 - PLS Model for other methodology.

Table 35 and Table 36 display the descriptive statistics, reliability, and
discriminant validity results for the AgileBPM and the alternative methodology,
respectively, based on the evaluation dataset. Descriptive statistics—median,
mean, and standard deviation—were computed using the free JASP software
(JASP, 2025). Reliability (Cronbach’s alpha and composite reliability index) and
discriminant validity (average variance extracted, AVE) were assessed using the
academic version of SmartPLS v4 (SmartPLS, 2025). The results provide
supporting evidence that the four final constructs—USEFULNESS, VALUE, and
ATTITUDE OF POTENTIAL USAGE—were measured with acceptable reliability
and discriminant validity, following established guidelines (Barclay et al., 1995;
Chin, 1998; Russo & Stol, 2021). In both tables, the construct COMPATIBILITY,
and EASE OF USE were excluded due to inadequate reliability and validity
indicators.

111

Table 35 - Reliability and descriptive statistics for Agile Methodology.

Average

std Cronbach’ Composite Variance

Construct Median Mean Dev S Reliability Extracted

' Alpha >=0.50 | Index >=0.70 (AVE) >=

0.500

USEFULNESS 4.00 4.33 0.61 0.574 0.712 0.588

VALUE 4.00 4.27 0.52 0.633 0.815 0.695
ATTITUDE OF

POTENTIAL 1.00 1.40 1.04 0.631 0.833 0.722

USAGE
Table 36 - Reliability and descriptive statistics for Other Methodology.

Average

std Cronbach’ Composite Variance

Construct Median Mean Dev S Reliability Extracted

' Alpha >=0.50 | Index >=0.70 (AVE) >=

0.500

USEFULNESS 2.00 2.00 0.64 0.828 0.894 0.810

VALUE 2.0 2.20 0.85 0.797 0.881 0790
ATTITUDE OF

POTENTIAL -1.00 -1.33 0.84 0.542 0.733 0.607

USAGE

Table 37 and Table 38 represent the complementary discriminant validity
statistics for the AgileBPM and the alternative methodology, respectively, based on
the evaluation dataset. These calculations were performed using the free academic
version of SmartPLS v4 software (SmartPLS, 2025). The results from both tables
provide supporting evidence that the four final constructs USEFULNESS, VALUE,
and ATTITUDE OF POTENTIAL USAGE, demonstrate satisfactory discriminant
validity (Barclay et al., 1995; Chin, 1998; Russo & Stol, 2021). In both tables, the
diagonal values—representing the square root of the AVE for each construct—
exceed the corresponding off-diagonal values, indicating that each construct
shares more variance with its own items than with those of other constructs, as
recommended by Barclay et al. (1995).

112

Table 37 - Discriminant Validity of the Usability Constructs for the AgileBPM

ATTITUDE OF
POTENTIAL USAGE USEFULNESS VALUE
ATTITUDE OF
POTENTIAL USAGE 0.850 0.178 0.348
USEFULNESS 0.178 0.767 0.138
VALUE 0.348 0.138 0.834
Table 38 - Discriminant Validity of the Usability Constructs for the other methodology
ATTITUDE OF
POTENTIAL USAGE USEFULNESS VALUE
ATTITUDE OF
POTENTIAL USAGE 0.779 — 0.210
USEFULNESS 0.329 0.900 0.299
VALUE 0.210 0.299 0.889

Table 39 and Table 40 present the convergent validity statistics for the
AgileBPM and the alternative methodology, respectively, based on the evaluation
dataset. These values were computed using the free academic version of
SmartPLS v4 software (SmartPLS, 2025). The results provide strong evidence of
adequate convergent validity for the four final constructs—USEFULNESS, VALUE,
and ATTITUDE OF POTENTIAL USAGE—following established criteria (Barclay et
al., 1995; Chin, 1998; Russo & Stol, 2021). As shown in both tables, the item
loadings (i.e., correlations between items and their corresponding constructs)
exceed 0.700 and are higher than their cross-loadings (i.e., correlations with items
from other constructs), confirming satisfactory convergent validity (Barclay et al.,
1995).

Additionally, four hypothesis tests were conducted to evaluate whether the
AgileBPM was perceived more positively in terms of the four usability constructs
compared to the alternative methodology. Given the unsatisfactory normality test
results, the non-parametric Wilcoxon Matched-Pairs Signed-Rank test was applied
(Sheskin, 2000). Table 41 presents these results, which were calculated using the
free JASP software (JASP, 2025). The findings indicate that evaluators perceived
the alternative methodology as offering better usability than the BDAS SDLC.

113

Table 39 - Convergent Validity of the Usability Constructs for the AgileBPM

ATTITUDE OF USAGE USEFULNESS VALUE
ATT1 0.776 0.202 0.176
ATT2 0.917 0.123 0.379
USF1 0.017 0.43 0.152
USF2 0.168 0.996 0.117
VAL1 0.373 0.143 0.956
VAL2 0.131 0.066 0.676

Table 40 - Convergent Validity of the Usability Constructs for other methodology.

ATTITUDE OF USAGE USEFULNESS VALUE
ATTL 0.993 -0.348 -0.209
ATT2 0.477 0 0.099
USF1 -0.087 0.8 0.024
USF2 -0.368 0.99 0.347
VAL1 -0.235 0.284 0.985
VAL2 -0.064 0.273 0.781

114

Table 41 - Wilcoxon Signed-Rank Tests for the Usability Constructs in AgileBPM vs alternative methodology.

AgIeBPM | g
Null Hypothesis Median ology P-value Implication
(med.1) Median
' (med.2)
HO.1 is rejected, and
HO.1 For USEFULNESS construct thus the
(med.1<= med.2) 4.00 2.00 <0001 | jsEFuLNESS of

AgileBPM is better.

HO.2 is rejected, and
4.00 2.00 <0.001 | thus the VALUE of
AgileBPM is better.

HO.2 For VALUE construct
(med.1<= med.2)

HO0.3 is rejected, and
thus the ATTITUTE
1.00 -1.00 <0.001 | OF POTENTIAL
USAGE of
AgileBPM is better.

HO.3 For ATTITUDE OF POTENTIAL
USAGE construct (med.1<= med.2)

5.3 APPLICATION OF THE AGUILEBPM METHODOLOGY.

To test The AgileBPM Methodology, a case demo was built using a real
business process from a small business. The business process is an Expenses
Claim app that has three main roles: 1) Claimer who can create new expense
claims, 2) Approver the person who checks the claims and can request more
information from the claimer and approve/reject the claim. 3) Finance will receive
the approved claim from the Approver and will verify or reject the claim. Figure 33
shows the business process diagram.

First, the Process Discovery phase started to define all the project needs before
starting the development process. In Activity - A.1.1 Defining the Setting the
template F.1.01 - Process ldea was followed defining basic information from the
process such as process context, process roles, and process flow. There are two
templates for Activity - A.1.2 Gathering the Required Information: 1) F.1.02 -
Process architecture of the selected process. 2) F.1.03 - List of Stakeholders. Both

templates help with following the activity step by step with the Purpose and

115

Objectives, the Process Description, and Process Requirements. It is important to
know that the templates provide a lot of requirements to be filled out, however not
all projects need the same information, and the practitioners could avoid or add
more information accordingly. In Activity - A.1.3 Modeling the Process is the activity
where the process takes form and is ready to continue with the next phase. In this
activity, the template F.1.04 - Architecture Vision was used to fill out the needed
information like the functional/nonfunctional requirements, the description of the
selected technology, the solution overview, the agreement for the sprints, and the

AgileBPM roles description.

In the Exploration / Product Planning phase, there are five activities. Activity -
A.2.1 Product Vision Definition - use the F.1.04 - Architecture Vision template for
elaborating a release plan for the process and a backup plan. In this activity was
also defined the sprint length and the timeline for the development. Activity - A.2.2
Define Definition of Done & Definition of Ready - uses templates F.2.02 -Definition
of Done and F.2.03 — Definition of Ready for defining both concepts to know when
a task is ready to work on and a task is completed. Activity - A.2.3 Product Backlog
(user story set) Definition — the initial backlog was created. The three roles worked
together to create the backlog with user stories that covered the functionality of the
business process, for this activity, we used the F.2.04 — Process Backlog.
Template, online tools like Jira or Trello provide better tools for replacing the
template and project management. Activity - A.2.4 Product backlog (user story set)
Prioritization In this activity the created backlog was prioritized from the most
important to the less important. Finally, the Activity - A.2.5 - Product Backlog (user
story set) Effort Estimation The development team estimated every single user

story using the story points method.

During the Iteration-Sprint phase we implemented the activities Activity - A.3.1
Sprint Planning, Activity - A.3.2 Stand-up meeting, Activity - A.3.3 Implement
requirements, Activity - A.3.4 Testing, and Activity - A.3.5 Iteration-sprint review
and retrospective. This phase implementation uses most of the known activities in

a Scrum-XP methodology. The two sprints began with the Sprint Planning meeting,

116

the team agreed on what user stories could be completed during the sprint, and the
Sprint Backlog was created. Every single day started with the stand-up meeting
where the team discussed progress and any blocks. After finishing the
development of the User Story, the testing began and provided any feedback to the
developers or mark the user story as completed. Finally, the sprint finished after
the Sprint Retrospective meeting for getting feedback from the team and the Sprint

Review shows the increment to the stakeholders.

Finally, the Product Release phase has Activity - A.4.1 Finish Documentation,
and Activity - A.4.2 Product Releasing activites were F.4.01 Process
Documentation template filled out with all the details for the business process

environment, servers, users, and passwords.

Create Claim €¢——
No N

Check Claim —— > Approve? —){f \‘I
A 4

Claimant
S ,'.

Need more info

Approver

Yesl
Verify / Reject Y
Check Claim ————— 3 Notify Claimer —»()
"

Approver

Figure 35 - BPMN diagram of the process.

The open-source BPMS/Low-Code platform Joget (https://www.jobget.com/)
was used for the development of this case demo. Figure 34 displays the joget’s
process builder where the business process flow is created, and it is very similar to
the BPMN diagram.

The advantage of using a low-code platform like Joget is that the development
was very quicky without using any line of code, and most of the configuration was
created on the fly using drag-and-drop tools.

117

Figure 36 - Joget's process builder for the Expenses Claim app.

The advantage of using a low-code platform like Joget is that the development
was very quicky without using any line of code, and most of the configuration was
created on the fly using drag-and-drop tools.

118

6 DISCUSSION OF RESULTS

6.1 SUMMARY OF THE RESULTS

We discussed in section 1.3 the General Research Objectives (RO’s), Research
Questions (RQ’s), and Null Hyphotesis (HO’s), the Tables 42, 43, 44, and 45
provide the results got it from this research.

All the got it information for this investigations were obtained until December

from 2024. These

references were used for theoretically supporting and

strengthing the scientific methodological validity applied to this research.

Table 42 - Results for Research Question 1

Research Question

Hypotheses

Results

RQ.1 What is the state of the art —
contributions and limitations- on
agile and non-agile development
methodologies for Business
Process Management systems?

HO.1 There is no need for an agile
development methodology for
Business Process Management
systems

After a Systematic Research
Literature review from year 2010
to 2021 we discovered four non-
agile BPMS and 4 agile BPMS
methodologies. Those
methodologies were studied and
evaluated. After a deep analysis,
we detected a lack of information
and documentation about most of
the methodologies.

If any practitioner desires to adopt
one of those methodologies, they
would face several problems
because there is not all the
information needed to work with
those methodologies. On the other
hand the most important authors
for Business Processes
Management like Dumas (2018)
refers that agility is needed in this
kind of environment.

For that reason, we can reject the
HO.1 and sustain that new Agile
Methodology for Business Process
Management Systems is needed.

119

Table 43 - Results for Research Question 2

Research Question

Results

RQ.2 What is the state of the art —
capabilities, and limitations — of
open-source low-code Business
Process Management
development platforms?

Hypotheses
HO.2 There are no powerful open-
source low-code Business
Process Management

development platforms.

In section 3.1.3.2 we use Mora et
al. (2016) work that compares
open-source elements based on
Risks Categories like Financial,
Organizational, End User, and
Technical. Using the tool Multi-
Attribute Decision Making (MADM)
for 12 open source platforms:
Capgemini Open Source Maturity
Model, Navica Open Source
Maturity Model (OSMM), Open
Business Readiness Rating
(OpenBRR), Open Business
Quiality Rating (OpenBQR),
Quality Model for Open Source
Selection (QMOSS), QualOSS,
Software Quality Observatory for
Open Source Software model
(SQO-0SS), OpenSource Maturity
Model (OMM), QualiPSo—Quality
Platform for Open Source
Software, IRCA Model, Method for
Qualification and Selection of
Open Source Software (QSOSv2),
and the Evaluation Framework for
Free/Open Source Projects
(EFFORT). After the review we
found 3 viable options to work
with: Joget, jBPMN, and
Camunda.

Using Open Decision Maker tool
we found that Joget was the best
open-source platform for BPMS.
However there were more viable
open-source platforms to work
with BPMS and Low-Code in the
market.

For that reason, we can reject
HO0.2 and sustain that there are
strong open-source and Low-Code
platforms to work on this project.

120

Table 44 - Results for Research Question 3

Research Question

Hypotheses

Results

RQ.3 What elements of Agile
Development and Business
Process Management System
Development Methodologies can
be used to elaborate an Agile
Business Process Management
System Development
Methodology that can be
evaluated theoretically valid from a
Panel of Experts?

HO.3 There are no elements of
Agile Development and Business
Process Management System
Development Methodologies that
can be used to elaborate an Agile
Business Process Management
System Development
Methodology that can be
evaluated as theoretically valid by
a Panel of Experts.

In section 4, we disclosed the 4
agile BPMS methodologies found
in the SLR. After a deep review of
the elements of each
methodology, we extract all the
roles, activities, and artifacts. We
also added as a base the BPMS
methodology from Dumas et al.
(2018). Having all this information,
we did an iterative process where,
in the first place, we removed all
the redundancies of roles,
activities, and artifacts. In the
second iteration, we detected the
most used activities, and artifacts,
as well as some key elements that
could help achieve our purpose.
Finally, we got al the elements
from Agile BPMS methodologies
that could help for construct our
AgileBPM Methodology.

In Section 5, we performed a
questionnaire on 30 people for
Latinoamerica and North America
practitioners. Of those 30 persons,
we did a filter by the number of
worked projects and experience to

get 17 people considered as
experts. After conducting a
statistical analysis of the

questionnaire, we found that the
constructs were valid and
theoretically valid.

For that reason, we can reject
HO0.3 and prove that there were
elements that can help to build an
Agile BPMS methodology and be
evaluated as theoretically valid by
a Panel of Experts.

121

Table 45 - Results for Research Question 4

Research Question

Hypotheses

Results

RQ.4 Can the new elaborate Agile
Business Process Management
System Development
Methodology be documented in an
Electronic Process Guide (EPG)
and be evaluated as agile, useful,
easy to use, compatible, and
valuable by a pilot group of
Software Engineering academics

and practitioners?

HO0.4.1 The newly elaborated Agile
Business Process Management
System Development
Methodology cannot be
documented in an Electronic

Process Guide (EPG).

H0.4.2 The newly elaborated

Agile Business Process

Management System
Development Methodology is not
considered agile, useful, easy to
use, compatible, and valuable by a
Software

pilot group of

Engineering academics and

practitioners.

After creating and validating the
AgileBPM Methodology, we
created an electronic guide using
HTML and hosted it on a website:
https://bit.ly/42s6f6L. This website
is public and has all the needed
information for any practitioner
who would like to work with the
methodology. For that reason, we
can reject H0.4.1.

Finally, in section 5.2 we created a
questionnaire for practitioners and
academics where they have some
time to review the new AgileBPM
Methodology. After that, we apply
the same questionnaire twice,
once for AgileBPM and the other
for any other BPMS methodology
that they knew.

We got positive results for the five
constructs: USEFULNESS, EASE
OF USE, COMPATIBILITY,
VALUE, and ATTITUDE. The
AgileBPM got higher Medians than
other BPMS methodologies, so we
can reject H0.4.2 and confirm that
the AgileBPM was considered as
agile, useful, easy of use, and
compatible by a pilot group.

6.2 DISCUSSION ON RESULTS

AgileBPM Methodology could help practitioners from micro and small companies
find a solution for developing business processes in an agile way. The Low-Code
tools could also help to improve the development time. The results of this study
show that a practitioner could take this AgileBPM Methodology and start working
with it taking advantage of the templates that guide you during the whole process.

The Empirical Evaluation questionaries reflect that most of the participants could
use the AgileBPM Methodology replacing the actual BPMS methodology that they

122

https://bit.ly/42s6f6L

are implementing right now. The reason for this is that most of the Agile BPMS
Methodologies lack online documentation that can help the practitioners in the
process.

6.3 DISCUSSION ON CONTRIBUTIONS TO THE PRAXIS ON AGILE
DEVELOPMENT FOR BPMS

AgileBPM Methodology could help practitioners from micro and small companies
find a solution for developing business processes in an agile way. The Low-Code
tools could also help to improve the development time. The results of this study
show that a practitioner could take this AgileBPM Methodology and start working
with it, taking advantage of the templates that guide you during the whole process.
Agile BPM Methodology combines the planning from BPMS methodology from
Dumas et al. (Dumas et al., 2018) with the best of traditional agile methodologies like
Scrum-XP (Schwaber & Sutherland, 2020) (Dudziak, 1999), 3), the best of Agile BPMS
methodologies (Thiemich & Puhimann, 2013) (Rosing & Gill, 2015).

Practitioners can start working with AgileBPM Methodology by visiting the site
https://bit.ly/42s6f6L, reading the documentation, and downloading the templates,
which provide a guide for what is needed during every phase and activity. As
mentioned before, the templates are only a guide for the practitioner; every project
could have special needs that can be included in the documentation.

6.4 LIMITATIONS

Despite the positive results of AgileBPM, limitations for future research are
identified. First, its effectiveness in larger, regulated projects has not been
investigated. Second, it was applied on the low-code Joget platform, and it would
be useful to evaluate it on other BPMS tools, both open source and commercial.
However, the results suggest that AgileBPM is a promising option for agile
development.

6.5 CONCLUSIONS

The research evaluated the AgileBPM Methodology for the development of
Business Process Management Systems (BPMS). Roles, activities, and artifacts
were described, and a usability evaluation was conducted with international
practitioners. The results indicated high scores in usability, ease of use, and

123

https://bit.ly/42s6f6L

attitude toward adoption, positioning AgileBPM as a viable alternative to traditional
BPMS methodologies. Key contributions include the integration of agile principles,
creation of accessible documentation and empirical validation with practitioners.
However, limitations were noted, such as the need for testing in larger
environments. AgileBPM promises to improve efficiency and flexibility in business
process management.

7/ GLOSSARY

BPMS/PAIS Development Platform.

Software development platform used for designing, building, running, and
monitoring a BPMS/PAIS.

Business Process Management System (BPMS) - Process-Aware Information
System (PAIS)

“Software system for supporting the operation and monitoring of a full
Business Process.” (adapted from Reijers, 2006, p. 390)

Daily Scrum

“The purpose of the Daily Scrum is to inspect progress toward the Sprint
Goal and adapt the Sprint Backlog as necessary, adjusting the upcoming
planned work.” (Schwaber & Sutherland, 2020, p. 9)

Developers

“‘Developers are the people in the Scrum Team that are committed to creating
any aspect of a usable Increment each Sprint.” (Schwaber & Sutherland, 2020,

p. 5)

eXtreme Programming (XP)

“XP is also a lightweight methodology or what Alistair Cockburn calls a
“Crystal Methodology”. In short, methodologies of this family have high

productivity and high tolerance. Communication is usually strong with short
paths, especially informal (not documented). There the is only a small range

124

of deliverables (artifacts), but these are delivered frequently (releases).
Processes of the Crystal family identify only a few roles and activities.”
(Dudziak, 1999, p. 4)

Increment

“‘An Increment is a concrete stepping stone toward the Product Goal. Each
Increment is additive to all prior Increments and thoroughly verified,
ensuring that all Increments work together. In order to provide value, the
Increment must be usable.” (Schwaber & Sutherland, 2020, p. 11)

Low-code

“‘Application platforms that accelerate app delivery by dramatically reduce
the amount of hand-coding required. Faster delivery is the primary benefit of
these application platforms; they also help firms respond more quickly to
customer feedback after initial software releases and provision mobile and
multichannel apps. Usage of low-code platforms is gaining momentum for
customer-facing applications” (Richardson and Rymer, 2014)

Product Backlog

“The Product Backlog is an emergent, ordered list of what is needed to
improve the product. It is the single source of work undertaken by the Scrum
Team.” (Schwaber & Sutherland, 2020, p. 10)

Product Owner

“The Product Owner is accountable for maximizing the value of the product
resulting from the work of the Scrum Team. How this is done may vary
widely across organizations, Scrum Teams, and individuals.” (Schwaber &
Sutherland, 2020, p. 5)

Scrum

“‘Scrum is a lightweight framework that helps people, teams and
organizations generate value through adaptive solutions for complex
problems.” (Schwaber & Sutherland, 2020, p. 3)

125

Scrum Master

“The Scrum Master is accountable for establishing Scrum as defined in the
Scrum Guide. They do this by helping everyone understand Scrum theory
and practice, both within the Scrum Team and the organization.” (Schwaber &
Sutherland, 2020, p. 6)

Scrum Team

“The fundamental unit of Scrum is a small team of people, a Scrum Team.
The Scrum Team consists of one Scrum Master, one Product Owner, and
Developers. Within a Scrum Team, there are no sub-teams or hierarchies. It
is a cohesive unit of professionals focused on one objective at a time, the
Product Goal.” (Schwaber & Sutherland, 2020, p. 5)

Software

“Computer programs, procedures and possibly associated documentation
and data pertaining to the operation of a computer system.”
(ISO/IEC/IEEE 24765:2017(en), Systems and software engineering — Vocabulary,
2021)

Software

“‘Computer software is the product that software professionals build and then
support over the long term. It encompasses programs that execute within a
computer of any size and architecture, content that is presented as the
computer programs execute, and descriptive information in both hard copy
and virtual forms that encompass virtually any electronic media.” (Pressman
& Maxim, 2015, p. 1).

Software Engineering

“Systematic application of scientific and technological knowledge, methods,
and experience to the design, implementation, testing, and documentation of
software.” (ISO/IEC/IEEE 24765:2017(en), Systems and software engineering —
Vocabulary, 2021).

‘Encompasses a process, a collection of methods (practice) and an array of

tools that allow professionals to build high-quality computer software.”
(Pressman & Maxim, 2015, p. 14).

126

‘Encompasses a process, a collection of methods (practice) and an array of
tools that allow professionals to build high-quality computer software.”
(Pressman & Maxim, 2015, p. 14)

Software Engineering Processes

“‘Software engineering processes are concerned with work activities
accomplished by software engineers to develop, maintain, and operate
software, such as require meets, design, construction, testing, configuration
management, and other software engineering processes.” (Abran & Moore,
2014, pp. 8-1).

Software Life Cycle

“A software development life cycle (SDLC) includes the software processes
used to specify and transform software requirements into a deliverable
software product. A software product life cycle (SPLC) includes a software
development life cycle plus additional software processes that provide for
deployment, maintenance, support, evolution, retirement, and all other
inception to retirement processes for a software product.” (Abran & Moore,
2014, p. 8-4).

Software Process

‘A composition of phases, activities, artifacts, and resources (including the
humans).” (Oktaba & Ibarguengoitia Gonzalez, 1998, p. 229)

Sprint

“Sprints are the heartbeat of Scrum, where ideas are turned into value. They
are fixed length events of one month or less to create consistency. A new

Sprint starts immediately after the conclusion of the previous Sprint.”
(Schwaber & Sutherland, 2020, p. 7)

Sprint Backlog

127

“The Sprint Backlog is composed of the Sprint Goal (why), the set of Product
Backlog items selected for the Sprint (what), as well as an actionable plan for
delivering the Increment (how).” (Schwaber & Sutherland, 2020, p. 11)

Sprint Planning

“Sprint Planning initiates the Sprint by laying out the work to be performed
for the Sprint. This resulting plan is created by the collaborative work of the
entire Scrum Team.” (Schwaber & Sutherland, 2020, p. 8)

Sprint Retrospective

“The purpose of the Sprint Retrospective is to plan ways to increase quality
and effectiveness.” (Schwaber & Sutherland, 2020, p. 10)

Sprint Review

“The purpose of the Sprint Review is to inspect the outcome of the Sprint and
determine future adaptations. The Scrum Team presents the results of their
work to key stakeholders and progress toward the Product Goal is
discussed.” (Schwaber & Sutherland, 2020, p. 9)

Workflow Management Systems (WFMS)

‘A system that defines, creates and manages the execution of workflows
through the use of software, running on one or more workflow engines,
which is able to interpret the process definition, interact with workflow
participants and, where required, invoke the use of IT tools and applications”.
(van der Aalst et al., 2003)

128

8 REFERENCES

A guide to the Scrum Body of knowledge (SBOK Guide) (2013 edition). (2013).
SCRUMstudy, A brand of VMEdu, Inc.

Abdurrahman, H., Nanang, S., & Choirul, H. (2024). Sharia Retail Store Service
Standards Based on Customer Preferences in the Cooperative Ecosystem |
Hakim | Jurnal Aplikasi Manajemen.
https://jurnaljam.ub.ac.id/index.php/jam/article/view/8076

Abrahamsson, P., Oza, N., & Siponen, M. T. (2010). Agile Software Development
Methods: A Comparative Reviewl. In T. Dingsgyr, T. Dyba, & N. B. Moe
(Eds.), Agile Software Development: Current Research and Future
Directions (pp. 31-59). Springer. https://doi.org/10.1007/978-3-642-12575-
13

Abran, A., & Moore, J. W. (2014). Guide to the software engineering body of
knowledge.

Badakhshan, P., Conboy, K., Grisold, T., & vom Brocke, J. (2019). Agile business
process management: A systematic literature review and an integrated
framework. Business Process Management Journal, 26(6), 1505-1523.
https://doi.org/10.1108/BPMJ-12-2018-0347

Barabino, G., Grechi, D., Tigano, D., Corona, E., & Concas, G. (2014). Agile
Methodologies in Web Programming: A Survey. In G. Cantone & M.

Marchesi (Eds.), Agile Processes in Software Engineering and Extreme

129

Programming (pp. 234-241). Springer International Publishing.
https://doi.org/10.1007/978-3-319-06862-6_16

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Robert C., M., Mellor, S., Thomas, D., James, G., Highsmith, J., Hunt,
A., Jeffries, R., Kern, J., Marick, B., Schwaber, K., & Sutherland, J. (2001).
Manifesto for Agile Software Development. https://agilemanifesto.org/

Beecham. (2005). Using an expert panel to validate a requirements process
improvement model—ScienceDirect.
https://www.sciencedirect.com/science/article/abs/pii/S0164121204000974

Bider, 1., & Jalali, A. (2016). Agile business process development: Why, how and
when—applying Nonaka’s theory of knowledge transformation to business
process development. Information Systems and E-Business Management,
14(4), 693-731. https://doi.org/10.1007/s10257-014-0256-1

Boehm, B., & Turner, R. (2003). Using risk to balance agile and plan-driven
methods. Computer, 36(6), 57—66. Computer.
https://doi.org/10.1109/MC.2003.1204376

C., G., Moore, & Benbasat, I. (1991). Development of an Instrument to Measure
the Perceptions of Adopting an Information Technology Innovation |
Information Systems Research.
https://pubsonline.informs.org/doi/abs/10.1287/isre.2.3.192

CMMI for Development, Version 1.3. (n.d.). Retrieved March 23, 2021, from

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9661

130

Conboy, K. (2009). Agility from First Principles: Reconstructing the Concept of
Agility in Information Systems Development. Information Systems Research,
20(3), 329-354. https://doi.org/10.1287/isre.1090.0236

Damij, N., Damij, T., Grad, J., & Jelenc, F. (2008). A methodology for business
process improvement and IS development. Information & Software
Technology, 50, 1127-1141. https://doi.org/10.1016/j.infsof.2007.11.004

Denning, P. J. (1999). COMPUTER SCIENCE: THE DISCIPLINE. Encyclopedia of
Computer Science, 9-23.

Dudziak, T. (1999). eXtreme Programming An Overview. Methoden und
Werkzeuge der Software: produktion WS.
http://csis.pace.edu/~marchese/CS616/Agile/XP/XP_Overview.pdf

Dumas, M., Aalst, W. M. van der, & Hofstede, A. H. ter. (2005). Process-Aware
Information Systems: Bridging People and Software Through Process
Technology. John Wiley & Sons.

Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A. (2018). Introduction to
Business Process Management. In M. Dumas, M. La Rosa, J. Mendling, &
H. A. Reijers (Eds.), Fundamentals of Business Process Management (pp.
1-33). Springer. https://doi.org/10.1007/978-3-662-56509-4 1

Esposito Vinzi, V., Chin, W. W., Henseler, J., & Wang, H. (Eds.). (2010). Handbook
of Partial Least Squares: Concepts, Methods and Applications. Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-540-32827-8

Galvan, S., Mora, M., & Laporte, C. Y. (2021). Reconciliation of scrum and the

project management process of the ISO/IEC 29110 standard-Entry profile—

131

An experimental evaluation through usability measures | SpringerLink.
https://link.springer.com/article/10.1007/s11219-021-09552-3

Garousi, V., Borg, M., & Oivo, M. (2020). Practical relevance of software
engineering research: Synthesizing the community’s voice. Empirical
Software Engineering, 25(3), 1687-1754. https://doi.org/10.1007/s10664-
020-09803-0

Grand View Research. (2020). Low-Code Application Development Platform
Market Report, 2020-2027. https://www.grandviewresearch.com/industry-
analysis/low-code-application-development-platform-market

Greeno, G., J.,, Simon, & A., H. (1987). Problem Solving and Reasoning.
https://apps.dtic.mil/sti/citations/tr/ADA219146

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in
Information Systems Research. MIS Quarterly, 28(1), 75-105.
https://doi.org/10.2307/25148625

Hevner, A. R., & Ram, S. (2004). Design science in information systems research.
MIS Quarterly, 75-105.

Hoda, R., Salleh, N., & Grundy, J. (2018). The Rise and Evolution of Agile
Software Development. IEEE Software, 35(5), Article 5.
https://doi.org/10.1109/MS.2018.290111318

Hong, W., Thong, J. Y. L., Chasalow, L. C., & Dhillon, G. (2011). User Acceptance
of Agile Information Systems: A Model and Empirical Test. Journal of
Management Information Systems, 28(1), 235-272.

https://doi.org/10.2753/M1S0742-1222280108

132

Hughes, D. L., Rana, N. P., & Simintiras, A. C. (2017). The changing landscape of
IS project failure: An examination of the key factors. Journal of Enterprise
Information Management, 30(1), 142-165. https://doi.org/10.1108/JEIM-01-
2016-0029

Humphrey, W. S. (1988). The software engineering process: Definition and scope.
Proceedings of the 4th International Software Process Workshop on
Representing and Enacting the Software Process, 82-83.
https://doi.org/10.1145/75110.75122

ISO/IEC/IEEE 24765:2017(en), Systems and software engineering—\Vocabulary.
(2021). https://lwww.iso.org/obp/ui/#iso:std:iso-iec-ieee:24765:ed-2:vl:en

Javanmard, M., & Alian, M. (2015). Comparison between Agile and Traditional
software development methodologies. Cumhuriyet Universitesi Fen
Edebiyat Fakultesi Fen Bilimleri Dergisi, 36(3), Article 3.

Jung, J., Choi, I, & Song, M. (2007). An integration architecture for knowledge
management systems and business process management systems.
Computers in Industry, 58(1), 21-34.
https://doi.org/10.1016/j.compind.2006.03.001

Karagiannis, D. (1995). BPMS: Business process management systems. ACM
SIGOIS Bulletin, 16(1), 10-13. https://doi.org/10.1145/209891.209894

Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information Technology
Adoption Across Time: A Cross-Sectional Comparison of Pre-Adoption and
Post-Adoption Beliefs. MIS Quarterly, 23(2), 183-213.

https://doi.org/10.2307/249751

133

Krafzig, D., Banke, K., & Slama, D. (2005). Enterprise SOA: Service-oriented
Architecture Best Practices. Prentice Hall Professional.

Laanti, M., Simila, J., & Abrahamsson, P. (2013). Definitions of Agile Software
Development and Agility. In F. McCaffery, R. V. O’Connor, & R. Messnarz
(Eds.), Systems, Software and Services Process Improvement (pp. 247—
258). Springer. https://doi.org/10.1007/978-3-642-39179-8 22

Luo, Y., Liang, P., Wang, C., Shahin, M., & Zhan, J. (2021, July 15).
Characteristics and Challenges of Low-Code Development: The
Practitioners’ Perspective. https://doi.org/10.1145/3475716.3475782

Markets and Markets. (2020). Low-Code Development Platform Market Size,
Share and Global Market Forecast to 2025 | MarketsandMarkets.
https://www.marketsandmarkets.com/Market-Reports/low-code-
development-platforms-market-103455110.html

Martins, P. V., & Zacarias, M. (2017). An Agile Business Process Improvement
Methodology. Procedia Computer Science, 121, 129-136.
https://doi.org/10.1016/j.procs.2017.11.018

Meziani, R., & Magalhaes, R. (2009). Proposals for an Agile Business Process
Management Methodology. 15.

Mora, M. (2009). Metodo-Conceptual-Dr-Mora-v-2009-OK.pdf.

Mora, M., Gémez, J. M., O'Connor, R. V., & Gelman, O. (2016). An MADM risk-
based evaluation-selection model of free-libre open source software tools.
International Journal of Technology, Policy and Management, 16(4), 326—

354. https://doi.org/10.1504/13TPM.2016.081665

134

Mu, W., Bénaben, F., & Pingaud, H. (2015). A methodology proposal for
collaborative business process elaboration using a model-driven approach.
Enterprise Information Systems, 9(4), 349-383.
https://doi.org/10.1080/17517575.2013.771410

Mutschler, B., Reichert, M., & Bumiller, J. (2008). Unleashing the Effectiveness of
Process-Oriented Information Systems: Problem Analysis, Critical Success
Factors, and Implications. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 38(3), 280-291. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews). https://doi.org/10.1109/TSMCC.2008.919197

Nascimento, A. R. D., Baldam, R. de L., Costa, L., & Coelho Junior, T. de P.
(2019). Applications of business governance and the Unified BPM Cycle in
public credit recovery activities. Business Process Management Journal,
26(1), 312-330. https://doi.org/10.1108/BPMJ-11-2017-0317

Navarro, A. (2009). A SWEBOK-based Viewpoint of the Web Engineering
Discipline. 32.

Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104). Prentice-hall
Englewood Cliffs, NJ.
http://www.sci.brooklyn.cuny.edu/~kopec/cis718/fall_2005/2/Rafique_2_ hum
anthinking.doc

Nonaka, 1. (1994). A Dynamic Theory of Organizational Knowledge Creation.

Organization Science, 5(1), 14-37. https://doi.org/10.1287/orsc.5.1.14

135

Oktaba, H., & Ibargtiengoitia Gonzalez, G. (1998). Software Process Modeled with
Objects: Static View.
http://www.repositoriodigital.ipn.mx//handle/123456789/15087

Papazoglou, M. P., & van den Heuvel, W.-J. (2007). Business process
development life cycle methodology. Communications of the ACM, 50(10),
79-85. https://doi.org/10.1145/1290958.1290966

Parnas, D. L. (2010). Risks of undisciplined development. Communications of the
ACM, 53(10), 25-27. https://doi.org/10.1145/1831407.1831419

Paulk, M. C. (2002). Agile Methodologies and Process Discipline.
https://doi.org/10.1184/R1/6620972.v1

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007a). A Design
Science Research Methodology for Information Systems Research. Journal
of Management Information Systems, 24(3), 45-77.
https://doi.org/10.2753/MI1S0742-1222240302

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007b). A Design
Science Research Methodology for Information Systems Research. Journal
of Management Information Systems, 24(3), 45-77.
https://doi.org/10.2753/MIS0742-1222240302

Petersen, K., & Wohlin, C. (2009a). A comparison of issues and advantages in
agile and incremental development between state of the art and an
industrial case. Journal of Systems and Software, 82(9), 1479-1490.

https://doi.org/10.1016/}.jss.2009.03.036

136

Petersen, K., & Wohlin, C. (2009b). A comparison of issues and advantages in
agile and incremental development between state of the art and an
industrial case. Journal of Systems and Software, 82(9), 1479-1490.
https://doi.org/10.1016/}.jss.2009.03.036

Phillips-Wren, G., Mora, M., Forgionne, G. A., & Gupta, J. N. D. (2009). An
integrative evaluation framework for intelligent decision support systems.
European Journal of Operational Research, 195(3), 642-652.
https://doi.org/10.1016/j.ejor.2007.11.001

Pressman, R. S., & Maxim, B. R. (2015). Software engineering: A practitioner’s
approach (Eighth edition). McGraw-Hill Education.

Qumer, A., & Henderson-Sellers, B. (2008). An evaluation of the degree of agility in
six agile methods and its applicability for method engineering. Information
and Software Technology, 50(4), 280-295.
https://doi.org/10.1016/j.infsof.2007.02.002

Ravesteyn, P., & Batenburg, R. (2010a). Surveying the critical success factors of
BPM-systems implementation. Business Process Management Journal,
16(3), 492-507. https://doi.org/10.1108/14637151011049467

Ravesteyn, P., & Batenburg, R. (2010b). Surveying the critical success factors of
BPM-systems implementation. Business Process Management Journal,
16(3), 492-507. https://doi.org/10.1108/14637151011049467

Reijers, H. A. (2006). Implementing BPM systems: The role of process orientation.
Business Process Management Journal, 12(4), 389-4009.

https://doi.org/10.1108/14637150610678041

137

Richardson, C., & Rymer, J. R. (2014, June 9). New Development Platforms
Emerge For Customer-Facing Applications. Forrester: Cambridge.
https://www.forrester.com/report/New+Development+Platforms+Emerge+Fo
r+CustomerFacing+Applications/RES113411

Rodriguez, L., Mora, M., Vargas Martin, M., O’'Connor, R., & Rodriguez, F. (2009).
Process Models of SDLCs: Comparison and Evolution. In Handbook of
Research on Modern Systems Analysis and Design Technologies and
Applications (pp. 76—89). https://doi.org/10.4018/978-1-59904-887-1.ch005

Rosing, M. von, & Gill, A. (2015). Applying Agile Principles to BPM (Vol. 1, pp.
553-577). https://doi.org/10.1016/B978-0-12-799959-3.00027-6

Rymer, J. R. (2017). The Forrester Wave™: Low-Code Development Platforms For
AD&D Pros, Q4 2017. 21.

Saadatmand, M. (2024). A Hierarchical Decision Model for Evaluating the Strategy
Readiness of Quantitative Machine Learning/Data Science-Driven
Investment Strategies—ProQuest.
https://www.proquest.com/openview/12b3151aa6a62d144519cc080f7d3bc9
/1?pg-origsite=gscholar&cbl=18750&diss=y

Sahay, A., Indamutsa, A., Di Ruscio, D., & Pierantonio, A. (2020). Supporting the
understanding and comparison of low-code development platforms. 2020
46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 171-178.

https://doi.org/10.1109/SEAA51224.2020.00036

138

Sargent, R. G. (2013). An introduction to verification and validation of simulation
models. 2013 Winter Simulations Conference (WSC), 321-327.
https://doi.org/10.1109/WSC.2013.6721430

Schwaber, K. (1997). SCRUM Development Process. In J. Sutherland, C.
Casanave, J. Miller, P. Patel, & G. Hollowell (Eds.), Business Object Design
and Implementation (pp.- 117-134). Springer London.
https://doi.org/10.1007/978-1-4471-0947-1_11

Schwaber, K., & Sutherland, J. (2020, January 11). Scrum Guide | Scrum Guides.
https://scrumguides.org/scrum-guide.html

Shankarmani, R., Pawar, R., S. Mantha, S., & Babu, V. (2012). Agile Methodology
Adoption: Benefits and Constraints. International Journal of Computer
Applications, 58(15), 31-37. https://doi.org/10.5120/9361-3698

Shaw, M. (2003). Writing good software engineering research papers. 25th
International Conference on Software Engineering, 2003. Proceedings.,
726—736. https://doi.org/10.1109/ICSE.2003.1201262

Silva, A. R., Meziani, R., Magalhaes, R., Martinho, D., Aguiar, A., & Flores, N.
(2009). AGILIPO: Embedding Social Software Features into Business
Process Tools. In S. Rinderle-Ma, S. Sadiq, & F. Leymann (Eds.), Business
Process Management Workshops (pp- 219-230). Springer.
https://doi.org/10.1007/978-3-642-12186-9_21

State of Agile Survey. (2021, March 2). https://stateofagile.com/

139

Taudes, A., Feurstein, M., & Mild, A. (2000). Options Analysis of Software Platform
Decisions: A Case Study. MIS Quarterly, 24(2), 227-243.
https://doi.org/10.2307/3250937

Thiemich, C., & Puhlmann, F. (2013). An Agile BPM Project Methodology. In F.
Daniel, J. Wang, & B. Weber (Eds.), Business Process Management (pp.
291-306). Springer. https://doi.org/10.1007/978-3-642-40176-3_25

Turner, R. (2003). Management Basics People Factors in Software Management:
Lessons From Comparing Agile and Plan-Driven Methods.

van der Aalst, W. M. P., ter Hofstede, A. H. M., & Weske, M. (2003). Business
process management. A survey. Proceedings of the 1st International
Conference on Business Process Management, Volume 2678 of LNCS, 1-
12.

Vincent, P., lijima, K., Driver, M., Wong, J., & Natis, Y. (2019). Magic quadrant for
enterprise low-code application platforms. https://smallake.kr/wp-
content/uploads/2020/01/gartner-magic-quadrant-for-enterprise-low-code-
application-platforms-august-20191.pdf

Waszkowski, R. (2019). Low-code platform for automating business processes in
manufacturing. IFAC-PapersOnLine, 52(10), 376-381.
https://doi.org/10.1016/j.ifacol.2019.10.060

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., & Wesslén, A.
(2012). Experimentation in Software Engineering. Springer Science &

Business Media.

140

Wong, K. K.-K. (2013). Partial Least Squares Structural Equation Modeling (PLS-

SEM) Techniques Using SmartPLS.

141

9 APPENDIX

9.1 LOW-CODE DEVELOPMENT PLATFORM OPEN-SOURCE
DECISION-MAKING RESULTS

Figures from 9-1 to 9-14 display the results from the comparison done with
Open Decision Maker software on Low-Code open-source platforms JOGET,
CAMUNDA, and jBPM.

Figure 37 - Results Summary

142

Criteria Summary

1. Main Criterion: ORGANIZATIONAL RISKS

Parent(s): -

Description:
Weighting Matrix:
JMTERNAL TOP
EXPERTIS| MANAGE [TRAINING
E MENT
SUPPORT]
INTERNAL -
EXPERTISE ; 1.00 025
TOP -
manacemen| 100 1 025
T SUPPORT
TRAINING 4.00 4.00 i
Consistency ratio: 0.00 (Critical consistency ratio: 0.1)
Result (Ranking):
MName Value
1. | JOGET 5111%
2. | jBPM 24 44%
3. | CAMUNDA 24 445

Figure 38 - Organizational Risks

143

TESIS TESIS TESIS TESIS TESIS

144

TESIS TESIS TESIS TESIS TESIS

1.2. Sub Criterion: TOP MANAGEMENT SUPFPORT

Parent(s): ORGANIZATIONAL RISKS

Description:

Weighting Matrix:

CAM;JND JOGET JBPM

CAMUMNDA 1 1.00 1.00

JOGET 1.00 1 1.00
jBPFM 1.00 1.00 1

Consistency ratio: 0.00

(Critical consistency ratio: 0.1)

Result (Ranking):
Mame Value
1. JOGET 33.33%
2 jBPM 33.33%
3. CAMUNDA 33.33%

Figure 40 - Top Management Support results.

145

1.3. Sub Criterion: INTERNAL EXPERTISE

Parent(s): ORGANIZATIONAL RISKS

Description:

Weighting Matrix:

CAM;'IND JOGET JBPM
CAMUNDA 1 1.00 1.00
JOGET 1.00 1 1.00
iBPFM 1.00 1.00 1
Consistency ratio: 0.00 (Critical consistency ratio: 0.1)
Result (Ranking):
Mame Value
1. JOGET 33.33%
2 jBPM 33.33%
3. CAMUNDA 33.33%

Figure 41 - Internal Expertise results.

146

2. Main Criterion: END-USER RISKS

Parent(s): -

Description:
Weighting Matrix:
FUNCTIO | ysapiLiT [YSEFULN
MALITY- ¥ ESS-
QUALITY RELEWVAN
CE
FUNCTIONALI
TY-QUALITY 1 0.25 1.00
USABILITY 4.00 1 4.00
USEFULNESS -
rELevance| %0 0.2 !

Consistency ratioc 0.00

(Critical consistency ratio: 0.1)

Result (Ranking):
Name Value
1. JOGET 54 30%
2. CAMUNDA 2728%
3. jBPM 18.41%

Figure 42 - End-User Risks results.

147

2.1. Sub Criterion: FUNCTIONALITY-QUALITY

Parent(s): END-USER RISKS

Description:

Weighting Matrix:

CAM;IND JOGET JEPM
CAMUNDA 1 3.00 5.00
JOGET 0.33 1 3.00
iBPM 0.20 0.33 1
Consistency ratioc 0.03 (Critical consistency ratio: 0.1)
Result (Ranking):
Mame Value
1. | CAMUNDA 63.70%
2. | JoGET 25.83%
3. jBPM 10.47%

Figure 43 - Functionality-Quality results.

148

2.2_5ub Criterion: USEFULNESS-RELEVANCE

Parent(s): END-USER RISKS

Description:
Weighting Matrix:
CAM;JND JOGET JBPM
CAMUNDA 1 1.00 1.00
JOGET 1.00 1 1.00
jBPM 1.00 1.00 1
Consistency ratio: 0.00 (Critical consistency ratio: 0.1)
Result (Ranking):
Mame Value
1. JOGET 3333%
2 jBPM 33.33%
3. CAMUNDA 33.33%

Figure 44 - Usefulness-Relevance results.

149

2.3. Sub Criterion: USABILITY

Parent(s): END-USER RISKS

Description:

Weighting Matrix:

CAM;JND JOGET JEPM
CAMUNDA 1 0.25 1.00
JOGET 4.00 1 4.00
JBPM 1.00 0.25 1
Consistency ratio: 0.00 (Critical consistency ratio: 0.1)
Result (Ranking):
Mame Value
1. JOGET BE.67%
jBPM 16.67%
3 CAMUNDA 16.67%

Figure 45 - Usability results.

150

3. Main Criterion: TECHNICAL RISKS
Parent(s): -

Description:

Weighting Matrix:

[COMMUNI pocume [MATURIT[SECURIT
TY |NTATION = -
SUPPORT LONGEVI |RELIABILI
TY TY
COMMUNITY
R ORT 1 0.33 1.00 1.00
DOCUMENTA,
BN 3.00 1 3.00 3.00
MATURITY-
iy | 10 0.33 1 1.00
SECURITY-
iy | 100 0.33 1.00 1

Consistency ratio: 0.00 (Critical consistency ratio: 0.1)

Result (Ranking):

Mame Value
1 JOGET 62.22%
CAMUNDA 25.38%
3. | jBPM 12.41%

Figure 46 - Technical Risks results.

151

3.1. Sub Criterion: COMMUNITY SUPPORT

Parent(s): TECHNICAL RISKS

Description:

Weighting Matrix:

CAM;JND JOGET JBPM
CAMUNDA 1 0.20 0.33
JOGET 5.00 1 3.00
jBPM 3.00 0.33 1
Consistency ratio: 0.03 (Critical consistency ratio: 0.1)
Result (Ranking):
Mame Value
1. JOGET 63.70%
2 jBPM 25.83%
3. CAMUNDA 10.47%

Figure 47 - Community Support results.

152

3.2. Sub Criterion: DOCUMENTATION

Parent(s): TECHNICAL RISKS

Description:

Weighting Matrix:

CAM;JND JOGET JBPM
CAMUNDA 1 0.33 3.00
JOGET 3.00 1 5.00
JBFM 0.33 0.20 1
Consistency ratio: 0.03 (Critical consistency ratio: 0.1)
Result (Ranking):
Name Value
1. JOGET 63.70%
2 CAMUNDA 25.83%
3. jBPM 10.47%

Figure 48 - Documentation results.

153

TESIS TESIS TESIS TESIS TESIS

154

TESIS TESIS TESIS TESIS TESIS

3.4. Sub Criterion: SECURITY-RELIABILITY

Parent(s): TECHNICAL RISKS

Description:

Weighting Matrix:

CAM;JND JOGET JBPM

CAMUNDA 1 1.00 5.00

JOGET 1.00 1 5.00
JBPM 0.20 0.20 1

Consistency ratio: 0.00

(Critical consistency ratio: 0.1)

Result (Ranking):
Mame Value
1. JOGET 45.45%
2 CAMUNDA 45.45%
3. jBPM 9.09%

Figure 50 - Security-Reliability results.

155

9.2 DESIGN OF THE ARTIFACT METHODOLOGY.

Once the Design Theoretical Sources were selected the Design Components
were chosen from the Roles, Activities, and Artifacts that could help to the design
of the BPMS Methodology.

The Table 46, Table 47, and Table 48 show the selected Design Components
for the first selected Design Components. Once the Desing Components were
selected the second iteration of the process reviewed every single component and
asked about its importance to be in the BPMS Methodology.

The second iteration provides the second wave of Desing Components that
could be important to be in the BPMS Methodology. The third and the last
iterations were processed to have the minimal Design Components for the
Methodology. It is also important to say that there were a lot of Desing
Components that are using the same activities and artifacts that use the DTS.2
Scrum-XP (Schwaber & Sutherland, 2020) (Dudziak, 1999) so the Desing
Components for this DTS were selected and complemented with other Activities
and Artifacts.

156

Table 46 - Roles for Desing Components first and second iterations.

Roles
] . SDLC that is also using it
Design Component | Source Name Why this could be helpful DTS1 DTS2 | DTS3 | DTS4
DC.4 DTS.2 Scrum-XP {Customer-Product Customer-Product Owner: The closest
Scrum-XP Roles (Schwaber & Owner; Coach-Master; | role to the stakeholders, is the person who X X X X
Sutherland, 2020) Development Team} knows how to provide value to the project.
(Dudziak, 1999) Coach-Master: The person who is in
charge of removing all the obstacles, X X X X
coaching the team, ensuring transparency,
and promoting self-organization.
Development Team: The cross-functional
team that can build the increment every X X X X
sprint. It is self-organized.
Table 47 - Phases and Activities for Desing Components first and second iteration.
Design ! SDLC that is also using it Iteration
Component | 0Uree N Why thisge e helpful DTS.L] DTS2 | DTS3 | DTS4 | 1] 2] 2
DC.1 DTS.1 The BPM | {Process ldentification, | Process Identification: Take all the
The BPM Lifecycle Process Discovery} business processes and set clear
- S ; i X X X X X
Lifecycle (Dumas et al., criteria for selecting specific processes
Phases 2018) for doing improvements.
Process Discovery: Define the team,
get the information of the process, and X X X | XX
ensure the quality.
DC.2 DTS.1 The BPM | {Process Identification | Process Identification - Process
The BPM Lifecycle [Process architecture architecture definition: Represents X X
Lifecycle (Dumas et al., definition, Process the processes that exist in an
Activities 2018) selection], Process organization.

157

Discovery [Defining
the setting, Gathering
the required
information, Modeling
the process, Assuring
model quality]}

Process Identification - Process
selection: Observe the business
processes to define the basis for
process selection.

Process Discovery - Defining the
setting: Build the team to work on the
process.

Process Discovery - Gathering the
required information: Get all the
needed information to work on
different processes.

Process Discovery - Modeling the
process: Start to model the processes
using BPMN (Business Process
Management Notation).

Process Discovery - Assuring model
quality: Ensure that the processes
modeled have the needed quality.

DC.5
Scrum-XP
Phases

DTS.2 Scrum-XP
(Schwaber &
Sutherland, 2020)
(Dudziak, 1999)

{Exploration, Product
Planning, Iteration-
Sprint Planning,
Iteration-Sprint,
Product Release}

Exploration: Plan all the projects and
identify the project's needs.

Product Planning: Plan the product
according to the needs.

Iteration-Sprint Planning: Select the
activities that provide more value to
the project as a priority to be
developed during a fixed time.

Iteration-Sprint: Build the increment
in an Iterative process,

Product Release: Release the
increment with the most important
features chosen by the Owner.

DC.6
Scrum-XP
Activities

DTS.2 Scrum-XP
(Schwaber &
Sutherland, 2020)
(Dudziak, 1999)

{Exploration [product
vision definition;
product backlog (user
story set) definition;

Exploration - Product vision
definition: To Have a clear vision of
the product and what needs to be
developed.

158

product backlog (user
story set) prioritization;
optional: spike
testing]}

{Product Planning
[product backlog (user
story set) effort
estimation; product
backlog (user story set)
negotiation; optional:
style codifying standard
definition]}
{Iteration-Sprint
Planning [iteration-
sprint user story
selection; iteration
sprint user story task
planning iteration-
sprint user story plan
negotiation]}
{Iteration-Sprint
[stand-up meeting;
customer functional
tests elaboration;
simple design;
codification and unit
testing; increment
integration and
customer functional
testing; iteration-sprint
review and
retrospective] }
{Product Release
[product releasing]}

Exploration - Product backlog (user
story set) definition: Create the user
stories or tasks that need to be
developed.

Exploration - Product backlog (user
story set) prioritization: Set the user
stories to prioritize the tasks for the
ones that provide more value.

Exploration - Spike testing: Define
the spikes that need some effort to
have better knowledge to close the
spike and create the needed user
stories.

Product Planning - Product backlog
(user story set) effort estimation:
Estimate every single user story by the
developer, it is possible to use fixed
time or user story points
(recommended).

Product Planning - Product backlog
(user story set) negotiation:
Negotiate as needed in some user
stories. Negotiations with the product
owner can avoid conflicts during the
sprint.

Product Planning - Style codifying
standard definition: Defining
standards in the code could help to
create a better product and be more
maintainable in the feature.

Iteration-Sprint Planning -
Iteration-sprint user story selection:
Select the most valuable user stories
to be developed during the sprint by
the Product Owner. The development
team chooses the task according to
their skills.

159

Iteration-Sprint Planning -
Iteration-sprint user story task
planning: Planning the user story
selected in terms of what would be the
best approach for doing this task.

Iteration-Sprint Planning -
Iteration-sprint user story plan
negotiation: Negotiate with the
product owner some items for the
Sprint Planning

Iteration-Sprint - Stand-up meeting:
Meet with the team to talk about the
progress, the upcoming work, and any
block that can have.

Iteration-Sprint - Customer
functional tests elaboration:
Elaborate test cases for every single
user story that is developed.

Iteration-Sprint - Simple design:
Create a simple design of how to
develop the story.

Iteration-Sprint - Codification and
unit testing: Code and test the
selected user story.

Iteration-Sprint - Increment
integration and customer functional
testing: Merge the finished user's
stories with increment which is a
working version of the product with
the functionality described in the
developed user stories.

Iteration-Sprint - Iteration-sprint
review and retrospective: Conduct a
retrospective by all the team to know
how what is working, and what is not.
and how to be better in the next
sprints.

160

Product Release - Product
o : X | X
releasing: Release the increment.
DC.8 DTS.3 APBPM {Project Scoping, Project Scoping: Define the scope of X
APBPM Phases | (Thiemich and Project Kick-Off, the project.
Puhlmann, 2013) | Sprint 0, Sprint 1-n, Project Kick-Off; Define the team,
Release Sprint} create the initial release plan, and X
define the sprint length.
Sprint 0: Define some parameters that
are going to be used in the next X
sprints.
Sprmt 1-n: Run a regular Scrum x | x
sprint.
Release Sprint: Release the
documentation, the training, and the X | X
product in this phase.
DC.9 DTS.3 APBPM {Project Scoping Project Scoping - Define target
APBPM (Thiemich and [Define target parameters: Define the most
Activities Puhlmann, 2013) | parameters, Create important parameters to be used
project idea, Define during the project.
project start/end, Project Scoping - Create project
Identify Stakeholder, idea: Create the main idea for the X
Evaluate BPM project.
Maturity], Project Project Scoping - Define project
Kick-Off [Define sprint | start/end: Define when the project is X
length, Create initial going to start and end.
release plan, Establish Project Scoping - Identify
architecture vision, Stakeholder: Define who is going to %
Build team], Sprint 0 be involved during the project beyond
[Define Definition of | the team and the three main roles.
Done & Definition of | project Scoping - Evaluate BPM
Ready, Identify initial | Maturity: Evaluate what is the
requirements, Define maturity of the business process.
initial architecture, Project Kick-Off - Define sprint
Setup project) length: Define what would be the
environment], Sprint 1- | sprint length in week's terms. Every X
n [Refine process single sprint is going to have this
backlog, Plan sprint, duration.

161

Define tasks,
Implement
requirements, Get
stakeholder feedback.
Control project
progress, Run
retrospective], Release
Sprint [Append Release
Notes, Train IT
operations and end
users, Integration tests,
Finish
Documentation.]}

Project Kick-Off - Create initial
release plan: Define what is going to
be the plan for releasing the increment
after every single sprint length.

Project Kick-Off - Establish
architecture vision: Define the vision
of the needed architecture for the
project.

Project Kick-Off - Build team: Build
the cross-functional team

Sprint 0 - Define Definition of Done
& Definition of Ready: Create the
Definition of Done and Ready. The
definition of Done is all the
parameters needed to accept the tasks
as completed. The definition of Ready
is the list of parameters that need to be
met for considering a task as ready to
be developed.

Sprint 0 - Identify initial
requirements: Define the initial
requirements to launch the project.

Sprint 0 - Get stakeholder feedback:
To have any feedback for the people
involved in the project.

Sprint 0 - Control project progress:
Define the progress of the project until
now.

Sprint 0 - Run retrospective: Know
what is working fine, what is not
working, and what could be improved
in the team.

Sprint 1-n - Refine process backlog:
Refine the backlog with all the tasks
with the needed information.

162

Sprint 1-n - Plan sprint, Define
tasks: Define every single task that
provide value to the project.

Sprint 1-n - Implement
requirements: Develop every single
user story.

Sprint 1-n - Get stakeholder
feedback: Get the feedback of the
customers when the tasks are
completed.

Sprint 1-n - Control project
progress: Know What is the progress
of the project? What is the increment
of this sprint?

Sprint 1-n - Run retrospective: Run
a Scrum retrospective when the sprint
is over.

Release Sprint - Append Release
Notes: Create the release notes when a
new increment is built.

Release Sprint - Train IT operations
and end users: Train the final users if
needed.

Release Sprint - Integration tests:
Create test cases that cover the
functionality of the development.

Release Sprint - Finish
Documentation: Create the final
documentation for the increment.

DC.11
ABPM Phases

DTS.4 ABPM
(Rosing and Gill,
2015)

{Agile Analysis, Agile
Planning, Agile build,
testing, and
deployment}

Agile Analysis: Do all the analysis
before starting the project.

Agile Planning: Elaborate the plan to
develop the project.

Agile build, testing, and
deployment: Iteratively develop all
agile activities.

163

DC.12
ABPM
Activities

DTS.4 ABPM
(Rosing and Gill,
2015)

{Agile Analysis [High-
Level Business
Requirements], Agile
Planning [High-level
project plan], Agile
build, testing, and
deployment [Defining
the Sprint Backlog,
Sprint Planning,
Performing Sprint,
Testing, Demo
Increment, Client
Feedback Meeting,
Retrospective,
Deploying Increment]}

Agile Analysis- High Level Business
Requirements: Create the
requirements for the project.

Agile Planning - High-level project
plan: Define the high-level plan for
the project.

Agile build, testing, and deployment
- Defining the Sprint Backlog: Take
the most important requirements and
put them in the sprint backlog.

Agile build, testing, and deployment
- Sprint Planning: Define the plan for
the sprint and all the requirements that
need to be done.

Agile build, testing, and deployment
- Performing Sprint: Develop the
requirements, and conducting the
Dayli meeting.

Agile build, testing, and deployment
- Testing: Test every single
requirement that is developed during
the sprint.

Agile build, testing, and deployment
- Demo Increment: Demo the
increment to the Product Owner and
the stakeholders.

Agile build, testing, and deployment
- Client Feedback Meeting: Get any

feedback provided by the stakeholders
during the demo.

Agile build, testing, and deployment
- Retrospective: When the sprint ends
a retrospective meeting is conducted
S0 that the team can be better for the
next sprint.

164

Agile build, testing, and deployment
- Deploying Increment: Deploy the
increment at the end of the sprint with

a working product with all X X X XX
requirements done during the Sprint
plus past requirements.
Table 48 - Artifacts for Desing Components first and second iterations.
Design _ SDLC that is also using it Iteration
Component Source Name Why this could be helpful DTS. | DTS. | DTS. | DTS.
1 2 8 4 1123
DC.3 DTS.1 The BPM | {Process Identification | Process Identification - Process
The BPM Lifecycle [Process architecture of | architecture of the selected process: X x | x| x
Lifecycle (Dumas et al., the selected process], The final document of the architecture
Acrtifacts 2018) Process Discovery [As- | of the project.
is business process Process Identification - As-is business
model]} process model: The current state of the X X X X | X
business process.
DC.10 DTS.3 APBPM {Project Scoping Project Scoping - Project Idea: A
APBPM (Thiemich and [Project Idea, List of document that clearly defines the X X X X | XX
Artifacts Puhlmann, 2013) | Stakeholder], Project project idea.
Kick-Off [Architecture | Project Scoping - List of
Vision, SOA-MAP, Stakeholders: A document having a X X SS | X | X|X
First Release plan, list of all stakeholders of the project.
Skill matrix], Sprint 0 Project Scoping - Architecture
[Def. of Done, Def. of | Vision: A document with the vision of X X | X | X
Ready, Process the architecture of the project.
Backlog, Story Map], | Project Scoping - SOA-MAP: A map
Sprint 1-n [Sprint with the services needed for the project. X X X X
Baklog, Process Project Scoping - First Release Plan:
Increment, Story Map], | A gocument that details the release plan X X X | X|X|X
Release Sprint for the project.

165

[Training documents,
Release Notes,
Documentation]}

Project Scoping - Skill matrix: The
skills that the development team needs
to have to complete the project.

Sprint 0 - Def. of Done: A list of
parameters that tasks need to be met for
considering tasks as done.

Sprint 0 - Def. of Ready: A list of
parameters that tasks need to be met for
consideration as ready for development.

Sprint 0 - Process Backlog: The
backlog of tasks to be developed.

Sprint 0 - Story Map: A board that
shows all the stories, their status, and
who is working on them.

Sprint 1-n - Sprint Backlog: The list
of tasks to be developed during the
sprint.

Sprint 1-n - Process Increment: The
result of merging newly developed
stories with the past increment.

Sprint 1-n - Story Map: A board that
shows all the stories, their status, and
who is working on them.

Release Sprint - Training documents:
Needed documents for training.

Release Sprint - Release Notes: A
document with the final release notes
after the increment is done.

Release Sprint - Documentation: A
document with the final results of sprint
review, and sprint retrospective.

DC.13
ABPM Artifacts

DTS.4 ABPM
(Rosing and Gill,
2015)

{Agile Analysis
[Selected business
process and sub-
processes, High-level
user stories, Table of

Agile Analysis - Selected business
process and sub-processes: A
document with all the business
processes and sub-processes selected to
work on.

166

priorities and
estimations], Agile
Planning [Project plan],
Agile build, testing,
and deployment, Agile
build, testing, and
deployment [Sprint
Backlog, Sprint Task
Plan, Tests, Increment,
Integrated Release]}

Agile Analysis - High-level user
stories: A list of high-level user stories.

Agile Analysis - Table of priorities
and estimations: A board with user
stories estimated and prioritized

Agile Planning - Project plan: A
document with a detailed project plan.

Agile Planning - Sprint Backlog: A
list of stories to work on during the
sprint.

Agile Planning - Sprint Task Plan: A
document with a detailed test plan for
the stories and the increment.

Agile Planning - Tests: Test cases to
be performed on the stories.

Agile Planning - Increment: A
working product with all developed
user stories.

Agile Planning - Integrated Release:
The final release with the final
increment.

167

	Portada
	INDEX
	INDEX OF TABLES
	INDEX OF FIGURES
	ABSTRACT IN SPANISH
	ABSTRACT IN ENGLISH
	1 INTRODUCTION
	1.1 CONTEXT OF THE RESEARCH PROBLEM
	1.2 MOTIVATION AND RELEVANCE OF THE RESEARCH PROBLEM
	1.3 FORMULATION OF THE RESEARCH PROBLEM
	1.4 GENERAL DESCRIPTION OF THE RESEARCH METHODOLOGY

	2 RESEARCH METHODOLOGY
	2.1 MAIN ACTIVITIES
	2.2 OBJECT AND SUBJECTS OF STUDY
	2.3 MATERIALS AND EQUIPMENT
	2.4 RESEARCH EVALUATION METHODS
	2.5 RESTRICTIONS AND LIMITATIONS

	3 THEORETICAL BACKGROUND
	3.1 THEORETICAL FOUNDATIONS
	3.2 ANALYSIS OF CONTRIBUTIONS AND LIMITATIONS

	4 DEVELOPMENT OF THE SOLUTION
	4.1 DSRM STEP 1 – DESIGN PROBLEM IDENTIFICATION AND MOTIVATION
	4.2 DSRM STEP 2 – DEFINITION OF THE DESING OBJECTIVES, DESING APPROACH, DESIGN THEORETICAL SOURCES, AND DESING COMPONENTS FOR THE EXPECTED ARTIFACT: AGILE BPM METHODOLOGY
	4.3 DSRM STEP 3 – DESING AND DEVELOPMENT OF THE ARTIFACT

	5 EVALUATION OF RESULTS
	5.1 EVALUATION OF AGULEBPM METHODOLOGY DOCUMENT
	5.2 EMPIRICAL USABILITY EVALUATION OF AGILEBPM METHODOLOGY.
	5.3 APPLICATION OF THE AGUILEBPM METHODOLOGY.

	6 DISCUSSION OF RESULTS
	6.1 SUMMARY OF THE RESULTS
	6.2 DISCUSSION ON RESULTS
	6.3 DISCUSSION ON CONTRIBUTIONS TO THE PRAXIS ON AGILE DEVELOPMENT FOR BPMS
	6.4 LIMITATIONS
	6.5 CONCLUSIONS

	7 GLOSSARY
	8 REFERENCES
	9 APPENDIX

