
 
 

 

 

CENTRO DE CIENCIAS BÁSICAS 

 

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN 

 

TESIS 
 

CARACTERÍSTICA DE EULER EN OBJETOS BINARIOS 
 

PRESENTA 
 

CARLOS EDUARDO HUERTA HERNÁNDEZ 

PARA OBTENER EL GRADO DE MAESTRÍA EN CIENCIAS CON OPCIÓN A LA 
COMPUTACIÓN 

 

DIRECTOR DE TESIS 
 

DR. HERMILO SÁNCHEZ CRUZ (UAA) 

 

COMITÉ TUTORIAL 

DRA. EUNICE PONCE DE LEÓN (ASESOR, UAA) 

DR. OSVALDO ARTURO TAPIA DUEÑAS (ASESOR, JOHN CAROLL 
UNIVERSITY, EEUU) 

 

 



 
 

 
 

Autorizaciones 

  



 
 

 
 

 



 
 

 
 

 



 
 

 
 

 



 
 

 
 

 



 
 

 
 

 



 
 

 
 

AGRADECIMIENTOS 

 

Al Consejo Nacional de Ciencia y Tecnología CONACYT por todo el apoyo 

económico que me brindó para poder realizar este trabajo de tesis. 

A la Universidad Autónoma de Aguascalientes UAA por abrirme las puertas y darme 

la oportunidad de tener este crecimiento profesional y personal. 

A mis profesores en el posgrado, especialmente a mi tutor Dr. Hermilo Sánchez 

Cruz, por sus enseñanzas consejos y orientación, sin su ayuda simplemente no hubiera 

sido posible este trabajo. Agradezco también a Dra. Eunice Esther Ponce de León Sentí, 

Dr. Osvaldo Arturo Tapia Dueñas, Dr. José Antonio Guerrero Díaz de León por su              

asesoramiento en este trabajo. También mi agradecimiento a Dra. Aurora Torres Soto, Dr. 

Francisco Álvarez Rodríguez y Dr. Jaime Muñoz Arteaga, ya que gracias a ellos recibí 

distintas enseñanzas que me fueron de mucha utilidad a lo largo del posgrado. 

A mis compañeros de la maestría, por sus alegrías, consejos y ayuda en cada     

tarea, cada proyecto y cada instante. 

A toda mi familia por todo el apoyo incondicional que he recibido de cada uno de 

ellos, sin importar los momentos difíciles. Especialmente a mi madre, Sra. Martha    

Hernández Betancourt, y a mi tío, Alfonso Hernández Betancourt, por su apoyo 

incondicional que me permitió ingresar al posgrado. De manera muy cariñosa a Karla 

Guadalupe Martínez Collazo, por haber sido fuente de inspiración para retomar los 

objetivos. 

 

 

 



1 
 

Índice 
Índice de Tablas ....................................................................................................................................3  

Índice de Figuras ..................................................................................................................................4  

Resumen...............................................................................................................................................5  

Abstract ................................................................................................................................................6 

INTRODUCCIÓN ....................................................................................................................................7 

Simplexes .........................................................................................................................................7  

Característica de Euler .....................................................................................................................7 

Contorno vs. Región ...................................................................................................................... 12 

Descripción del Problema de Investigación .................................................................................. 13 

Objetivos ....................................................................................................................................... 14 

Trabajos significativos para el cálculo de la característica de Euler ............................................. 14 

Métodos basados en la región ...................................................................................................... 14 

Métodos basados en el contorno ................................................................................................. 16 

Justificación ................................................................................................................................... 19 

CAPÍTULO 1. MARCO TEÓRICO ......................................................................................................... 22 

1.1 Imagen binaria ........................................................................................................................ 22 

1.2 Vecindad .................................................................................................................................. 22 

1.3 Códigos de Cadena .................................................................................................................. 23 

1.4 Código de cadena de Freeman (F8) ........................................................................................ 24 

1.5 Código direccional de Freeman (AF8) ..................................................................................... 25 

1.6 Código de cadena de vértices (VCC) ....................................................................................... 25 

1.7 Código de tres símbolos ortogonales (3OT) ............................................................................ 26 

CAPÍTULO 2. HISTOGRAMAS DE CÓDIGO DE CADENA PARA INVARIANZA EN ROTACIÓN ............... 29 

2.1 Esqueletos ............................................................................................................................... 29 

2.2 Representación por contornos ............................................................................................... 30 

2.3 Representación por esqueletos .............................................................................................. 30 

2.4 Histogramas de los códigos de cadena ................................................................................... 31 

2.5 Aplicación del método ............................................................................................................ 34 

2.6 Histogramas de código de cadena para invarianza en rotación utilizando 3OT ..................... 38 



 
 

2 
 

CAPÍTULO 3. CONCEPTOS GEOMÉTRICOS ENCONTRADOS EN CONTORNOS BASADOS EN EL 
CÓDIGO 3OT. ..................................................................................................................................... 40  

3.1 Geometrías presentes en los contornos ................................................................................. 40 

3.2 Relación entre el código VCC y 3OT ........................................................................................ 42 

CAPÍTULO 4. CÁLCULO DE LA CARACTERÍSTICA DE EULER BASADO EN EL CÓDIGO 3OT. ................ 47 

4.1 Geometría presente en el código 3OT .................................................................................... 47 

4.2 Determinación del significado geométrico al leer una cadena 3OT ....................................... 48 

4.3 Cálculo del número de hoyos en objetos binarios a partir de una cadena 3OT ..................... 50 

4.4 Característica de Euler en objetos binarios a partir de una cadena 3OT ................................ 54 

4.5 Algoritmo empleado para encontrar la Característica de Euler ............................................. 57 

CAPÍTULO 5. PUNTOS DOMINANTES USANDO 3OT ......................................................................... 60 

5.1 Puntos dominantes en un objeto binario ............................................................................... 60 

5.2 Detección de puntos dominantes mediante símbolo ‘2’ del código 3OT ............................... 61 

5.3 Codificación de imágenes en ambos sentidos ........................................................................ 63 

CAPÍTULO 6. CONCLUSIONES Y DISCUSIÓN DE RESULTADOS. .......................................................... 67 

6.1 Invarianza ante rotación ......................................................................................................... 67 

6.2 El cálculo de la característica de Euler .................................................................................... 67 

6.3 Encontrar puntos dominantes mediante sólo un símbolo del código 3OT ............................ 68 

6.4 Trabajo futuro ......................................................................................................................... 69 

Glosario ............................................................................................................................................. 70 

Bibliografía ........................................................................................................................................ 71  

 
  



 
 

3 
 

Índice de Tablas 
 

Tabla 1. Codificación de la Figura 17 con F8, AF8, VCC y 3OT. -27- 
Tabla 2. Frecuencias de símbolos de la rana. -32- 
Tabla 3. Condiciones para determinar similitud. -34- 
Tabla 4 Comparación con codificación de contornos. -36- 
Tabla 5. Comparación con codificación de esqueletos. -37- 
Tabla 6. Comparación realizada con 3OT. -39- 
Tabla 7. Conversión del código VCC al código 3OT. -46- 
Tabla 8. Resultados del cálculo de la Característica de Euler. -56- 
 

 

  



 
 

4 
 

Índice de Figuras 
 

 
Figura1 Simplexes en un objeto irregular - 8 - 
Figura 2. Objeto irregular - 9 - 
Figura 3. Objeto binario compuesto por celdas cuadrangulares - 10 - 
Figura 4. Objeto binario compuesto por celdas cuadrangulares con presencia de hoyo - 11 - 
Figura 5. Contorno vs Región - 13 - 
Figura 6. Bit quad Q1 - 15 - 
Figura 7. Bit quad Q3 - 15 - 
Figura 8. Bit quad QD - 15 - 
Figura 9. Perímetro de contacto - 17 - 
Figura 10. Elemento estructurado: Tetrapixel - 18 - 
Figura 11. Imagen binaria, - 22 - 
Figura 12. Pixel de referencia P - 23 - 
Figura 13. Representación de la asignación de símbolos para las direcciones del código F8. - 25 - 
Figura 14. Representación del código AF8. - 25 - 
Figura 15. Significado geométrico del código VCC: (a) símbolo 1, (b) símbolo 2 y (c) símbolo 0. - 26 - 
Figura 16. Significado geométrico del código 3OT - 26 - 
Figura 17. Imagen binaria codificada mediante F8, AF8, VCC y 3OT. - 27 - 
Figura 18.  Codificación de Contornos. - 30 - 
Figura 19. Codificación de esqueletos. - 31 - 
Figura 20. Gráfico de frecuencia para la rana. - 33 - 
Figura 21. Muestra de objetos representados por F8 y AF8. - 35 - 
Figura 22. Histogramas para la codificación 3OT. - 38 - 
Figura 23. Llano - 41 - 
Figura 24. Configuraciones geométricas: - 41 - 
Figura 25. Configuración Geométrica de la escalera. - 42 - 
Figura 26. Bache codificado: - 43 - 
Figura 27. Caso del tope. - 44 - 
Figura 28. Geometría de la escalera - 45 - 
Figura 29. Codificación 3OT en sentido de las manecillas del reloj. - 48 - 
Figura 30. Segmento de imagen codificado por código VCC con número 𝑤 par. - 49 - 
Figura 31. Segmento de imagen codificado por código VCC con número 𝑤 impar. - 50 - 
Figura 32. Objetos binarios con vértices marcados. - 52 - 
Figura 33. Muestra de Imágenes para la característica de Euler. - 56 - 
Figura 34. Imagen con puntos dominantes. - 61 - 
Figura 35. Imagen de baja resolución codificada por 3OT. - 62 - 
Figura 36. Puntos dominantes unidos - 62 - 
Figura 37. Puntos dominantes unidos con hoyo. - 63 - 
Figura 38. Codificación en ambos sentidos. - 64 - 
Figura 39. Puntos dominantes mediante el símbolo ‘2’ del 3OT. - 65 -



 
 

5 
 

Resumen 
 

En esta tesis se aborda el problema del cálculo de la característica de Euler-Poincaré, 

también conocido como característica de Euler, para objetos binarios. El problema es 

resuelto mediante la implementación del código 3OT (ThreeOrThogonal symbol chain 

code). En este trabajo se propone codificar las imágenes binarias, y de esta manera, utilizar 

únicamente un símbolo para realizar el cálculo de característica de Euler mediante la 

introducción de nuevos conceptos geométricos que aparecen en los contornos de los 

objetos binarios, con significados geométricos distintos, pero representados por un mismo 

símbolo del código 3OT. La ecuación para calcular la característica de Euler queda 

simplificada debido a que se puede expresar en función de únicamente un símbolo. Por 

esta razón una de nuestras aportaciones es haber representado la topología de una imagen 

con uno de los símbolos del código de cadena más eficiente para la compresión de 

imágenes, lo cual facilita el análisis y procesamiento de imágenes binarias. Además, como 

parte del análisis de los códigos altamente citados en la literatura, se propone un método 

para encontrar invarianza ante transformaciones de rotación. Finalmente, se desarrolla un 

método rápido para detección de puntos dominantes, gracias a la representación visual del 

código 3OT. Así, en esta tesis se demuestra que el código 3OT puede ser utilizado no 

solamente para la compresión de imágenes como se reporta en la literatura, sino que 

también puede ser utilizado para el procesamiento, análisis y reconocimiento de imágenes.  

Palabras clave: característica de Euler, hoyos, código 3OT, puntos dominantes, imágenes 

binarias, objetos binarios, invarianza ante rotación, histogramas, invarianza ante traslación.  
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Abstract 
 

In this thesis the problem of calculating the Euler-Poincaré number, also known as Euler 

characteristic, for binary objects is addressed. The problem is solved by implementing the 

3OT code (symbol ThreeOrtThogonal Chain code). In this paper we propose to encode the 

binary images, and thus use only a symbol for the computation of the Euler number by 

introducing new geometric concepts in the contours of the binary objects, with different 

geometric meaning, but represented by the same 3OT code symbol.  The equation for 

computing the Euler number is simplified because it can be expressed in terms of only a 

symbol. For this reason, one of our contributions is to have represented the topology of an 

image with only one of the symbols of the chain code that is the most efficient for image 

compression, which is helpful for the image compression and image analysis. Also, as part 

of analysis of chain codes, we propose a method to find invariance under rotation 

transformations. Finally, we develop a fast and simple method for detecting key points, 

thanks to the visual representation of the 3OT code. Thus, in this thesis it is shown that the 

3OT Code can be used not only for image compression as is reported in the literature, but 

also can be used for the processing, analysis, and recognition tasks. 

Key words: Euler number, holes, 3OT code, key points, binary objects, binary images, 

rotation invariance, histograms, translation invariance. 
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INTRODUCCIÓN 
 

Las propiedades topológicas son utilizadas para analizar y representar imágenes 

geométricas debido a que se mantienen invariantes ante transformaciones afines, esto es 

útil para tareas de reconocimiento, recuperación y compresión de imágenes. Una 

característica topológica importante en las tareas previamente mencionadas es la 

característica de Euler, el cual indica la diferencia entre el número entre componentes 

conexas y el número de hoyos. A continuación, la característica de Euler es descrito a 

detalle más adelante, así como las técnicas comúnmente utilizadas para su obtención.  

Simplexes 
 

Un simplex es la envolvente convexa de un conjunto de (n+1) vértices afines en un 

espacio euclidiano de dimensión  n. Por ejemplo un 0-simplex (𝑛଴) es un vértice, un 1-

simplex (𝑛ଵ) es una arista, un 2-simplex (𝑛ଶ) un área, un 3-simplex (𝑛ଷ) un tetraedro, etc. 

Característica de Euler 
 

El estudio de las propiedades de imágenes binarias permite tareas de 

reconocimiento, las propiedades como excentricidad, elongación, el genus y la 

característica de Euler son muy características de las imágenes muy utilizadas para este 

propósito (González et al, 2008). En general se puede decir que la característica de Euler 

es un invariante topológico. 

La característica de Euler de un politopo de tres dimensiones o poliedro se puede 

calcular usando la Ecuación (1). La cual fue planteada por Leonard. Euler alrededor del año 

de 1750 para poliedros convexos. 

𝑛଴ − 𝑛ଵ + 𝑛ଶ = 2,     (1) 

Donde 𝑛଴ es el número de vértices,  𝑛ଵ se refiere al número de segmentos, mientas 

𝑛ଶ es el número caras. 
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Años después se obtiene la fórmula extendida para cualquier dimensión 𝐷 

(Poincaré, et al, 1895), representada por la Ecuación (2), conocida en la literatura como 

Euler-Poincaré. 

𝑛଴ − 𝑛ଵ + 𝑛ଶ − 𝑛ଷ + ⋯ + 𝑛஽ିଵ = 1 + (−1)஽ିଵ.   (2) 

Se conoce también que en cualquier objeto conectado simple, la característica de 

Euler 𝐸, es 𝐸 = 1 (Gray et al, 1971). Gray plantea que si se realizan triangulaciones a 

cualquier objeto, la característica de Euler será definido por la Ecuación (3). 

𝐸 = 𝑛଴ − 𝑛ଵ + 𝑛ଶ.     (3) 

La Figura 1 muestra el caso de un objeto irregular con los simplexes resaltados y 

posteriormente se calcula la característica de Euler. 

 

 

Figura 1 Simplexes en un objeto irregular 

 De la Figura 1 se pueden obtener el número de vértices 𝑛଴ = 6, el número de aristas 

𝑛ଵ =9 y el número de regiones 𝑛ଶ = 4. Al sustituir los valores en la Ecuación (3), se obtiene 

que 𝐸 = 6 − 9 + 4 = 1. Por lo que cualquier objeto triangulado bidimensional y sin hoyos 

tendrá un valor de 𝐸 = 1.  
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Cuando existe presencia de hoyos, el resultado se verá directamente afectado por el 

número de hoyos presentes, Gray plantea que la característica de Euler puede ser 

calculado en función del número de componentes conexas 𝑛 y el número de hoyos 𝐻. La 

Figura 2 muestra al objeto presentado en la Figura 1, pero con una de sus regiones 

eliminadas, manteniendo el mismo número de vértices y de aristas, dando así lugar a la 

formación de un hoyo en la imagen. 

 

Figura 2. Objeto irregular con aparición de un hoyo para el caso del cálculo de la 

característica de Euler basado en el número de componentes conexas 𝑛 y el número de 

hoyos 𝐻. 

 Realizando un análisis similar al anterior, de la Figura 2 se obtienen los valores 𝑛଴ =

6 y 𝑛ଵ = 9, dichos valores coinciden con los obtenidos del análisis anterior realizado con la 

Figura 1. Sin embargo, el número de regiones 𝑛ଶ = 3, ha decrecido, debido a que ha sido 

eliminada una de sus áreas. Por otro lado, el número de hoyos 𝐻 = 1 muestra un 

incremento. De lo anterior se puede decir que siempre que existe un decremento en el 

número de regiones: ∆𝑛ଶ = −1, existe un incremento en el número de hoyos ∆𝐻 = 1 y es 

posible observar que cada vez que aparece un hoyo, la característica de Euler decrece: 

∆𝐸 = −1. Por lo anterior, la característica de Euler es una propiedad topológica definida 

también como una relación entre el número de componentes conexas y el número de hoyos. 

Matemáticamente la característica de Euler de una imagen está dada por la Ecuación (4): 
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𝐸 = 𝑛 − 𝐻,    (4) 

Debido a las características que se tienen en las imágenes binarias, donde las 

imágenes están compuestas por celdas cuadradas, mejor conocidas como pixeles, la 

característica de Euler puede ser adecuadamente aplicado. A continuación, se muestra un 

caso particular donde se encuentra la característica de Euler para una imagen binaria, 

mostrando así la aplicación para el caso digital. 

La Figura 3 presenta el caso de una imagen formada por 9 píxeles cuadrangulares, 

por lo que dicha figura está compuesta por 16 vértices, 24 segmentos (aristas) y 9 regiones 

(pixeles), al sustituir estos datos en la Ecuación (3), se obtiene: 𝐸 = 16 − 24 + 9, 

resolviendo se obtiene que la característica de Euler es 𝐸 = 1. Es importante notar que la 

imagen presentada en la Figura 3 no tiene ningún hoyo. Es decir, todas las regiones por las 

que está compuesta la imagen está formada por píxeles encendidos. 

 

Figura 3. Objeto binario compuesto por celdas cuadrangulares  sin presencia de hoyo 

(nueve pixeles encendidos). 

La Figura 4 es similar a la Figura 3, pues aparentemente se trata también de una 

imagen compuesta por 9 pixeles, solo que es posible observar que se ha “apagado” el píxel 

del centro, formando así un hoyo en la imagen. 
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Figura 4. Objeto binario compuesto por celdas cuadrangulares con presencia de hoyo 

(ocho pixeles encendidos y uno apagado). 

De la Figura 4 se puede notar que cuenta con el mismo número de vértices que la 

Figura 3:𝑛଴ = 16, el mismo número de segmentos: 𝑛ଵ = 24 pero si contamos el número de 

regiones notamos que 𝑛ଶ ha decrecido en uno, debido a que hemos apagado el píxel del 

centro y se ha quitado al mismo tiempo una región de la imagen, por lo tanto, 𝑛ଵ = 8. Si 

realizamos el cálculo para obtener a característica de Euler con base a la Ecuación (1), 

obtenemos que: 𝐸 = 16 − 24 + 8, de esta manera la característica de Euler es: 𝐸 = 0. 

Con los ejemplos dados por la Figura 3 y la Figura 4, es claro que la  Ecuación (4) 

es correcta ya que podemos observar que si el número de regiones decrece: ∆𝑛ଶ = −1, 

dando así lugar a la aparición de un hoyo, la característica de Euler también decrece: ∆𝐸 =

−1mientras el número de vértices 𝑛଴ y el número de segmentos 𝑛ଵ se mantienen, asimismo 

el número de componentes conexas no presenta cambios: ∆𝑛 = 0.Podemos decir que al 

agregar un hoyo: ∆𝐻 = 1, el número de componentes se mantiene ∆𝑛 = 0, mientras la 

característica de Euler decrece: ∆𝐸 = −1. Validando así la Ecuación (4). 

 Si aplicamos la Ecuación (4) a la Figura 3 se puede ver que el número de 

componentes conexas es: 𝑛 = 1 y el número de hoyos es: 𝐻 = 0. Así la característica de 

Euler está dada por: 𝐸 = 1 − 0 = 1.  



 
 

12 
 

En el caso de la Figura 4, al aplicar la Ecuación (4), el número de componentes 

conexas es el mismo: 𝑛 = 1, mientras el número de hoyos es: 𝐻 = 1, por lo que la 

característica  de Euler para la Figura 4 está dado por: 𝐸 = 1 − 1 = 0, mostrando un caso 

base donde la Ecuación (4) es correcta. 

Con lo anterior sabemos que la característica de Euler puede ser calculado con base 

a sus simplexes, o al número de componentes conexas y a los hoyos que presenta una 

imagen binaria. Al ser un invariante topológico, la característica de Euler puede ser de gran 

ayuda para el análisis y procesamiento de imágenes, permitiendo obtener un invariante 

para ser utilizado para el reconocimiento de imágenes, encontrar el número de hoyos, el 

número de objetos o incluso algunos simplexes del objeto analizado. 

La característica de Euler ha sido una característica importante para varias 

aplicaciones. Por ejemplo, en el análisis biológico y el análisis industrial, Uchiyama utiliza 

dicha característica para el análisis de huesos humanos (Uchiyama et al, 1999). Por otro 

lado, para el análisis industrial existen ejemplos para tareas industriales complejas (Yang, 

Hyun & Sanjay, 1988), por mencionar solo algunos casos de aplicación. 

 

Contorno vs. Región 
 

En el análisis de Imágenes binarias existen dos caminos diferentes: el método 

basado en la frontera, que usa sólo el contorno para el análisis y representación, y el 

segundo método, el basado en la región, donde la imagen puede ser representada y 

analizada considerando todo el interior delimitado por el contorno. 

Algunas técnicas basadas en la frontera son los códigos de cadena, los puntos 

dominantes, la elongación, etc. 

Para entender mejor la diferencia entre el análisis y representación por ambos 

métodos, se presenta la Figura 5, la Figura 5(a) muestra los píxeles que tienen que ser 

analizados cuando se utiliza el método basado en la región, mientras la Figura 5(b) muestra 

la misma imagen, pero únicamente con el recorrido de pixeles que tiene que hacerse para 

analizar la imagen al utilizar el método basado en la frontera. 
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Figura 5. Contorno vs Región. (a): Pixeles analizados en los métodos basados en la 
región y (b): pixeles analizados en los métodos basados en el contorno. 

 

Como es de esperarse los métodos basados en la frontera tienen que recorrer 

menor número de píxeles que los basados en la región, donde se requiere del 

procesamiento de la totalidad de los pixeles que conforman la imagen. 

Por la menor cantidad de cómputo al momento del análisis, así como la menor 

cantidad de almacenamiento que requieren, las diferentes técnicas que están basadas en 

la frontera resultan interesantes para tareas de reconocimiento, clasificación, etc. Por esta 

razón en esta tesis se desarrolla un método que está basado en el contorno. 

Como lo mencionado hasta el momento, para poder obtener la característica de 

Euler es necesario conocer información sobre los simplexes (𝑛଴, 𝑛ଵ, y 𝑛ଶ), o la característica 

de objetos y hoyos que conforman a una imagen binaria. Debido a que computacionalmente 

no es posible obtener dicha información de manera directa de una imagen digital, el calcular 

la característica de Euler es un problema de interés para las ciencias de la computación. 

 

Descripción del Problema de Investigación 
 

A la fecha, los métodos existentes tienen problemas de excepción para realizar el 

cálculo de la característica de Euler cuando existe conectividad-8 (La conectividad-8 será 

definida más adelante en el marco teórico). 

El procesamiento de imágenes requiere de técnicas que sean eficientes, que 

consideren un menor tiempo de cómputo y que en su caso requieran menor cantidad de 
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almacenamiento. Siguiendo esta premisa y dado que los métodos basados en la región 

resultan ser exhaustivos al recorrer la totalidad de los pixeles que conforman una imagen, 

los métodos que parecen ser los más eficientes para realizar el cálculo de la característica 

de Euler, son los basados en el contorno. 

Existen ya algunos trabajos que abordan esta problemática. Por ejemplo,   (Sossa, 

2013) presenta un método para realizar el cálculo de la característica  de Euler mediante el 

uso del código de cadena VCC, la cual es una técnica basada en el contorno. Sin embargo, 

la codificación por VCC no ha demostrado tanta eficiencia para la compresión de imágenes 

como lo ha hecho ya la codificación por 3OT (Sánchez-Cruz, 2007). 

Objetivos 
 

1. Desarrollar un método para el cálculo de la característica de Euler que sea eficiente 

comparado con los que se encuentran actualmente en la literatura.  

2. Encontrar la Característica de Euler mediante un método que considere la 

conectividad-8. 

3. Estudiar las propiedades de invarianza de los códigos de cadena.  

4. Proponer un método que refleje la relación que existe entre la geometría de un 

objeto y su topología. 

 

Trabajos significativos para el cálculo de la característica de Euler 

 
A continuación, se enuncian algunos métodos que sobresalen en la literatura para 

el cálculo de la característica de Euler.  

 
Métodos basados en la región 

Método de los bitsquad. 

Algunos softwares utilizados para el análisis de imágenes como Matlab, emplean el 

algoritmo presentado por (Pratt et al, 1991). Dicho algoritmo fue dado a conocer como el 

más rápido en la literatura para el cálculo de la característica de Euler. El algoritmo 
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propuesto por Pratt busca patrones locales, es decir matrices compuestas de 2 x 2 pixeles, 

mejor conocidos como bit quad. 

Pratt explica el algoritmo propuesto por (Gray et al, 1971), ilustrando tres tipos de 

patrones que pueden ser encontrados en imágenes binarias, llamados bit quad. La Figura 

6 muestra las cuatro posibles configuraciones permisibles para el bit quad identificado como 

Q1, mientras la Figura 7 muestra las configuraciones del patrón Q3, y la Figura 8 muestra 

las configuraciones para el patrón QD. 

 

Figura 6. Bit quad Q1. Patrón compuesto por cuatro pixeles conectados por su vecindad-

4,  un bit encendido y tres apagados. 

 

Figura 7. Bit quad Q3.Patrón compuesto por cuatro pixeles conectados por su vecindad-4,  

tres bits encendidos y uno apagado. 
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Figura 8. Bit quad QD. Patrón compuesto por cuatro pixeles conectados por su vecindad-

4,  dos bits encendidos y dos apagados. 

 El método propone utilizar la siguiente ecuación para encontrar la característica de 

Euler en imágenes binarias bajo la definición de conectividad-8. 

𝐸 =
ଵ

ସ
[𝑛{𝑄ଵ} − 𝑛{𝑄ଷ} − 2𝑛{𝑄஽}],    (5) 

Donde 𝑛{𝑄௫} es el número de veces que se encuentra el patrón {𝑄௫} en la imagen. 

Existen también otros métodos destacados para el cálculo de la característica de 

Euler que no se explican a detalle, debido a que no se hace uso comercial de estos métodos 

y no están directamente relacionados, ya que están basados en la región de la imagen y no 

en el análisis del contorno como el método propuesto en esta tesis. Solo son mencionados 

por su impacto en la literatura. Por ejemplo (Dyer, et al, 1980) presenta su propuesta para 

realizar el cálculo de la característica de Euler basándose en los quadtree. Una alternativa 

para resolver el problema de la obtención de la característica de Euler es la planteada en 

(Chiavetta F. & Vito Di, 1993), donde se presenta un método para realizar el cálculo de 

manera paralela basándose en la conectividad de grafos. 

Existen también algoritmos diseñados especializados que permiten una 

implementación en circuitos integrados, un ejemplo de ello es (Dey, et al, 2000).  

(Sossa-Azuela, Cuevas-Jiménez &Saldivar-Navarro, 2010) muestra un método para 

realizar el cálculo de la característica de Euler en imágenes compuestas por celdas 

hexagonales. 

Métodos basados en el contorno 
A continuación, se mencionan trabajos basados en el contorno de la imagen y que 

además han servido como base para la elaboración de este trabajo de tesis. 

Métodos basados en el perímetro de contacto. 

En el año 2010 (Bribiesca, et al, 2010) presentó un método para encontrar la 

característica de Euler usando el perímetro de contacto. A continuación, se realiza una 

breve explicación del método. 
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El perímetro está dado por el contorno de la imagen, mientras el perímetro de 

contacto, está definido como el número de aristas que tienen en común dos pixeles 

adyacentes. La Figura 9 (a). Muestra un objeto binario, la Figura 9 (b). Muestra el mismo 

objeto, pero con el contorno remarcado, mientras la Figura 9 (c). Muestra el perímetro de 

contorno remarcado. 

Figura 9. Perímetro de contacto, (a): Imagen original, (b): Perímetro marcado y (c): 

Perímetro de contacto marcado. 

El método presentado por Bribiesca es funcional únicamente para imágenes con 

espesor unitario y no considera las imágenes cuya región no presenta esta configuración. 

Es decir, el método desarrollado por Bribiesca no es aplicable para calcular la Característica 

de Euler en imágenes cuya composición no presenta la configuración de imágenes con 

espesor unitario. 

Para calcular la característica de Euler, Bribiesca llega a una expresión en función 

del perímetro de contacto y la expresa en función al número de hoyos de la imagen, la 

expresión para calcular la Característica de Euler está dada por la Ecuación. (6) 

𝐸 = −
(்ିଶ)∗௉௖ି௉

்
,     (6) 

 

Donde T es el número de lados que tiene la celda, Pc es el valor que toma el perímetro de 

contacto, P es el valor del perímetro. 
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Método basado en los tetrapixeles. 

En el año 2011, un año después de la publicación del método presentado 

anteriormente, (Sossa, Cuenvas & Saldivar, 2011) dio solución al problema que tiene el 

método previamente explicado presentado por Bribiesca con imágenes de espesor no 

unitaria presentando el concepto de tetrapixel. Un tetrapixel es un elemento estructurado 

formado por cuatro píxeles encendidos, donde los cuatro píxeles del elemento estructurado 

se encuentran conectados con los demás pixeles por medio de un solo vértice como lo 

muestra la Figura 10. 

 

Figura 10. Elemento estructurado: Tetrapixel. 

Sossa obtuvo la siguiente ecuación, permitiendo así encontrar la característica de 

Euler para cualquier tipo de imágenes binarias, sean o no de espesor unitario. 

𝐸 = −
(்ିଶ)∗௉௖ି௉

்
+ 𝑁𝑇,     (7) 

donde NT es el número de tetrapixeles encontrados en la imagen. 

 La Ecuación (7) resulta ser una expresión simple y una solución eficiente, si se 

compara con la Ecuación (6), la Ecuación (7) da solución a imágenes con cualquier tipo de 

configuración y solamente se tiene que considerar el número de tetrapixeles. 

 Posteriormente se proponen dos métodos (Sossa, et al, 2013)  para el cálculo de la 

característica de Euler, siendo éstos los más rápidos en la literatura. Dichos métodos están 

basados en el perímetro de contacto y el número de tetrapixeles pero con una expresión 

simplificada, expresada por la siguiente ecuación. 

𝐸 = 𝑁𝑇 −
(்ିଶ)∗௖ି௉

ଶ
,     (8) 
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donde 𝑇 es el número de lados de la celda, 𝑐es número de píxeles que están conectados 

mediante una arista, 𝑃es el valor del perímetro. En el mismo artículo se propone  la siguiente 

ecuación. 

𝐸 = 𝑐 + 𝑝 − 𝑃𝑐,     (9) 

Método basado en el código VCC 

En cuanto a los métodos que calculan la característica de Euler mediante el contorno 

sobresale uno que utiliza un código de cadena, el presentado por Sossa en el año 2013. 

En dicho trabajo se obtiene la característica de Euler mediante la codificación de vértices, 

mejor conocida como el código VCC. De este estudio se obtiene la siguiente ecuación para 

obtener el número de hoyos 𝐻. Este método será descrito a detalle en el Capítulo 4. 

𝐻 = −
ேଵିேଶ

ସ
+ 𝑛,     (10) 

Donde 𝑁1 es el número símbolos ‘1’s, que es directamente el número de vértices 

convexos del contorno de un objeto binario, 𝑁2 es el número de símbolos ‘2’s , que es 

directamente  el número de vértices cóncavos del contorno de un objeto binario y 𝑛 es el 

número de objetos. 

 

Justificación 
 

La característica de Euler es una característica topológica que busca ser invariante 

ante transformaciones afines como la rotación, traslación y escala, es por ello que es un 

descriptor utilizado para tareas de clasificación y reconocimiento, por esta razón la 

característica de Euler es de interés en la ciencia y en la ingeniería. Por ejemplo, existen 

aplicaciones industriales en las cuales la característica de Euler es utilizada por ejemplo en 

(Yang & Sengupta, 1988). La característica de Euler es usada como descriptor también 

para el análisis de materiales como muestra (Velichko, et al, 1990) que analiza el grafito en 

el hierro fundido. Desarrollar un método que sea eficiente para obtener la característica de 

Euler, es entonces una aportación importante para el procesamiento y análisis de 

imágenes.  
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El código 3OT ha demostrado ser el más eficiente para la compresión de imágenes 

de texto (Sánchez-Cruz, Bribiesca & Rodríguez, 2007). Utilizar el código 3OT para realizar 

el cálculo de la característica de Euler, es sin duda una aportación importante que permite 

obtener un descriptor muy utilizado para el análisis de imágenes mediante una técnica 

eficiente tanto para representación y compresión de imágenes binarias. Utilizar un código 

basado en el código 3OT permitiría desarrollar sistemas capaces de comprimir imágenes, 

además obtener características topológicas y geométricas que permitirían realizar un 

análisis del objeto binario. 

Aportaciones  

 
 Con este trabajo de tesis se logra realizar tres principales aportaciones para la 

investigación, las cuales son descritas a continuación. 

1. Invarianza en rotación basada en los histogramas de códigos de 

cadena. 

Se desarrolló un método capaz de comparar imágenes binarias y con la capacidad de 

saber si se analiza el mismo objeto binario o no, a pesar de que dicho objeto binario haya 

sido rotado. Este método demuestra que los códigos de cadena pueden ser utilizados como 

un invariante ante rotación. Algunos códigos de cadena, como el AF8, AF4 y 3OT son 

claramente invariantes rotaciones múltiplos de 90°, al ser códigos basados en la dirección. 

Sin embargo, nuestro método es útil como invariante ante rotación no sólo con rotaciones 

múltiplos de 90°, sino rotaciones intermedias, es decir es sensible ante pequeñas 

rotaciones, lo que hace un método invariante ante cualquier tipo de rotación. 

2. Cálculo de la característica de Euler basado en el código 3OT 

En este trabajo de tesis se muestra un método para el cálculo de la característica de 

Euler que no solamente simplifica la expresión de la característica de Euler, sino que 

además demuestra que el código 3OT puede ser una muy buena técnica para el análisis y 

reconocimiento de imágenes binarias tomando en cuenta características topológicas, 

tomando como valor agregado la eficiencia que tiene dicho código para la compresión de 

imágenes. 
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Esto resulta ser muy interesante pues el análisis que se plantea para obtener una 

expresión simplificada está basado en utilizar y cuantificar solamente un símbolo del código 

3OT, utilizar solamente un símbolo del código 3OT trae como consecuencias varias 

cualidades que serán descritas en el trabajo de tesis.  

3. Detección de puntos dominantes basada en sólo un símbolo del 

código 3OT 

Se implementó un detector de puntos dominantes basado en el código 3OT. Este 

método no ha probado su eficiencia contra los métodos desarrollados, pero, aunque existen 

ya algunos métodos que se basan en el 3OT para la detección de puntos dominantes, el 

método presentado en esta tesis detecta los puntos dominantes de una manera muy simple 

y dicha técnica está íntimamente ligada a la aportación 2, debido a que como se verá más 

adelante, ambas técnicas se basan en considerar solamente un símbolo del código 3OT. 
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CAPÍTULO 1. MARCO TEÓRICO 
1.1 Imagen binaria 
 

Una imagen binaria es la función 𝐼 que tiene un rango de valores comprendido en 

{0,1}. (Rosenfeld & Klette, 2004). 

 La imagen binaria también es conocida como imagen bi-level y algunos programas 

de computadora utilizan el término de imagen monocromática para referirse a ella. 

Generalmente en la imagen binaria el fondo es representado por 0s (pixeles apagados) y 

el objeto en la imagen es representado por 1s (pixeles encendidos). 

La Figura 11. Muestra un ejemplo de una imagen binaria, la Figura 11 (a) muestra 

una imagen de la letra ‘A’ representada por píxeles encendidos y apagados, mientras la 

Figura 11 (b) muestra la misma imagen, pero representada en una matriz por sus valores 

lógicos ‘1’s y ‘0’s. 

 

Figura 11. Imagen binaria, (a): Representación por píxeles, (b): representación por 
valores lógicos. 

1.2 Vecindad 
 

En las imágenes binarias de dos dimensiones existen dos tipos de vecindad o 

conectividad, la vecindad-4 y la vecindad-8.  (Rosenfeld & Klette) define la vecindad-4 como 

lo expresa la Ecuación (11) y la vecindad-8 como la Ecuación (12), dichas vecindades están 

definidas como el conjunto de píxeles 𝑥 ó 𝑦 que  conforman la vecindad. 

   𝑁ସ(𝑝) = {(𝑥, 𝑦), (𝑥 + 1, 𝑦), (𝑥 − 1, 𝑦), (𝑥, 𝑦 + 1), (𝑥, 𝑦 − 1)}   (11) 
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𝑁଼(𝑝) = 𝑁ସ(𝑝) ∪ {(𝑥 + 1, 𝑦 + 1), (𝑥 + 1, 𝑦 − 1), (𝑥 − 1, 𝑦 + 1), (𝑥 − 1, 𝑦 − 1)} (12) 

 

Se habla de vecindad-4 cuando un pixel está conectado a otro por medio de una de 

las aristas que lo conforman. La vecindad-8 considera las posibles conexiones que se 

pueden hacer entre pixeles por medio de sus vértices. La Figura 12. (a) muestra un ejemplo 

de vecindad-4, mientras la Figura 12. (b) muestra un ejemplo de vecindad-8, cabe aclarar 

que el color gris únicamente es utilizado para resaltar el pixel de referencia con coordenadas 

(𝑥, 𝑦), pero se encuentra encendido al igual que su vecindad. 

 

Figura 12. Pixel de referencia P. (a) Vecindad-4 y (b) vecindad-8. 

 Se habla de Conectividad-4 cuando un objeto binario cuenta con todos sus pixeles 

de la región conectados mediante la vecindad-4. Mientras que la Conectividad-8 se refiere 

a aquellas componentes conexas que tienen al menos un pixel conectado únicamente por 

{(𝑥 + 1, 𝑦 + 1), (𝑥 + 1, 𝑦 − 1), (𝑥 − 1, 𝑦 + 1), (𝑥 − 1, 𝑦 − 1)}. 

1.3 Códigos de Cadena 
 

El término códigos de cadena se refiere a una técnica utilizada para representar los 

contornos de los objetos binarios. Un código de cadena es una secuencia de símbolos 

tomados de un alfabeto 𝐴 = {𝑎ଵ, 𝑎ଶ, … , 𝑎௡ } y es definido como la cadena 𝑆஼ை஽ா con longitud 

𝑙, como se muestra a continuación: 

𝑆஼ை஽ா = 𝑐ଵ
஼ை஽ா , 𝑐ଶ

஼ை஽ா , … , 𝑐௟
஼ை஽ா, 
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donde 𝐶𝑂𝐷𝐸 es el nombre del código que se utiliza y cada elemento de la cadena 

𝑐௜
஼ை஽ா puede tomar cualquier símbolo 𝑎௜ del alfabeto 𝐴 dependiendo de la geometría que se 

quiera representar. 

Es una técnica muy utilizada para el reconocimiento de objetos, por ejemplo en (Liu 

& Žalik, 2005) se usan los códigos de cadena para el reconocimiento de objetos. Los 

códigos de cadena han sido utilizados también para el reconocimiento de objetos no 

solamente sintéticos, sino extraídos del mundo real, (Jusoh & Zain, 2011) Se implementó 

un método basado en los códigos de cadena para el reconocimiento de placas vehiculares. 

Los códigos de cadena pueden ser utilizados para representar contornos y 

esqueletos de las imágenes, a continuación son descritos los cuatro de los códigos más 

citados en la literatura, el F8, AF8, VCC y 3OT.   

1.4 Código de cadena de Freeman (F8) 
 

El código de cadena de Freeman, también conocido simplemente como F8, fue el 

primer método desarrollado para representar imágenes sin tener que utilizar una matriz 

binaria, (Freeman H, 1961). El código F8 está compuesto por ocho símbolos donde cada 

una de las ocho posibles direcciones son representadas por ocho diferentes símbolos, de 

esta manera es posible codificar cualquier objeto binario con una configuración 8-

conectado, el código está dado por el alfabeto: F8={0, 1, 2, 3, 4, 5, 6, 7} y son asignados a 

una vecindad 8 en sentido contrario a las manecillas del reloj. La Figura 13 muestra las 

ocho posibles direcciones que se pueden tomar a partir de un pixel y los símbolos que son 

asignados a cada una de ellas. 

 

Figura 13. Representación de la asignación de símbolos para las direcciones del código 

F8. 
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1.5 Código direccional de Freeman (AF8) 
 

Como se mostró en (Liu & Zalik, 2005). El código AF8 considera ocho direcciones 

relativas, cada símbolo es asignado de la siguiente manera: el ‘0’ es utilizado cuando no 

existe ningún cambio de dirección, es decir existe un cambio de 0°, el símbolo ‘1’ es 

empleado cuando existe un cambio de +45°, mientras que el ‘2’ se emplea cuando existe 

un cambio de dirección de -45°. Cuando el cambio es de 90° se asigna el ‘3’, el ‘4’ para - 

90°, el ‘5’ para +135°, el símbolo ‘6’ para -135° y ‘7’ para 180°. La Figura 14 muestra los 

códigos que pueden ser utilizados para representar contornos usando AF8. 

 

Figura 14. Representación del código AF8. 

1.6 Código de cadena de vértices (VCC) 
 

En (Bribiesca, et al, 1999) se propone un código de cadena basado en la codificación 

de vértices del contorno de una imagen, dicho código es conocido como VCC y está 

compuesto de tres símbolos, cada uno representa una configuración de vértices que son 

encontrados sobre el contorno de la imagen, tomada de una configuración de celdas 

cuadradas. 

Sea la Ecuación (13) una subcadena de símbolos del código VCC: 

𝑆௏஼஼ = 𝐶ଵ
௏஼஼ , 𝐶ଶ

௏஼஼ , … , 𝐶௟
௏஼஼ .  donde 𝐶௟

௏஼஼ = {0, 1, 2}.   (13) 

 

La Figura 15 muestra la representación de los símbolos VCC al codificar el contorno. 
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Figura 15. Significado geométrico del código VCC: (a) símbolo 1, (b) símbolo 2 y (c) 

símbolo 0. 

1.7 Código de tres símbolos ortogonales (3OT) 
 

En el año 2005 fue propuesto (Sánchez-Cruz & Rodríguez-D, 2005) un código para 

representar cambios relativos de direcciones ortogonales para codificar el contorno de una 

imagen. La región binaria de la imagen puede ser codificada por tres símbolos diferentes, 

cada uno representa un cambio relativo entre la referencia y el último vector. 

Sea la siguiente ecuación una subcadena del símbolo del código 3OT 

𝑆ଷை் = 𝐶ଵ
ଷை் , 𝐶ଶ

ଷை் , … , 𝐶௟
ଷை், donde 𝐶௟

ଷை் = {0, 1, 2}.   (14) 

La Figura 16 muestra los casos de la representación del código 3OT para la 

codificación de contornos. 

 

 

Figura 16. Significado geométrico del código 3OT: (a) símbolo 0, (b) símbolo 1 y (c) 
símbolo 2. 

De la Figura 16, se puede intuir que, al tener un recorrido sobre el contorno de la imagen, 
se pueden presentar tres diferentes casos, según si se mantiene o cambia su dirección 
vectorial, cuando no se tiene cambio y es asignado un ‘0’; cuando existe un cambio 
ortogonal, pero se mantiene la misma dirección vectorial del inicio es asignado un “1”; y 
cuando existe un “retorno” en la dirección se asigna un “2”.    
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Para poder tener una mejor idea de cómo se codifica una imagen binaria, se 
muestra como ejemplo la codificación de la Figura 17. 

 

Figura 17. Imagen binaria codificada mediante F8, AF8, VCC y 3OT. 

La Tabla 1 muestra los códigos F8, AF8, VCC y 3OT obtenidos de la Figura 17. 

Tabla 1. Codificación de la Figura 17 con F8, AF8, VCC y 3OT. 

F8 AF8 VCC 3OT 
00077064433457

45671000006444

44444222112 

00020144020115

71111200004400

00000400201 

0001212010100121202

2110222210000010100

0000001000121201 

0002111010200211102

1201002210000020200

0000002000211101 

 

 De la Tabla 1 es posible notar que existen algunas diferencias y similitudes 

significativas entre los códigos de cadena descritos. Por ejemplo, la longitud de la cadena: 

a pesar de que la longitud no es igual para los cuatro códigos empleados para codificar la 

Figura 17, existe una similitud de longitud entre el código F8 y AF8. De manera similar se 

puede apreciar en la tabla que la longitud del código VCC y 3OT son las mismas. 

 Es necesario señalar que aunque la longitud de los códigos VCC y 3OT suele ser 

mayor que las de los códigos F8 y AF8, al utilizar una menor cantidad de símbolos,  los 

códigos VCC y 3OT resultan ser más eficientes para la compresión de imágenes (Sánchez-
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Cruz, Bribiesca & Rodríguez, 2007), por esta razón los códigos de cadena VCC y 3OT son 

muy estudiados para ser empleados en la compresión y análisis de imágenes. 

En el siguiente capítulo se muestra un estudio para la búsqueda de invarianza en 

rotación mediante los códigos F8, AF8 y 3OT. 
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CAPÍTULO 2. HISTOGRAMAS DE CÓDIGO DE CADENA PARA 
INVARIANZA EN ROTACIÓN 
 

En este capítulo se presenta un estudio donde se busca utilizar los códigos de 

cadena como un invariante ante transformaciones de rotación. A pesar de que el objetivo 

principal de la tesis es desarrollar un método eficiente para encontrar la característica de 

Euler, debido a que una de las intenciones planteadas desde el inicio del trabajo de tesis 

fue encontrar la característica de Euler utilizando el contorno de la imagen en vez de la 

región, una de las tareas principales fue la de estudiar las características de los códigos de 

cadena que sobresalen en la literatura, esto con el fin de poder decidir con qué codificación 

convenía trabajar para el objetivo principal de esta tesis, lo que llevó a realizar 

comparaciones de los diferentes códigos de cadena. En el afán de conocer mejor a cada 

una de las codificaciones se realizaron implementaciones de las mencionadas en el capítulo 

1, por esta razón se realizaron varios experimentos. De esta manera surgió el estudio 

presentado en este capítulo, estudio que fue indicador para la decisión de qué código de 

cadena utilizar para lograr los objetivos de esta tesis. 

Los invariantes ante rotación son descriptores que permiten realizar tareas de 

clasificación y reconocimiento, debido a la capacidad que tienen de mantener el mismo 

valor o un valor cercano al original a pesar de sufrir transformaciones de rotación. 

Para el estudio realizado se codificaron los contornos y esqueletos de las imágenes. 

A continuación, se definen algunos conceptos relevantes para el estudio realizado en este 

capítulo. 

2.1 Esqueletos 
 

El concepto de esqueleto fue propuesto por (Blum, et al, 1967), el cual está definido 

como el lugar geométrico de los discos maximales contenidos dentro de la figura. En la 

Figura 19 (b) se puede observar el ejemplo de un esqueleto. 

Para obtener un invariante ante rotación se comparan los histogramas de los 

códigos de cadena de las imágenes, aplicando esta técnica para contornos y esqueletos. 

Es importante mencionar que para el estudio presentado en este artículo se utilizó 

la función ‘bwmorph’ para obtener los esqueletos de las figuras que se analizan, dicha 

función utiliza el algoritmo presentado en (Lam, et al, 1992). 
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2.2 Representación por contornos 
 

A continuación, se muestra un ejemplo de representación de contornos, debido a 

que en el capítulo anterior se explicó cómo codificar el contorno de una imagen, no se 

explicará cómo es que se obtiene la codificación. Únicamente se muestra el ejemplo de 

codificación AF8 para poder observar las diferencias entre la codificación de contornos y la 

codificación de esqueletos. 

De la Figura 18, tomando como referencia desde la parte superior izquierda de la 

imagen (el punto rojo), por lo que parte del código está dado por: {0212120…212}. 

 

Figura 18.  Codificación de Contornos. (a): Imagen original y (b) Sección codificada 

mediante AF8. 

2.3 Representación por esqueletos 
 
 

Los códigos de cadena pueden, además de los símbolos explicados, utilizar los 

símbolos ‘(’ y ‘)’ con el objetivo de indicar el principio y el final de las ramas, 

respectivamente. La Figura 19 muestra el ejemplo del segmento de un esqueleto, el cual 

es codificado por el código AF8, donde Vo es el vector inicial que se necesita para comenzar 

la codificación. 

De la Figura 19 (c) se obtiene la siguiente parte del código para el segmento 

marcado:{2212001(110000)(200…}. 
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Figura 19. Codificación de esqueletos. (a): Figura Original, (b): Esqueleto y (c): 

codificación con AF8. 

Como se observa, el principio de codificación es el mismo para contornos y para 

esqueletos. Por lo anterior, el análisis realizado sobre la codificación de un contorno, puede 

ser realizado sobre la codificación de un esqueleto sin grandes cambios. 

2.4 Histogramas de los códigos de cadena 
 

Para obtener los histogramas de los códigos de cadena se tienen que rotar las 

imágenes con las que se desea hacer la separación. Para demostrar que el método es 

invariante ante rotación, las imágenes se rotaron ante 15º, 35º, 45º, 75º y 90º. Es necesario 

decir que las rotaciones fueron realizadas utilizando el software Matlab con la función 

‘imrotate’. 

 Una vez que los códigos de cadena son obtenidos para cada una de las rotaciones 

mencionadas se procede a obtener las frecuencias de cada símbolo y con base a esas 

frecuencias se obtienen los histogramas que serán comparados. 

La Tabla 2 muestra las frecuencias obtenidas para cada rotación de la imagen de la 

rana presentada en la Figura 18 (a) utilizando el código AF8. 

Tabla 2. Frecuencias de símbolos de la rana. 

Símbolo 

/ 

Rotación 

0° 15° 35° 45° 75° 90° 
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0 525 451 433 571 435 525 

1 307 297 321 283 309 307 

2 309 359 339 248 362 309 

3 17 63 44 37 66 17 

4 12 28 31 52 40 12 

5 0 0 0 1 3 0 

6 0 0 0 0 0 0 

7 0 0 0 0 0 0 

 

La Tabla 2 muestra con color amarillo los valores máximos de frecuencia por cada 

símbolo, mientras las casillas marcadas con color verde muestran los valores mínimos de 

frecuencia. En este caso no se presentó frecuencia para los símbolos 6 y 7, ya que como 

se observa, la frecuencia se concentra en los primeros símbolos. Además, por el recorrido 

que se realiza en sentido horario y el significado que tienen los símbolos 6 y 7, no existe en 

la imagen una configuración que requiera de dichos símbolos. El análisis para más figuras 

se muestra en (Huerta-Hernández & Sánchez Cruz, 2014). 

Con base a la Tabla 2 se obtienen los histogramas mostrados en la Figura 20 para 

poder observar de una manera gráfica el comportamiento de las frecuencias con respecto 

a las diferentes frecuencias. 
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Figura 20. Gráfico de frecuencia para la rana. 

Con la Figura 20 se observa que, aunque la frecuencia para cada signo varía 

dependiendo de la rotación, existe una cierta semejanza entre los histogramas del mismo 

objeto. Este análisis se realizó con cada uno de los objetos de la muestra de imágenes de 

la Figura 21, pudiendo observar que en cada uno de los objetos analizados existía una 

similitud en las frecuencias de símbolos para distintas rotaciones. El análisis completo fue 

presentado en (Huerta-Hernández & Sánchez Cruz, 2014). 

Para poder realizar un sistema clasificador es necesario poder verificar no 

solamente si existe similitud en las frecuencias de los símbolos para diferentes rotaciones 

en un mismo objeto. También es necesario saber si existe o no similitud entre las 

frecuencias de dos o más objetos que son visiblemente distintos. 

Para poder comparar las frecuencias de diferentes objetos se presenta la siguiente 

ecuación. 

Si 𝑓௜
ை௬

∈ ∆𝑓௜
ை௫ ∀𝑖, entonces 𝑂𝑦 ≡ 𝑂𝑥,       (15) 

 donde ∆𝑓௜
ை௫ = [𝑓௜

௫_௠௜௡, 𝑓௜
௫_௠௔௫], i es el símbolo, 𝑖 ∈ [0,7], y 𝑂𝑦 es el objeto 

comparado contra el objeto 𝑂𝑥. 

Con base a la Ecuación 15 se puede decir que, si cada frecuencia de cada símbolo 

pertenece al rango de frecuencias obtenidas para cada símbolo con base al registro de 

frecuencias ante distintas rotaciones, entonces el objeto 𝑂𝑦 es similar al objeto 𝑂𝑥. 
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Visto de una manera más clara se puede tomar como ejemplo el caso de la rana, 

donde con base a la Tabla 2 se deben de cumplir las condiciones presentadas en la Tabla 

3 para considerar que el objeto 𝑂𝑦 es el mismo que el objeto 𝑂𝑥. Es necesario aclarar que 

debe hacerse lo mismo con cada uno de los objetos. 

Tabla 3. Condiciones para determinar similitud. 

𝑓௜
௫_௠௜௡ ≤ 𝑓௜

ை௬
≤ 𝑓௜

௫_௠௔௫ 

433 ≤ 𝑓଴
ை௬

≤ 571 

283 ≤ 𝑓ଵ
ை௬

≤ 321 

248 ≤ 𝑓ଶ
ை௬

≤ 362 

17 ≤ 𝑓ଷ
ை௬

≤ 66 

12 ≤ 𝑓ସ
ை௬

≤ 52 

0 ≤ 𝑓ହ
ை௬

≤ 3 

𝑓଻
ை௬

== 0 

𝑓଻
ை௬

== 0 

 

2.5 Aplicación del método 
 

Utilizando el método anteriormente descrito es posible comparar una muestra de 

objetos. Se tomó como muestra los objetos de la Figura 21. Se puede apreciar que los 

primeros cinco objetos son objetos irregulares, mientras los últimos 5 objetos corresponden 

a imágenes regulares (figuras geométricas conocidas, con puntos de inflexión claramente 

identificables a la vista humana). 
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Figura 21. Muestra de objetos representados por F8 y AF8. 

Cada uno de los objetos presentados en la figura anterior fue sometido a las 

rotaciones mencionadas en la sección anterior, cada una de las rotaciones de los objetos 

fueron analizados de la misma manera como la que muestra el procedimiento que se siguió 

con la rana en la sección anterior. 

Los resultados obtenidos para la comparación de los objetos utilizando la 

codificación de contornos se muestran en la Tabla 4. La ‘T’ indica que existe similitud entre 

los objetos comparados, mientras la ‘F’ indica que no existe relación alguna entre los objetos 

comparados. 

  



 
 

36 
 

Tabla 4 Comparación con codificación de contornos. 

Codificación F8 

Objetos Irregulares Objetos regulares 

Objeto 1 2 3 4 5 Objeto 6 7 8 9 10 

1 T F F F F 6 T F F F F 

2  T F F F 7  T F F F 

3   T T F 8   T T F 

4    T T 9    T F 

5     T 10     T 

Codificación AF8 

Objetos Irregulares Objetos  regulares 

Objeto 1 2 3 4 5 Objeto 6 7 8 9 10 

1 T F F F F 6 T F F F F 

2  T F F F 7  T F F F 

3   T F F 8   T F F 

4    T T 9    T F 

5     T 10     T 

 

Como se muestra en la Tabla 4, el método identifica dos coincidencias, el primero 

entre los objetos 3 y 4, y la segunda entre los objetos 8 y 9 cuando se utiliza una codificación 

por contorno F8. Cuando se utiliza la codificación por contorno AF8 se observa una 

coincidencia entre los objetos 4 y 5. Ambas codificaciones arrojan resultados erróneos, ya 

que no debe de haber coincidencias entre objetos que visiblemente son diferentes entre sí, 

un objeto sólo debe ser similar consigo mismo o con sus rotaciones. Aparentemente el 

código AF8 resulta ser más efectivo para el reconocimiento de objetos si se utiliza 

únicamente la comparación de contornos codificados. Sin embargo, a continuación, se 

presentan los resultados de la codificación de esqueletos. La Tabla 5. Muestra los 

resultados obtenidos utilizando la codificación de esqueletos. 
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Tabla 5. Comparación con codificación de esqueletos. 

Codificación F8 

Objetos irregulares Objetos regulares 

Objeto 1 2 3 4 5 Objeto 6 7 8 9 10 

1 T F F F F 6 T F T F F 

2  T F F F 7  T T F F 

3   T T F 8   T F F 

4    T F 9    T F 

5     T 10     T 

Codificación AF8 

Objetos irregulares Objetos regulares 

Objeto 1 2 3 4 5 Objeto 6 7 8 9 10 

1 T F F F F 6 T F F F F 

2  T F F F 7  T F F F 

3   T F F 8   T F F 

4    T F 9    T F 

5     T 10     T 

 

De la Tabla 5 se puede notar que existen también resultados erróneos cuando se 

utiliza la codificación F8, pues existen coincidencias entre el Objeto 3 y 4 por parte de los 

irregulares, así como coincidencias entre el Objeto 6 con el Objeto 8 y el Objeto 7 con el 

Objeto 8 por parte de los objetos regulares. 

Por otro lado, cuando se analiza la codificación AF8 es posible observar que los 

resultados fueron satisfactorios, ya que existe únicamente coincidencia con el objeto 

mismo, sin marcar coincidencias con objetos que no se encuentran relacionados entre sí. 

De lo anterior se puede decir que, si se comparan los histogramas de la codificación 

de esqueletos de los objetos binarios utilizando el código AF8, es posible obtener una 

técnica que puede ser utilizada como invariante ante rotación, lo cual permite la 

implementación para sistemas de clasificación o reconocimiento. 
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2.6 Histogramas de código de cadena para invarianza en rotación 
utilizando 3OT 
 

Como se explicó anteriormente el código 3OT es un código eficiente por lo que en 

esta tesis se hace énfasis en la codificación con el código 3OT. Se considera que el código 

VCC es un código absoluto, ya que su codificación no representa el cambio de dirección 

respecto al paso anterior en el recorrido del contorno de la imagen, al igual que el código 

F8, por lo que la codificación realizada con el código VCC tendría los mismos problemas 

que el método descrito en la sección anterior. Debido a esto, se muestra una alternativa 

haciendo uso del código 3OT. 

 Al aplicar la técnica explicada en la sección anterior para la obtención de una 

representación invariante mediante los histogramas de código de cadena, se logró obtener 

un método utilizando el código 3OT. 

Tomando como base la misma muestra de objetos presentados en la Figura 21 es 

posible obtener mediante la codificación del contorno histogramas para ser comparados. 

De manera similar al método anteriormente presentado se obtienen los histogramas de las 

frecuencias para cada símbolo y para cada rotación, así es posible identificar los máximos 

y mínimos valores de frecuencia para cada símbolo.  

La Figura 22 muestra un ejemplo de cómo los máximos y mínimos delimitan un área 

marcada por el color amarillo, la cual ayuda a realizar las comparaciones. Si todos los 

símbolos del objeto a comparar se encuentran dentro de las áreas marcadas, el objeto es 

considerado como el mismo, de lo contrario el objeto es considerado como un objeto 

diferente al comparado. Similar al método explicado anteriormente, se presenta en la gráfica 

solamente un ejemplo en particular para un objeto, los rangos máximos y mínimos tendrán 

que ser establecidos para cada uno de los objetos utilizando el código 3OT.  
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Figura 22. Histogramas para la codificación 3OT. El eje horizontal representa los 

símbolos utilizados, mientras que el eje vertical muestra la frecuencia que obtuvo cada 

uno de los símbolos. 

De la Figura 22 se puede notar que únicamente son comparados tres símbolos, lo 

cual es importante mencionar ya que el número de comparaciones que tienen que ser 

hechas para determinar si se trata o no del mismo objeto disminuye, por lo que es posible 

realizar las comparaciones con menor costo computacional. 

Los resultados obtenidos por la codificación 3OT son presentados en la Tabla 6. 

Tabla 6. Comparación realizada con 3OT. 

Codificación 3OT 

Objetos irregulares Objetos regulares 

Objeto 1 2 3 4 5 Objeto 6 7 8 9 10 

1 T F F F F 6 T F F F F 

2  T F F F 7  T F F F 

3   T F F 8   T F F 

4    T F 9    T F 

5     T 10     T 

 

De la Tabla 6 se puede observar que todos los resultados son satisfactorios pues 

no existe relación entre dos objetos diferentes, es decir, el método indica que existe relación 

únicamente entre el objeto y el mismo objeto. 

El método presentado en esta sección es más rápido en ejecución que el de la 

sección anterior, debido a que no es necesario considerar todos los símbolos de la 

codificación F8 y AF8. 

Debido a que el método resultó funcional al utilizar la codificación por contorno, no 

se presenta el estudio realizado con la codificación de esqueletos, ya que el hecho de 

obtener los esqueletos significa realizar un mayor procesamiento a la imagen original, lo 

que conlleva a un mayor tiempo de cómputo. 
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CAPÍTULO 3. CONCEPTOS GEOMÉTRICOS ENCONTRADOS EN 
CONTORNOS BASADOS EN EL CÓDIGO 3OT. 
 

Como se pudo observar en el capítulo anterior y se ha mencionado previamente en 

esta tesis el código 3OT es un código útil no solamente para representación, sino también 

para compresión e incluso clasificación y reconocimiento de objetos, debido a estas 

características se eligió trabajar con él para el desarrollo de métodos que permitan lograr 

los objetivos planteados para esta tesis. 

A pesar de que ya se explicó la manera de codificar el contorno de una imagen 

utilizando el código 3OT, en el presente capítulo se explica la manera en que se codifica el 

contorno de una imagen binaria con el código 3OT tomando en cuenta cuatro geometrías 

identificadas en este trabajo de investigación: el llano, la escalera, el tope y el bache, 

tomando como referencia las geometrías mencionadas es posible comprender de una 

manera sencilla la relación de cada uno de los símbolos utilizados en la codificación con la 

geometría y topología de una imagen binaria para poder obtener la característica de Euler 

como se explicará más adelante en el capítulo 4. 

3.1 Geometrías presentes en los contornos 
Al observar el contorno de las imágenes binarias es posible decir que existen 

solamente cuatro geometrías presentes en cualquier contorno de una imagen binaria, que 

son descritas a continuación. 

Definición 1. Llano. 

Un llano es un segmento del contorno que no contiene ninguna elevación, es decir, 

si se realiza un recorrido sobre el contorno, sigue la misma dirección sin ningún cambio 

ortogonal, la región llana puede darse en uno o varios pixeles, cada avance hacia un pixel 

puede ser asociado al símbolo ‘0’ del código 3OT. 

La Figura 23 muestra un ejemplo del segmento llano. Dicho segmento puede ser 

encontrado bajo cualquier rotación hecha cada 90°. 
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Figura 23. Llano 

 

Definición 2. Tope.  

Un tope en el contorno se define por un par de convexidades separadas por ninguno 

o varios símbolos 0’s del código 3OT. La Figura 24 (a) muestra la geometría mencionada. 

Definición 3. Bache. 

Un bache en el contorno de una imagen binaria se define por un par de concavidades 

separadas por ningún o más símbolos 0’s del código 3OT. La Figura 24 (b) muestra la 

geometría mencionada. 

 

Figura 24. Configuraciones geométricas: (a) tope y (b) bache 

Definición 4. Escalera. 

Una escalera en el contorno está definida por una convexidad seguida por una concavidad 

o viceversa, separadas por ningún o más 0’s del código 3OT. La Figura 25 es un ejemplo 

de la geometría de una escalera. 
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Figura 25. Configuración Geométrica de la escalera. 

3.2 Relación entre el código VCC y 3OT 
 

Tomando en cuenta que la característica de Euler puede ser calculado por la 

codificación de vértices (VCC) como se mencionó en la Introducción, se puede suponer que 

otros códigos basados en la codificación de vértices pueden también ayudar a calcular la 

característica de Euler. El 3OT utiliza direcciones relativas para asignar un código a cada 

vértice. Es decir, se codifica el cambio de dirección que se tiene con respecto a los pasos 

anteriores en el recorrido dle contorno de la imagen. por lo que es de esperarse que sea 

posible utilizar dicha codificación para la obtención de la característica de Euler, permitiendo 

aprovechar los beneficios que esto conlleva 

A continuación, se muestran algunos teoremas propuestos en este trabajo de 

investigación que relacionan al VCC con el 3OT, ya que al encontrar las semejanzas entre 

ambos códigos se pudo elaborar el método presentado en el capítulo 4. 

Teorema 1 

Si 𝐶௜
௏஼஼ ≠ 0 𝑦 𝐶௜

௏஼஼ = 𝐶௜ା௭ାଵ
௏஼஼  , entonces 𝐶௜

ଷை = 2, 

donde C es el símbolo, i es el elemento analizado de la cadena, z es el número de 0’s 

consecutivos en el código VCC y 3OT. 

Para mostrar que el Teorema 1 es correcto, codifiquemos el caso general de un 

bache y el caso general de un tope con el código VCC y 3OT para observar los dos únicos 

casos en que se cumple el Teorema 1. 

Como ya se explicó, existen únicamente cuatro geometrías presentes en todos los 

contornos de una imagen binaria, por lo que al codificar la siguiente Figura y al hacer uso 

de la Definición 3, el Teorema 1 se puede generalizar para cualquier geometría denominada 
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como bache, independientemente de su tamaño u orientación. La Figura 26 (a) muestra la 

codificación VCC, mientras en la Figura 26 (b) es mostrada su respectiva codificación 3OT. 

 

 

Figura 26. Bache codificado: (a) Codificación VCC y (b) Codificación 3OT. 

De la Figura 26 (a) es posible obtener una subcadena de la Ecuación (13) 

presentada en la sección 1.6 dada por la Ecuación (16), mientras que la Ecuación (17) 

obtenida de la Figura 26 (b) es una subcadena de la Ecuación (14) también presentada en 

la sección 1.6. 

𝐶௜
௏஼஼ = 2, 0, … , 0, 𝐶௜ା௭ାଵ

௏஼஼ = 2.    (16) 

    𝐶௜
ଷை் , 0, … , 0, 𝐶௜ା௭ାଵ

ଷ଴் = 2.                    (17) 

 

Hay que mencionar que el valor que toma el símbolo 𝐶௜
ଷை் es desconocido para los 

casos mostrados por la Figura 26 y Figura 27, puede tomar el valor de ‘1’ o el valor de ‘2’, 

debido a que el código 3OT es un código relativo, que está basado en la codificación 

anterior para poder determinar la asignación del símbolo actual. 
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Con ayuda de la Figura 26 se mostró que el Teorema 1 es correcto para la geometría 

del bache. A continuación, se muestra el caso general de un tope, similar al ejemplo anterior 

y basándonos en la definición 2, la codificación resulta ser la misma independientemente 

del tamaño u orientación del tope. La Figura 27 (a) es codificada por el código VCC mientras 

que la Figura 27 (b) es codificada por el código 3OT. 

 

Figura 27. Caso del tope. (a) Codificación VCC y (b) Codificación 3OT. 

La Figura 27 (b) es una interpretación ilustrativa de la Ecuación (17). Mientras que 

la Ecuación (18) puede ser obtenida de la Figura 27 (a). 

𝐶௜
௏஼஼ = 1, 0, … , 0, 𝐶௜ା௭ାଵ

௏஼஼ = 1.     (18) 

Como se puede apreciar la Figura 26 (a), que muestra es el caso general de la 

codificación de un bache mediante el código VCC, es representada por la Ecuación (16), 

mientras que la Figura 27 (a), que muestra el caso general de la codificación de un tope 

mediante el código VCC, es representada por la Ecuación (18). Sin embargo, la Figura 26 

(b) y la Figura 27 (b), que muestran el caso general de un bache y un tope respectivamente 

codificados mediante 3OT, pueden ser representadas por la Ecuación (17), a pesar de tener 

un significado geométrico distinto.  
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Lo anterior valida el Teorema 1 y muestra que las geometrías de un bache y un tope 

son representadas mediante distinta codificación en el código VCC. Mientras que en el 

código 3OT el símbolo es siempre 𝐶௜ା௭ାଵ
ଷ଴் = 2 sin importar que se esté codificando un bache 

o un tope. 

 

Teorema 2. 

Si 𝐶௜
௏஼஼  𝑦 𝐶௜ା௭ାଵ

௏஼஼ ≠ 0  𝑦 𝐶௜
௏஼஼ ≠ 𝐶௜ା௭ାଵ

௏஼஼ , entonces 𝐶௜ା௭ାଵ
ଷை் = 1, 

donde C es el símbolo, i es el elemento analizado de la cadena, z es el número de 0’s 

consecutivos en el código VCC y 3OT. 

La Figura 28 muestra el caso general de la geometría de la escalera. 

 

Figura 28. Geometría de la escalera. (a) codificación VCC  y (b) codificación 3OT. 

De la Figura 28 (a) podemos obtener la cadena dada por la Ecuación. (19) y de la 

Figura 28 (b) obtenemos la Ecuación (20). 

𝐶௜
௏஼஼ = 1, 0, … , 0. 𝐶௜ା௭ାଵ

௏஼஼ = 2    (19) 

      𝐶௜
ଷை் , 0, … , 0, 𝐶௜

ଷை் = 1     (20) 
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Una vez que se mostró que el Teorema 1 y el Teorema 2 son correctos, con base a 

ellos podemos obtener la Tabla 7 que relaciona los símbolos del VCC y del 3OT. 

Tabla 7. Conversión del código VCC al código 3OT. 

VCC 3OT 

𝐶௜ 𝐶௜ା௭ାଵ 𝐶௜ା௭ାଵ 

1 1 2 

1 2 1 

2 1 1 

2 2 2 

 

Un estudio a detalle de las equivalencias entre los códigos de cadena más citados 

en la literatura puede ser encontrado en (Sánchez-Cruz & López-Valdez, 2014). El estudio 

presentado en esta tesis es para encontrar diferencias y semejanzas entre el código VCC 

y 3OT y así poder identificar más fácilmente ventajas y desventajas del uso de estos 

códigos. Con el estudio realizado en este capítulo se pudo observar que existe una 

equivalencia entre el código VCC y el 3OT, que como se mostró con el Teorema 1, un bache 

y un tope pueden tener la misma codificación en el código 3OT, lo cual muestra la 

redundancia que tiene dicho código. Con base al estudio presentado en este capítulo se 

elabora el método presentado en el siguiente capítulo. 
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CAPÍTULO 4. CÁLCULO DE LA CARACTERÍSTICA DE EULER 
BASADO EN EL CÓDIGO 3OT. 
 

El análisis realizado en este capítulo está basado en (Gómez-Gómez & Sánchez-

Cruz, 2024). Se analiza y se pone a prueba un método para realizar el cálculo de la 

característica de Euler basado en el código 3OT, dicho método está basado en el contorno. 

Un método basado en el contorno resulta ser muy efectivo debido a que, al momento de la 

aplicación, el método desarrollado no tiene que recorrer ni guardar información de todos los 

pixeles de la imagen para poder realizar su cometido. Solamente deben de considerar los 

pixeles de la frontera, por lo que el procesamiento y almacenamiento es menor al de un 

método basado en la región. De cualquier manera, el método propuesto en esta tesis para 

realizar el cálculo de la característica de Euler supone que la imagen que se desea analizar 

fue previamente codificada por el código 3OT, por lo que la manera en que se codifica 

resulta trivial. 

4.1 Geometría presente en el código 3OT 
 

Como se mostró en el Capítulo 3, las geometrías encontradas en un contorno 

pueden ser identificadas fácilmente en una cadena 3OT. Por ejemplo, el símbolo ‘0’ 

representa un contorno llano, el símbolo ‘1’ representa una escalera y el ‘2’ puede 

representar tanto un tope como un bache. 

Debido a que el símbolo ‘2’ está presente en la codificación de dos conceptos 

geométricos, se puede decir que existen dos tipos de símbolo ‘2’, un ‘2’ cóncavo, que 

denominaremos simplemente como ‘2 ˇ’,el cual representa el retorno del concepto 

geométrico denominado como bache, y un ‘2’ convexo, que denominaremos ‘2 ˆ’,el cual 

representa el retorno del concepto geométrico denominado como tope. 

Para calcular la característica de Euler basado en el código 3OT, es necesario 

conocer el número de concavidades y convexidades representadas por el símbolo  ‘2’. Para 

facilitar la implementación del método, se establece que el primer símbolo ‘2’ en una cadena 

de código 3OT representa siempre una convexidad.  

Lo anterior ocurre para todas las imágenes debido a que para realizar la codificación 

3OT en una imagen, se comienza el recorrido en sentido de las manecillas del reloj y el 
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primer ‘2’ encontrado siempre representa el retorno de un tope. En la Figura 29 se muestra 

el caso de un segmento de una imagen codificada por el código 3OT, señalando únicamente 

el primer símbolo ‘2’. Como se puede apreciar, el primer ‘2’ que se encuentra en una imagen 

siempre será utilizado para codificar un tope, ya que dicho concepto geométrico antecederá 

a cualquier bache o escalera que se encuentre en la imagen. 

 

Figura 29. Codificación 3OT en sentido de las manecillas del reloj. 

4.2 Determinación del significado geométrico al leer una cadena 3OT 
 

Ya se mostró el caso del primer símbolo ‘2’ de la cadena, de esta manera sabemos 

que el primer ‘2’ siempre hará referencia a un 2ˆ. Sin embargo, no sabemos qué tipo de ‘2’ 

encontraremos en el resto de la cadena, si un ‘2ˆ’ o un ‘2ˇ’. Para poder determinar esto, se 

proponen el Teorema 3 y el corolario. 

Teorema 3. Sea 𝑤 el número de ‘1’s y 𝑧 el número de ‘0’s que separa dos símbolos 

‘2’s contiguos en la cadena de una imagen codificada por el código 3OT. 𝐶௜ା௪ା௭ାଵ
ଷை் = 2 

representa la misma, una concavidad (convexidad) que 𝐶௜
ଷை் = 2 si y solo si w es par. 

La Figura 30 presenta el caso mencionado por el Teorema 3. Es decir se presenta 

una imagen codificada hasta que aparece el segundo símbolo ‘2’, el número de ‘1’ que 

separa a los símbolos ‘2’s contiguos es par, sin tomar en cuenta el número de ceros 𝑧. 
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Figura 30. Segmento de imagen codificado por código VCC con número 𝑤 par. 

 De la Figura 30, se puede obtener la subcadena {000211101112}, de la cual 

observamos el símbolo ‘1’ se repite seis veces, un número par, entre los símbolos ‘2’ 

contiguos. De acuerdo con el Teorema 3, el segundo símbolo ‘2’ debe representar el mismo 

concepto geométrico que el símbolo ‘2’ anterior, anteriormente mencionamos que el primer 

símbolo ‘2’ de una cadena será siempre un 2ˆ (‘2’ convexo), de esta manera sabemos que 

el siguiente ‘2’ es también un 2ˆ bajo las condiciones del teorema 3. 

 Si el primer símbolo ‘2’ analizado fuera un 2ˇ( ‘2’ cóncavo), y el número de ‘1’s que 

los separan fuera también par, el segundo símbolo ‘2’ haría referencia a un 2ˇ. 

Corolario. Sea 𝑤 el número de ‘1’s y 𝑧 el número de ‘0’s que separa dos símbolos 

‘2’s contiguos en la cadena de una imagen codificada por el código 3OT. 𝐶௜ା௪ା௭ାଵ
ଷை = 2 

representa lo contrario, una concavidad (convexidad) que 𝐶௜
ଷை் = 2 si y solo si w es impar. 

La Figura 31 muestra el caso de 𝑤 impar, de ésta se obtiene la subcadena 

{21110112}, por lo que el segundo símbolo ‘2’ hará referencia al significado geométrico 

opuesto al del primer ‘2’. Es decir, el primer símbolo ‘2’ de la subcadena hace referencia a 

un 2ˆ, como 𝑤 es impar, el siguiente ‘2’ es un 2ˇ, validando así el corolario. 
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Figura 31. Segmento de imagen codificado por código VCC con número 𝑤 impar.𝑤 

4.3 Cálculo del número de hoyos en objetos binarios a partir de una 
cadena 3OT 
 

A continuación, se describe la propuesta para realizar el cálculo el número de hoyos 

𝐻 de una imagen binaria con un método basado en el código 3OT. El número de hoyos 

permite encontrar posteriormente la característica de Euler. El Lema 1 describe cómo el 

número de hoyos se incrementa o decrece en una imagen. 

Para encontrar el número de hoyos presentes una imagen binaria se propone hacer 

uso del significado geométrico que guarda cada símbolo del código 3OT, como se mencionó 

anteriormente el símbolo ‘2’ guarda dos significados geométricos distintos, el bache y el 

tope, esto dependerá como se explicó en la sección 4.2 del número de símbolos ‘1’s que 

se encuentren entre dos símbolos ‘2’s. El método que proponemos en esta tesis considera 

únicamente los cambios de dirección dados por la geometría del tope y del bache. Es decir, 

un retorno en el recorrido del contorno, ya que las geometrías del llano y de la escalera no 

indican un cambio significativo de dirección como serían los dados por los ‘2’s cóncavos o 

‘2’s convexos, por lo que  consideramos que los retornos encontrados en los topes y baches 

en la imagen binaria guardan la suficiente información de la imagen para poder representar 

toda la geometría de la imagen, incluyendo el contorno interno y el contorno externo, para 

encontrar la característica de Euler. 

El Lema 1 describe cómo el número de hoyos cambia dependiendo de cómo vayan 

cambiando el número de topes y baches. 
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Lema 1. 

Sea ∆𝑁2ˆ y ∆𝑁2ˇ el número de geometrías denominadas como topes y el número 

de geometrías denominadas como baches respectivamente, representados por el símbolo 

‘2’, ya sea agregados o eliminados a una imagen binaria. El número de hoyos agregados 

o eliminados a una imagen binaria está dado por:  

∆𝐻 = − ቆ
(∆𝑁2ˆ − ∆𝑁2ˇ)

4
ቇ. 

Demostración. 

 Este lema es válido debido a que siempre que se agrega o elimina un pixel para 

formar un bache o un tope, el ∆𝑁2ˆ es igual a ∆𝑁2ˇ. Por esta razón, el numerador del Lema 

1, (∆𝑁2ˆ − ∆𝑁2ˇ), es siempre ∆𝑁2ˆ − ∆𝑁2ˇ = 0, por lo que ∆𝐻 = 0. Esto es congruente ya 

que aunque se agreguen o eliminen pixeles que cambien el valor de ∆𝑁2ˇ o el valor de ∆𝑁2ˆ 

y no se agreguen hoyos a la imagen, ∆𝐻 permanece igual. 

 En el párrafo anterior se explicó cómo ∆𝐻 se mantiene sin cambios si se agregan o 

quitan pixeles al formar topes y baches. Sin embargo cuando se forma un hoyo, eliminando 

o agregando pixeles, el numerador del Lema 1, (∆𝑁2ˆ − ∆𝑁2ˇ) es  siempre ∆𝑁2ˆ − ∆𝑁2ˇ =

−4, por lo que  ∆𝐻 cambiará, aumentará en 1. 

Basados en el Lema 1 se puede establecer el Teorema 4. Dicho teorema generaliza 

el número de hoyos para 𝑛 componentes conexas como hace el Lema 1. 
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Teorema 4. 

 Sea 𝑁2ˆ el número ‘2’ convexos (topes) y 𝑁2ˇ el número de ‘2’ cóncavos (baches) 

representados por el símbolo ‘2’. El número de hoyos de n componentes conexas está 

siempre dado por: 

𝐻 = −
𝑁2ˆ − 𝑁2ˇ

4
+ 𝑛, 

donde n es el número de componentes conexas de una imagen. 

El Teorema 4 es muy parecido a la Ecuación (10) mencionada en la Introducción, 

con dicha ecuación Sossa encuentra el número de hoyos utilizando el código VCC, como 

se explicó en la introducción, la ecuación considera 𝑁1, el número de ‘1’s y 𝑁2, el número 

de ‘2’s que representan convexidades y concavidades respectivamente del contorno. 

La Figura 32 (a) muestra a los vértices que son utilizados para realizar el cálculo de 

𝐻 mediante el Teorema 4(propuesto en esta tesis), mientras que la Figura 32 (b) muestra a 

los vértices que son utilizados para el cálculo de 𝐻 mediante la Ecuación (10). 

 

Figura 32. Objetos binarios con vértices marcados para el cálculo de 𝐻. (a)  3OT, (b) VCC 

De la Figura 32 (a) se pueden observar que los vértices marcados en rojo son 16,  

𝑁2ˆ = 6 y 𝑁2ˇ = 10, por lo que aplicando el Teorema 4 el número de hoyos queda 

expresado como: 
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𝐻 = −
଺ିଵ଴

ସ
+ 1 = 2, 

 cumpliendo con lo esperado, se tiene una componente conexa y 2 hoyos formando 
la figura. 

De Figura 32 (b) se pueden observar 90 vértices en rojo, que son los vértices 

necesarios a considerar para realizar el cálculo mediante la Ecuación (10), encontrando 

𝑁1 = 43 y 𝑁2 = 47, al sustituir estos valores en dicha ecuación obtenemos que el número 

de hoyos 𝐻 es expresado como: 

𝐻 = −
43 − 47

4
+ 1 = 2. 

 Como se puede observar, para poder obtener el número de hoyos utilizando este 

método, es necesario localizar 90 vértices en total.  

A pesar de que el Teorema 4 y la Ecuación (10) son muy similares, se puede 

observar que el Teorema 4, método propuesto en esta tesis, considera significativamente 

menos vértices que los que considera la Ecuación (10), esto debido a que la Ecuación (10) 

necesita contabilizar todos los vértices convexos y cóncavos del contorno de la figura, es 

decir el símbolo ‘1’ y ‘2’ del código VCC, mientras que el Teorema 4 necesita contabiliza 

únicamente los vértices que son representados por el símbolo ‘2’ del código 3OT, como ya 

se mencionó antes el símbolo ‘2’ del 3OT puede representar ya sea un bache o un tope. Se 

puede notar fácilmente de la Figura 32 (a), que los puntos marcados en rojo señalan el final 

de un bache o un tope si se recorre el exterior de la figura a favor de las manecillas del reloj, 

mientras que el contorno del hoyo se recorre en sentido contrario a las manecillas del reloj. 

Sin embargo, si se observa la Figura 32 (b), todos los vértices marcados con rojo 

corresponden a baches, topes y escaleras, es decir, la única geometría que no es 

considerada utilizando la Ecuación (10) es la de los llanos.  

Para encontrar el número de hoyos este caso en particular, utilizando el 3OT, se 

requiere de únicamente el 11.11% de los vértices que se necesitan para encontrar 𝐻 

mediante el código VCC. Resulta evidente que aunque se trata de una imagen pequeña, la 

diferencia del número de vértices que deben de ser contabilizados será siempre abismal, 

puesto que, utilizando el método propuesto en este trabajo de investigación, se omite la 

contabilización de los conceptos geométricos de “llano” y escaleras”. 
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4.4 Característica de Euler en objetos binarios a partir de una cadena 
3OT 
 

Una vez que se obtiene el número de hoyos presentes en una imagen, se puede 

obtener la característica de Euler presentes en una imagen binaria. El Teorema 5 expresa 

la característica de Euler basándose en el número de ‘2’s cóncavos y el número de ‘2’ 

convexos. 

Teorema 5. 

La característica de Euler puede ser siempre calculado mediante la siguiente ecuación: 

𝐸 =
𝑁2ˆ − 𝑁2ˇ

4
. 

Demostración del Teorema 5. 

De la Ecuación. 4 y Teorema 4. Obtenemos: 

𝐸 = 𝑛 +
𝑁2ˆ − 𝑁2ˇ

4
− 𝑛 =

𝑁2ˆ − 𝑁2ˇ

4
. 

Donde se observa que al sustituir la ecuación del Teorema 4 en la Ecuación 4, la 

característica de Euler puede encontrarse de manera mediante una expresión muy simple 

y solamente se necesita tener identificados el número total de ‘2’s convexos y de ‘2’ 

cóncavos presentes en un objeto binario codificado mediante el código de cadena 3OT.  

La Tabla 8 muestra los resultados del análisis aplicado a los objetos binarios 

presentados en la Figura 32, se muestra el número de ‘2’ cóncavos y convexos para poder 

identificar el número de baches y topes presentes en el objeto binario. 

Si aplicamos el Teorema 5 a la Figura 32 (a) para determinar la característica de 

Euler, necesitamos determinar el número de símbolos ‘2’s convexos 𝑁2ˆ y el número de ‘2’s 

cóncavos 𝑁2ˇ. En la sección anterior se obtuvo el número de hoyos:  𝐻 = 2 con 𝑁2ˆ = 6 y 

𝑁2ˇ = 10, al sustituir dichos valores en la ecuación dada por el Teorema 5 obtenemos que 

la característica de Euler es: 

𝐸 =
6 − 10

4
= −1. 
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Lo anterior es correcto ya que al observar la Figura 32 (a) se puede ver que el 

número de componentes conexas es 𝑛 = 1, mientras que el número de hoyos que tiene la 

imagen es 𝐻 = 2, sustituyendo dichos valores en la Ecuación (4) obtenemos: 

𝐸 = 1 − 2 = −1. 

 

Si a la diferencia de 𝑁2ˆ − 𝑁2ˇ la nombramos simplemente como ∆𝑁2, es decir 

∆𝑁2 = 𝑁2ˆ − 𝑁2ˇ , podemos decir que una expresión simplificada del Teorema 5 es: 

𝐸 =
∆ேଶ

ସ
       (21) 

La Ecuación (21) es una expresión simplificada del cálculo de la característica de 

Euler, en dicha ecuación se puede observar con mayor facilidad que únicamente se está 

utilizando un símbolo para obtener la característica de Euler. 

La Tabla 8 muestra los resultados del análisis aplicado a los objetos binarios 

presentados en la Figura 33, se muestra el número de ‘2’ cóncavos y convexos para poder 

identificar el número de baches y topes, determinando así el número de hoyos y la 

característica de Euler. 
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Figura 33. Muestra de Imágenes para la característica de Euler. 

Tabla 8. Resultados del cálculo de la Característica de Euler. 

Objeto 𝑁2ˆ 𝑁2ˇ Número 

de Hoyos 

Característica 

de Euler 

Tamaño de 

la Imagen 

1 25 41 5 -4 256 X 255 

2 28 32 2 -1 225 X 227 

3 40 40 1 0 343 X 425 

4 40 56 5 -4 345 X 234 

5 72 104 9 -8 324 X 452 

6 27 43 5 -4 425 X 567 

7 28 24 0 1 430 X 413 

8 53 57 2 -1 380 X 372 

9 23 51 8 -7 365 X 383 

10 27 47 6 -5 415 X 326 
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De la Tabla 8 se puede observar que el método propuesto en esta tesis para 

encontrar la característica de Euler en objetos binarios resulta ser efectivo, el cálculo resultó 

ser satisfactorio para los 10 objetos analizados.  

En la siguiente sección se explica detalladamente el algoritmo empleado para 

obtener los resultados en la Tabla 8. 

4.5 Algoritmo empleado para encontrar la Característica de Euler 
 

Es fácil observar que el Teorema 5 presenta una expresión muy simple para el 

cálculo de la Característica de Euler. Sin embargo, para poder comprender mejor el proceso 

y complejidad computacional que requiere realmente utilizar dicha expresión se presenta 

también el algoritmo que es empleado en este trabajo de tesis para encontrar el número de 

hoyos y la característica de Euler. 

A continuación, se muestra parte el algoritmo empleado para calcular la 

característica de Euler, en dicho algoritmo es posible observar la manera en que se obtiene 

el número 𝑁2ˆ y el número 𝑁2ˇ, dependientes de la paridad de w como se explicó 

anteriormente, para ser procesados posteriormente para la obtención del número de hoyos 

y la característica de Euler. 
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Algoritmo 1. Algoritmo empleado para encontrar 𝑁2ˆ 𝑦 𝑁2ˇ para encontrar la característica 

de Euler en objetos binarios. 

Algoritmo para encontrar la característica de Euler. 

N=longitud_de_la_cadena; 
convexos=0; 
cóncavos=0; 
primer_2=0; 
paridad=0; 
para i=1 hasta n 
    si (cadena(i)==2 y primer_2==0) 
       primer_2=1; 
       convexos=convexos+1 
        convconc=1;                   //1 si el último fue convexo, 0 si el último fue cóncavo 
   fin 
   si (cadena(i)==1) 
      contador=contador+1; 
   fin 
   si (cadena(i)=2 y primer_2==1) 
       paridad=residuo(contador/2) 
       contador=0; 
       si (convconc==1 y paridad==0) 
          convexos=convexos+1; 
       fin 
       si (convconc==0 y paridad==0) 
          cóncavos=concavos+1; 
       fin 
       si (convconc==0 y paridad==1) 
          convexos=convexos+1; 
       fin 
       si (convconc==1y paridad==1) 
          cóncavos=concavos+1; 
       fin 
   fin 
fin   // Termina ciclo 
hoyos=-(convexos-cóncavos)/4+num_objetos;         //calcula el número de hoyos 
E=(convexos-cóncavos)/4;                       //calcula la característica de Euler 
 

 Del Algoritmo 1 es necesario aclarar que la variable “convconc” toma el valor de 1 

para indicar que último ‘2’ encontrado en la cadena corresponde a un 𝑁2ˆ  y toma el valor 

de 0 para indicar que el último ‘2’ encontrado en la cadena corresponde a un 𝑁2ˇ. Podemos 

obtener la complejidad de nuestro algoritmo, es fácil observar que todo el algoritmo está 

basado en un ciclo ‘for’, por esta razón la complejidad de nuestro algoritmo es de O(n). 
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 Es importante recalcar que nuestro método está basado en el código 3OT. Esto 

supone que la imagen ha sido previamente codificada, por esta razón el algoritmo no 

contempla la codificación de la imagen. De esta manera la complejidad del método 

presentado en este capítulo no se ve alterada. 
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CAPÍTULO 5. PUNTOS DOMINANTES USANDO 3OT 

5.1 Puntos dominantes en un objeto binario 
 

 Los puntos dominantes son una técnica utilizada para la representación de 

imágenes, donde se busca la menor cantidad de puntos del contorno de un objeto con los 

que puede ser identificado como el objeto inicial. En (Attneave F., et al 1954) se muestra 

un estudio realizado por Attneaveen el que encontró que algunos puntos eran 

determinantes para el reconocimiento de figuras. En el trabajo de Attneave dichos puntos 

podían ser unidos mediante líneas rectas y la figura resultante debería ser similar a la 

original. Dicho método tiene pérdida de información ya que presenta error de aproximación, 

siempre y cuando la imagen sea visualmente reconocible, el error es aceptable para 

trabajos de reconocimiento. 

La técnica de representación de objetos binarios mediante puntos dominantes 

simplifica el análisis al trabajar únicamente con algunos puntos de la imagen pero que 

contienen casi la misma información geométrica y topológica de la figura original. 

 Una aportación crucial de los puntos dominantes es la compresión de imágenes, ya 

que dicha técnica permite almacenar la figura con ligera pérdida y ahorrando espacio al 

guardar sólo los puntos dominantes de la imagen. La Figura 34 permite observar un ejemplo 

de la técnica de puntos dominantes, es una imagen binaria con los puntos dominantes 

marcados por el color rojo y son unidos mediante las líneas de color azul para reconstruir 

el contorno, utilizando únicamente 23 puntos, en vez de los 196 puntos del contorno, que 

se tendrían que analizar o almacenar con algún método basado en el contorno. 

En el 2009 (Sánchez-Cruz & Bribiesca, 2009) presentaron un método para detectar 

las esquinas de una imagen basándose en el código 3OT, dicho método fue comparado 

con métodos altamente citados en la literatura y demostró tener mejores resultados en el 

desempeño del método presentado. Además, se propuso un parámetro de error para 

cuantificar la eficiencia de cada detector. 
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Figura 34. Imagen con puntos dominantes. 

5.2 Detección de puntos dominantes mediante símbolo ‘2’ del código 
3OT 
 

En (Gómez-Gómez & Sánchez-Cruz, 2024) se detectan los puntos dominantes al 

utilizar el código 3OT, el método emplea únicamente el símbolo ‘2’, dicho símbolo es el 

mismo empleado para realizar el cálculo de la característica de Euler en el capítulo 4. Sin 

embargo, hacemos una propuesta para mejorar la búsqueda de puntos dominantes. 

El hecho de poder determinar una característica topológica como lo es la 

característica de Euler mediante el uso de conceptos geométricos presentes en objetos 

binarios como el bache y el tope, sin considerar directamente las geometrías de llano o 

escaleras, hace suponer que el símbolo ‘2’ empleado para representar baches y topes, 

posee la suficiente información geométrica del objeto binario para poder realizar análisis 

respecto a la forma que puede presentar la imagen. Por tal motivo en este capítulo se 
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propone utilizar únicamente el símbolo ‘2’ para poder encontrar los puntos dominantes de 

imágenes binarias. 

En la Figura 35 se muestra una imagen de baja resolución codificada por el código 

3OT, señalando únicamente los vértices marcados por el símbolo 2. Mientras tanto en la 

Figura 32 se muestran los puntos dominantes unidos por líneas, mostrando así que la 

imagen es aproximada a la imagen original. 

Al observar la Figura 35 y la Figura 36 se tiene la impresión de que el método puede 

ser útil para la representación de imágenes mediante puntos dominantes. Sin embargo, 

únicamente se está mostrando el contorno sin considerar el hoyo presente en la imagen. 

 

Figura 35. Imagen de baja resolución codificada por 3OT. 

 

 

Figura 36. Puntos dominantes unidos 
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 Al considerar el hoyo de la Figura 35 y aplicar el mismo método se puede obtener 

el resultado mostrado por la Figura 37, donde es posible observar un claro error al observar 

que se cruzan las líneas con las que se unen los puntos dominantes, por este motivo es 

imposible reconstruir la imagen. Es necesario decir que al igual que el resto de las 

codificaciones presentadas en esta tesis donde se hace uso de los códigos de cadena, esta 

codificación 3OT se realizó recorriendo el contorno de la imagen en sentido de las 

manecillas del reloj y el contorno de los hoyos en sentido contrario a las manecillas del reloj. 

 

Figura 37. Puntos dominantes unidos con hoyo. 

5.3 Codificación de imágenes en ambos sentidos 
 

Debido a que el símbolo ‘2’ únicamente representa el punto donde termina la 

geometría del tope o del bache, no se tiene información sobre dónde comienza dicha 

geometría. Este problema puede ser fácilmente resuelto si se realiza una codificación del 

objeto binario en ambos sentidos para el contorno de la imagen y del hoyo, en sentido de 

las manecillas del reloj y opuesto a las manecillas del reloj. De esta manera se obtiene un 

símbolo ‘2’ al inicio y al final de cada tope y cada bache del objeto binario a analizar. 

En la Figura 38 se presenta la misma imagen, pero codificada en ambos sentidos, 

es decir, en sentido de las manecillas del reloj y en el sentido contrario de las manecillas 

del reloj. Para determinar los puntos dominantes de la imagen, se considera de manera 

similar al método propuesto anteriormente utilizar el símbolo ‘2’, la diferencia se encuentra 

en que se consideran los símbolos ‘2’ encontrados en ambos sentidos de codificación. 
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Figura 38. Codificación en ambos sentidos. 

Como se puede observar en la Figura 38, no existe ningún cruzamiento de las líneas 

que son empleadas para unir los puntos dominantes, lo cual indica que puede ser un 

método eficaz para la representación y reconstrucción de imágenes mediante puntos 

dominantes. 

A continuación, en la Figura 39 se muestra la aplicación del método utilizando 

únicamente el punto representado por un símbolo ‘2’, considerando un recorrido en ambas 

direcciones para la codificación 3OT para imágenes con mayor resolución y en algunos 

casos con la presencia de hoyos. 
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Figura 39. Puntos dominantes mediante el símbolo ‘2’ del 3OT. 

En la Figura 39 se presenta en la izquierda a las imágenes originales, acompañadas 

a su lado derecho de las imágenes reconstruidas mediante sus puntos dominantes. 
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Como se puede observar es posible notar la semejanza visual que existe entre las 

figuras originales y las reconstruidas por el método propuesto en este capítulo, lo cual indica 

un buen resultado, hay que considerar que se utiliza una técnica sencilla para encontrar los 

puntos dominantes con los cuáles se hace la reconstrucción. También es importante 

mencionar que se hace uso del símbolo ‘2’, el cual parece guardar la relación geométrica y 

topológica de una imagen binaria.  

El método propuesto en este capítulo para encontrar los puntos dominantes 

mediante el símbolo ‘2’ con una codificación en ambos sentidos, encuentra en realidad el 

vértice del principio y vértice del final de cada tope y cada bache del contorno de la imagen.  

Con esta afirmación y debido a que la característica de Euler puede ser calculada 

encontrando también los baches y topes del contorno de una imagen, se puede decir que 

la geometría y topología de una imagen puede ser sintetizada mediante los baches y topes, 

debido a que dichos conceptos geométricos representan un cambio de dirección contraria 

a la referencia. 
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CAPÍTULO 6. CONCLUSIONES Y DISCUSIÓN DE RESULTADOS. 
6.1 Invarianza ante rotación 
 

En este trabajo de tesis se presentó un método para detectar invarianza en rotación, 

basado en las frecuencias de los símbolos de códigos de cadena, el método presentado en 

el Capítulo 2 es único en la literatura, aborda el problema de encontrar la invarianza en 

rotación al hacer uso de la codificación AF8 de esqueletos y comparar los histogramas de 

distintos objetos binarios, tanto regulares como irregulares. Por otra parte, desarrollamos 

un nuevo método para determinar la invarianza en rotación, siguiendo el mismo principio 

de tomar las frecuencias de aparición de cada símbolo en la cadena para establecer rangos 

de tolerancia, se propuso un método utilizando el código 3OT. Este método resulta ser más 

eficiente debido a que utilizan el mismo principio, pero el número de comparaciones a 

realizar siempre resulta ser menor por el menor número de símbolos que utiliza. 

La eficiencia mencionada del método basado en el código 3OT para encontrar 

invarianza ante transformaciones de rotación, está dada por una serie de factores que 

distinguen incluso a los códigos empleados. Por ejemplo, cuando se habla del código 3OT, 

sabemos que es uno de los más eficientes para la compresión de imágenes por lo que si 

suponemos utilizar dicho código para comprimir imágenes binarias y una vez comprimidas, 

deseamos realizar estudios de invarianza ante rotación, el método basado en el código 

3OT, es sin duda mejor opción que utilizar el método basado en el código AF8.  

Parte de los logros de esta tesis ya están reportados en (Huerta-Hernández & 

Sánchez-Cruz, 2014). 

6.2 El cálculo de la característica de Euler 

 

La principal aportación de esta tesis es realizar el cálculo de la característica de 

Euler en objetos binarios utilizando el código 3OT, El código 3OT como ya fue mencionado 

en diversas ocasiones en esta tesis, ha sido uno de los códigos de cadena más citados en 

la actualidad, debido a las bondades que ofrece, es por esto que dicho código ha servido 

como base para el desarrollo de nuevas técnicas en distintos campos de la visión artificial 

y el procesamiento de imágenes. Es decir, varias técnicas en distintos campos de visión se 
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basan en el código 3OT para generar un nuevo método con mejores resultados que los 

previamente desarrollados. 

En esta tesis se desarrolló un método para calcular la característica de Euler que 

considera el número de vértices del contorno de una imagen, a pesar de que en la literatura 

existen trabajos que consideran el número de vértices para calcular la característica de 

Euler, el método presentado en este trabajo de tesis no considera todos los vértices del 

contorno debido a que está basado en el código 3OT, considera únicamente los vértices 

codificados por el símbolo ‘2’.  

Como se mostró en el Capítulo 4, se considera significativamente un menor número 

de puntos para realizar el cálculo y permite lograr una simplificación de la ecuación utilizada 

para el cálculo de la característica de Euler. Además, se presentaron algunas relaciones 

que existen entre la geometría de un objeto y la topología del mismo, introduciendo 

conceptos geométricos como el bache, el tope, la escalera y el llano. 

6.3 Encontrar puntos dominantes mediante sólo un símbolo del código 
3OT 

 

En el Capítulo 5 se presenta un método que surgió de la idea de calcular la 

característica de Euler basándose en el código 3OT, el método considera dos conceptos 

geométricos introducidos en este trabajo de tesis para encontrar los puntos dominantes de 

una imagen binaria, el bache y el tope, mismos conceptos que son utilizados para encontrar 

la característica de Euler. 

Encontrar los puntos dominantes tomando como base sólo un símbolo del código 

3OT no solo es una aportación directa a la investigación en el campo del tratamiento de 

imágenes, sino supone la posibilidad de crear un sistema robusto para tareas como 

reconocimiento, clasificación y compresión de imágenes. Si bien es cierto que  el método 

presentado en el Capítulo 5 no ha demostrado aún ser el más eficiente para encontrar 

puntos dominantes en una imagen binaria, es un método novedoso y sencillo de 

implementar que como hemos mencionado en varias ocasiones aprovecha las bondades 

que tiene el utilizar el código 3OT para su implementación, de cualquier manera, el método 

presentado en dicho capítulo resulta ser útil y da buenos resultados en los experimentos 

realizados. Esto nos lleva a plantear el trabajo futuro que a continuación se describe. 
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6.4 Trabajo futuro 
 

Debido a que en esta tesis se presentan tres métodos basados en el código 3OT: 

encontrar invarianza ante rotación, calcular la característica de Euler y encontrar puntos 

dominantes. Un trabajo futuro es realizar un sistema de reconocimiento que integre los tres 

métodos anteriormente mencionados, codificando una imagen mediante 3OT y 

posteriormente analizando sus diferentes características: invarianza ante rotación, 

característica de Euler y puntos dominantes. 

Se pretende también realizar una investigación que involucre a los códigos de 

cadena utilizados como invariantes ante rotación y a redes neuronales, esto con el fin de 

realizar un sistema robusto de reconocimiento y clasificación de imágenes. 

Una investigación que se pretende continuar es la de encontrar características 

geométricas en el contorno de imágenes binarias en 3D que permitan encontrar la 

característica de Euler de una manera sencilla con alguna relación entre geometría y 

topología, de manera similar al trabajo de esta tesis. 

Finalmente, se piensa desarrollar un método para encontrar directamente en la 

imagen la ubicación y número de baches y topes, sin necesidad de obtener el código de 

cadena de la imagen, ya que en este trabajo de tesis se da por entendido que ya se cuenta 

con la codificación de la imagen mediante el código 3OT y gracias a esta codificación se 

obtienen los conceptos geométricos que se requieren para los métodos propuestos.  

Encontrar la característica de Euler, los baches y topes directamente sobre la 

imagen binaria haría que los métodos presentados en esta tesis fueran más eficiente, ya 

que incluso se podría utilizar alguna técnica heurística o en paralelo para encontrar dichos 

conceptos geométricos, lo que permitiría encontrar invarianza ante rotación, la 

característica de Euler y los puntos dominantes de manera rápida o con una complejidad 

menor de la que se requiere para encontrar los conceptos geométricos mencionados 

mediante códigos de cadena. 
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Glosario 
 

● Algoritmo: Serie de pasos ordenados y finitos que permiten dar solución a un 

problema determinado. 

● Análisis de imágenes: Determinación de características elementales referentes a su 

topología y geometría, considerando para ello el contorno o la región de la imagen. 

● Bit: Unidad mínima de información que puede tomar dos posibles valores (apagado 

‘0’, encendido ‘1’). 

● Código 3OT: Código de cadena de Tres cambios Ortogonales. 

● Código de cadena: Técnica usada para representación de contornos de un objeto 

binario mediante una sucesión de símbolos que guardan un significado geométrico. 

● Código de Freeman (F8): Código de cadena de ocho direcciones. 

● Código direccional de Freeman (AF8): Código de cadena direccional de 8 

direcciones. 

● Código VCC (VertexChainCode): Código de cadena de tres símbolos para vértices. 

● Componente conexa: Conjunto de pixeles unidos por medio de su vecindad-4 o 

vecindad-8. 

● Compresión de imágenes: Reducción de datos redundantes e irrelevantes de una 

imagen con la menor pérdida posible. 

● Imagen Binaria: imagen representada por una matriz compuesta de dos posibles 

valores {pixeles encendidos, pixeles apagados}. Generalmente los objetos binarios 

son representados por pixeles encendidos y el fondo por pixeles apagados. 

● Objeto Binario: Componente conexa en una imagen donde todos los pixeles que la 

conforman están encendidos, representada regularmente por ‘1’s, en una matriz 

binaria.  

● Pixel: Unidad básica lógica que compone una imagen digital. 
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