
 
 

 

 

 

 

 

CENTRO DE CIENCIAS BÁSICAS 

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN 

 

TESIS 

Inteligencia Artificial Aplicada al Análisis  
Histológico del Hipocampo  

 

PRESENTA 

Alfonso Vizcaíno Poblano 

 

PARA OBTENER EL GRADO DE  
DOCTOR EN CIENCIAS APLICADAS Y TECNOLOGÍA 

 

TUTORES 

Dr. Hermilo Sánchez Cruz 

 Dr. Juan Humberto Sossa Azuela  

 

ASESORES 

Dr. Julio César Ponce Gallegos 

Aguascalientes, Ags.  Septiembre de 2023   



 
Elaborado por: Depto. Apoyo al Posgrado. 
Revisado por: Depto. Control Escolar/Depto. Gestión de Calidad. 
Aprobado por: Depto. Control Escolar/ Depto. Apoyo al Posgrado.  

Código: DO-SEE-FO-07 
Actualización: 01 
Emisión:  17/05/19  

 
CARTA DE VOTO APROBATORIO 

INDIVIDUAL 
 
 
 
 
 
 
 
M. en C. Jorge Martín Alférez Chávez 
DECANO (A) DEL CENTRO DE CIENCIAS BÁSICAS 
_______________ 
P R E S E N T E 
 
 
Por medio del presente como TUTOR designado del estudiante  ALFONSO VIZCAÍNO POBLANO con ID 
12942  quien realizó la tesis titulado:  INTELIGENCIA ARTIFICIAL APLICADA AL ANÁLISIS HISTOLÓGICO 
DEL HIPOCAMPO, un trabajo propio, innovador, relevante e inédito y con fundamento en el Artículo 175, 
Apartado II del Reglamento General de Docencia doy mi consentimiento de que la versión final del 
documento ha sido revisada y las correcciones se han incorporado apropiadamente, por lo que me 
permito emitir el VOTO APROBATORIO, para que el pueda proceder a imprimirla así como continuar con 
el procedimiento administrativo para la obtención del grado. 
 
Pongo lo anterior a su digna consideración y sin otro particular por el momento, me permito enviarle un 
cordial saludo. 
 
 
 

A T E N T A M E N T E 
“Se Lumen Proferre” 

Aguascalientes, Ags., a 14 de septiembre de 2023.  
 
 
 

DR. HERMILO SÁNCHEZ CRUZ 
Cotutor de tesis 

 
 

 
 
 
 
 
 
c.c.p.- Interesado 
c.c.p.- Secretaría Técnica del Programa de Posgrado 



Elaborado por: Depto. Apoyo al Posgrado. 
Revisado por: Depto. Control Escolar/Depto. Gestión de Calidad. 
Aprobado por: Depto. Control Escolar/ Depto. Apoyo al Posgrado.

Código: DO-SEE-FO-07 
Actualización: 01 
Emisión:  17/05/19

CARTA DE VOTO APROBATORIO 
INDIVIDUAL 

M. en C. Jorge Martín Alférez Chávez 
DECANO (A) DEL CENTRO DE CIENCIAS BÁSICAS 
_______________ 
P R E S E N T E 

Por medio del presente como TUTOR designado del estudiante  ALFONSO VIZCAÍNO POBLANO con ID 
12942  quien realizó la tesis titulado:  INTELIGENCIA ARTIFICIAL APLICADA AL ANÁLISIS HISTOLÓGICO 
DEL HIPOCAMPO, un trabajo propio, innovador, relevante e inédito y con fundamento en el Artículo 175, 
Apartado II del Reglamento General de Docencia doy mi consentimiento de que la versión final del 
documento ha sido revisada y las correcciones se han incorporado apropiadamente, por lo que me 
permito emitir el VOTO APROBATORIO, para que el pueda proceder a imprimirla así como continuar con 
el procedimiento administrativo para la obtención del grado. 

Pongo lo anterior a su digna consideración y sin otro particular por el momento, me permito enviarle un 
cordial saludo. 

A T E N T A M E N T E 
“Se Lumen Proferre” 

Aguascalientes, Ags., a 14 de septiembre de 2023. 

c.c.p.- Interesado 
c.c.p.- Secretaría Técnica del Programa de Posgrado 

DR. JUAN HUMBERTO SOSSA AZUELA 
Cotutor de tesis 



CARTA DE VOTO APROBATORIO 

INDIVIDUAL 

M. en C. Jorge Martín Alférez Chávez 

DECANO (A) DEL CENTRO DE CIENCIAS BÁSICAS 

_______________ 

P R E S E N T E 

Por medio del presente como TUTOR designado del estudiante  ALFONSO VIZCAÍNO POBLANO con ID 

12942  quien realizó la tesis titulado:  INTELIGENCIA ARTIFICIAL APLICADA AL ANÁLISIS HISTOLÓGICO DEL 

HIPOCAMPO, un trabajo propio, innovador, relevante e inédito y con fundamento en el Artículo 175, 

Apartado II del Reglamento General de Docencia doy mi consentimiento de que la versión final del 

documento ha sido revisada y las correcciones se han incorporado apropiadamente, por lo que me permito 

emitir el VOTO APROBATORIO, para que el pueda proceder a imprimirla así como continuar con el 

procedimiento administrativo para la obtención del grado. 

Pongo lo anterior a su digna consideración y sin otro particular por el momento, me permito enviarle un 

cordial saludo. 

A T E N T A M E N T E 

“Se Lumen Proferre” 

Aguascalientes, Ags., a 14 de septiembre de 2023.  
 
 
 

DR. JULIO CÉSAR PONCE GALLEGOS 
                   Asesor de tesis 
 
 

 c.c.p.- Interesado 
c.c.p.- Secretaría Técnica del Programa de Posgrado 

 
 

Elaborado por: Depto. Apoyo al Posgrado. 
Revisado por: Depto. Control Escolar/Depto. Gestión de Calidad. 
Aprobado por: Depto. Control Escolar/ Depto. Apoyo al Posgrado. 

Código: DO-SEE-FO-07 
Actualización: 01 
Emisión:  17/05/19 





 
 

 
 

 
  



 
 

 
 
 
  



 
 

 

 

 
 
 
 
 
  



 
 

ACKNOWLEDGEMENTS  

This thesis would not have been possible without the generous assistance of the whole 

people that walked this journey with me.  

To begin, I would like to express my highest gratitude to Dr. Hermilo Sánchez Cruz, 

my respected advisor, for all the instructions, guidance, and support he provided to me 

throughout my doctoral studies. My most profound appreciation goes to Dr. José Luis 

Quintanar Stephano, his vast wisdom and wealth of experience has inspired me in this 

fantastic project and the next ones to come. The completion of this Ph.D. would not have 

been possible without the accurate technical assistance of my advisor Dr. Juan Humberto 

Sossa Azuela. 

 In addition, I want to express my appreciation to Autonomous University of 

Aguascalientes for providing me with the resources to pursue post-graduate study. Friends, 

colleagues, and lab mates of the pharmacology department are all well appreciated. Also, I 

would like to thank CONAHCYT for the studentship provided. 

I would like to thank God, my parents, my so lovely and beautiful wife, and my joyful 

and beautiful children. It would have been impossible to finish my studies without their 

unwavering support over the past few years. 

  



 
 

DEDICATION 

This work is dedicated to my children. Life is beautiful, pursue your dreams, never give up, 

always be humble and enjoy the ride called life.  

To my lovely wife. My beautiful and ever evolving dream that comes true every day and 

whose eyes enlighten my path. 

Thank you! 

 

 

 

 

 

 

 



1 
 

INDEX 

  

RESUMEN. ....................................................................................................................... 4 

ABSTRACT. ...................................................................................................................... 5 

CHAPTER I - INTRODUCTION. ........................................................................................ 6 

1.1 Research objective. ............................................................................................... 8 

1.2 Specific objectives. ................................................................................................ 8 

CHAPTER II - DERIVED WORK FROM THE THESIS. ..................................................... 9 

CHAPTER III - ML MODEL TO IDENTIFY HIPPOCAMPUS.............................................10 

3.1 Introduction. ..........................................................................................................10 

3.2 Article. ...................................................................................................................10 

3.3 Summary ...............................................................................................................22 

CHAPTER IV - IMPLEMENTING A SYSTEM FOR HIPPOCAMPUS MEASURMENT. ....23 

4.1 Introduction. ..........................................................................................................23 

4.2 System implementation. .......................................................................................23 

4.3 System usage. .......................................................................................................26 

4.4 Summary. ..............................................................................................................31 

CHAPTER V - DL MODEL TO IDENTIFY NEURONS. .....................................................32 

5.1 Introduction. ..........................................................................................................32 

5.2 Article. ...................................................................................................................32 

5.3 Summary. ..............................................................................................................48 

CHAPTER VI - AUTOMATICALLY COUNTING NEURONS. ............................................49 

6.1 Introduction. ..........................................................................................................49 

6.2 System implementation. .......................................................................................49 

6.3 System usage. .......................................................................................................50 

6.4 Summary. ..............................................................................................................52 



2 
 

CHAPTER VII - 3D RECONSTRUCTION OF BRAIN AND ITS VIRTUAL REALITY 

PRESENTATION. ............................................................................................................53 

7.1 Introduction. ..........................................................................................................53 

7.2 Brain reconstruction. ............................................................................................53 

7.3 VR application. ......................................................................................................57 

7.4 System usage. .......................................................................................................58 

7.5 Summary. ..............................................................................................................64 

CHAPTER VIII - CONCLUSION. ......................................................................................65 

8.1 Future work. ..........................................................................................................66 

REFERENCES .................................................................................................................67 

 

 

 

 

  



3 
 

FIGURE INDEX. 

 

Figure IV-1. INDAUTOR certificate ...................................................................................25 

Figure IV-2. Image selection process. ..............................................................................26 

Figure IV-3. Preprocessed image. ....................................................................................27 

Figure IV-4. Calibration step 1. .........................................................................................27 

Figure IV-5. Calibration step 2. .........................................................................................28 

Figure IV-6. Locating region of interest. ............................................................................28 

Figure IV-7. Selecting region of interest. ...........................................................................29 

Figure IV-8. Starting hippocampus identification. ..............................................................29 

Figure IV-9. Area measurement information and controls. ................................................30 

Figure VI-1. Cell Counter application. ...............................................................................51 

Figure VI-2. Selection of region of interest. .......................................................................51 

Figure VI-3. Cell identification and adjustment. .................................................................52 

Figure VI-4. Selection of a new region of interest. ............................................................52 

Figure VII-1. The "banana problem". ................................................................................53 

Figure VII-2. Preprocessing phase. ..................................................................................55 

Figure VII-3. Contour extraction. .......................................................................................56 

Figure VII-4. Brain reconstruction. ....................................................................................57 

Figure VII-5. 3D reconstruction presented in VR...............................................................59 

Figure VII-6. Main menu scene. ........................................................................................60 

Figure VII-7. Selection of 3D Brain Explorer. ....................................................................60 

Figure VII-8. VR Interaction with 3D Brain Explorer. .........................................................61 

Figure VII-9. Selection of Tissue Navigator. ......................................................................62 

Figure VII-10. VR Interaction with Tissue Navigator. ........................................................63 

Figure VII-11. Selection of Credits section. .......................................................................63 

Figure VII-12. VR interaction with Credits section. ............................................................64 

 

  

file://///VBoxSvr/exchange/Tesis%20Alfonso%20Vizcaino%20-%20Current_simplified_with_articles.docx%23_Toc145485717
file://///VBoxSvr/exchange/Tesis%20Alfonso%20Vizcaino%20-%20Current_simplified_with_articles.docx%23_Toc145485718
file://///VBoxSvr/exchange/Tesis%20Alfonso%20Vizcaino%20-%20Current_simplified_with_articles.docx%23_Toc145485719
file://///VBoxSvr/exchange/Tesis%20Alfonso%20Vizcaino%20-%20Current_simplified_with_articles.docx%23_Toc145485728
file://///VBoxSvr/exchange/Tesis%20Alfonso%20Vizcaino%20-%20Current_simplified_with_articles.docx%23_Toc145485729


4 
 

RESUMEN. 

 

Esta tesis se centra en la propuesta de diferentes algoritmos y técnicas de la inteligencia 

artificial empleados para el análisis de imágenes histológicas que son usadas en el estudio 

de la isquemia cerebral y específicamente su impacto en el hipocampo. Así mismo, lleva a 

cabo la consolidación de dichas propuestas a través de la implementación de aplicaciones 

que faciliten la evaluación de los efectos de la isquemia y de los medicamentos que 

contrarrestan sus efectos. También presenta como a través de un conjunto de imágenes 

histológicas del cerebro se puede obtener una representación 3D de éste y propone una 

alternativa interactiva en su estudio. 

Específicamente, en el Capítulo III se expone un método innovador para el 

procesamiento de dichas imágenes que en conjunción con diferentes algoritmos de 

aprendizaje máquina obtienen un modelo que logra la identificación del hipocampo. El 

Capítulo IV muestra como dicho modelo es aprovechado en una aplicación que eficientiza 

la medición del hipocampo. Por su parte, en el Capítulo V se exhibe un nuevo modelo de 

red neuronal convolucional, el cual al mejorarse su arquitectura le permite identificar con 

mayor precisión las neuronas presentes en las regiones densamente pobladas del 

hipocampo. Gracias a la implementación del nuevo modelo de red neuronal, en el Capítulo 

VI, este modelo es usado para construir una aplicación que puede automatizar el conteo 

de neuronas de una manera más confiable, eficiente y eficaz. Por último, en el Capítulo VII 

se muestra el proceso para obtener la representación 3D de un cerebro y como tanto la 

representación del cerebro como las imágenes utilizadas para construirlo son vinculadas 

en una aplicación de realidad virtual que podría dinamizar el estudio de las estructuras 

cerebrales. 
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ABSTRACT. 

 

This thesis focuses on the proposal of different artificial intelligence algorithms and 

techniques used for the analysis of histological images that are used in the study of cerebral 

ischemia and specifically its impact on the hippocampus. Likewise, it carries out the 

consolidation of these proposals through the implementation of applications that facilitate 

the evaluation of the effects of ischemia and the drugs that counteract its effects. It also 

presents how a 3D representation of the brain can be obtained through a set of histological 

images of the brain and proposes an interactive alternative in its study. 

Specifically, in Chapter III an innovative method for the processing of these images 

is shown, which in conjunction with different machine learning algorithms obtains a model 

that achieves the identification of the hippocampus. Chapter IV exhibits how this model is 

used in an application that makes the measurement of the hippocampus more efficient. On 

the other hand, in Chapter V a new model of convolutional neural network is presented, 

which by improving its architecture allows it to identify with greater precision the neurons 

present in the densely populated regions of the hippocampus. Thanks to the implementation 

of the new neural network model, in Chapter VI, this model is used to build an application 

that can automate the counting of neurons in a more reliable, efficient, and effective way. 

Finally, Chapter VII shows the process to obtain a 3D representation of a brain and how 

both the representation of the brain and the images used to build it are linked in a virtual 

reality application that could boost the study of brain structures. 
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CHAPTER I -  INTRODUCTION. 

The analysis of histological images that are used in the study of cerebral ischemia and its 

impact on the hippocampus is a challenging task because on one side, they contain intricate 

anatomical sections that demand the help of a subject matter experts to correctly identify 

the area of interest, making this a labor intensive, time consuming and, since image 

conditions are not always good, an error prone task too. 

There are several sub areas in artificial intelligence, such as machine learning and 

computer vison, where the computer is “taught” to “see” objects that permit the computer to 

detect, locate, delimit, or classify object, and in some cases, it can even generate new 

objects. That means, computer vision can be capable of “seeing” the patterns that subject 

matter experts have learned to identify during years of experience.  

This is why, in conjunction with the pharmacology department of Autonomous 

University of Aguascalientes, it is presented throughout this work, a set of artificial 

intelligence algorithms and techniques that automates the analysis of histological images to 

compute key performance indicators such as hippocampus area measurement and neuron 

counting, which in turn, aide scientist to evaluate the effectiveness of drugs in ischemic 

strokes treatments. Not only that, here it is also shown a computer vision approach that 

proposes an alternative method to study the brain and its histological tissues using virtual 

reality technology.  

Because of the nature of the different problems being solved, the distinct image sets 

with their respective characteristics and challenges, and the number of images made 

available, it was decided to solve such problems through different strategies. For instance, 

the images used to measure hippocampal area are digitized from an optical microscope with 

a smaller magnifying glass, than the ones used for cell counting where a much bigger 

magnifying glass needs to be used. Furthermore, these images come from histological cuts 

obtained from rats using a different stain, that the images used to do the virtual reality study 

proposal. With all of this, the methodology utilized to effectively manage each set of images 

needs to be different. The following chapters describe in detail the methodology used for 

each one of these problems, but the main strategy is briefly discussed here. 
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Chapter III reveals a pixel characterization technique that in conjunction with a 

machine learning algorithm, can obtain a hippocampus pixel classifier and with this 

effectively obtain the hippocampus from a histological image. Also, in this section it is 

presented how the different machine learning models are trained and how the best classifier 

is determined by evaluating each of the machine learning algorithms used here against a 

set of different metrics.  

The best machine learning model found in the previous chapter, along with the pixel 

characterization technique, are used in Chapter IV where it is explained the consideration 

taken for building an application that performs hippocampus area measurement, and here 

it is also shown how the users can use the application. 

Chapter V makes use of a different algorithm available in artificial intelligence known 

as convolutional neural network that specializes in extracting and learning patterns from 

images to correctly classify and locate objects in them. Here, an enhanced architecture of a 

convolutional neural network is used to teach the deep learning model to learn to identify 

cells on highly dense and noisy images. In this section it is also shown how the proposed 

deep learning model is trained, how it is evaluated against other different models and the 

metrics that are used to evaluate them. 

 Then, chapter VI is concerned on presenting the consideration taken to build an 

application that automates cell counting using the convolutional neural network proposed 

previously. This chapter also explains the steps that the user needs to execute to obtain cell 

count automatically.  

Finally, chapter VII exposes the details on how a 3D image reconstruction of a mouse 

brain is achieved by using a process that involves traditional computer vision techniques to 

obtain the representing points of the contour of the brain, how this information is treated to 

build a 3D model and, how this 3D model is used in a virtual reality application that interacts 

with the user to analyze the reconstructed information. 
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1.1 Research objective.  

 To facilitate histological analysis process with the use of modern and accurate 

techniques. 

 

1.2 Specific objectives.  

1. To define a prediction model that automatically identifies hippocampus with an 

accuracy greater than 90% in histological images. 

2. To create a system that is capable of measuring the occupied area by the 

hippocampus with an accuracy greater than 90%. 

3. To define a prediction model that is capable of identifying neuron cells with an 

accuracy greater than 90% so that the identified cells can be automatically counted. 

4. To create a system that is capable of performing 3D reconstruction of hippocampus 

brain structure from a series of histological images. 

5. To present the reconstructed 3D model in a VR headset. 
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CHAPTER II -  DERIVED WORK FROM THE THESIS.  

 
 
Vizcaíno, A., Sánchez-Cruz, H., Sossa, H., & Quintanar, J. L. (2021). Pixel-wise 
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CHAPTER III -  ML MODEL TO IDENTIFY HIPPOCAMPUS.  

3.1 Introduction.  

This section describes the research performed to determine what techniques and machine 

learning models best accomplish the objective of hippocampus identification. It explains how 

images were acquired, how images were processed and how machine models were trained 

and evaluated. Finally, it shows the conclusion about this research. 

 

3.2 Article. 
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This paper presents a method for pixel-wise classification applied for the first time on hippocampus histological images. The goal is
achieved by representing pixels in a 14-D vector, composed of grey-level information and moment invariants. Then, several
popular machine learning models are used to categorize them, and multiple metrics are computed to evaluate the performance of
the different models. The multilayer perceptron, random forest, support vector machine, and radial basis function networks were
compared, achieving the multilayer perceptron model the highest result on accuracy metric, AUC, and F1 score with highly
satisfactory results for substituting a manual classification task, due to an expert opinion in the hippocampus histological images.

1. Introduction

The study of the hippocampus region has been of particular
interest because of its relationship with memory and learning
processes [1, 2], its volume as an indicator for Alzheimer’s
disease [3], personality disorder [4], neurological disorders
derived from strokes [5–9], and drug addiction effects [10],
to mention a few.

Most common hippocampal quantification techniques
are based in MRI images [11, 12] for volumetric calculation
and histological images [13, 14] for neural cell counting.

However, determining hippocampal volume in histologi-
cal images is a challenging labour, on the one hand because
image conditions are not always good and hippocampus sec-
tion is of an irregular shape that is only a few pixels thick,
which makes this labour an intensive and time-consuming
task that demands the help of an expert to correctly identify
the area of interest and so be able to determine hippocampus
volume.

On one hand, pixel-wise classification has been used
broadly for task such as mitosis detection in histological
breast images for cancer detection [15–17], gland segmenta-

tion of prostate histology images [18], and nuclei segmenta-
tion [19], among others, where the solution range goes
from digital image processing approaches used in combina-
tion with ML techniques to convolutional neural networks.

On the other hand, studies on hippocampus region have
been performed exhaustively using magnetic resonance
images from humans and rats, to perform segmentation tasks
by applying several methods such as atlas based [20–23], a
combination with support vector machines (SVMs) [24],
and patch-based approaches [25], among others [26–29].

Even though each published work reports improvements
over previous approaches on their own image source type
and task types, as far as we know with our deep search in
the literature, to perform a pixel-wise classification on hippo-
campus structure from rat brain histological images cuts,
using the coronal anatomical plane, has not been done
before. Mesejo et al. [30] perform a segmentation endeavour
by using deformable models and random forest (RF) from
Allen Brain Atlas [31] image repository using the sagittal
anatomical plane. Senyukova et al. [32] do atlas-based seg-
mentation on several brain sections with RF and Markov
Random Fields on Nissl-stained histological sections of
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mouse brains. And Riklin-Raviv et al. [33] propose a slice-by-
slice segmentation with three-dimensional Gaussian mix-
tures and level sets where the successful segmentation of
one section provides a prior for the subsequent one, assum-
ing that the segmentation of few sparsely sampled slices is
done manually.

This work reports the implementation of a computer
vision method to extract pixel features and use them along
with several machine learning (ML) techniques such as
multilayer perceptron network (MLP), SVM, radial basis
function network (RBFN), and RF, to perform pixel-wise
classification on rat brain histological images using the coro-
nal anatomical plane to correctly identify the hippocampus
structure and facilitate its measurement.

2. Materials and Methods

The images used in this work are supplied by the Pharmacol-
ogy Department of the Autonomous University of Aguasca-
lientes. These images are serial coronal sections of
approximately 6μ thick, from male rat brains of the Sprague
Dawley strain around 8-12 weeks old with a weight of 250-
330 g. The cuts are stained with a specific chemical dye, and
in this case hematoxylin-eosin is employed, to create contrast
on the seeked anatomical structure.

A total of 25 images were digitized from an optical micro-
scope with a magnifying glass of 0.67x, using an LGE LM-
X520 camera model that was configured with an ISO speed
rating of 100, a focal length of 3.5mm, and a variable expo-
sure time ranging from 1/60 s to 1/30 s. Each image was cap-
tured at 4161 × 3120 pixels and was saved originally in JPEG
format.

When performing a visual inspection on these images,
several conditions can be identified:

(i) No relevance on a specific colour for detecting ana-
tomical structures

(ii) Different lighting effects: some images are brighter
than others

(iii) Fuzziness of the hippocampus boundaries

(iv) Variability of hippocampus’ shape and orientation

(v) Cutoff of regions and presence of markings such as
scraps, tears, and streaks in tissue

(vi) Rotated and uncentred brain position

Examples of some of these characteristics are shown in
Figure 1.

Our methodology for hippocampus pixel classification
consists of four consecutive steps, as depicted in Figure 2.
The first step uses image processing to enhance hippocampus
region. The second step characterizes each pixel as a 14-
dimensional vector. Those vectors constitute the features
used by the classification algorithms. After all images have
been characterized, the third step begins. At this step, the
training, validation, and test set are created. The last step
involves feature classification to differentiate between a non-

hippocampus pixel and hippocampus pixel. The details of
each of these steps are now described.

2.1. Image Conditioning and Preprocessing. The provided
images contain ample dark areas, since brain image is swi-
veled and given the large image dimensions, it is necessary
to condition them in order to speed up its preprocessing step.
Therefore, images are straightened and only brain image is
kept along with its aspect ratio. It is determined that an image
size average of 1024 × 832 pixels is big enough to preserve
hippocampus pixels and small enough to perform a fast pre-
processing step. An example of the conditioning phase is dis-
played in Figure 3. Finally, the coordinates that make up the
main hippocampus bounding box are annotated.

Because of the ample differences between hippocampus
images and the image conditions explained in previous sec-
tion, a preprocessing phase is performed in order to enhance
hippocampus region and extract meaningful information to
construct the features that will be used later in the classifica-
tion step. This phase is based in the procedure employed in
Vega et al. [34] and Marin et al. [35]. However, given the dif-
ference between the images and their respective domain field,
the procedure has to be tailored to generate suitable images.
Next, the details of the preprocessing step are described.

2.1.1. Colour Independence. Histological cuts contain differ-
ent colours because of the type, amount of dye, and the expo-
sure time given to the tissue. Consequently, pixels differ in
colour and intensity despite belonging to the same hippo-
campus region. For this reason, the input image is converted
from an original RGB colour space to a Hue Saturation Value
(HSV) colour space, extracting the Value Channel (VC) to
better capture the full range of the different colours that
belong to the hippocampus and to make it independent from
the illumination of the sample images. Then, the image is
cropped to the annotated bounding box to be furthered proc-
essed. IV denotes the resultant image for future references.
Because of the nature of VC, the hippocampus region is rep-
resented by dark colour pixels which correspond to values
close to zero. In order to emboss them, image is negated hav-
ing INV as result.

INV = 255 − IV : ð1Þ

Figures 4(a) and 4(d) show an example of this phase.

2.1.2. Background Homogenization. Since the background is
not homogeneous, a mean filter followed by a convolution
with a Gaussian kernel followed by a histogram correction
operation is applied. This phase is performed in the same
way that [34] does background homogenization but working
with an INV image. The resulting image of this phase is
denoted as IH , and an example of the outcome is presented
in Figures 4(b) and 4(e).

2.1.3. Hippocampus Enhancement. Hippocampus enhance-
ment is performed by applying a top-hat transformation.

IHE = γ IHð Þ, ð2Þ
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where γ is a morphological opening using a disc of eight
pixels in radius, thus removing most anatomical structures
not belonging to hippocampal region and yielding better
results than performing a boundary detection with algo-
rithms like Canny, Prewitt, and Sobel. Figures 4(c) and 4(f)
exhibit an example of the procedure applied in this phase.

2.2. Feature Extraction. The purpose of this step is to perform
a pixel characterization in terms of some quantifiable mea-
surements that can be used latter in the classification step.
To accomplish this task, unlike Marin et al. and Vega et al.
whom used seven and five functions, respectively, in this
work, a total of fourteen functions are used. Our method uses

Figure 1: Coronal sections of the rat brain where the layers of the hippocampus stained with hematoxylin and eosin are observed. 3x
magnification. Columns show difference in colour as well as in lighting. Rows show variability in hippocampus shape and markings presence.

Image conditioning 
and pre-processing

Data set
Creation

Feature
Extraction Classification

Figure 2: Diagram of the implemented methodology for hippocampus pixel-wise classification.

(a) (b)

Figure 3: (a) Original image. (b) Final image: rotated, centred, and resized.
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some variants that are described. The first five features are as
follows: f1, f2,⋯, f5, which are based on the pixel’s grey-level
information available. In this work, we find that the features
calculated from IHE produce more meaningful representation
of hippocampus pixels. The features are outlined as follows:
considering a squared pixel region of size w ×w taken from
IHE and centred at pixel ðx, yÞ, we have the following:

f1 is the value of the pixel being characterized at position
ðx, yÞ subtracted from the smallest value of the squared region

f1 x, yð Þ = IHE x, yð Þ −
min

s, tð Þ ∈ S9x,y
IHE s, tð Þf g: ð3Þ

f2 is the largest value of the squared region subtracted
from the value of the pixel being characterized at position
ðx, yÞ

f2 x, yð Þ =
max

s, tð Þ ∈ S9x,y
IHE s, tð Þf g − IHE x, yð Þ: ð4Þ

f3 is the value of the pixel being characterized at posi-
tion ðx, yÞ subtracted from the average value of the squared
region

f3 x, yð Þ = IHE x, yð Þ −
mean

s, tð Þ ∈ S9x,y
IHE s, tð Þf g: ð5Þ

f4 is the value of standard deviation of the squared pixel
region characterized at position ðx, yÞ

f4 x, yð Þ =
stdDev

s, tð Þ ∈ S9x,y
IHE s, tð Þf g: ð6Þ

f5 is the value of the pixel being characterized at posi-
tion ðx, yÞ

f5 x, yð Þ = IHE x, yð Þ: ð7Þ

Then, for the next two features, f6 and f7, we use the

(a) (b)

(c) (d)

(e) (f)

Figure 4: (a, d) Colour independence. (b, e) Background homogenization. (c, f) Hippocampus enhancement.
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first two Hu moment invariants [36] denoted by ϕ1 and ϕ2.
These are computed from IHu image, which is obtained by
multiplying a squared pixel region of 17 × 17 size from IHE
and an equal dimension matrix of Gaussian values, whose
mean is 0 and variance is (1.7)2; then, IHu is given by

IHu i, jð Þ = I
S17x,y
HE i, jð Þ × G17

0,1:72 i, jð Þ: ð8Þ

With these choices of parameters, the 9 × 9 central values in
Gaussian matrix contain 97% of the area of the represented
Gaussian distribution, making the remainder values being
close to 0. The effect of this multiplication is that the values
become sensitive for describing hippocampal and nonhip-
pocampal central pixels. Given that ϕ1 and ϕ2 computation
can take nonpositive and zero values, f6 is defined as

f6 =

log ϕ1ð Þ, ifϕ1 > 0,

−log ϕ1j jð Þ, ifϕ1 < 0,

0, otherwise,

8>><
>>:

ð9Þ

and f7 is defined as

f7 =

log ϕ2ð Þ, ifϕ2 > 0,

−log ϕ2j jð Þ, ifϕ2 < 0,

0, otherwise:

8>><
>>:

ð10Þ

Given that images contain other brain regions of similar
shape and that image conditions are extremely variant, a set
of extra seven features are used to acquire even more
descriptive pixel information that can help better distin-
guishing between the seeked hippocampus section and the
alike structure. Figure 5 illustrates the alike structure that
is also obtained as result of the preprocessing step.
Table 1 shows the comparison of the performance obtained
when using seven features and the increased achievement
by adding the extra seven.

For the remaining seven features, f8, f9,⋯, f14, the infor-
mation is extracted from the INV image by following the same
process described above, making a total of a 14-D feature
vector.

Therefore, one pixel is represented by the 14-D feature
space and is denoted by F

F = f1, f2,⋯, f14ð Þ: ð11Þ

2.3. Data Set Creation. The data set, denoted by FT , is consti-
tuted from hippocampal features FH and nonhippocampal
features FO. FT is distributed in the following way. First, all
features F from hippocampal pixels are collected from all
images, acquiring 24,520 hippocampal features. Then, to be
sure to obtain a well-balanced data set, the same amount of

randomly picked features is collected from nonhippocampal
pixels from all images. Thus, the entire data set FT makes a
total of 49,040 features F.

FT = FH + FO: ð12Þ

Next, data set is complemented with ground truth values,
C1 for hippocampal pixel and C0 for nonhippocampal pixels.
For debugging purposes, data set is augmented with C1 and
C0 pixel coordinates along with the source image name.

Finally, the data set is randomly split into training (DTN),
validation (DVL), and test (DTS) set, distributed in 70%, 20%,
and 10%, respectively, making sure the same amount of
hippocampal features as well as nonhipocampal ones are is
contained in these data sets. A sample visual examination
conducted on one of the images is shown in Figure 6.

2.4. Classification. To be able to determine if a pixel belongs
to C1 or C0, in this work, different ML models are employed:
MLP, RBFN, SVMs, and RF.

AMLP [37] is an artificial neural network that overcomes
the limitations of least mean square algorithm in solving pre-
diction problems. MLP consists of a set of three types of
nodes: input nodes, known as input layer; one or more layers
of computation nodes, known as hidden layer; and an output
layer. The first layer receives an input signal and propagates it
through network; then, each node of the hidden layer

Figure 5: A hippocampus section is framed with cyan colour. Other
brain regions that have a similar shape and similar pixel
characteristics are framed with green colour.

Table 1: Model comparison using 7 vs. 14 features.

Model
Accuracy using

7 features
Accuracy using
14 features

Accuracy
difference

MLP 0.917652 0.940481 +0.022829

RBFN 0.915206 0.931512 +0.016306

Random
forest

0.915614 0.937627 +0.022013

SVM lineal 0.899715 0.918875 +0.019160

SVM poly feat 0.907868 0.931512 +0.023644

SVM poly
kern

0.912556 0.935997 +0.023441

SVM RBF
kern

0.917856 0.939462 +0.021606

Total average
accuracy

0.912352 0.933638 +0.021285
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executes a nonlinear activation function, and the result is trans-
mitted to the output layer where nodes located here perform a
final activation function whose result is interpreted as the prob-
ability that the input signal corresponds to a known class.

On the other hand, RBFN was first proposed by Broom-
head and Lowe [38] where the hidden layer is trained with
an unsupervised algorithm, and the output layer is constructed
with a supervised one. The key idea is to transform data points
into high-dimensional space with the use of a Gaussian func-
tion, so that the transformed points become linearly separable.

SVMs [39] are a category of feed forward networks that
can be used for pattern classification and nonlinear regression.
SVMs construct a hyperplane as the decision surface in such a
way that the margin of separation between positive and nega-
tive samples is maximized. There are three main types of
SVMs: lineal, polynomials, and radial basis functions.

Random forests [40] are variants of clustering algorithms
known as decision trees that perform particularly well on
small data sets and like SVMs can perform both classification
and regression tasks, but unlike decision trees, RF can limit
the sensitivity to small variations in the training data by aver-
aging predictions over many trees.

So that models can be more efficient, techniques such as
feature engineering [41] can be used, but looking for maxi-
mizing their performance, all DTN features, f i of F, are used
and standardized making them zero mean and unit variance
in the following way.

f i =
f i − μi
σi

, ð13Þ

where μi is the average and σi is the standard deviation of the
i-th feature. For all these models, only f i of F features are fed
to the models, isolating data that is used for debugging
purposes.

In MLP, a supervised learning algorithm known as back-
propagation is used for training the layers and the synaptic
weight between nodes [37]. With the right choice of weights
and with the right number of the hidden nodes, MLP can be
used to address classification problems [42]. Hence, the func-
tion approximation for classification is defined by a nested
set of weighted summations.

RBFN solves the classification problem by proceeding in
a hybrid manner. First, an input layer is composed with the
same number nodes of the features being evaluated. Then, a
hidden layer transforms the given set of nonlinearly separa-
ble patterns by applying an unsupervised learning algorithm.
Finally, RBFN uses least squares estimation to train the out-
put layer in a supervised manner to solve the classification
problem. In RBFN, the function approximation for classifica-
tion is defined by a single weighted sum [37].

RF is settled on decision trees. A decision tree is a
machine learning technique, based on the divide and con-
quer paradigm where the basic idea is to partition the feature
space into patches and to fit a model to a patch. RF creates
different trees over the same training data set but provides
random subset of features to each of the trees in its building
process [43] and uses some aggregation technique, such as
majority voting to perform the final classification.

SVMs are a type of binary classifiers that construct a
hyperplane as the decision boundary and seek to maximize
the distance of positive and negative examples given in a

(a) (b)

(c)

Figure 6: Red dots represent hippocampus pixels and blue dots represent nonhippocampus pixels. (a) Sample image from training set, (b) the
same sample image taken from validation set, and (c) the same sample image taken from test set.
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training set [37]. SVMs use a two-step process on nonlinearly
separable data to find the decision boundary. In the first step,
a nonlinear transformation is applied to the data; in the sec-
ond step, the points that constitute the decision boundary are
then determined in the transformed space [44].

There are algorithms used in ML that have been proven
to maximize predictive output such as ensemble learning
[45]; however, this work is constrained to the mentioned
ML models with the purpose of evaluating the pixel charac-
terization method itself.

3. Experiments and Results

To measure the algorithmic performance of the proposed
method, the before mentioned ML models are trained with
DTN set, and in order to find the best performing hyperpara-
meters for each model, Random Search and Grid Search
techniques are used. The former is used to reduce the search
space and the latter to pinpoint the ideal values. Finally, DVL
set is used to assess that the found hyperparameters produce
good results and that models are not overfitted.

The final architecture of the MLP model is implemented
with TensorFlow and consists of an input layer with 14 nodes
and then four fully connected layers made up with 31, 68, 13,
and 7 nodes, respectively, with a ReLU activation type for each
one of them. Finally, an output layer consisting of 1 node with
a sigmoid activation type constitutes its architecture. The
model was compiled using ADAM optimizer and binary cross
entropy as loss function (LF) and trained over 37 epochs.

The RBFN is built in TensorFlow with the implementa-
tion provided by Vidnerová [46]. It was trained with K-
Nearest Neighbourhood (K-NN) for the unsupervised
algorithm and backpropagation for the supervised. The
model has 3 layers as well. The first layer contains 14 input
nodes, the second layer has 71 hidden nodes, and the third
layer has one output node with a sigmoid activation type.
The same σ value is used across Gaussian functions, and it
is calculated as follows: σ = dmax/

ffiffiffiffiffi
2k

p
, where dmax represents

the maximum distance between clusters and k is the number
clusters, which in turn, match the number of nodes of the
second layer. The model used a mean squared error as its
LF and RMSprop algorithm for the optimizer and trained
over 200 epochs.

The rest of the ML models are built with scikit-learn [47].
The best RF model is set with the following hyperparameters:
a gini criterion for measuring the quality of splits; a value offfiffiffiffiffiffi
Fn

p
is set for the maximum features, where Fn represents

the number of features; a value of 1 for the minimum samples
per leaf and minimum samples for node split; and unset
values for max depth, max leaf nodes, and max samples.

Finally, four different SVMmodels are used. The first one
is configured as lineal support vector classification with these
hyperparameters: a value of 182 for the regularization
parameter (C), a squared hinge LF, and l2 penalty function
(PF). The second model is a lineal support vector classifi-
cation fed with polynomial characteristics, and its hyper-
parameters are set in the following manner: a value of
172 for C, a 2nd degree polynomial characteristic, and a
squared hinge LF and a l2 PF. The third model is set with a

3rd degree polynomial kernel; a value of 2.1 for C; a squared
l2 PF; and a γ value of 1/ðCnσ

2Þ, where Cn is the number of
characteristic and σ2 is the variance; finally, a value of 40 is
used for the independent variable (b). The last model uses a
radial basis function as kernel type, a squared l2 PF, a value
of 1/ðCnσ

2Þ for γ parameter, and a value of 182 for C.
After finding the best hyperparameter values for each of

the models, the DTS set is employed to objectively compare
the performance of the ML models against each other using
the following metrics.

On one hand, the receiver operating characteristic (ROC)
curve is used to compare the performance of the classification
models by plotting two parameters true positive rate (TPR)
and false positive rate (FPR). These metrics are defined by

TPR =
TP

TP + FP
,

FPR =
FP

FP + TN
,

ð14Þ

where TP means true positives, FN: false negatives, FP: false
positives, and TN: true negatives. For this graph, the closer
the line is to the upper left corner, the better the classifier
is. The ROC curve is displayed in Figure 7.

On the other hand, besides the ROC curve, metrics such
as accuracy, precision, recall, and F1 score are computed with
the same purpose. These are defined by

Accuracy =
TP + TN

TP + TN + FP + FN
,

Precision = TPR,

Recall =
TP

TP + FN
,

F1score = 2 ×
precision · recall
precision + recall

� �
:

ð15Þ

To evaluate if the added extra seven features resulted in a
performance gain, the same data sets DTN, DVL, and DTS are
used for all the ML models but are trained, validated, and
tested with only the first seven features, respectively.
Table 1 shows that when models use 14 features, all models
increase their performance.

Table 2 shows all the metrics described before and the
values obtained by each model when using 14 features.

In this context, accuracy is a ratio of correctly predicted
observation to the total observations; it works better when
there is a symmetric data set and if FP and FN have similar
cost. When the cost of FP and FN negatives is different, pre-
cision and recall metrics need to be considered. The former is
the ratio of correctly predicted positive observations to the
total predicted positive observations; ergo, it is a good mea-
sure to use when the costs of FP are high. The latter, also
known as sensitivity, is the ratio of correctly predicted posi-
tive observations to all observations in actual class; hence,
recall calculates how many of the actual positives the model
captures through labelling it as TP. Finally, F1 score is the
weighted average of precision and recall, and it can be selected
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as the main metric to use when a balance between precision
and recall is required and there is an uneven class distribution.

Given that our data set is composed of symmetric quanti-
ties between C1 and C0 samples and assuming that FP and FN
have the same cost, accuracy metric could have picked to eval-
uate models at one sight. Consequently, the model that pre-
sents a better performance is MLP; furthermore, this model
also scored the highest on AUC, precision, and F1 score met-
rics. However, knowing that all these metrics evaluate models
from different perspectives and that the context, in a given
problem, plays an important part on deciding whichmodel fits
a better solution, the interpretation of the other metrics is
important when determining the better model. For this rea-
son, if there was a high cost associated with a FN, i.e., a model
predicting that a pixel is C0 when in fact it is C1, then recall
metric should be the main evaluation metric and for such sce-
nario, RBFN would be the best performing model.

4. Discussion

Although good results were obtained with a 7-D and a 5-D
feature vectors in the experiments by Marine et al. and Vega

et al., respectively, in our experiments, using a 7-D vector did
not provide good enough accuracy. This could be, unlike the
retinal images that were used in their work, due to the highly
variability of the characteristics of the images and the pres-
ence of other brain structures that are similar to the seeked
hippocampal shape. Nonetheless, when F was increased to
14-D, the experiments yielded an average accuracy increase
of 2.1285%. This performance increase is associated to the
more complete feature set that was generated with our pro-
posed method and the better pixel characterization.

The best ML models are described next. For our data set,
MLP model achieves the highest value in the accuracy metric
and correctly predicts C1 and C0 pixels 94.0481% of the time.
In contrast, when true positive rate needs to be considered
cautiously, only 92.5926% C1 pixels are correctly predicted
and when FN has a greater importance in predicting C1
pixels, MLP achieves a score of 95.7620%. In this regard,
RBFN model achieves the best rate with a 95.9658% value.
Finally, for properly predicting C1 and when an equilibrium
between FP and FN is sought, the F1 score metric is picked.
In this regard, the best balance is achieved again by MLP
model, with a value of 94.1506%.

SVM RBF kern 0.9571
MLP 0.9828
RBFN 0.9779

1.0

0.8

0.6

0.4

1.0
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0.2 0.60.4 1.00.8

False positive rate
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Random Forest 0.9656
SVM Lineal 0.9579
SVM Poly feat 0.9617
SVM Poly kern 0.9564

Figure 7: ROC curve. Dotted line from bottom left to upper right represents a strictly random classifier.

Table 2: Model performance.

Model Accuracy AUC F1 score Precision Recall

MLP 0.940481 0.982761 0.941506 0.925926 0.957620

RBFN 0.931512 0.977904 0.933413 0.908565 0.959658

Random forest 0.937627 0.965623 0.938579 0.924842 0.952730

SVM lineal 0.918875 0.957855 0.920368 0.904088 0.937245

SVM poly feat 0.931512 0.961692 0.932934 0.914319 0.952323

SVM poly kern 0.935997 0.956352 0.937325 0.918623 0.956805

SVM RBF kern 0.939462 0.957067 0.940683 0.922444 0.959658
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Despite that techniques such as deep learning can pro-
duce models that achieve higher performance on pixel-wise
classification tasks [17, 48], and the architecture for these
models tends to be of a much larger size, requiring a vast
amount of information and special hardware, as GPUs, to
account for the complexity and the computations needed in
the training and inference phase execution, in a reasonable
amount of time. In this regard, the model studied here
already achieves and exceeds the accuracy needed by the sub-
ject matter expert to locate the hippocampus and can be
probably increased by using ensemble methods [45] and fea-
ture engineering techniques [41]. The simplicity of the model
means it can do, in a timely manner, fast inferences without
the need of special hardware, and for its small size, it can even
be implemented in portable devices, such as cell phones or
tablets.

Even though this paper is for pixel-wise classification,
one could argue that having labelled and located the position
of hippocampal pixels, it can be considered as segmentation
task. Also, knowing that the work from Mesejo et al. [30] is
about hippocampus segmentation and that of Senyukova
et al. [32] is for brain structure segmentation, with the hippo-
campus among them, and that both of them use histological
images, we could present a second table to easily compare the
results. However, Mesejo et al. use a different definition of
accuracy of metric that only takes TP % values; Senyukova
et al. present just the result of precision metric without giving
further information. For these reasons, a fair comparison
table cannot be elaborated but their results are written here
for the reader’s convenience. Mesejo et al. achieve an accu-
racy of 92.11% and Senyukova et al. accomplish a precision
of 60.7194% for hippocampus structure.

5. Conclusions

We showed the robustness of the proposed method by eval-
uating it with different ML models. Furthermore, by adding
samples of every image in the data set, we are increasing
the exposure to varying styles of histological images. Like-
wise, by splitting our data set in 70% for training, 20% for val-
idating, and 10% for testing, we can objectively verify that
ML models are not overfitting. Hence, we can conclude that
the method will be able to generalize when new images are
to be presented.

Not only this, the proposed method described in this
work showed that it is possible to do pixel-wise classification
for histological images and achieve a remarkable good per-
formance too. Furthermore, the described method can signif-
icantly reduce the lengthy effort employed by the subject
matter expert on identifying and delimiting the hippocampal
region and be considered an adequate operation for
substituting a manual classification task.

However, there are some aspects that could be considered
for future work. One likely way that performance could be
improved is by using an ensemble method algorithm. The
shown advantage obtained through the use of a 14-D feature
vector could be made more efficient by using PCA or a fea-
ture engineering technique that reduces the dimensionality
of the feature vector and still obtains a good performance.

The current method could also be leveraged by fully auto-
mating the pixel-wise classification task by integrating an
algorithm that locates the hippocampus bounding box.
Another direction for future research could be on the gener-
ation of a hippocampus segmentation method to further
facilitate the measurement of this area and help automating
the quantification of hippocampal volume.
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3.3 Summary 

The information presented in this chapter demonstrates a trustworthy process that can work 

with histological images of hippocampus. Therefore, it was made possible the achievement 

of the first research objective, finding a machine learning model capable of identifying the 

hippocampus with an accuracy greater than 90% in histological images. 
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CHAPTER IV -  IMPLEMENTING A SYSTEM FOR HIPPOCAMPUS 

MEASURMENT.  

4.1 Introduction.   

In this chapter it is described a system that is designed and built to facilitate hippocampus 

measurement based on the best machine learning model found previously, therefore 

effectively satisfying the second research objective. In addition, this section presents some 

images of the key functionalities built-in in the application. 

4.2 System implementation.   

For building a system that is capable of processing images to help laboratory technicians 

as well as students identifying and measuring hippocampus, several factors were 

considered but the most important aspects to decide how the system was built are: 

programing language and technology used for the machine learning model, time available 

for system development, cost and available technological infrastructure, and the familiarity 

of users with technology and computer systems in general. 

 Given that the machine learning model was built with TensorFlow using python 

programming language, the most straight forward way to use this model would be in the 

direction of porting the code to a server, were a client-server pattern system could fit the 

needs. However, because of cost constraints involved with the implementation of such 

infrastructure and the time available to develop the client and backend code applications, 

this option was discarded.  

The venue for using a mobile application was then explored knowing that 

TensorFlow provides utility packages to convert models for usage in mobile applications. It 

was also identified that building a mobile application would not incur in addition cost 

compared to maintaining client-server infrastructure and that users are familiarized with 

mobile applications. Furthermore, because of the familiarity with of these technologies, it 

was determined that developing this application would be feasible from a time constrain 

perspective. 
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With these features in mind, it was decided to build a mobile application which has 

the advantage of taking photographs of histological images in place and using them to 

directly feed the system were students and laboratory technicians can use them right away 

without the need of transmitting them from one system to other.  

The system Hippocampus Measurement on Histological Images, HMoHI, was built 

using Android technology and to incorporate the machine learning model into the  

Android system TensorFlow Lite was used with the help of NativeJDK to integrate the C 

code generated by the TensorFlow packages. 

To have the ability of identifying and measuring hippocampus, several features were 

added to make it more functional. HMoHI lets the user establish image dimension to properly 

calibrate itself and, out of this information, it establishes a pixel scale that is used for area 

extrapolation. It allows the user to work with only a section of the image, it permits to modify 

the predicting confidence threshold that exclude/include hippocampus areas and it can also 

send the measurement results through email. The measurement results were compared 

with ImageJ, a popular software that is used to manually measure hippocampus images, 

obtaining remarkably good results. 

The system HMoHI can be used by mobile phones with Android version 9 or higher. 

It was registered with INDAUTOR under registration number 03-2021-012711394300-01 as 

can be seen in Figure IV-1. At the time of writing, the system is only available to white-listed 

users in the Google Play Store. Because of intellectual property protection, no application 

design diagrams are included here. 
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Figure IV-1. INDAUTOR certificate 
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4.3 System usage.   

In this section it is briefly explained the steps for accessing the main functionality provided 

in HMoHI. 

1. Clicking on the camera button and selecting a hippocampal histology image will make 

program start uploading and pre-processing the image. This step may take a few 

moments. These steps are ilustrated in Figure IV-2 

 
2. When finished, the program will show an image as in the Figure IV-3 

 Figure IV-2. Image selection process. Source own creation 
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3. To start system calibration, the sytem needs to be fed with the measurements of a 

know portion of the tissue. Figure IV-4 shows a sequence of images that show how to 

instruct the system with the known portion of tissue. 

 

Figure IV-3. Preprocessed image. Source own creation. 

Figure IV-4. Calibration step 1. Selecting a known distance from a portion of a tissue. Source own 
creation. 
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4. Click again on the accept button to confirm the trace and capture size of the selected 

portion in millimeters. When done, clicking on "Accept" button will finish system 

calibration. This is reflected in Figure IV-5. 

  
Figure IV-5. Calibration step 2.Capturing the known measurement portion of a tissue. Source own creation. 

5. The program will display the region of interest window. Make a zoom gesture on the 

image to enlarge it enough so it fits a hippocampal section as shown in Figure IV-6 

   
Figure IV-6. Locating region of interest.Source own creation. 

6. In Figure IV-7 The user drags the region of interest window over the hippocampus as 

shown in the figures below. When finished, click on the process button. 
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Figure IV-7. Selecting region of interest. Source own creation. 

7. The program will show the region to analyze. Touch the screen to display the controls 

and click the button to start the image analysis like displayed in Figure IV-8 

 

Figure IV-8. Starting hippocampus identification. Source own creation. 

8. After a few moments it will show the segmented hippocampus in green color. Touch 

the screen again to display the controls for error correction, segmentation adjustment, 

probability map, and analysis mailing. Figure IV-9 shows the information on the measured 

area denoted with the orange color.  
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Figure IV-9. Area measurement information and controls. Source own creation. 
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4.4 Summary.   

With the implementation of HMoHI, it is accomplished the second research objective of 

creating a system that can accurately measure the hippocampus area. In practice, it is also 

observed that the usage of the application is not as seamless as intended due to some small 

mobile screen sizes. 
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CHAPTER V -  DL MODEL TO IDENTIFY NEURONS.  

5.1 Introduction.   

This section describes the research performed to create a prediction model, in this case 

implemented with deep learning, skilled in identifying neuron cells with an accuracy of more 

than 90%. The deep learning model is also evaluated on different datasets to verify its 

generalizations capabilities under different cell types. 

 

5.2 Article. 
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A B S T R A C T   

Neural cell counting is one of the ways in which damage caused by neurodegenerative diseases can be assessed, 
but it is not an easy task when it comes to neuronal counting in the most densely populated areas of the hip-
pocampus. In this regard, this work presents a leveraged deep learning (DL) model, an innovative way to treat 
histological images and their correspondent ground truth information, where highly dense cell population with 
fuzzy cell boundaries and low image quality exist. The proposed model achieves state-of-the-art results in the 
neuron cell count problem for the highly dense area of DG and CA hippocampus regions, by making use of better 
pixel characterization which in turn also delivers a more efficient model size and reduces training time. 
Furthermore, we show that the proposed image treatment can be applied to other DL models and help them to 
obtain a 12% performance increase. Also, we demonstrate that with the proposed methodology, an innovative 
and reliable way to count neural cells with poor image condition in histological analysis has been carried out.   

1. Introduction 

Neurodegenerative disorders are at the core of several studies char-
acterized by neuronal loss (Mattson, 2000; Procaccini et al., 2016; Roy 
Sarkar & Banerjee, 2019; Zecca, Youdim, Riederer, Connor, & Crichton, 
2004). Thus, accurate quantification of neurons is critically important 
not only in the understanding of physiological and psychological per-
formance of some neuropathological processes, such as Alzheimer’s 
disease (Yang, Mufson, & Herrup, 2003; Zarow, Lyness, Mortimer, & 
Chui, 2003) and Parkinson’s disease (Giguère, Burke Nanni, & Trudeau, 
2018) but in the investigation of neuroprotective drugs and the evalu-
ation of the efficiency of treatment strategies in pre-clinical studies (Li 
et al., 2015; Zhu, Fotinos, et al., 2015). 

Ischemic strokes, in which blood flow to the brain is blocked, are 
among those sources of damages that lead to these type of disorders 
(Radovsky, Katz, Ebmeyer, & Safar, 1997; Sugawara et al., 2000). To 
evaluate the harm caused by ischemic strokes it is imperative to generate 
reproducible brain damage, which is done with the establishment of 
multiple experimental models (García & Quintanar, 2020; Uluç, Mir-
anpuri, Kujoth, Aktüre, & Başkaya, 2011) that assist the investigation of 
cerebral alteration and neural cell death and where 

immunohistochemical analysis plays an undeniable role in cell counting 
to measure damage of stroke and efficiency of treatments (Ke et al., 
2020; Komur et al., 2014; Schuhmann, Gunreben, Kleinschnitz, & Kraft, 
2016; Yata et al., 2007). 

Zhu, Liu, Zou, and Torbey (2015) identified several counting stra-
tegies in the field of neuroscience research, such as unbiased stereo-
logical methods, flow cytometry, manual counting and automatic or 
semi-automatic counting methods. 

On one hand, unbiased stereology methods tend to have higher 
technical requirements and the dependability of its results could be 
attenuated because of tissue deformation after the histological pro-
cessing, staining of the sections and changes in thickness if the right 
approach is not considered (Dorph-Petersen, Nyengaard, & Gundersen, 
2001; Zhu, Liu, et al., 2015) and thus, these methods are used less 
frequently than manual counting. On the other hand, counting cells 
within a defined region of interest (ROI) can introduce a strong bias to 
study results because neuronal cell death does not occur homogeneously 
since neurons are not equally sensitive to ischemic stress. Therefore, 
neuronal cell count should not be restricted to a single counting window 
but extended to multiple ROIs (Wang et al., 2015). 

The above, coupled with the overwhelming labor of performing the 
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manual counting task and the need for subject matter experts that can 
correctly distinguish the right cells are causing automated methods to 
become popular. Inglis et al. (2008) created an automated neuron 
recognition algorithm capable of obtaining the x, y position of neurons 
within Nissl-stained images of the cerebral cortex of monkey brains by 
applying a combination of image segmentation and machine learning 
techniques, correctly identifying 86 ± 5% neurons with 15 ± 8% error 
(mean ± standard deviation). Meanwhile, Woeffler-Maucler, Beghin, 
Ressnikoff, Bezin, and Marinesco (2014) presented an automated 
immunohistochemical method to quantify neuronal density in confocal 
images of brain sections employing fluorescent antibodies performing a 
double-labeling technique that highlighted neural and non-neural nu-
cleus and using image processing techniques such as band pass filters, 
auto thresholding and morphological operations. The automatic method 
developed by Attili, Silva, Nguyen, and Ascoli (2019) quantified the 
distribution of cells making use Nissl-stained images of Allen Brain Atlas 
by creating image segmentation pipelines that involved image process-
ing techniques reaching an average absolute difference at the sub-region 
level of less than 15%, however, the highly dense regions of the principal 
layers of hippocampus, Cornu Ammonis (CA) and Dentate Gyrus (DG), 
where excluded. ̌Stajduhar, Džaja, Judaš, and Lončarič (2019) were able 
to correctly distinguish 95.41% of neurons in NeuN-stained images of 
adult human prefrontal cortex images with an anisotropic diffusion 
technique. 

Recently, with the advent of more computing power, new technol-
ogies are emerging such as Deep Learning (DL) which is making its way 
in multiple medical fields (Ravì et al., 2017) such as cancer detection 
(Cireşan, Giusti, Gambardella, & Schmidhuber, 2013; Hamed, Marey, 
Amin, & Tolba, 2020; Shen et al., 2019; Xu et al., 2016), glaucoma 
diagnosis (Chai, Liu, & Xu, 2018; Serte & Serener, 2019; Song, Lai, & Su, 
2021), heart disease and failure prediction (Ali et al., 2020; Kwon et al., 
2019; Potes, Parvaneh, Rahman, & Conroy, 2016), among others (Chen, 
Dou, Yu, Qin, & Heng, 2018; Li et al., 2019; Serte & Demirel, 2021) and 
where cell counting is not the exception. 

Jiang, Liu, Yan, Gu, and Jiang. (2021) performs blood cell count with 
an attention-guided deep learning method derived from YOLO archi-
tecture (Redmon, Divvala, Girshick, & Farhadi, 2016) and Chowdhury, 
Roberson, Hukkoo, Bodapati, and Cappelleri (2020) use an optimized 
version of it, being capable of identifying and counting thrombocytes, 
red and white blood cells. Likewise, counting retinal ganglion cell axons 
is done by Ritch et al. (2020) in optic nerve tissue images by making an 
adaptation of a well-known Convolutional Neural Network (CNN) noted 
as U-Net (Ronneberger, Fischer, & Brox, 2015). Soltanian-Zadeh, 
Sahingur, Blau, Gong, and Farsiu (2019) attains the identification and 
segmentation of active neurons by utilizing a variety of two-photon 
calcium images with STNeuroNet, an extension of DenseVNet (Gibson 
et al., 2018) and reaching scores of 0.86, 0.88, 0.87 for recall, precision 
and F1 metrics, respectively. Iqbal, Sheikh, and Karayannis (2019) 
created a DL architecture based in Faster RCNN (Ren, He, Girshick, & 
Sun, 2017) to detect neurons and tested it against human brain images 
with highly dense cell population of fluorescently-tagged CaMKIIa, 
achieving a mean average-precision score of 0.75 and a mean precision 
of 0.87, also, Iqbal et al. achieved mean average-precision of 0.9 in a 
neural dataset of GAD1 and VGAT in situ hybridized brain sections where 
these markers cover about 20% of all cortical neurons. And other works 
(Hagos, Narayanan, Akarca, Marafioti, & Yuan, 2019; Xie, Noble, & 
Zisserman, 2018) perform cell counting on synthetic dataset and images 
from patients with cancer, respectively. 

It is known that staining neurons with NeuN or fluorescent anti-
bodies can facilitate discrimination of neurons, glia cells or nucleus 
much better than Hematoxylin-eosin (H-E). NeuN and fluorescent anti-
bodies create better marked cells by giving them greater intensity and 
more defined contours, however, the time-consuming aspect in the 
preparation of the tissue, as opposed to the easiness of the staining 
procedure, familiarity of use and least expensiveness of H-E and Nissl 
antigen, makes both widely used in clinical and research labs around the 

world (Duregon et al., 2014; Inglis et al., 2008; Iqbal et al., 2019; Nuovo 
et al., 2021; Ochi et al., 2014; Yang, Song, Li, & Liang, 2014; Yavuz et al., 
2001; Zhu, Liu, et al., 2015). But any of these techniques create a vast 
variability of color in cell staining, and the presence of damaged in tissue 
surfaces, the existence of overlapping or partial cells and image quality 
such as lighting and focus conditions derived of its acquisition, they are 
all a major source of noise in manual and automatic counting. 

With all of this, there is still a need for addressing the highly cell 
clumped areas of CA (1 and 3) and DG region of hippocampus in H-E- 
stained images that also tackles the issuances produced by immuno-
histochemical procedure to count cells more accurately in an automatic 
way. 

Therefore, in this work we propose a new approach to perform neural 
cell counting for highly dense and low quality images using a DL ar-
chitecture trained with hippocampus histological images reaching state 
of the art performance. 

The remainder of this paper is organized as follows: Section 2 de-
scribes the materials used in this study. Section 3 presents our meth-
odology. Section 4 describes experiments and results and discusses the 
results obtained by the models and finally, Section 5 presents 
conclusions. 

2. Materials 

2.1. Animals 

Male Sprague-Dawley rats weighing 270 to 330 g were used to 
collect images for this study. The rats were provided by the animal farm 
of Physiology and Pharmacology Department of the Autonomous Uni-
versity of Aguascalientes. They were maintained at 22 ◦C with a 12-hour 
light–dark cycle with free access to food and water. 

2.2. Animal preparation 

The rats were divided into four groups: 1) Normal control group, 2) 
ischemic group treated with sterile saline solution (IR + SS), 3) ischemic 
group treated with leuprolide acetate (IR + LA) and 4) Sham group, 
which were rats that underwent of surgery but no ischemic stroke. All 
surgeries were performed under general anesthesia of ketamine and 
xylazine hydrochloride. The rats were used and treated in accordance 
with the Institutional Welfare Standards (Autonomous University of 
Aguascalientes) and every effort was made to avoid suffering and to 
avoid unnecessary testing. To know more details of how the cerebral 
ischemia and reperfusion procedure was carried out, the reader can 
consult García and Quintanar (2020) work. 

To IR + LA group, leuprolide acetate was given at a dose of 10 µg/kg 
in the following way: on the day of surgery and the two consecutive 
days, a dose was injected intramuscularly and then every third day until 
27th day. For the IR + SS group a dose of 100 μl of sterile saline was 
injected with the same frequency as IR + AL. On 30th day the animals 
were euthanized. The brains were extracted to perform histological 
techniques. 

2.3. Tissue preparation 

Rats were anesthetized using ketamine and xylazine hydrochloride 
and then, transcardially were perfused with 0.1 M phosphate buffer, 
followed by freshly prepared 4% paraformaldehyde in 0.1 M phosphate 
buffer. Brains were subsequently removed, immersed in the same fixa-
tive for 5 h at 4◦ C and processed for paraffin embedding. Serial coronal 
sections of approximately 6μ thick were obtained from each brain 
considering Bregma − 3.3 mm. The slides were dewaxed, rehydrated 
and H-E staining was performed. 
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2.4. Image acquisition 

Tissue containing CA1, CA3, and DG region of hippocampus section 
was digitized from an optical microscope with a magnifying glass of 40x, 
using an LGE LM-X520 camera model that was configured with an ISO 
speed rating of 100, a focal length of 3.5 mm and a variable exposure 
time ranging from 1/60 s to 1/30 s. Each image was captured at a res-
olution of 4161 × 3120 pixels, with an average size of 3 megabytes, a 
resolution of 72 ppi and, was saved originally in JPEG format with a 
compression value of 96. 

In total 43 images were obtained and are distributed in the following 

way: 22 images come from Control group rats, 11 images come from IR 
+ LA group, 6 images come from IR + SS group and 4 come from Sham 
group. It is worth noting that since tissue is stained with H-E, cell 
characteristics and morphology is not directly affected by the process 
and the treatment applied to rats, but the amount of cells that are present 
in images might be associated with them. The amount of acquired im-
ages is given by the availability of histological samples at image 
acquisition time. A representative sample of these groups is shown in 
Fig. 1. 

To better manage and train DL models, 516 images of size 512 × 512 
pixels were extracted out of the 43 original images. We saw that this 

a) )c)b d) 

Fig. 1. Sample coronal sections of different rat brains digitized at 40x magnification and stained with hematoxylin and eosin. a) Image from a Control group rat 
depicting a CA3 hippocampus section. b) Image from an IR + LA group rat depicting a DG hippocampus section. c) Image from an IR + SS group rat depicting a DG 
hippocampus section. d) Image from a Sham group rat depicting a CA1 hippocampus section. 

a) )c)b d)

e) )h)g)f

i) j) k) l) 

Fig. 2. a-d) The same images as in Fig. 1. Red squares show the position of the extracted images belonging to a highly dense hippocampus region and blue squares 
show the position of the nearby region of interest. e-h) Images of 512 × 512 showing cells from highly dense region portraying wide differences in morphology and 
color. i-l) Images of 512 × 512 showing ample difference in tissue textures and cells from the nearby region of interest. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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image size is large enough to contain most of the region of interest DG, 
CA1 and CA3, where the very crowded cell area is located and without 
having to cut more cells. On the other hand, if a smaller image size were 
used, a considerably greater effort to acquire the full number of cells per 
image would be necessary. 

The extraction was conducted in the following way. First, 165 images 
of the highly dense DG, CA1 and CA3 regions were obtained. These 
images have 44 ± 20 cells (mean ± standard deviation) per image. 
Then, because of cells taking up most of the space of the image, to make 
sure we provide the DL models with enough information of tissue 
background and help it properly identify cells, another 351 images were 
randomly obtained from the nearby area of the region of interest. These 
images have 8 ± 6 cells (mean ± standard deviation) per image. Fig. 2 
shows images extracted from the region of interest, its surroundings and 
tissue texture. 

Given that H-E stains neurons, astrocytes, oligodendrocytes, micro-
glia alike and because of the nature of cells observed at the acquired 
magnification level, mistakes can be committed when trying to make 
distinctions between them. For this reason, in this study all cells were 
manually segmented with no differentiation between them to create the 
ground truth. A technician familiarized with neurons in H-E hippo-
campus images, manually delineated each cell using a digitizing Wacom 
CTL472 tablet to precisely annotate each cell using special editing 
software Krita on a 25′′ monitor with a 160x digital magnification. The 
technician was asked to carefully treat areas of clustered cells, especially 
where cells overlap or touch each other. To make it easier for DL models 
to distinguish one cell from another, the overlapped cells edges were not 
marked for avoid feeding the DL models with ambiguous information 
and, to better delineate the cell bodies, the overlapping pixel was 
assigned to the cell that appeared to be on top in the 3-D structure. After 
the manual annotation was finished, the quality control was performed 
by an expert histologist with years of experience analyzing neuron cells 
who reviewed all images and corrected any issues in the segmentation 
process. A sample image of ground truth annotations can be seen in 
Fig. 3b) and e). 

3. Methodology 

In this section we start by describing the treatment given to the 
dataset and the image preprocessing step to help DL models to reach 
high performance. Next, we explain how we did dataset splitting. 
Finally, we talk about the proposed DL model and the applied modifi-
cations to enhance its learning capabilities. 

3.1. Data preparation 

Unlike other works (Chowdhury et al., 2020; Jiang et al., 2021) 
where cell counting is achieved by training CNN models with bounding 
boxes that wraps around cell bodies, in this work, we use semantic 
segmentation to teach the model what constitutes a cell and where it is 
located. 

Semantic segmentation using histological images in image process-
ing and DL projects are a naturally high difficult challenge. The histo-
logical process itself creates conditions where there is: a lack on a 
specific color for identifying cells, fuzziness on cell boundaries, vari-
ability of cell morphology, difference in tissue texture and presence of 
marks, scraps and tears in tissue. In addition, we also have to include the 
complexity added by the digitization process itself where lighting effects 
creates some images brighter than others, and the actual position of the 
camera can create out of focus images or artifacts whose size differs from 
other images. Furthermore, we deal with images where highly clumped 
cell areas exists and which hardens the identification task due to cells 
occlusion thus impacting on a reliable counting task. Fig. 2 shows some 
of these conditions. 

For the reasons explained above, we conduct two strategies to in-
crease performance predictability of DL models, named: Ground Truth 
Enhancement (GTE) process and Image Condition Enhancement (ICE) 
process. 

3.1.1. Ground truth enhancement process 
Softness in cell borders, cell occlusion and blurry images, create 

excessive noise to DL models resulting in an extremely low performance 

Fig. 3. Ground Truth Enhancement Process for two images with a highly cell population and blurry boundaries. Original images a) and d). Manually annotated 
ground truth images b) and e). GTE images c) and f). 
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because of inaccurate cell boundaries prediction. For this reason, GTE is 
achieved by systematically replacing the ground truth annotation, ob-
tained in Section 2, by a disk of smaller size, in this way, ground truth is 
purged from any ambiguities. GTE is performed in the following way: 

For every cell body in a ground truth image, we obtain its contours, 
its centroid and its area. Then, if area > A, we set disk diameter to 5, 
otherwise we let diameter to 3. Finally, in the new GTE image we draw a 
circle of calculated diameter at the position of the centroid. In our ex-
periments A is set to 190 pixels. 

We have selected these values for the following reasons: 1) The size 
and shapes of cells are not uniform. Despite most of the cells are fairly 
round and ‘big’, larger than 190 pixels, there are still cells with an 
irregular shape and whose sizes are small either because of occlusion or 

because of its own nature. 2) The existence of fuzzy cell boundaries. 
Fuzzy cell boundaries can be the result of multiple factors such as having 
highly clump areas where the lighting conditions used in the microscope 
may make some cell borders lighter, giving the impression of two cells 
being visually merged into one; H-E dyes several types of cells creating 
different textures where the border for one cell can be similar to the 
body of another cell; and having sections of the images that are out of 
focus and make cells blurry. 3) The values mentioned here provided 
good results in our experiments. The rationale of using small disks sizes 
is to feed the DL models with the most centric part of the cell. In this 
way, we avoid feeding it with fuzzy regions that can be ambiguous to DL 
models and cause poor predictions results, that is, a DL model not being 
capable of separating two different cells and merging it into one, where 

Fig. 4. Comparison of Ground Truth Enhancement process for different disk sizes using the same images of Fig. 3 b) and e). Green dots represent new ground truth, in 
a) and d) a disk size of 5 is used, in b) and e) a disk size of 10 and in c) and f) a disk size of 15. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

a) )d)c)b

e) )h)g)f

Fig. 5. Image Condition Enhancement process with different cell densities, colors, textures, and lighting conditions. Original images a-d). ICE images e-h).  
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for a counting goal, this gives poor results. Thus, when cells have small 
bodies, less than 190, we used a disk size of 3 to prevent creating a disk 
that overlaps with another cell; and a disk size of 5 for the rest. In our 
experiments, we tested with disks sizes of 5, 10 and 15. 

An example of the outcome of GTE process is shown in both Fig. 3 
and Fig. 4. Fig. 4 shows a comparison of how different disk sizes keeps 
meaningful information and ignores fuzzy regions. 

3.1.2. Image condition enhancement process 
In some works (Inglis et al., 2008; Iqbal et al., 2019; Ritch et al., 

2020; Soltanian-Zadeh et al., 2019; Vizcaíno, Sánchez-Cruz, Sossa, & 
Quintanar, 2021) image preprocessing is done by normalizing images to 
deal with image conditions. However, we decided to do it in a different 
manner. Before feeding the original image to the DL model, we do an 
image preprocessing step not only to address lighting conditions, but to 
deal with out focused images too. First, we convert the image from Red 
Green Blue (RGB) format to Hue Saturation Value (HSV) format to 
conduct a histogram equalization with Contrast-Limited Adaptive His-
togram Equalization (CLAHE) (Reza, 2004) technique using a clip value 
of 1 and a grid size of 8 × 8 on the Value channel. Second, we do an 
automatic brightness adjustment process. Third, we sharpen the image. 
Some of these preprocessing techniques are used as well for enhancing 
predicting results in medical images (Kumar et al., 2020). 

Automatic brightness adjustment is done by using contrast optimi-
zation with histogram clipping in the following way. First, we convert 
image from RGB to gray scale and calculate its histogram. Then, we 
calculate the cumulative distribution from the histogram. Next, we 
obtain the minimum and the maximum amount values to clip given a 
percentage parameter. Finally, we clip image by re-scaling according to 

the minimum and maximum values. In our experiments the clip per-
centage is set to 1%. 

The final step, image sharpening, is implemented by doing a 2D 
convolution with a 3 × 3 sharpen kernel. In our experiment the sharpen 
kernel, k, is given by: 

k =

⎡
⎣
−1
−1
−1

−1
9
−1

−1
−1
−1

⎤
⎦

An example of the outcome of ICE process is shown in Fig. 5. 

3.2. Dataset construction 

As mentioned in Section 2 we have 165 images of the highly dense 
hippocampus region DG, CA1 and CA3 and 351 images from its nearby 
area making a total of 516 images. To prevent images with high cell 
population from being unevenly distributed, we first randomly divided 
these 165 images into 70%, 20%, and 10% for the training, validation 
and testing set, respectively, and then we carried out the same procedure 
for the remaining 351 images. The final number of images in each set is 
show in Table 1. 

3.3. DL model proposal 

Our DL model, Cell-UNet, is based in U-Net architecture originally 
developed by Ronneberger et al. (2015) which has become a reference 
for image processing in several biomedical areas (Schlemper et al., 2019; 
Shuvo, Ahommed, Reza, & Hashem, 2021; Zhou, Siddiquee, Tajbakhsh, 
& Liang, 2020). But given the ample amount of details of very small size 
that are present in histological images, we modified it so that the model 
can be capable to ‘see’ them and ‘learn’ them. The new architecture is 
displayed Fig. 6. 

In the encoder blocks we adjusted the 3×3 convolutions to have a 
padding of 1, we kept ReLU as the activation function and we replaced 
the max pooling operation by an adaptive max pooling operation. These 
changes were mainly applied to accommodate for the image size used in 
this work. After every encoder block, we added a sub-pixel convolution 
operation (Shi et al., 2016) with an upscale factor of 2 to keep and 

Table 1 
Dataset distribution.   

Training 
70% 

Validation 
20% 

Testing 
10% 

TOTAL 

Highly dense images 116 33 17 165 
Surroundings images 246 70 35 351 
TOTAL 361 103 52 516  

Fig. 6. Proposed Cell-UNet network architecture.  
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enhance the details of the channels. By doing this, we feed decoder 
blocks with a better pixel characterization. In a vanilla U-Net imple-
mentation, decoder blocks are fed with just the output of the encoder 
blocks. Finally, before the last layer of the network, another adaptive 
max pooling operation was added to reduce image size to match the 
input image size so visual inspection of the predicted cell can be easily 
achieved. The new model was implemented in PyTorch. 

Another effect of adding adaptive max pooling and sub-pixel con-
volutions, besides reducing the size of decoder blocks for a factor of 4, is 
that the overall model size decreased, from ~31 million parameters of a 
baseline U-Net implementation to ~19.6 million parameters in ours. 
Nonetheless, its learning capabilities increased due to the better pixel 
characterization provided by the sub-pixel convolution operations. 

4. Experiments and results 

In this section we talk about how experiments were carried out. Next, 
we present the alternate state of the art DL models that we used to 
compare our model. Then, we talk about how they were trained and 
specify the metrics that we used to measure the performance of the 
model. We also discuss the approach we took to go from image seg-
mentation paradigm to object identification paradigm. Finally, we show 
the results of our work and provide a comparative study using two 
different datasets to evaluate the generalization capabilities of the pro-
posed methodology. 

4.1. Experimental scenarios 

To confirm that GTE and ICE processes contribute to models to gain 
better predicting performance, we formed four scenarios: 1) Unpro-
cessed, 2) ICE, 3) GTE and 4) GTE + ICE. 

In Unprocessed scenario, DL models were trained with original 
ground truth images obtained in Section 2 and no image preprocessing 
was done. In ICE scenario, nothing but image preprocessing was done to 
images to train DL models. Meanwhile, in GTE scenario, just ground 
truth enhancement process was performed. Therefore, in GTE + ICE 
scenario we conducted GTE and ICE processes for training DL models. 

4.2. Comparison models and training information 

To evaluate Cell-UNet performance against other models, we 
selected DL model U-Net (Ronneberger et al., 2015), U-Net++ (Zhou 
et al., 2020) and Attention U-Net (Schlemper et al., 2019) because they 
perform semantic segmentation in biomedical images and achieve state 
of the art results in their datasets. U-Net is a convolutional network 
architecture for fast and precise segmentation of images, its architecture 
consists of a contracting path to capture context and a symmetric 
expanding path that enables precise localization, these paths are 
commonly known as encoder-decoder blocks. U-Net++, which is based 
in U-Net, is essentially a deeply supervised encoder-decoder network 
where the encoder and decoder sub-networks are connected through a 
series of nested, dense skip pathways with the intention of that the re- 
designed skip pathways reduce the semantic gap between the feature 
maps of the encoder and decoder sub-networks. Attention U-Net is 
another DL model architecture based in U-Net that proposes the usage of 
attention gates in a standard CNN model with the intention to reduce 
false-positive predictions for small objects that show large shape vari-
ability, filters the features propagated through the skip connections and 
suppresses feature responses in irrelevant background regions. 

All these models were trained using Training dataset. Regardless of 
the experimental scenario, image augmentation was employed to in-
crease Training dataset with random operations such as vertical flip, 
horizontal flip, image transpose, image rotation (maximum rotation of 
±270◦), image scaling (scale limit of ±2%), image shifting (shift limit of 
±1%), brightness adjustment (limit of ±12%), contrast adjustment 
(limit of ±12%), hue-saturation-value adjustment (limit of ±20 for all 

channels) and a resize operation (size of 512 × 512 and linear inter-
polation) to prevent feeding the models with an incorrect image size. To 
artificially increase the size of Training dataset, we set the number of 
steps per epoch to train dataset size × n. In our experiments, n, was set to 
8. This decision was based in the number of random operations in the 
image augmentation process, in the range values that can be applied to 
them, verifying when models stopped learning and avoiding any over-
fitting situation. 

Because pixel information belonging to cells is highly skewed in most 
images of the dataset, focal Tversky loss function (Abraham & Khan, 
2019), which is a generalization from a dice loss function, was chosen 
for its capability to address imbalanced datasets in medical image seg-
mentation tasks. In our experiments the α and β parameters were set to 
0.75. 

We used Adam optimizer with a learning rate of 1.5−4/
̅̅̅̅̅̅̅
(5)

√
and a 

weight_decay of 2-5. The best performing model, for each of the dis-
cussed DL models, were picked and judged under the Validation dataset. 

All models were trained using a GTX 1080 Ti GPU and given the 
computational restrictions a training batch size of 2, 3, 4 and 4 was used 
for UNet++, Attention U-Net, U-Net and Cell-UNet, respectively. The 
operating system is Ubuntu 20.04 with an AMD Ryzen 9 3900X CPU and 
32 GB in RAM. 

4.3. Evaluation metrics 

Since the output of the DL models is an image, to go from a semantic 
segmentation prediction to an object (cell) identification paradigm that 
facilitates a counting strategy, the following process is done: 1) With the 
ground truth image, we extracted the bounding boxes for each manually 
segmented cell, 2) With the predicted image, we performed a connected 
component analysis and obtained all the blobs, which is easy to see that 
they correspond to cell predictions, 3) We matched the predicted cells 
against the collected bounding boxes by checking if the centroid of cell 
fell inside of a bounding box that was not matched already; when this 
was the case, this cell was counted as a True Positive (TP), otherwise it 
was counted as a False Positive (FP), and 4) All unmatched bounding 
boxes were counted as False Negatives (FN). 

With the above discrimination criteria in mind and making use of the 
Testing dataset, we compared the models against each other and 
measured their performance under different metrics such as Accuracy, 
Precision, Recall and F1 score. These metrics are defined by: 

Accuracy = TP + TN
TP + TN + FP + FN

,

Precision = TP
TP + FP

,

Table 2 
Model performance in unprocessed scenario. Bold numbers show the best 
metric/model.  

Metric \ Model U-Net Attention U-Net UNet++ Cell-UNet 

Accuracy  0.6332  0.6032 0.6479 0.6680 
Precision  0.8454  0.8153 0.8920 0.8636 
Recall  0.7162  0.6987 0.7031 0.7467 
F1 score  0.7754  0.7525 0.7863 0.8009  

Table 3 
Model performance in ICE scenario.  

Metric \ Model U-Net Attention U-Net UNet++ Cell-UNet 

Accuracy  0.6277  0.6361 0.6222 0.6506 
Precision  0.8143  0.8356 0.8688 0.8281 
Recall  0.7325  0.7271 0.6867 0.7522 
F1 score  0.7713  0.7776 0.7671 0.7883  
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Recall = TP
TP + FN

,

F1score = 2 ×
(

Precision × Recall
Precision + Recall

)
.

4.4. Results 

We computed these metrics for all different experimental scenarios 
stated before. The results for Unprocessed, ICE, GTE and GTE + ICE 
scenarios are shown in Table 2, Table 3, Table 4 and Table 5, 
respectively. 

In Fig. 7, we show how models output segmentation prediction for an 
image with a highly dense cell population and fuzzy boundaries, under 
Unprocessed and GTE + ICE scenarios. In Fig. 8 we provide a compar-
ative result between proposed scenarios and the effects of using different 
disk sizes and in Fig. 9, we have an image of a region of interest, its 
correspondent Ground Truth image and the segmentation prediction 
produced by our model under Unprocessed scenario suggesting that 
poor performance might not be associated to the number of cells but to 

cell boundary conditions. Finally, the mapping process that takes an 
image segmentation result to an object identification result, is shown in 
Fig. 10, where we present all scenarios and DL models we covered in this 
work. 

Apart from models predictions and performance metrics, in Table 6, 
we provide model sizes in terms of number of parameters and their 
average training time. 

Training time was measured from the start of epoch one until epoch 
ten, considering the preprocessing steps as part of the training process. 

4.5. Results in other datasets 

Here, we present the results of using the methodology described 
before, applied to two public domain image databases to evaluate its 
generalization capability. 

The first dataset (Naylor, Laé, Reyal, & Walter, 2019) contains nuclei 
segmentation for breast cancer patients and it is constituted of 50 H-E 
stained images of a size of 512 × 512 scanned at 40x. The heterogeneity 
of the image data, include low and high cellularity areas regions which 
can be stromal areas or adipose tissue, but also of invasive breast car-
cinoma cells, respectively. Cell annotations include normal epithelial 
and myoepithelial breast cells, fibroblasts, endothelial cells, carcino-
matous cells, macrophages, adipocytes and inflammatory cells. Infor-
mation regarding ground truth acquisition, number of patients and the 
image provider institute is available on (Naylor et al., 2019). Fig. 11 
presents the results obtained with our proposal and Fig. 12 shows pre-
diction results on two randomly selected test images. 

The second dataset (Kumar et al., 2017) comprises 37 H-E images 
scanned at 40×, each of size 1000 × 1000 of hand-annotated nuclear 
boundaries, and additional 18 H-E tissues images that were used for 
testing. The dataset is constituted of 7 different organs namely, liver, 
colon, kidney, stomach, bladder, prostate, and breast, that contains 
benign and diseased tissue samples. The ground truth acquisition tech-
nique, patients, and hospital information where the samples were ob-
tained are available on (Kumar et al., 2017; Kumar et al., 2020). This 
dataset provides the ground truth annotation in xml format, where it is 
common to find the boundary of a nuclei overlapping or touching other 

Table 4 
Model performance in GTE scenario.  

Metric \ Model U-Net Attention U-Net UNet++ Cell-UNet 

Accuracy  0.8116 0.8068  0.7802 0.8094 
Precision  0.9235 0.9376  0.9248 0.9243 
Recall  0.8701 0.8526  0.8330 0.8668 
F1 score  0.8960 0.8931  0.8765 0.8946  

Table 5 
Model performance in GTE + ICE scenario.  

Metric \ Model U-Net Attention U-Net UNet++ Cell-UNet 

Accuracy  0.8090 0.8136 0.8062 0.8160 
Precision  0.9059 0.9083 0.9407 0.9170 
Recall  0.8832 0.8865 0.8493 0.8810 
F1 score  0.8944 0.8972 0.8927 0.8987  

Fig. 7. Image from a DG region showing predictions per model under two scenarios. Rows correspond to different experimental scenarios. The first column cor-
responds to the ground truth and the rest of the columns correspond to DL models predictions. 
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nuclei, thus, causing those two different nuclei to be treated as one 
object and creating a problem to evaluate the counting goal intended in 
this work. For this reason, it was not possible to create a ground truth 
image where all cells are clearly separated and only GTE + ICE scenario 
was evaluated calculating the bounding boxes, in a similar way as 
described in section 4.2, of the annotated boundaries contained in the 
xml file. Figs. 13 and 14 show the results obtained by DL models with 
this dataset and the prediction results of two sample images obtained by 
Cell-UNet. 

5. Discussion 

As it can be seen from Table 2 and Table 3, in Unprocessed and ICE 
scenario, respectively, our proposed model outperformed all models in 
Accuracy, Recall and F1 score, yet UNet++ obtained a better Precision 
value. However, when observing the metrics obtained in ICE only sce-
nario against Unprocessed scenario, we can see a mix of better and worse 

metrics than in Unprocessed scenario, suggesting that ICE processing 
alone does not contribute to a consistent performance gain as a conse-
quence of having very fuzzy cell boundaries. 

For GTE scenario, Table 4, our proposed model outperformed again 
all models in Accuracy, Recall and F1 score but in Precision metric, 
Attention U-Net achieved the highest value. Furthermore, all models 
show a mean performance increase of 12.2% in all metrics. This infor-
mation is presented in Table 7. This suggests that GTE does bring models 
to a higher performance predictability, and confirming that when 
reducing noisy cell boundaries, models can distinguish cells in a more 
concordant way. 

In GTE + ICE scenario, Table 5, all metrics have their highest values 
when compared to all previous scenarios. In this regard, UNet++ ob-
tained the highest value for Precision metric (0.9407) and Attention U- 
Net for Recall (0.8865). Our model accomplished the highest values in 
Accuracy (0.8160) and F1 score (0.8987). Moreover, when comparing 
the performance of the models in this scenario against the performance 

Fig. 8. Effects of tunning parameters in metrics performance when GTE is performed. a) Scenarios: Unprocessed vs GTE using disk sizes of 5, 10 and 15. b) Scenarios: 
Unprocessed vs GTE + ICE using disk sizes of 5, 10 and 15. 

a) )c)b

Fig. 9. a) Image from a CA1 region. b) Ground Truth Image. c) Cell-Net segmentation prediction.  
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obtained by the models in Unprocessed scenario, we can see that all 
models experienced a mean performance increase of 12.82% in all 
metrics. This information can be seen in Table 8. This indicates that 

when reducing noisy cell boundaries and enhancing the image condi-
tion, the model performance increases in a consistent and significant 
way. 

Likewise, in Figs. 8 and 10, we can observe that all DL models in-
crease their predicting capabilities when noise reduction is conducted by 
the effect of removing the fuzziness in cell boundaries and enhancing 
image condition which means that it is not associated to a particular DL 
model only. This situation explains the concordant performance in-
crease across all models, and which is shown in the values expressed in 
Tables 2–5. Also, Fig. 8 shows that best results can be obtained when 
using a disk size of 5 or 10, and the difference between their results 
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Fig. 10. Image from a DG region (its ground truth image is displayed in Fig. 7) showing predictions per model and scenario. Columns correspond to experimental 
scenarios. Rows correspond to DL models predictions. Green boxes indicate cells that were correctly identified (TP). Red boxes signal cells that were not found by the 
DL models (FN). Blue dots stand for incorrectly predicted cells (FP). 

Table 6 
Model size and training time.  

Metric \ Model U-Net Attention U-Net UNet++ Cell-UNet 

Number of parameters 
(millions) 

31 34.8 36.6 19.6 

Avg. training time (hours) 1:18 1:53 3:55 1:02  
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might be associated to size of the cells contained in the images. 
When analyzing the results of our work applied to other datasets, we 

can see from Fig. 11 and Fig. 13 that its generalizing capabilities stand 
across different type of images, achieving 0.7170, 0.8486, 0.8222, 
0.8352 in Accuracy, Precision, Recall and F1, respectively, in Naylor et al 
(2019) dataset and with Kumar et al (2017). We obtained 0.7846, 
0.8784, 0.8802, and 0.8793 for Accuracy, Precision, Recall and F1, 
respectively, despite the different sizes and nature of images. Unfortu-
nately, a direct comparison with their works cannot be established since 
they use metrics for image segmentation and not cell counting. 

Having verified that GTE + ICE scenario contributes to a higher 
performance predictability, we can examine the results obtained here 

and say that for a given experiment, if it were preferable to correctly find 
most of the cells in an image, that is, to have a few amount FN, at the 
expense of having a higher amount of incorrectly predicted cells, 
meaning, having a higher amount FP, then, the model with the highest 
Recall metric should be picked, in this case Attention U-Net. Likewise, if 
it were preferable to have fewer incorrectly predicted cells, having a 
fewer amount FP, at the expense of not finding all the cells in an image, 
having a higher amount FN, then, the model with the highest Precision 
metric should be selected, in this case UNet++. Nonetheless, when it is 
needed an equilibrium between correctly finding most of the cells in an 
image, having as few FN as possible, and having the fewest possible 
amount of incorrectly predicted cells, having as few FP as possible, the 

Fig. 11. Results and effects of tunning parameters in metrics performance when Unprocessed images and GTE + ICE is performed. For Nuclei segmentation based on 
breast cancer H-E images in a 40x magnification and using and disk sizes of 5, 10 and 15. 

a) b) 

c) d) 

Fig. 12. Prediction results with Naylor et al (2019) dataset using GTE + ICE scenario and a disk size of 5. a) and c) original images. b) and d) Cell-UNet predictions. 
Green boxes indicate cells that were correctly identified (TP). Red boxes signal cells that were not found by the DL model (FN). Blue dots stand for incorrectly 
predicted cells (FP). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 13. Results and effects of tunning parameters in metrics performance when GTE + ICE is performed on different H-E images with a 40x magnification and using 
disk sizes of 5, 10 and 15. 

a) b) 

c) d) 

Fig. 14. Prediction results with Kumar et. al (2017) dataset using GTE + ICE scenario and a disk size of 5. a) and c) original images. b) and d) Cell-UNet predictions. 
Green boxes indicate cells that were correctly identified (TP). Red boxes signal cells that were not found (FN). Blue dots stand for incorrectly predicted cells (FP). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 7 
Performance gain – Unprocessed vs GTE scenario.  

Metric \ Model U-Net Attention U-Net UNet++ Cell-UNet 

Accuracy  17.84%  20.36%  13.23%  14.14% 
Precision  7.81%  12.23%  3.28%  6.07% 
Recall  15.39%  15.39%  12.99%  12.01% 
F1 score  12.06%  14.06%  9.02%  9.37% 
Avg. Increase  13.28%  15.51%  9.63%  10.40% 
Mean Increase 12.2%  

Table 8 
Performance gain – Unprocessed vs GTE + ICE scenario.  

Metric \ Model U-Net Attention U-Net UNet++ Cell-UNet 

Accuracy  17.58%  21.04%  15.83%  14.80% 
Precision  6.05%  9.30%  4.87%  5.34% 
Recall  16.70%  18.78%  14.62%  13.43% 
F1 score  11.90%  14.47%  10.64%  9.78% 
Avg. increase  13.06%  15.90%  11.49%  10.84% 
Mean increase  12.82%  
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best alternative to choose is our proposed model, since F1 score metric is 
the harmonic mean of Precision and Recall, which weights a balance 
between FP and FN. 

Not only our proposed model performs in a remarkable way due to 
the better pixel characterization, but we can also see from Table 6 that it 
produced a more efficient model size since it is ~1.58 times smaller than 
U-Net and ~1.77 and ~1.86 times smaller than Attention U-Net and 
UNet++, respectively, making it specially suitable for hardware/ 
resource constrained devices. Another side effect of reducing the model 
size can be seen in the positive impact given in the training time, as it 
takes ~3 h less when compared to its counterpart UNet++ or ~1 h less 
compared to Attention U-Net. 

The histological analysis is very extensive, not only because of the 
involved techniques in creating the samples but also because of the 
staining used to mark the intended cell bodies which results in a vast 
variability of color in cell staining and in tissue texture, therefore a fair 
comparison between different techniques and antibodies would not be 
fair. However, we list the results obtained by different authors when 
performing cell counting task with the intention to create an awareness 
of the good results obtained in the context of this work. Iqbal et al. 
(2019) achieved a mean average-precision score of 0.75 and a mean 
precision of 0.87 in highly dense cell population of fluorescently-tagged 
images. Štajduhar et al. (2019) correctly distinguished 95.41% of neu-
rons in NeuN-stained images of adult human prefrontal cortex images. 
Soltanian-Zadeh et al. (2019) reached scores of 0.86, 0.88, 0.87 for 
recall, precision and F1 metrics, respectively, in two-photon calcium 
images and Inglis et al. (2008) correctly identified 86 ± 5% neurons 
with 15 ± 8% error (mean ± standard deviation) in Nissl-stained 
images. 

6. Conclusions 

We proved that DL model performance can be leveraged by doing a 
Ground Truth Enhancement process and that the proposed architecture, 
despite its smaller size, is capable of achieving state of the art results in 
the highly dense sections CA1, CA3, and DG of hippocampus rat images, 
because of added layer which contains a better pixel characterization 
information. 

We also proved that the present work yields remarkable and 
consistent counting results in H-E stained images with respect to its 
ground of truth reference, among different groups of rats. Thus, making 
its use feasible and reliable even in those images originated from rats 
that received a treatment after an ischemic procedure was applied to 
them. 

With the foregoing, this work can help to reliably facilitate and 
automate the counting process when the cell concentration is either high 
or low, even in those images that do not have the most optimal condi-
tions for their usage. 

When compared with other DL models Cell-UNet achieves its best 
performance when using a disk size of 5, however, when using larger 
disk sizes, other models could have better results given the higher 
number of parameters that other models have. Additionally, to make use 
of the ground truth enhancement process, currently, a full manual seg-
mentation on cells is needed. Nevertheless, as per the experiments 
presented in this work, a good research direction can be considered with 
the purpose of alleviating the time-consuming task for manually anno-
tating images by just creating the manual ground truth annotation on 
cells with a small disk size and verify if good predicting results are still 
observed. 

Likewise, one direction for future research could be on the genera-
tion of a DL model where the pixel characterization layer could be added 
to the DL models presented here or a YOLO based model. Also, handling 
a different image size can be an interesting experiment to evaluate when 
using an upscale image size which, in turn, could help DL models to 
better learn blurry regions. Another aspect that could be considered for 
future work is in the creation of a process that can automatically extract 

all the images contained in a big sample image and automate the 
counting process for the whole batch. 
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5.3 Summary. 

The information presented in this chapter exhibits the achievement of establishing a 

predicting model capable of identifying neurons but also dynamic enough to identify other 

types of cells. It also described image processing techniques that helped deep learning 

models enhance their predicting capabilities. 
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CHAPTER VI -  AUTOMATICALLY COUNTING NEURONS. 

6.1 Introduction.   

In this chapter it is described a system that is designed and built to automate cell counting 

task based on the deep learning model conceived previously. With this, the third research 

objective is fully addressed. In addition, this section presents some images of the key 

functionalities built-in in the application. 

6.2 System implementation.  

For building a system that is capable of performing cell counting automatically and, for 

instance, help laboratory technicians evaluate the effectiveness of treatments, several 

factors were considered but the most important aspects to decide how the system was built 

are: programing language and technology used for the deep learning model, time available 

for system development, cost and available technological infrastructure, the familiarity of 

users with technology and computer systems in general, and human interface factors. 

 The deep learning model was built with PyTorch using python programming 

language. Despite having utility packages that permit PyTorch models to be exported and 

be used in a mobile application, just the model size is big enough, 200 megabytes, to 

discourage the creation of a mobile application. This factor, along with the foreseen user 

interaction gathered by previous application and the need of having a screen big enough to 

easily see the details of the images, makes this option unfeasible. 

With the pervious factors in mind, the alternative of creating a desktop application 

was evaluated, however because of the diversity of operating systems used in the 

pharmacology department and the lack of time to setup a working environment on each 

individual computer this option was later discarded. 

In this way, to avoid incurring expensive traditional client-server applications, it was 

identified that the system could be packaged in a Docker container. Given that Docker 

containers can run on operating systems used in pharmacology department and can have 

installed in them the programming language needed to run the deep learning model, it was 

conceivable these factors would permit, from a time constrain perspective, an easy 

environment setup and application development. 
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 With these features in mind, it was decided to build a containerized client-server 

application, named Cell Counter, were the most straight forward way to use this model is in 

the direction of porting the code inside a backend server. Following this venue, the base 

image of container is created out of python-slim 3.7 version, the backend server application 

is built using Flask python library, where the backend application oversees the heavy-lifting 

task of image pre-processing, image analysis for cell identification and the return of cell 

location according to their pixel coordinates. The client application is built using HTML and 

JavaScript technology, it oversees the display of the image provided by the user, sends the 

image to the backend, receives the cell location, displays markers for each of them, and 

displays the total count of identified cells. 

However, due to time constraints, the registration with INDAUTOR is still pending, 

hence no further technical diagrams are presented here. 

6.3 System usage.   

In this section it is briefly explained the steps for accessing the main functionality provided 

in Cell Counter application. 

1. When the application is run with Docker, the application becomes available in a 

standard web browser as show in Figure VI-1 
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Figure VI-1. Cell Counter application. Source own creation 

2. The user then drops the image to be analyzed, drags the red square to the target region 

of interest and clicks the gear icon to set the region for the cell identification process as 

shown in Figure VI-2. 

 
Figure VI-2. Selection of region of interest. Source own creation 

3. When the user clicks on the pin-point icon, the system analyzes the image. The Figure 

VI-3 shows the result of the cell identification process where the user can adjust the results 

by removing wrongly detected cells with the usage of the eraser icon or adding any 

missing ones with the pencil icon. 
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Figure VI-3. Cell identification and adjustment. Source own creation. 

4. When the user click the back button, the system takes the user to previous window and 

lets the user select a new region of interest as shown in Figure VI-4. 

 

 

6.4 Summary.   

This chapter described the implementation of the Cell Counter application, which helps 

laboratory technicians to automatically count neurons and with this, the third research 

objective is fully accomplished.  

Figure VI-4. Selection of a new region of interest. Source own creation. 
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CHAPTER VII -  3D RECONSTRUCTION OF BRAIN AND ITS VIRTUAL 

REALITY PRESENTATION. 

7.1 Introduction.   

In this section the reader can know the details of how a series of histological images were 

used to perform a 3D reconstruction of the brain and how this brain representation was used 

in a virtual reality application. Therefore, effectively satisfying the fourth and fifth research 

objective. 

 

7.2 Brain reconstruction.   

3D reconstruction is known to be an ill-

posed problem since no information of 

the true shape to be reconstructed is 

known a priory. Hence, having images 

alone does not provide any 

information about the true shape of the 

final structure, even with an image 

registration process (Pichat et al., 

2018). Therefore, having no prior 

knowledge of the true shape can 

cause bad 3D reconstructions 

because of the “banana problem” or 

“z-shift”, which is defined as the 

undesired tendency to straighten 

curved structures by the optimization 

of individual images (Lobachev et al., 

2021). Figure VII-1 illustrates the “banana problem”. 

3D reconstruction based on histological images, need not only to address this, but 

must also take care of the loss of continuity due to volume slicing, the peculiarities found in 

Figure 7.1. The “banana problem” where, in an attempt 

to maintain a better similarity to neighboring pixels, it 

produces large distortions of the real image and tends 

to create ellipsoids through pairwise alignment of 

adjacent slices. Image obtained from Lobachev et al., 

2021. 

Figure VII-1. The "banana problem". In an attempt to 

maintain a better similarity to neighboring pixels, it produces 

large distortions of the real image and tends to create 

ellipsoids through pairwise alignment of adjacent slices. 

Image obtained from Lobachev et al., 2021. 
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the images produced by histological procedure itself, and the amount of images available 

since too few images will not produce a meaningful reconstruction. 

 Having this information, the initial target of the 3D reconstruction effort was focused 

on hippocampi only. The main problem faced when collecting images was that not enough 

serial images of the expected quality could be provided on time by the pharmacology 

department. Because of this inconvenience, several alternatives were evaluated. 

 First, state of the art articles that talk about the 3D reconstruction of the hippocampus 

were searched with the intention of asking the authors for the image dataset that was used, 

but to the best of the effort, too few articles were found. Nevertheless, the corresponding 

authors were contacted but it was not possible to get the datasets because of a different 

number of reasons such as confidentiality, license agreements or simply an answer was not 

received. 

 Then, it was decided to search for image dataset available online. Again, to the best 

of the effort, no feasible dataset was found for histological images of hippocampi. Because 

of the observed results, the effort was re-oriented towards brain image datasets. When 

searching for available brain image datasets, a small number of them could be located, but 

finding only mice brain MRI datasets and a Nissl-stained histological dataset of a single 

mouse. The problem faced with MRI datasets was not only the size of if, 97 GB per dataset, 

which translates into an enormous effort to get the ground truth from it but also the lack of 

an expert to properly establish which of the structures belong to the brain. Finally, when the 

Nissl-stained images were analyzed, it was determined that they could be used to recreate 

a 3D brain structure. 

 The Nissl-stained image dataset belongs to the Allen Brain Institute (Dong, 2008) 

and it was obtained using their Allen SDK package (Allen Institute for Brain Science & Allen 

Institute for Cell Science, 2021) with a download sample factor of 3. The dataset is 

constituted by 509 histological images of different sizes, ranging from 568x538 pixels to 

1398x1140 pixels, where slices were approximately spaced at 26 µm. 

 To perform a 3D reconstruction of the brain, three main stages were conceived. The 

first stage involves an image pre-processing process to standardize them, the second stage 

encompasses a set of image processing steps that obtains the main shape representing the 
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brain, and the final stage puts together the brain shape and displays it in its 3D 

representation. 

 The pre-processing phase accounts for the “z-shift” problem too. Here, images are 

first sorted from anterior to posterior order, then file images are made the same size by 

making smaller image files have the size of the largest one but conserving their original 

image proportions by padding them with white color and then are manually relocated. 

Because histology process can cause the tissue to tear, fold or simply stretch or shrink, 

images that are too shrunken or stretched in shape and do not provide a smooth continuity 

of brain shape are removed, leaving only 443 images in the dataset. Finally, the ground truth 

for the brain is acquired. This process is illustrated in Figure VII-2. 

a) 

      

b) 

      

c) 

     

 

Figure VII-2. Preprocessing phase. a) original images obtained from Dong, 2008. b) sorted original images with 

their file size standardized and padded with white color. c) Removed bad quality images, ground truth source is 

presented by denoting non-brain structures with black color. Images from b) and c) were produced by this work. 

Black squares on the edge of images a) and b) were added for file size visualization purposes. 

 In the second stage of the brain reconstruction, the following steps are implemented 

to acquire its main shape. First, brain masks are gotten by binarizing the images attained in 

previous phase. To reduce the uneven edges caused by binarization, two opening 

morphological operators with an elliptical kernel size of 5x5 are applied and this is followed 

by a closing operator with the same kernel. Then, to further remove any noise expressed as 

isolated blobs, small structures equivalent to an area of 190 are ignored, that is, structures 

less than ~14x~14 pixels. Next, the brain contour is computed on all images, and for each 

image, every n pixel is extracted to constitute the representation of the brain slice, in this 

case with n=14. To visually assess what a nice representation of the brain looks like using 
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as little data as possible and without losing important details, this process is repeated but 

with a downscaled image of size 500x408 pixels and using an n of 1, 2, 4 and 14. The result 

of this process is illustrated in Figure VII-3. For this work a file size of 1398x1140 with an n 

= 14 is chosen. Finally, the extracted pixels are stored in a file in obj format where each pixel 

represents a vertex, and each image along with its extracted pixels constitute a face. 

 
a) 

  
b) c) 

  
 e) f) 

Figure VII-3. Contour extraction. Sampling results with an example image, red circles denote important image 

details observed with different n selection. a) Image size of 1398 x 1140 and n=14. b)-f) Image size 500 x 408 

with n=1, 2, 4, 14 respectively. Images a)-f) produced by this work. Source own creation. 

 For the final stage, the obj file is processed and for each face in the file all its vertexes 

are joined sequentially with a straight line. To give the impression of a 3D perspective, faces 

further away from the user perspective are painted with darker colors while faces closer to 

user perspective are painted in lighter colors. Finally, the well-known rotation matrix 

formulas are computed to rotate vertexes and display the reconstructed brain shape in 3D 

visualization. Sample 3D reconstruction perspectives are presented in Figure VII-4. 
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a) b) 

  
c) d) 

Figure VII-4. Brain reconstruction. A Sample 3D brain reconstruction using n=14. a) superior to inferior 

perspective. b) a slice of an MRI mouse brain presented here for comparative purposes with approximately the 

same orientation and obtained from Badea et al., 2007. c) inferior to superior perspective. d) posterior to anterior 

perspective. Source own creation. 

7.3 VR application.   

The main technical factor for building a VR application was the cost of VR headsets and 

programing language. Despite good quality headset available in the market, acquiring them 

would result in higher costs that expected, for this it was decided to buy a generic VR 

headset having the advantage that any future upgrade in the system would not incur it to be 

locked-up in costly proprietary hardware.  
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The selected VR headset has a field of view range of 90° - 120°, it has two 40mm 

diameter HD resin aspherical lens and as most common generic headset, an adjustable 

inter pupillary distance of 60-70mm, an adjustable focal distance of 37.5-46.5mm, a button 

to click the screen and it is capable of holding smartphones from 5.5” to 7.2” however, the 

VR headset does not contain any sensor itself. Having established the generic VR headset 

to be used, the next factor to be decided is the programming language. Given that the VR 

headset needs a mobile phone, two options are naturally offered, Android or iOS and with 

them the programming language. Since previous applications were developed with Android, 

it was decided to continue with this venue to expedite the development effort. 

The Android application was built using an API target of 27 and due to time 

constrains it was not considered the usage of other third-party frameworks such as Unity for 

building the 3D scene. To provide an immersive experience the application interacts with 

the gyroscope sensor to detect head movements. Movement detection is then translated 

into interactive actions such as brain rotation or scene navigation. One consideration to have 

in mind is that to emulate depth illusion, VR applications need to display two images, one 

for each eye, to help create a 3D experience. For this, the screen is logically divided into 

two sections, one for each eye, and the same image is presented to each eye. 

The VR application provides three main functions, a 3D Brain Explorer, a Tissue 

Navigator, and a Credits section. In the 3D Brain Explorer, the user can visualize the brain 

reconstruction through VR experience. In the Tissue Navigator, the user can see each of 

the images that were used to construct the brain and their approximate correspondent depth 

location. Finally, the Credits section provides information about the research institution. 

7.4 System usage.   

In this section it is briefly explained the steps for accessing the main functionality provided 

in VR application, but before interacting with the application through the VR headset, the 

user needs to adjust the focal and pupil distance to get a clear image. To achieve this, the 

application is started first and then the smartphone is placed in the mobile compartment of 

the headset. Once this is done, the user can wear the headset and adjust the focal and pupil 

distance to obtain a clear image. Finally, when the user is ready, the user can click the 

headset button to begin with the VR experience. Because of paper size constraint, in this 
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section only Figure VII-5 is presented with the two images needed to create the depth 

appearance.  

Note: In this section, except otherwise noted, all brain reconstructed images were created 

in this work. All avatar user images were created in this work based on https://icon-

library.com/icon/virtual-reality-icon-6.html.html>Virtual Reality Icon # 228757. All 

histological images shown here were processed in this work, but original images were 

obtained from Dong, 2008. All brain MRI images shown here were obtained from (Badea et 

al., 2007).  

1. Figure VII-5 show the first scene which helps the user to adjust the headset settings to 

get a clear image.  

 
Figure VII-5. 3D reconstruction presented in VR. The 3D brain reconstructed with anterior to posterior 

perspective in a VR experience. Source 

2. The main menu for VR application is shown in Figure VII-6. Here, head movement is 

translated into user movement through the menu scene which lets the user choose the 

desired menu option when clicking the headset button. 
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Figure VII-6. Main menu scene. The red circle acts as a pointer that helps the user locate herself in the scene 

and navigate it. 

3. To go to the 3D Brain Explorer in VR application, the user needs position herself on the 

small 3D brain menu item and click the headset button as shown in Figure VII-7. 

  
 Figure VII-7. Selection of 3D Brain Explorer. The user turns right to move the red circle and positions it over 

the menu item. The menu item turns its color to blue to indicate that this has become enabled. 

4. In the 3D Brain Explorer head movement is now interpreted as brain rotation movement. 

Figure VIII-8 displays several examples of the brain rotation caused by the head 

movement. 
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a) 

 
 

b) 

 

 
 Figure VII-8. VR Interaction with 3D Brain Explorer. a) Turning right. b) Turning up and left. To go back to the 

main menu, the user must click the headset button. 

5. Being in the main menu, to go to the Tissue Navigator in VR application, the user needs 

position herself on the histology image and click the headset button as shown in Figure 

VII-9. 
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Figure VII-9. Selection of Tissue Navigator. The user turns right to move the red circle and positions it over 

the menu item. The menu item turns its color to blue to indicate that this has become enabled. 

6. In the Tissue Navigator, head movement is used to position the cursor and navigate 

forward or backward through the set of images used in this research. Figure VII-10 

displays several examples of this functionality. 

a) 

 

 

b) 
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c) 

 

 
 Figure VII-10. VR Interaction with Tissue Navigator. The vertical red line indicates the approximate depth of 

the displayed image. a) Main screen. b) Turning right. c) Turning left. To go back to the main menu, the user 

must click the headset button. 

7. Being in the main menu, to go to the Credits section, the user needs position herself 

on the university logo and click the headset button as shown in Figure VII-11. 

  
Figure VII-11. Selection of Credits section. The user turns right to move the red circle and positions it over the 

menu item. The menu item turns its color to blue to indicate that this has become enabled. 

8. In the Credits section, head movement is used to move across the scene. Figure VII-

12 shows the logo of the institution where this research was made and the student 

information. 
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a) 

  

b) 

  
Figure VII-12. VR interaction with Credits section. a) User turns left to see the university logo. b) User turns 

right to see developer information. 

7.5 Summary.   

The fourth and the fifth research objective is effectively accomplished by the brain 

reconstruction and the implementation of the VR application shown here, thus successfully 

accomplishing all research objectives established in this work. A good direction for future 

improvement revolving brain reconstruction can be towards incorporating a mechanism to 

quantitatively measure the accuracy or smoothness of the brain representation. Likewise, 

the VR application can be enhanced by presenting the 3D brain reconstruction with a mesh 

and texture or even detecting what are the major brain structures being observed by the 

user and then show contextual information. 
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CHAPTER VIII -  CONCLUSION. 

In this work, several algorithms used in artificial intelligence have been implemented on the 

analysis of hippocampus histological images with the intention of helping make the work 

done by scientists more effective and efficient. 

It has been shown that rat hippocampus can be detected in histological images using 

machine learning algorithms. Furthermore, it has been described how with the assistance 

of these algorithms, new applications can be built to simplify and expedite hippocampus 

area and volume measurement. 

Similarly, it has been demonstrated that neuron identification can be accomplished 

even in the densest areas of rat hippocampus by employing convolutional neural networks, 

and with this, it has been presented an application that automates cell counting. This type 

of application can, for instance, effectively shorten the measurement effort of drug 

effectiveness in treatments against ischemic strokes. 

Finally, an innovative and alternate proposal to analyze and study the brain has been 

suggested with the building of a virtual reality application that displays a brain in its 3D 

representation and allows an interactive visualization of its histological images. With this, 

medical students could benefit from a more dynamic way to visualize and interpret the 

information available in simple historical images. 

Concretely, contributions to computer vision are: 

• An image processing algorithm to produce pixel characterization that represents 

hippocampus. 

• A multilayer perceptron model capable of discriminating hippocampus pixels. 

• A convolutional neural network architecture skilled in identifying neuron cells. 

• An image processing algorithm that builds a 3D brain representation out of 

histological images. 

Contributions to computer science are: 

• A procedure to bring a machine learning algorithm into an edge dispositive to create 

a functional application that facilitates hippocampus area measurement. 
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• A procedure to bring a convolutional neural network architecture into a containerized 

client-server application that automates cell counting. 

• A procedure to bring a 3D image into a VR application. 

8.1 Future work.   

There is always room for enhancements and this work is not the exception. As artificial 

intelligence is evolving at unprecedented rate, the work presented here can be enhanced 

and leveraged to continually provide better tools to the scientific community which can result 

in having a positive impact on the health of people. 

 Measuring hippocampus area or volume is a key indicator for different studies but to 

achieve this, the hippocampus must be located first. In this topic, alternate artificial 

intelligence algorithms could be explored to achieve even higher accuracy scores and make 

the analysis process even easier. 

 Regarding cell detection and its count automation, this area can benefit from or 

creating a new deep learning model architecture or incorporating an online learning 

mechanism that makes the deep learning model more robust as the application is used thus 

constantly increasing its accuracy and effectiveness.  

Correspondingly, in the brain reconstruction subject, future improvements can be 

focused on incorporating a mechanism to quantitatively measure the accuracy or 

smoothness of the brain representation. The VR application could improve its 3D brain 

presentation by displaying it with a mesh and texture but perhaps more importantly 

enhancing the VR application so that medical students could benefit from a more dynamic 

learning experience, for instance, displaying contextual information when observing specific 

brain structures. 
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