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Resumen

El problema de composicién de formas cuadraticas, originado por la férmula de Euler, nos dirige
a hacernos algunas preguntas, la primera es: ;Para qué dimensiones pueden existir dichas sumas
de cuadrados? Las siguientes preguntas involucran la clasificacion y el andlisis de las formas
cuadraticas relacionadas en una férmula de composicién. Histéricamente, se ha encontrado una
conexién entre férmulas de composicién y mapeos bilineales sobre esferas, donde dichos mapeos
sobre esferas aportan una clase de homotopia de esferas. El objetivo principal es continuar con el
trabajo desarrollado hasta ahora en la biisqueda de nuevos mapeos bilineales ya sean no singulares
o normados asociados a férmulas de composicién, asi como clasificar mapeos tanto nuevos como
algunos ya existentes. Esto tdltimo ayudado por Cobordismo enmarcado, la cual es una
herramienta reciente no muy utilizada para lidiar con este problema. La nocién de cobodismo
consiste en un método para clasificacién de variedades mediante una parametrizacién llamada
marco. Este estudio se relaciona con ciertos grupos de homotopia a traves del calculo del grupo
de cobordismo no orientado, dicho cédlculo seguido por algunos pasos que, a la vez proveen un
nuevo algoritmo para resolver el problema presentado para grupos finitos. En este trabajo exploto
las propiedades de este método aplicadas en mapeos existentes y entonces clasificarlos (es decir,
encontrar la clase de homotopia representada por el mapeo) mediante los resultados sustentados
por el cobordismo enmarcado. Siendo mas especifico, trato con variedades enmarcadas asociadas
a un mapeo bilineal, en concreto, el mapeo de contrucciéon de Hopf de un mapeo bilineal dado,
ya sea no singular o normado, obtenido por la operacién del producto en estructuras algebraicas
superiores.



Abstract

The problem of composition of quadratic forms, originated from Euler’s fomula, addresses some
basic questions, the initial question is: For what dimensions can such sums of squares formulas
exist? Subsequent questions involve classification and analysis of quadratic forms which can occur
in a composition formula. Historically, a connection has been found between composition formulas
and bilinear maps on spheres, and such bilinear maps gives a homotopy class of spheres. The main
objective is to continue on with the work developed all along in search for new nonsingular or
normed bilinear maps associated to composition formulas, also to classify both new and existing
maps. This aided by Framed cobordism, which is a recent tool not quite used before to treat
this problem. The notion of cobordism consists in a method to classify manifolds, this by using
a parametrisation called frame. This study is related with certain homotopy groups through the
computation of the unoriented cobordism groups, whose computation is followed by a couple of
steps, these steps provide a new-fashioned algorithm to solve the problem for finitely-presented
groups. In this work I exploited the properties of this method, applied to existing mappings and
then made their the classification (i.e. to find the homotopy class represented by the mapping)
through the results supported by framed cobordism. To be more specific, I treated with framed
manifolds associated to a bilinear map, namely, the Hopf construction map of a given either
nonsingular or normed bilinear map, obtained through the product operation of elements on
further algebraic structures.



Introduction

In algebraic topology the classification of continuous maps between spheres has been a basic
problem for the last 50 years. Despite of the fact that the sphere intuitively involve a simple space,
the experience has shown that the computation of the homotopy groups of spheres 7, ;(S™) is
hard as in any branch in mathematics. However there are some remarkable breakthroughs in
the subject such as the EHP sequence and the spectral sequences of Serre and Adams. Henri
Poincaré exploited an alternative idea, namely cobordism.

The main objective of this work is to use the tools developed by the cobordism theory used by
K. Y. Lam and H. Rodriguez [14], [24] in order to classify bilinear maps between spheres which
is based on the computation of a homology invariant called the Arf-Kervaire invariant which
essentially determines whether the homotopy class representing the bilinear map is trivial or not.

In Chapter 2 we introduce the basics on cobordism and vector bundles to construct one of
our main objects of study, the framed cobordism ring besides of its relation with the homotopy
problem through the Pontrjagin—Thom theorem establishing an isomorphism between the framed
cobordism ring and the stable homotopy group of spheres.

In Chapter 3 we define the Arf invariant and then proceed to the construction of the particular
case of the Kervaire invariant developed by Pontrjagin [20] for surfaces of genus g.

Chapter 4 deals with an introduction to the Cayley-Dickson algebras. These algebras con-
stitute a generalisation of the already known normed algebras R, C, H and K which are used to
construct new bilinear maps such as the modified polynomial multiplications.

Finally, Chapters 5 and 6 present how the framed cobordism tools take form to classify two
kinds of bilinear maps: nonsingular and normed. The two kind of maps are taken as survey from
Lam [14].

0.1 The Composition Formula Problem: Historical Review

A brief review about the theory of composition of quadratic forms over fields can be associated
with the old problem of searching for n-square identities of the type:

2, .2 2v(02 2 2 2, .2 2
(@ +ag+-+a)i+y+ ) =+ + 0+ 2)
where X = (z1,22,...,2,) and Y = (y1,¥2,...,yn) consist of systems of variables and each

2 = zx(X,Y) is a bilinear form in the variables X and Y.
For example if n = 2 there is the ancient identity:

(l’% + 1’%) : (3/% + y%) = (z1y1 + x2y2)2 + (T1y2 — x2y1)2.
In this case, 21 = z1y1 + xoy2 and zo = x1y2 — xoy; are the bilinear forms in X and Y with
real coefficients. Such a formula can be interpreted as the law of moduli for complex numbers:
la] - |B] = |af| where a = z1 + x2i and § = y1 + yai.
A similar formula was found by Euler (1748) in his attempt to prove the Fermat’s conjecture
that every positive integer is a sum of four integer squares. This occurs for a 4-square identity:
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(w] + a3 + a3 +xg) - (Y7 +ys 3 +yy) =21 +25 +235 + 25
where

Z1 = T1Y1 + T2Y2 + T3Y3 + Tays
Zg = T1Y2 — T2Y1 + T3Y4 — Tay3
23 = T1Y3 — T2Y4 — T3Y1 + Tay2
Z4 = T1Y4 + T2Y3 — T3Y2 — T4Y1,

and some time later, it was Hamilton (1843) who discovered this 4-square formula interpreted
as the law of moduli for quaternions. Some mathematicians spent years searching for more of
these identities like Legendre, who proved the impossibility of a 3-square identity. John Graves
discovered an algebra of octaves, the multiplication of these elements satisfies the law of moduli
and gives rise to a 8-square identity, which eventually would be introduced as the elements in the
algebra of Cayley numbers.

It was until 1898 when Adolf Hurwitz [11] proved that there exists an n-square identity with
real coefficients if and only if n = 1,2,4 or 8. At the end of the paper Hurwitz posed the general
problem: For which integers r, s, n does there exist a composition formula (or a formula of size

[r,s,n]):

(@i a2+ Fa) - (i+m+ ) = Attty

where X = (z1,29,...,2,) and Y = (y1,¥2,...,ys) are systems of indeterminates and each
zr = z,(X,Y) is a bilinear form with real coefficients X and Y?

In an attempt to determine such integers r,s and n. Johannes Radon (1922) developed a
function that actually determines the exact conditions on particular integers r and n for the
existence of a [r,n,n] formula over the real field R while this very same condition was found
independently by Hurwitz for formulas over the complex field C. This condition is known as the
Hurwitz-Radon Theorem and stated as in Bochnak [5] (as well as the proof):

Theorem 0.1. A formula of size [r,n,n] exists if and only if r < p(n).

Where p(n) represents the Hurwitz-Radon function and is defined for intergers n = 24+n
where ng is odd and 0 < b < 3, then p(n) = 8a +2°. There are several different ways this function
can be described, for example:

2m + 1 if m =0,
If n = 2™ng where ng is odd then p(n) = < 2m if m =1, 2, ( mod 4).
2m + 2 if m = 3,

In particular, p(n) = n if and only if n = 1,2,4 or 8, as seen in Hurwitz’ theorem. Also p(16) = 9,
p(32) = 10, p(64) = 12 and general calculations display p(16n) = 8 + p(n).

Some of the new proofs of the Hurwitz-Radon Theorem for composition formulas of size
[, n,n] show applications of matrix methods such as representations of Clifford algebras, gener-
alisations to quadratic forms over arbitrary fields and others are motivated by geometry problems
to classify the type of solutions. Some recent studies on Hurwitz’ theorem are compiled by Shapiro
[27] for arbitrary quadratic forms over any field of characteristic # 2 which admit composition.



0.2 Preliminares on Bilinear Maps

Let us describe the two main types of maps and some of their pertinent features which we are
about to study all along this work.

Definition 0.1. Consider a bilinear map f : R" x R® —» R™.
- f is said to be nonsingular, if f(x,y) = 0 implies z = 0 or y = 0.
- We say the map is normed if it satifies || f(x,y)|| = ||z|| - ||y|| for every (z,y) € R" x R".

- The Hopf construction map associated to a nonsingular map f is defined as the map H =
Hy : R™5\{0} - R™"*1\{0} given by:

H(z,y) = (||=]]> = llylI?, 2/ (2, ).

From these definitions we can notice that the Hopf construction map is nonconstant which is
an important feature for this kind of maps and it turns out more interesting how we can restrict
a Hopf construction map to the unit spheres i.e. Hy: S™"™"1 — S" since R¥\{0} and S*~1 are
homotopy equivalent. Moreover, by applying this idea to normed bilinear maps we can establish
how, in particular, the multiplication of complex numbers, quaternions and Cayley numbers
provide us examples of maps R" x R® — R" for n = 2,4, 8, respectively and their associated
Hopf maps are the classical Hopf fibrations $2"~! — S™ for n = 2,4, 8. Thus, the existence of a
normed bilinear map R” x R% — R"™ is equivalent to the existence of a formula for the product of
sums of squares type as a formula of size [r, s,n] as seen at the previous section.

In the search for a size [r, s,n] of a composition formula consider 7 * s to denote the smallest
positive integer n such that there exists a normed map from R" x R® — R"™ and in a similar
fashion let r#s denote the smallest positive integer n such that there exists a nonsingular map
from R" xR® — R™. Since the class of nonsingular maps is larger than the normed maps we obtain
r#s < r#*s. The proof for this and some other properties and values already found between 7 * s
and r#s are detailed in Bochnak [5].

There are some sizes for a [r,s,n] formula which can be eliminated by applying algebraic
topology to the problem. Stiefel and Hopf used those topological connections to heighten the
interest in the study of composition formulas such as the theory of characteristic classes of vector
bundles developed by Stiefel where we can find the Stiefel-Hopf Condition. On the other
hand, some observations made by Hopf showed how the mormed bilinear maps induce maps
between spheres. Moreover, this notion can be extended to a larger class of bilinear maps,
namely nonsingular, as it was established by K. Y. Lam. So, the tools provided by Stiefel and
Hopf exhibit a more sophisticated method to study nonsingular bilinear maps. Of course aided
by algebraic topology and K-theory.



Chapter 1

Framed cobordism and its relation
with homotopy groups of spheres

Cobordism is a notion which can be traced back to the end of the 19" century with Henri Poincaré
in his study of homology theory using smooth manifolds. One of the main ideas on cobordism is
to extract algebraic structures from smooth manifolds. The modern theorems identify these alge-
braic structures explicitly. In cobordism theory: cycles are replaced by closed smooth manifolds
mapped continuously into a topological space say C and chains by a compact smooth manifold
X and a continuous map X — C'; the boundary of this chain is the restriction 0X — C to the
boundary. Finally, the cobordism invariants constitute homomorphisms from a cobordism group
(category) into an abstract group (category) used to extract information in two ways about the
domain or codomain. This is our motivation to study cobordism.

1.1 Basics on Cobordism

This chapter contains the basics notions to introduce the main tools provided by Framed Cobor-
dism in order to classify manifolds and how much is related with our work.

Manifolds will be consider as smooth, compact and closed, unless otherwise specified. To have
a deeper review on the basics for smooth manifolds see Guillemin-Pollack [8] or Lee [17].

Definition 1.1. Two n-dimensional manifolds M and N are said to be cobordant, or to belong
to the same cobordism class, if there exists a (n + 1)-dimensional manifold-with-boundary X
such that 0X is diffeomorphic to the disjoint union M u N).

This cobordism notion is sometimes called un-oriented cobordism due to the fact that there
is no emphasis on the orientability of the manifold. Moreover, “to be cobordant” or “to belong
to the same cobordism class”, as is pretended, establishes an equivalence relation. Just recall the
gluing property for manifolds along the common boundary to prove it.

Now let us consider the set of all cobordism classes of n-dimensional manifolds. This set with
the disjoint union of manifolds L1 as operation constitutes an abelian group, usually denoted by
Q. The zero element of this group corresponds to the vacuous manifold.

Furthermore, if M and N are m and n-dimensional manifolds respectively, the cartesian
product map between them (M,N) — M x N gives rise to an associative operation, which
distributives the disjoint union and respects the cobordism relation and yield a bilinear product:

Qm X Qn - Qm+n.

Therefore the sequence

Qi = (Q0,Q21,90,...)



of groups of cobordism classes has the structure of a graded ring where the degree is indexed
by the dimension. This ring possesses a 2-sided identity element 1 € {2y, namely, the one-point
manifold. The unorientability notion makes 2, a commutative graded ring.

Definition 1.2. The graded ring of all groups of cobordism classes 2, is called the Cobordism
Ring.

1.2 Vector Bundles and their Application to Framed Cobordism

The first step to use topology in approach to the classification of the Hopf map associated to
a nonsingular bilinear map is to relate it with certain vector bundle on the projective space.
For instance, the called Stiefel-Whitney classes which are vector bundle invariants used in the
Stiefel-Hopf condition. This section offers a brief introduction to basic content on vector bundles.
Details for the proofs of the results presented on this section can be checked in Milnor-Stasheff
[19].

Consider B to be a fixed topological space, in terms of vector bundles B will be called the
base space.

Definition 1.3. A real vector bundle £ over B consists of:

i) a topological space F = E(§) called the total space,
ii) a continuous map 7 : E — B called the projection map, and

iii) for each b € B the structure of a real vector space in the set m~!(b) called the fibre over b.

Additionally it must satisfy the local triviality condition. This condiion states that for each point
b € B there should exist a neighbourhood U < B, an integer n > 0, and a homeomorphism:

h:UxR" - 7 1(U)

such that, for each b € U, the correspondence z — h(b, x) defines an isomorphism between the
vector spaces R™ and 7 !(b). The integer n determines ¢ to be a n-plane bundle or R™-bundle
for short.

From the definition above, in case we can choose U = B, the vector bundle £ is called a trivial
bundle. A fibre 7=1(b) over a point b can also be denoted by F}, or Fy(€).

Definition 1.4. Let £ be a vector bundle with base space B.

a) A cross-section of a vector bundle £ is a continuous function

s: B — E(§)

which takes each b € B to an element in the corresponding fibre Fj(§).
b) A cross-section is nowhere zero if s(b) is a non-zero vector of Fy(§) for each b € B.

c) A collection {sq,...,s,} of cross-sections of a vector bundle £ is nowhere dependent if, for
each b € B, the vectors s1(b), ..., s,(b) are linearly independent.



In terms of smooth manifolds, we can define similarly a smooth vector bundle by taking B and
FE smooth manifolds, the projection map 7 would be a smooth map, and the map A in the local
triviality condition would be a diffeomorphism for each b € U < B. The same line of thought
applies to the cross-sections to be smooth functions.

The cross-sections help us to characterise vector bundles in such a local or global way depend-
ing whether the vector bundle is trivial or not as it is shown in the following result.

Theorem 1.1. An R™-bundle £ is trivial if and only if £ admits n cross-sections s1, ..., s, which
are nowhere dependent.

Now, in order to fulfil our need to compare two vector bundles. It seems natural to say
isomorphism, as expected, since there is a notion of vector space within them.

Definition 1.5. Let ¢ and n be two vector bundles over the same base space B. We say that &
is isomorphic to 7, denoted £ = 7, if there exists a homeomorphism f : E(£) — E(n) between
total spaces which maps each fibre Fj(§) isomorphically onto the corresponding fibre Fy(n).

Example 1.2.1. Consider a trivial bundle with total space B x R™, the projection map 7 (b, x) = b
and with the vector space structure in the fibres defined by:

tl(b, .561) + tg(b, xg) = (b, tixy + tQ:L‘g),
denoted by €%. Then, given a R"-bundle over B is trivial if and only if it is isomorphic to €%.

Example 1.2.2. The tangent bundle Tp; of a n-dimensional smooth manifold M consists of:

e the total space E (7)) is the manifold DM, the set of all pairs (z,v) with x € M and v
tangent M at =z,

e the projection map m: DM — M defined by m(z,v) = x, and

e the vector space structure in 7 !(z) defined by:

tl(IE, Ul) + tg(.T, 1}2) = (l‘, tiv1 + tQ’UQ),

If the tangent bundle 73/ is trivial, then the manifold M is called parallelizable. A cross-section
of the tangent bundle of a smooth manifold M is usually called a vector field on M.
The unit 2-sphere S? < R? provides an example of a manifold which is not parallelizable.

Example 1.2.3. The normal bundle v of a smooth manifold M < R" is obtained by taking
as total space E = E(v) € M x R™ the set of all pairs (z,v) such that v is orthogonal to the
tangent space DM,. The projection map 7 : E — M defined by 7(x,v) = x and the vector space
structure in 7~ !(z) as the defined in example 1.2.2.

10



Example 1.2.4. Consider the circle S' ¢ R2. We can notice that the tangent bundle of S!
admits one nowhere zero cross-section (see figure), namely, for each point z = (21, z2) € S! given
by:

3(1') = (CL',’U) = ((x17x2)7 (x27 —.%'1)).

Therefore S is parallelizable.

Figure 1.1: Nowhere Zero Cross Sections of S?.

Example 1.2.5. In a similar way we can see how the 3 dimensional sphere S% ¢ R* admits three
nowhere dependent vector fields:

s1(z) = (z, (z2, —21, 24, —73))
sa2(z) = (z, (z3, =24, —T1, 72))
s3(z) = (z, (x4, 73, —22, —71))

where x = (21, 22, 3, 24) € S°. Hence S? is parallelizable.

Remark 1.2. [t is quite interesting to have a look at the previous cross-sections which actually
are pretty related with the compler number and quaternion multiplications, this by setting the
components of these cross-sections as the entries of a matriz multiplying an arbitrary vector
obtaining as result the imaginary part of the multiplication. By adding as first row the array
(xl —.%'2) and (:L‘l —T9 —X3 —w4) for each case. We have obtained an encoded matriz which
represents the multiplication of complex and quaternion numbers in the form A - wv.

We need to pay special attention to the normal bundle of a smooth manifold that as we defined
before consists of all pairs (x,v) such that the vector v is orthogonal to the tangent space of the
manifold at z. So, it is needed to have a notion of orthogonality. This is why we are about to
introduce Fuclidean vector bundles which are vector bundles whose fibres have the structure of a
Euclidean vector space. This way allows us to determine the normal bundle of a manifold (our
goal of this section) which eventually will help us to define the so called framed manifolds.

An Fuclidean vector space is a real vector space equipped with a positive definite quadratic
form ¢ (a quadratic form will be properly introduced in chapter 3). For brief, a quadratic form
in a real vector space V' determines a symmetric bilinear form B such that ¢(v) = B(v,v) for all
v € V. The quadratic form ¢ is said to be positive definite if g(v) > 0 for v # 0 and the real
number B(u,v) is called the inner product of the vectors u and v, which for real vector spaces is
abbreviated u - v. Now we are ready to define:
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Definition 1.6. A Euclidean vector bundle is a real vector bundle £ together with a contin-
uous map ¢q : E(§) — R such that the restriction of ¢ to each fibre of £ is a positive definite and
quadratic.

The function ¢ itself will be called a Euclidean metric on the vector bundle &.

Example 1.2.6. The trivial bundle €3 can be given the Euclidean metric:

q(b, x) =$%+"'+l‘%.

Lemma 1.3. Let £ be a trivial vector bundle of dimension n over B, and let q be any Fuclidean
metric on &. Then there exist n cross-sections si,...,S, of & which are normal and orthogonal
in the sense that

5i(b) - s5(b) = 65 (= Kronecker delta)
for each b e B. See Milnor-Stasheff [19].

As we said before this review of vector bundles have the objective to introduce the so far
called a framed manifolds.

Definition 1.7. Let M be an n—dimensional smooth manifold. A trivialisation of the normal
bundle v of M is called a framing of M. The pair (M,v) is called framed manifold.

We can notice that framed manifolds are just a particular kind of manifolds, so we can proceed
to construct cobordism classes between framed manifolds, as well as the cobordism groups and
so on, just as we did at the beginning of this chapter.

In order to make it. we would need to consider the next pointers:

- Two framed manifolds (M,v) and (N,o) are framed cobordant (or belong to the same
framed cobordism class) if M and N are cobordant and the frames v and 7 are isomorphic
vector bundles. The framed cobordism class of (M, v) is denoted by [M,v].

- The collection of all framed cobordism along with the correspondence:

[M,v] +[N,o] — [M uN,v@®o],

constitutes an abelian group, denoted Qg’", where L1 represents the disjoint union whilst @
is the Whitney sum of vector bundles.

- The operation defined as [M, V] x [N, o] = [M x N, v®c| with x as the cartesian product and
® the tensor product, which distributives the Whitney sum, is associative and commutative
provides us a bilinear map between framed manifolds of any dimensions Milnor-Stasheff [19].

- This product operation allows to the sequence Qf:r = (Qgr, Q{ " ...) to acquire the structure
of graded ring.

Definition 1.8. The graded ring Qﬁ:r is called the Framed Cobordism Ring.

1.3 The Stable Homotopy Group and its Relation with Framed
Cobordism

Let us recall a very important result on homotopy theory best known as the Freudenthal sus-
pension theorem stated in a particular version:
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Theorem 1.4. The suspension map 7;(S") — 7, 1(S™*!) is an isomorphism for ¢ < 2n — 1 and
a surjection for ¢ = 2n — 1.

In more a general way the theorem establishes the isomorphism for topological spaces, specif-
ically CW complexes depending on its connectivity which is not a problem in the case of spheres.
By iterating the suspension map on spheres we get a sequence:

71'1(5”) — 7Ti+1(25n) — 7Ti+2(225n) —>

Notice that all these maps eventually become isomorphisms and then yield the stable homotopy
group, denoted 7$(S™). There is a special interest in the group 7$(S°) which is equal to 7, ;(S™)
for i +1 < 2n. This particular group is often abbreviated 7 and called stable i-stem. Some
studies about this group have shown that 7} is always finite for ¢« > 0 but in general, the stable
homotopy does not present any pattern as long as we run off the i’s.

On the other hand, the main result which binds the so far framed manifolds and the homotopy
theory, specifically, in terms of classification relies on the next theorem.

Theorem 1.5 (Pontrjagin-Thom). There is an isomorphism
= Q
for each n > 0.

This remarkable theorem is the key step which turns the homotopy problem into a cobordism
problem, and a particular result provided by Pontrjagin turns it into a homology problem. Al-
though, the homotopy problem is still far from trivial, this generalisation provides the progress
made in classification of manifolds up to cobordism.

For low dimension cases, some of the stable homotopy groups of spheres are (see Hatcher [9]):

n 0|12 3 (4|56 | 7 (8] 9 (10] 11 |12 | 13
Z ZQ ZQ Z24 0]0 ZQ 2240 Z% Z% ZG Z504 0 Zg

T,

S
n

We can convince ourselves that these stable groups do not follow an obvious pattern. However, it
is interesting how in actuality there is evidence of patterns in a deeper sense but not so uniform
by projecting 77 onto its p-components, the quotient groups obtained by factoring out all elements
of order relatively prime p. Eventually leading us to study spectral sequences but for instance we
will just keep it mentioned. For a more intensive review is recommended to check Ravenel [23].
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Chapter 2

Quadratic forms, framed manifolds
and homotopy group of spheres

In 1940 Cahit Arf introduced an invariant of quadratic forms over a field of characteristic 2
(see [2]). In the literature, this invariant is known as the Arf invariant and turns out to be an
interesting key for the solution of several classical problems in algebraic and differential topology
about the topology of manifolds. The application of the Arf invariant in topology was introduced
by Michael Kervaire as an invariant of (4k + 2)-dimensional framed manifolds and defined as the
Arf invariant of certain quadratic form on the middle-dimensional homology group Hay 1 (M;Zs2)
of the manifold M and is called the Arf-Kervaire invariant or just Kervaire invariant. This is
why the Arf invariant is the main tool to use in this work.

2.1 The Arf Invariant of Quadratic Forms

Our motivation to study quadratic forms lies on their construction since they determine maps
between Euclidean spheres. Of course,our interest will be on those maps which are not constant.
So far, the Hopf construction map consists of the most systematic construction of quadratic maps
between Euclidean spheres and the Arf invariant is the tool to classify this maps. Now, in order
to define Arf invariant we introduce some basic concepts on quadratic and bilinear forms.

Definition 2.1. Let V' be an n-dimensional vector space over any field R of characteristic # 2.

- A mapping ¢ : V — R is called quadratic form on V if for every basis {v1,...,v,} of V
there is a matrix A = (a;;) € M(R)"*" such that

n
q(x1v1 + -+ xpuy) = Z AijTxj = x" Ax.
ij=1

for all x € R™.
- Wesay B:V xV — Ris a bilinear form if for all u,v,w eV and )\ € R:
1) B(u—i—v,w) = B(u7w) —i—B(v,w).

ii) B(u,v+w) = B(u,v) + B(u,w).
iii) B(Au,v) = B(u, \v) = AB(u,v).

A bilinear form B is said to be symmetric if B(u,v) = B(v,u) for all u,v € V. And B is
called nondegenerate if B(u,v) = 0 for all v € V' implies u = 0.
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Remark 2.1. There is a condition which states that for a quadratic form q there exists a bilinear
form B such that q(v) = B(v,v) for all ve V. Moreover, it also satisfies

q(u+v) —q(u) — q(v) = 2B(u,v) for all u,v e V.

The purpose of this work on the study of quadratic forms lies on the ones taking values in
the field Zs, notice that in order to re-define a quadratic form and the associated bilinear form
this fashion, it is needed to make some changes because of the division by 2 is not allowed in this
field and the identity in remark 2.1 above turns the quadratic form into linear which contradicts
the fact of being quadratic.

Definition 2.2. We define a map ¢ : V — Zy as a quadratic form if there exists a bilinear form
B(z,y) for which:

q(z +y) +q(z) + q(y) = B(z,y). (2.1)
And a quadratic form ¢ is said to be nondegenerate if the bilinear form B is nondegenerate.
Remark 2.2. For a quadratic form q with values in Zso, the signs displayed in 2.1 are not as
important as the fact how 2B(x,y) is replaced by B(x,y). We can also check that B(x,y) = B(y, )

and B(x,z) = q(2x) + 2q(x) = 0 for all x,y € V which, for the latter identity, does not hold as
in the real case.

Finally, we are in conditions to define our main tool, the Arf invariant.

Definition 2.3. - Let ¢ be a nondegenerate quadratic form on V' with values in Zy. A set
of elements ey, f1,...,en, fn € V such that:

Blei,e;) = B(fi, f;) =0 and  B(ei, f;) = by,
is called a symplectic basis of V.

- The element in Z9 defined as:
n
Arf(q) = ) gles)q(f:)
i=1
is called the Arf invariant of the nondegenerate quadratic form q.

Some of the features around the Arf invariant Arf(g), such as the following, are stated in the
original Arf paper [2] and they can also be found in a detailed survey of Prasolov [21].

Theorem 2.3. Any nondegenerate quadratic form ¢ can be reduced to the form xyy; + -+ +
Tpyn + Arf(q) (22 + y2). Moreover, the Arf invariant Arf(q) does not depend on the choice of a
symplectic basis.

It is also seen that ¢ gives rise to nondegenerate quadratic forms gy and ¢; which have Arf(qg) =
0 and Arf(q;) = 1. Besides, by setting ¢; to be the restriction of ¢ to the subspace spanned by
the vectors e; and f; i.e. the quadratic form ¢|y, = ¢ : U; — Zy where U; = span(e;, f;) for
i = 1,...,n. In this fashion, the symplectic basis admits to be decompose the quadratic form
q=@1®- - @y, through the direct sum of the subspaces U; and now each form ¢; turns out to
be equivalent either to gy or to q;. Then we can make sense to introduce the notation:

q®---Dg=ng,
—_—

n-times

in terms of the direct sum of subspaces U; and together with the next result.
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Lemma 2.4. The quadratic forms g = qo ® qo and Y1 = q1 @ q1 are equivalent.

This shows how the direct sum of a pair of subspaces whose restriction ¢;, p; with Arf(p;) =
Arf(p;) = 1 produce a subspace with Arf invariant zero as well as it happens for the direct sum
of subspaces with Arf invariant zero.

2.2 Classification of Maps of Spheres: S"*? into S”

The purpose for this section is to offer a brief extract of the work developed by Lev Pontrjagin
[20] in his attempt to classify maps of spheres, more precisely, maps from S"** into S™. The
main contribution of his work consisted in expressing the Hopf invariant, a homotopy invariant of
maps between spheres, as a homology invariant associated to a k-dimensional framed manifold.
Moreover, he applied this technique to compute the stable homotopy groups =}, for £ = 0,1 and
2 and the particular cases of the Hopf fibrations S® — S2 and S7 — S*.

The classification of maps of $"2 into S™ is based on the construction of a homology invariant
§(M,U) of the 2-dimensional framed manifold M in the Euclidean space E"*2 taking either of
the values 0 or 1. The construction of ¢ is described as follows:

Let U(x) = {u1(z),...,un(z)} be an orthonormal frame for a 2-dimensional manifold M and
let C' be a smooth simple and closed curve on M. Denote uy1(z) the unit normal vector to C'
touching the surface M at the point x € C' and set V(z) = {u1(x), ..., up+1(2)}.

The invariant 0 is defined for 1-dimensional manifolds (C, V') and denoted by d(C'). Suppose
that M is a connected surface whose genus we designate by g. There exists a system of smooth
simple closed curves Ay,..., Ay, Bi,...,B, such that A; and B; intersect at a single point,
i =1,...,9, but no two other curves intersect at all. As result:

S(M,U) = i 5(A:)5(By).
i=1

is a homology invariant of the framed manifold (M,U). We can notice how this invariant ¢
looks similar to the Arf invariant saw at previous section. However, § takes values on curves.
It turns out that ¢ is actually the Kervaire invariant of a 2-dimensional framed manifold i.e.
0(M,U) = Arf(q) with ¢ being a quadratic form defined on Hy(M;Zs).

The more important details on the construction of the invariant § are explained next. Let M
be an orientable surface i.e. a smooth closed and orientable 2-dimensional manifold, and let N
be a curve, meaning a smooth closed 1-dimensional manifold. Let f be a regular map of N into
M such that no three distinct points of N are mapped to the same point of M. Let C' = f(N)
be a curve on M, a point of the form x = f(a) = f(b) with a # b is called a double point of C.

Consider a curve C on the surface M to be nullhomologous (or more precisely nullhomologous
mod 2), denoted C' ~ 0 or C' = AG, if there exists an open set G on the surface M such that
C = G — G and that in any neighbourhood of a point € C' there are points of M not belonging
to the closure G.

Let Cy = fi(N) and Cy = f2(N) be two curves on M such that the double points do not
belong to the other and at each point of intersection of the two curves the tangents to them are
nonparallel. In this case C'; U C5 is again a curve and it is said that C'y and Cy admit addition
and conveniently written Cy + Cs for C7 U Cy. Of course, we can notice how the intention of these
notions is to establish an equivalence relation of smooth closed curves on M. Indeed, if C; = AG;
and Cy = AG5 and admit addition we can define the relation C; ~ Cy by Cy + Cy = AG, where
G = (G1 U G3) — (G1 N G2). Apparently this relation makes sense only if the curves C; and Co
admit addition. However, we can find a curve C] such that C{ ~ Cy via a homotopy between
the curves C7 and Cf. In other words, if there are two curves that do not admit addition we can
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enlarge one of them along M to get a pair which that do. As a geometrical interpretation of the
equivalence classes of the relation ~.

The totality of all these classes is called connectivity group of the surface M. As expected,
if z1, z9 represent the curves Cq and Cs which admit addition then the class defined z = z1 + 29
represents the curve C7 + Cy. The associativity law for elements zi, z9, z3 can be checked by
transitivity of admitting addition relation and the associative law on (C7 + C) + C3 = AG
where:

G = [(Gl & Gg) v Gg] - [(Gl M GQ) M Gg].

The identity element of this group consists of the null class zy representing the nullhomologous
curve C' ~ 0 and the inverse element of any z representing a curve C' = f(IN) will be the one
which represents the reversed oriented curve —C. This makes the connectivity group, as its name
suggests, a group which can for short be denoted by A! = A'(M).

Definition 2.4.

- A finite collection of curves C1,...,C, on M is called a homology basis if given any curve
C on the surface M, we have a relation:

C ~ Zq: €Cs,
i=1

where ¢;, =0 or 1 mod 2 and the coefficients ¢; are zero whenever C' ~ 0.

- Let C7 and C5 be two curves on M admitting addition. We define the intersection index
between two curves, denoted I(Cq,C5), as the number of points of intersection of C; and
C5 reduced mod 2.

Notice that:
I(C1 + C3,C3) = I(C1,C3) + 1(Cy, C3),

that is, the intersection index behaves as a bilinear map. Moreover C; ~ 0 implies I(C1,C3) =0
meaning that the nullhomologous class of curves do not intersect any other, as expected. It also
satisfy that if C; ~ Dy and Cy ~ Do, then I(Cy,Cy) = I(D1, D) i.e. I is well-defined. We can
use this intersection index in terms of the elements in the connectivity group, if 21,22 € Al and
Cy € z1, Co € 29 then, defining (21, z0) = I(Cy,C3), we obtain a well-defined intersection index
of two homology classes.

This is how we get to the most known notion of a canonical homology basis.

Definition 2.5. For a genus g closed surface M, a set of curves Ai,..., Ay, B,..., By such that

I(AZ‘,AJ')ZI(BZ',BJ')ZO and I(Ai,Bj)Z(sij;i,jZL...,g
and is called canonical homology basis.

Example 2.2.1. Consider the 2-dimensional torus 7 = S' x S! built up as the quotient space
of the square [0, 1] x [0,1]. The opposite sides of the square form the curves Aj, As and B, Bo
satisfy the intersection index I(A;, A;) = I(B;,B;) = 0 and I(A;, Bj) = ¢§;; via the quotient
identification since A; and Ay became the same curve (resp. B and Bj) as seen in the figure.
This is how the curves Aj, By is a canonical homology basis for 7" which are indeed the axes of
the torus.

Example 2.2.2. We can obtain canonical homology basis to any surface of genus g extending
this notion by considering the construction of the surface as the quotient of a 4¢-sided polygon.
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Figure 2.1: Canonical Homology Basis of T2
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Figure 2.2: Canonical Homology Basis of the torus of genus 2.

At this point we can realise how the construction of the intersection index and the canonical
homology basis is a particular representation of the standard dot product on the Euclidean space
and the symplectic basis of a finite vector space seen at the previous section.

Moreover, it can be verified that for any homology class z € Al:

I(z,2) =0,
and if z; is a non-zero class, then there exist a class zy such that:
I(Zl, 22) =1.

We will now define the invariant ¢ for 2-dimensional framed manifolds (M, U) which is applied
to a canonical homology basis and stated as:

§(M,U,C) = §(C) = B(h) +r(C) + s(C),

where r(C') is the number of connected components of the curve C, s(C) is the number of its
double points, and [ is obtained as follows:

To each map h of a 1-dimensional manifold N into the Lie group SO(n + 1) of all rotations
of a Euclidean space E"™!, n > 2, 3(h) associates a residue class mod 2. If n > 3 and N is
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connected the class S(h) is zero if h is nullhomotopic and non-zero otherwise. If n = 2 we define
B(h) to be the degree of the map h reduced mod 2.

From § by setting d(z) = 6(C) we obtain a homology invariant of the class z € A! containing
the curve C. Moreover for two arbitrary classes z; and z3 of M we have:

3(z1 + 22) = 6(21) + 0(22) + I(21, 22).

Finally we can rewrite the ¢ in terms of an arbitrary canonical basis Ay,..., Ay, Bi,..., By of
the surface M by:

§=8(M,U) = i 5(A)S(By).
=1

The invariant § constructed this way is known as the Kervaire invariant but it is formally defined
as follows.

Definition 2.6. Let (M, v) a 2n-dimensional framed manifold and let q : H,,(M;Zs) — Z3 be a
quadratic map. The Kervaire invariant of the framed manifold (M, v) is defined to be the Arf
invariant Arf(q) of the quadratic form on the middle-dimensional homology group H, (M;Zs).

Actually, the invariant § constructed by Pontrjagin consists of a particular case of the Kervaire
invariant which is applied to 2-dimensional framed manifolds (i.e. n = 1) and helped Pontrjagin
to compute the homotopy group 7, 2(S™) = Za of maps between S"*2 — S™ for n > 2, which is
the cobordism group of surfaces embedded in S"*2? with trivialised normal bundle. This is how
the Kervaire invariant is used to classify maps of spheres.
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Chapter 3

Cayley—Dickson algebras and the
modified polynomial multiplication

Our motivation to study more about algebras is concerned in an attempt to extend the range
(on dimension) of a bilinear maps such as those constructed by José Adem [1] and K.Y. Lam
[14]. The Cayley—Dickson algebras provide algebraic structures in a recursive way and at the
same time shows how some nice algebraic properties are lost in the process. However these
algebras constitute a vast collection of coefficients and hence a greater collection of bilinear maps
to construct.

3.1 Basics on Algebras

Let us recall some basics on algebras over a field, our focus is to consider the field of real numbers
R.

Definition 3.1.

- An algebra A over the field R is a vector space over R equipped with a multiplication
m: Ax A— Asuch that (A, +,m) is a ring. As usual, we abbreviate m(x,y) as x - y or
simply xy.

- An algebra A is a division algebra if given z,y € A such that xy = 0, then either x = 0
ory = 0.

- A normed division algebra is an algebra A that is also a normed vector space and
satisfies n(ab) = n(a)n(b).

Remark 3.1. The above multiplication m is also assumed to satisfy m(z,1) = m(1,z) = x for a
nonzero element 1 € A, where 1 is called identity. And we can see that A is a division algebra if
the left and right multiplication by a nonzero element is invertible.

Remark 3.2. Notice that every normed division algebra is a division algebra. To see this suppose
xy = 0 for some elements x,y. Then n(zy) = n(x)n(y) = 0. Since n takes real values this implies
n(xz) = 0 or n(y) = 0 which implies x = 0 or y = 0. It is known that the only normed division
algebras are R,C,H and K as stated by Hurwitz (Th. 3.4).
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3.2 The Cayley—Dickson Algebras and a Matrix Representation
for their Multiplication

The Cayley—Dickson Algebras consist of an infinite sequence of algebras constructed inductively,
each time doubling in dimension. Such a construction is called the Cayley—Dickson process.

Consider the algebra of the real numbers R with usual multiplication, the involution z = x
(recall an involution as a linear operator such that z = x for all z,y € R), where 7 is called
conjugate of x, and the correspondences induced by this involution:

tr(z) =z + 7z, and n(z) = zz,
known as the trace and the norm of = respectively (see Adem [1]).

Definition 3.2. Let Ag = R together with the previous equipment. For n > 1 we define the
n-th Cayley—Dickson algebra over R, denoted A, = A, 1 x A, 1 as the set of ordered pairs
(z,y) € Ap—1 x Aj,_1 with multiplication given by:

(x,y) - (z,w) = (xz — wy, wz + yZz)

and conjugation:

(1’, y) = (‘i.a _y)'

the trace tr and the norm n are the maps from A, — R given by:

tr((z,9)) = (#,9) + (z,9) = tr(z), and n((z,y)) = (z,y)(2,y) = n(z) + n(y).

It is very useful to mention that the conjugation of a product of two elements x,y in the
Cayley-Dickson algebras A,, satisfies Ty = yZ.

This construction yields as the first Cayley-Dickson algebras: A; = C, Ay = H and A3 = K
of the complex numbers, quaternions and Cayley numbers respectively, each one with a quite
particular feature such as the loss of the order in the elements in C, the non—-commutativity in
the case of the multiplication of quaternions H and the loss of associativity in K. However these
Cayley—Dickson algebras belong to the special class of the normed division algebras.

For instance consider the complex numbers C, it is a real vector space having dimension
two with basis {1,i} i.e. we can write each complex number x uniquely as a linear combination
x = a+bi or as well as a pair (a,b) with a,b € R. The known rule for the complex multiplication
is given by:

zy = (a + bi)(c + di) = (ac — bd) + (ad + be)i (3.1)

which can be checked by its correspondence on the multiplication as Cayley—Dickson algebra
above by setting x and y as pairs of real numbers and recall the conjugation for reals as the
identity operator. This multiplication turns the real vector space C into an algebra over R.

On the other hand, we can check the identity for conjugation by means of the Cayley—Dickson
process:

(a +bi) =2 = (a,b) = (a,—b) = (a,—b) = a — bi.
as well as 7y = yx. The trace and the norm in C obtained via z — x + = and n(x) = xz. The
identity (3.1) allows us to prove that actually n(zy) = n(x)n(y) for 2,y € C so that C is a normed
division algebra.
Moving on the construction, the second Cayley—Dickson algebra corresponds to the quater-
nions H seen in Chapter 1 as a four—dimensional real vector space having basis {1, 4, j, k} which
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means that any quaternion ¢ is uniquely represented by four real numbers as ¢ = a+bi+cj+dk or
as a pair of complex numbers (a + bi, ¢+ di). It can be checked how the quaternion multiplication
is governed by the Hamilton’s rules:

ij=k=—ji, jk=i=—kj, ki=j=—ik,

and

=2 =k =—1.

As a consequence of these rules, we can see how the multiplication of quaternions is non-—
commutative, more precisely it is anti—commutative.

The quaternions can be conjugated same as happened in C under the Cayley—Dickson process.
Let ¢ = (x,y) € H with x = a + bi and y = ¢ + di elements of C:

a+bi+cj+dk=q=(z,y) =(z,—y)=(a—bi,—c—di) =a—bi —cj—dk

which is the expected fashion just as in C for the conjugate, and again as in C we have the
corresponding identity pg = gp on H by some calculations.

The norm and trace are defined in a similar way in H, namely n(p) = pp and tr(p) = p + p.
And to verify that n(pq) = n(p)n(q) we use the Euler’s formula (mentioned in Chapter 1) which
proves that H is a normed division algebra and then a division algebra.

To have an illustration or better said to verify how the quaternion multiplication actually
works. Let us calculate some basic products such as 7, jk, ki and ji with 7,7,k € H. So we
write each element as it corresponds in H, in other words as the pairs of complex numbers
i = (4,0),7 = (0,1) and k = (0,%), then by using the formula for multiplication in the Cayley—
Dickson algebra defined above we obtain:

ij =(i,0) - (0,1) = (0— 0,14+ 0) = (0,i) = k.
ik =(0,1)-(0,i) = (0—i-1,0+0) = (i,0) =i
ki =(0,4) - (i,0) = (0— 0,0 +i-4) = (0,1) = j
i =(0,1) - (4,0) = (0= 0,0 + 1 -7) = (0,—i) = —(0,1) = —k

Our main interest is focused on the Cayley numbers K which corresponds to the third
Cayley—Dickson algebra A3 over R seen as an eight— dimensional real vector space with basis
say {1,e1,€2,€3,€4,€5,€6,67}. In the sense as in H the multiplication of these basis elements is
obtained from the above rule:

Table 1. Cayley Numbers Multiplication Table

1 €1 €9 €3 €4 €5 €6 €7
1 1 €1 €92 €3 €4 €5 €6 e
€1 ler | —1 €3 —e9 | €5 —&y4 €7 —cg
€9 | €9 | —e3 | —1 €1 —cg | €7 €4 —€5
€3 | €3 | €9 | —e1 | —1 €7 €6 —e5 —&4
€4 | €4 —E&5 6 —E&7 -1 €1 —&9 €3
€5 | €5 €4 —E&7 | —€¢ —&1 -1 £3 €9
€6 | €6 —E&7 | —&4 €5 €9 —E3 -1 €1
er | €7 | €¢ €5 €4 | —€3 | —&2 —£1 -1
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Notice that the multiplication of Cayley numbers is non—associative. For example it can checked
(e182)es = e1(e9e3) = —1 while (e182)eq = €7 # —e7 = £1(e9ey).

However, the Cayley number restricted to those with coefficient zero on the components &y, €5, ¢
and 7 i.e. x = (p,0) with p € H take us back to the multiplication on H, the same occurs if we
have p = (z,0) with z € C where we recover the commutative property. In other words, we can
obtain the complex and quaternion multiplications seen each of C and H as a copy inside K more
precisely as vector subspaces. Some other examples of these subspaces are those with the form
{z =a+ber\a,be R} for any k = 1,2,...,7 which are subspaces of K isomorphic to C.

Despite of the fact about the non—associativity on the Cayley numbers, they satisfy a partic-
ular type of associativity called alternate associativity. An algebra is alternate associative or
alternative for brief if any two elements generate an associative algebra.

A more common condition used to illustrate this definition can be stated as:

z(yz) = (zy)w (1)
z(yy) = (zy)y (3)

for all elements x, y € K. These identities are usually called the flezible law (1) and the alternative
laws for (2) and (3). All these properties turn K into an alternative algebra, moreover into a
normed alternative algebra through the conjugation defined for:

T = X0+ X1€1 + T9€2 + T3E3 + T4€4 + T5E5 + TeEe + T7ET

by:

T = Tg— T1E] — T2EQ — T3EZ — T4E4 — T5E5 — TgEG — TTET

We can gather these alternate laws and the restrictions of the Cayley numbers to obtain some
interesting subalgebras.

Example 3.2.1. We can prove how the lateral multiplication of complex numbers acts as an
associative subalgebra over K i.e. z1(z9x) = (z122)z for 21,29 € C and z € K. Consider the
elements 21,29 € C and x € K as pairs of quaternions z; = (u1,0), 22 = (v1,0) and = = (p1, p2)
which we should recall they are associative. Then:

(z122)x = [(u1,0) - (v1,0)](p1,p2)
= (u1v1,0) - (p1,p2)
((u1v1)p1, p2(urvy)).

u1,0)[(v1,0) - (p1,p2)]

u1,0) - (v1p1, p2v1)

u1(vip1), (p2v1)ur)

(u1v1)p1, p2(urv1)) = (2122).

21(221)

~ Y~ N

We can also prove how this property holds for the right multiplication by complex numbers.
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To conclude the features about the alternative algebras, these are used to prove the generali-
sation on the Cayley—Dickson algebras in the particular cases of R, C, H and K.

Theorem 3.3. R,C,H and K are the only alternative division algebras.
Theorem 3.4. R,C,H and K are the only normed division algebras.
Theorem 3.5. All division algebras have dimension 1,2,4 or 8.

There are several versions of all these theorems and some these reviews can be seen in a 1930
paper by Zorn [31] for the first. About the second takes us back to the 1898 paper by Hurwitz
[11] and it is also in a compilation made by Shapiro [27] and for a modern proofs of both these
theorems (see Schafer [26]). Finally, the last theorem is considered as the top result about division
algebras and the two independent proofs are given in Kervaire [12] and by Bott-Milnor [6].

The construction of the Cayley—Dickson algebras provides us certain peculiarities as we have
seen it already, in terms of the multiplication of its elements, such as the loss commutativity
and associativity. These features present a great source for the construction of both normed and
nonsingular bilinear maps just as some of the given by Adem, Lam and Rodriguez (see [24]).
Essentially we keep our focus on Cayley numbers A = K.

However, it could be tedious to manipulate the elements in K in their explicit form so we
introduce some standard notation based on matrices which seems pretty natural by construction
of these algebras.

The multiplication in the n-th Cayley—Dickson algebra A, can be encoded into the product
between a matrix of size 2" x 2" and a coordinate vector (i.e. A -y) as mentioned in 1.2. The
conjugation operator can be seen as a matrix k = diag(1,—1,...,—1).

Now let L, : A, — A, (resp. R,) be the linear map given by left (resp. right) multiplication
by the element a € A,. Setting A (resp A’) as the matrix of size 2" x 2" with the real entries
associated to L, (resp. R,), the maps L, and R, are actually given by the matrix products:

Ly(z) = ax = Ax and Ry(z) = xa = A'x.

The polynomial multiplication of finite degree comprise a vast collection of bilinear maps, more
specifically they are nonsingular.

Let a = (ag,...,a,—1), and b = (bp,...,bs—1) be the vectors containing the coefficients of the
polynomials ag + - - - + a,—1t" " and by + - - - + bs_1t*~ " of degree r — 1 and s — 1 respectively, and
denote ¢(a, b) the vector which contains the coefficients of the polynomial (ag+---+a, 1" 1) (bo+
<o+ bs_1t571) of degree r + s — 2. If we consider the multiplication of these polynomials we can
represent it in terms of the product of a matrix say « containing the coefficients a and the
coordinate vector b or a matrix S with the coefficients of b multiplied by the vector a:

ap bo bo ap
ay ag by by bo ay
al : : b1
ab ap or fa : bo
Ar—1 Gr-2 bs—1 bs 2
Qr—1 : bs—l .
| Qr—1 | _bsfl_ | bsfl_ | Ar—1 |

We can carry out this very same representation if we consider the polynomials with coefficients
in any Cayley—Dickson algebra by placing the corresponding coefficient coded matrices A; and
B; instead of a; and b; as above. Of course being cautious about the importance of the left and
right multiplication of these coefficients matrices.
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Example 3.2.2. To illustrate this notion, consider the nonsingular bilinear map constructed by
Lam [14] ¢ : R16 x R16 — R?3 from K? x K2 — K3 and given by the formula:

o((x1,22), (W1,y2)) = (T1y1 — Y222, Y221 + T2Y1, Tay2 — Yo2)

and we can check it with the matrix:

Xl —Xélﬁ
/ Y1
0 Xo—X,| L2
At this point we are motivated to introduce some modifications of this matrix representation

which can be done by elementary operations on the matrix. Just observe first that we replace
the third entry by the commutator x1y1 — y121:

X1 —Xé/ﬁ?
Xok X! [91}
Xx-x; o |¥

and then subtracting the first row to the third, obtaining as a equivalent matrix:

X1 —Xé/@
Xow X! {yl} .
_ | V2

Example 3.2.3. Proceeding similarly, we can check the nonsingular bilinear map constructed
by Adem 1) : K? x K* — K® defined by:
¢1 (z,y) = T1y1 + 7201

Ya(,y) = T2y2 — 11Y3
Y3(z,y) = 122 — 2192
Ya(,y) = ysza — T1Y4
Ys(z,y) = 191 — Y171

Can be represented by the matrices (the one on the right is obtained by interchange of rows,
addition, etc.):

X1 0 0 XQK/ X1 0 0 XQIQ
0 X2 —Xll'i 0 Xé/ﬁ —X1/€ 0 0
Xéli —Xlli 0 0 ~ 0 XQ —Xlli 0
0 0 X, -X 0 0 Xy —X)
X, —-X 0 0 0 -X, 0 0 —Xok

This last matrix seems quite similar to the one representing a polynomial multiplication seen at
the beginning of the section. In this particular case the multiplication of a linear polynomial
w1 + 2ot and a cubic polynomial y; + yot + y3t? + y4t> with coefficients in K and the parameter ¢
commuting with all coefficients.
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So then the map v (as well as ¢) representation looks like a polynomial product up to appar-
ently not-so random details such as:

1. Some minus signs included.

2. Conjugations for some elements y;, but none of the x; but either way conjugation transposes
the corresponding block.

3. The priming of some blocks, meaning the change of left multiplication by right multiplica-
tions.

4. The addition of some possibly nonzero blocks in the off-diagonal corners.

This is why we say that the bilinear maps ¢ and ¢ can be seen as modified polynomial
multiplications. Something interesting about this kind multiplication lies on the fact that most
of the examples of nonsingular maps known to date are a modified polynomial multiplication
(Rodriguez [24]) and these maps can actually be a source of new nonsingular bilinear maps. The
actual purpose of these modifications lies on keeping the nonsingular property of the map and
decrease the dimension of its image and hence improving the upper bound for r#s.
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Chapter 4

Discussion of results

From now on we will show some applications of the tools developed all to classify both nonsingular
and normed bilinear maps provided by Kee Yuen Lam on the composition formula problem all
along the 70s and 80s.

Recall a composition formula of size [r, s, n|:

@+ o)+ ) =6+ + ] (¥)
As seen before, in order that a nonsingular bilinear map f can exist, certain numerical conditions
must be satisfied by r, s and n such as the Stiefel-Hopf condition or the given by the Hurwitz—
Radon function which leads us to translate it into estimations for r#s and r # s.

Lam illustrated how the normed property of a bilinear map is identifiable with a composition
formula using as an example a sum of squares of size [2,2, 3] which after coordinate changes he
obtained a composition formula of size [2,2,2] i.e. the formula for the complex multiplication
(see[16]). However this does not hold for polynomial multiplication which is a nonsingular bilinear
map and contrary to the complex multiplication its image is not contained in itself due to the
addition of the degree.

The most remarkable property of the Hopf map studied by Lam about normed maps is that
any inverse image H~!(q), ¢ € S™ is a linear subsphere of S"*5~!  that is, a subsphere cut out
from S"TS~! by a linear subspace in R” x R*. So then it turns out that the Hopf construction
map has features quite similar to the classical Hopf fibration maps S?*~! — S™ for n = 2,4,8
previously mentioned. This is how the definition of the Hopf construction map for a nonsingular
bilinear map makes sense and motivates an homotopy classification.

4.1 The Nonsingular Map R’ x R6 - R?

In [14], Lam constructed some examples of nonsingular bilinear maps from f : K? x K? — K3,
where K represents the Cayley numbers or the 3"¢ Cayley-Dickson algebra as mentioned in
chapter 4, this by restricting f to certain subspaces of K2 x K2 and used general theory of
framed cobordism to classify the nonsingular bilinear map f : C* x C* — R @® C* [15] in
which determined that the Hopf construction map h associated to f represents the homotopy
class 7% € 711 (S?).

Note 4.1. The classical Hopf fibrations introduced all along are usually denoted by: 7 : S3 — S2,
v:S8" - S*and o : S — S® and the symbol 2 represents the homotopy class of the composition
(281) o (X7n) : S' — S? which lies on the stable 2"%-stem.
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The bilinear map f : C3 x C3 - R@® C* defined by sending z x w = (21, 22, 23) % (wy, w2, w3)
to the vector:

f1(z,

=wiz1 + Z1w1,

2, =wiz1 + W2z2 + w323,

2,

(z,w)
fo(z,w)
f3(z,w) =waZ1 + 2007,
fa(z,w) =205 — w73,
f5(z,w)

Z, =Z1W3 — W123.

Besides, this bilinear map f can be represented as a matrix in the sense of a modified polynomial
multiplication as seen at Chapter 4, in particular:

Z'k+71 0 0 7, —Zhk —Z4 Zok 0 Z"
Zik Zyik  Z4 Z\k  Zhk  Zj —7Z5 1k 0
Zak Zi 0 | ~|Z2k Z 0 |~|Zik Zik Zik |, (4.1)
0 ~ 7t Zak 0 —Z Zyk Zik —Z4s —Zhk
—Z 0 Zik —7Z% 0 Z1K 0 Zok  —Zj

Now, let h be the Hopf construction map associated to f. In order to prove the class [h] is
n? we must analyse first of all, the type of the fibers for h. In this case, we must check the point
m = (0,0,0,1,0,0) in R? @ C* is a regular value of h and such fiber M = h~!(m) is a smooth
manifold diffeomorphic to a 2-dimensional torus. Then compute its Kervaire invariant seen as a
framed manifold (M, o) for some frame o of M. This is the main interest on this work.

First, the diffeomorphism recovered from Lam [15] from S! x St — M:

A2
(u1,u2) = ¢ = T(ul + ug, u1 — u2,0,u; — ug, us + u2,0) ()

consists in a torus sitting inside the unit sphere in C3 x C3. Then consider the frame ¢ induced
by the standard framing ey, ..., ei1o € R2@ C?* at m, an auxiliary subspace of C? x C3 namely E
defined by z; = wa, 29 = w; and 23 = ws = 0 as well as the unit sphere of E denoted 5> (F) and
an auxiliary frame v constructed by Pontrjagin [20] and reordered.

vy = (22, 21,0,21,22,0) = normal vector of M in S3(E) at (;
vy = (21,292,0, 29,21,0) = the position vector;
v3 =(1,0,0,0,—1,0), vy = (4,0,0,0,—i,0),
vs =(0,1,0,—1,0,0), v =(0,4,0,—1,0,0),
vy =(0,0,1,0,0,0), vg = (0,0,4,0,0,0),
vg = (0,0,0,0,0,1), vi0 = (0,0,0,0,0,1).

Recall from Chapter 3 the Kervaire invariant of a 2n-dimensional framed manifold (M, o)
is computed as the Arf invariant of a quadratic form defined on H,(M;Z,). In this case, the
quadratic form ¢, can be defined on Hi(M;Zs). So, the axes of the torus we get a homology
basis 71, 2 for the 1-dimensional cycles on M.

Consider v; be the one dimensional cycle on M defined by setting u; = 1 in (*) and the cycle
~v1 + 72 defined by z3 = 0 (or z3 = 0) on M. Let p consist of the vector fields vy, 2 on M. We
should notice that g, = ¢, and this can be checked by examining the values of the quadratic map
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on the three cases for the cycles in M. The value g,(v1) = 0 since 71 = vy + 1o for the fixed
parameter z; = 1 and by considering, in a quadratic map, the invariance of the framed manifold
(M, ) up to a sign change of the normal vectors and up to the involution (21, 22) +— (21, —22),
so we can write:

qu(71) = qu(v1 + 12) = qu(v1) + qu(v2) + B(v1,12) = 0.

Similarly is obtained g, (v2) = 0 while g,(71 + v2) = qu(11) + ¢u(72) + I(7,72) = 1. This
allows us to determine that Arf(g,) = 0. An alternative argument provided by Lam says that the
homotopy class of the framed manifold (M, ) in m4(S?) represents the suspension of the class of
(M,vy) in 73(S) = 0 which implies that Arf(q) = 0 and hence the values g,(v1) = qu(72) = 0
while g,(v1 +72) = 1.

To calculate the Kervaire invariant of (M, o) notice that o and v differ by the rotation ¢ :
M — GL(10,R) needed to get the a point in M between these frames. Given any 1-cycle ~
in M, the rotation restricted to the cycle v, ¢|,, is therefore a element of 7 (GL(10,R)) = Zs
that actually describes the difference between @Q,(v) and @, (7). Since o is the framing induced
from the standard frame eq,...,e19 at m, the matrix associated to the rotation ¢(¢) with ¢ =
(21, 22,0, 22, 21,0) € M can be obtained by writing out the vectors of the differential map Dh¢(v;)
running through the frame v. Consider z; = a + bi and 23 = ¢ + di.

Dhe(r1) =20 1 1 0 0 0)
Dhe(wy) =200 0 0 1 0 0)
Dhe(v3) =4(a ¢ —di  bi 0 0)
Dhe(vy) =40b d ¢ —ai 0 0)
Dhe(vs) =4(c  —a —bi —di 0  0)
Dhe(vg) =4(d —=b ai c 0 0)
Dhe(v) =200 0 0 0 -z -—z)
Dhe(vg) =2(0 0 0 0 —zii —290)
Dhe(vg) =200 0 0 0 2z z)
Dh¢(vip) =20 0 0 0 —z00 —z11).

The first two columns are real and each of the other columns are complex i.e. equivalent
to two real columns. We can check this matrix is nonsingular which actually proves that the
point m € R? @ C* is a regular value of h. We can also notice the upper diagonal 6 x 6 block is
nonsingular so it contributes nothing to the value of ¢, because any 1-cycle v on M is homologous
to zero in S?(E). On the other hand, the lower 4 x 4 diagonal block, shows Blyi4ve =0, ¢y, = 1.
In quadratic forms @, takes the value 1 on v; and ~» and has Arf invariant 1.

The Nonsingular Map [12,12,20]. A similar bilinear map can be constructed by taking
the values of the z’s and w’s in H instead of C in the definition of f, we obtain a map f :
H? x H® — R @ H* which is again nonsingular. Furthermore, f is also a modified polynomial
multiplication whose representation is recovered from the matrix 4.2 (this is the reason to keep
the priming displayed). On the other hand, the Hopf construction map associated to f will be
h: R2\{0} — R'®\{0}. The point m = (0,0,0,1,0,0) in R? @ H* is a regular value for h, where
M = h~!(m) is diffeomorphic to S3 x S with an induced framing o and the class [h] represents
the generator 2 in me3(S'7). In this case, v? represent the composition (£v) o (£131) as seen
in note 4.1.
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4.2 The Normed Map R!Y x R!Y — RI16

Consider R as K@ C, and let (21, 72) be a element in R'Y where z; € K and x5 € C. The map
f given by
F((1,22), (Y1, 12)) = (2191 — T2y2, Yox1 + 2271 € K2

Again, as we have been suggested all the previous examples, this map represents a modified
polynomial multiplication by means of the matrix:

X1 =Xy
[ - X{ﬁ] . (4.9)

This map is a slight modification of the multiplication of Cayley numbers regarded as pair of
quaternions and its Hopf construction map hy : S 19 §16 yepresents the homotopy class 2v.
The inverse image h;l(m) with m = (0,0,1) € R@® K2 is a subvariety:

M = {($1,$2,y17y2) € S1g/y1 =22,Y2 = X1,%2,Y2 € (C},

diffeomorphic to S®. Then we must check h is a regular map i.e. for any ¢ € M, the derivative
Dhg : R?® — R'7 has maximal rank.

Proceeding as in the previous example, let us fix the standard frame {e;}1%; and conveniently
ordered: e; — ey, €9 — €12, e5 — eg and e3 — eqg at the point m in R @ K? ~ R!7 and call its
induced frame p.

Also let o be an auxiliary frame at the point ¢ = (21,22, x2,x1) € M given by the vectors:

g1 = (0,—1,1,0), g9 = (0, —61,51,0), g3 = (—1,0,0, 1), g4 = (—81,0,0,81),
g5 = (62,0, 0,0), g6 = (63,0,0,0), a7 = (0,0,62,0), gg = (0,0,63,0),
agg = (66,0,0,0), g10 = (57,0,0, 0), g11 = (84,0,070), g12 = (65,0,0,0),
g13 = (0,0,54,0), 014 = (0,0,65,0), J15 = (0,0,56,0), 016 = (0,0,67,0),

Then we must measure the difference between the frames o and p. This can be done by a map
¢ : M — SO(16) and writing out the vectors of the Jacobian matrix of the Hopf construction
map h at the point ¢ = (1, x2,x9,21) € M if 21 = a + be; and z9 = ¢ + de; we obtain:

Dh((al) = 4( I d€1 0 0)
Dhg(Ug) = 4( T1€1 —Ce 0 0)
Dhg(ag) = 4( —XT9 b€1 0 0)
Dhc(04) = 4( —T2€&1 —aeq 0 0)
DhC(O'5) = 4( —T1Ey —T92E92 0 0 )
DhC(UG) = 4( —ZT1E3 —T2E3 0 0 )
Dhc(0'7) = 4( —X92E9 T1E92 0 0 )
Dhc(ag) = 4( —X2E3 T1E3 0 0 )
Dhc(O’g) = 4( 0 0 —T1E4 —T2E5 )
Dh((Ulo) = 4( 0 0 —T1€5 —T2E€5 )
Dhc(dn) = 4( 0 0 —T1E6 —T2Eg )
Dh((alg) = 4( 0 0 —T1E7 —X2E7 )
Dhg(ﬂlg) = 4( 0 0 —I92€E4 T1€4 )
Dhg(am) = 4( 0 0 —XI2E5 I1€5 )
Dh<(015) = 4( 0 0 —X2E6 T1E6 )
Dhc(alﬁ) = 4( 0 0 —XI28&7 T1E7 )
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The matrix displayed has quaternionic columns i.e. two complex columns and it is nonsingular
which implies that m is a regular value of h. Moreover, the rearrange of the standard frame allows
us to keep our focus on the lower 8 x 8 diagonal block which represents a not nullhomotopic
rotation ¢ : S — SO(16) between the frames o and p then the Kervaire invariant of the frame
manifold (S%,0) is one. This rotation is more likely an element of the orthogonal group O(16) of
all rotations with determinant +1 while the special orthogonal group SO(16) of rotations with
determinant 1 consists of a double covering of O(16) by composing the rotation ¢ twice to get it
as an element in SO(16). Therefore the class of h represent twice the generator of m3(SO(16)).
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Conclusions

The tools developed all along such as the theory on vector bundles related to framed cobordism,
the invariant constructed by Pontrjagin on surfaces and the contribution of Lam with maps and
the method to classify them were used to another of the nonsingular map ¢ : K? x K? — K3
provided by Lam as the map [16,16,23], which is explicitly defined for x = (z1,22) and y =
(y1,y2) where x1,x2,y1,y2 € K by the formulas:

o1(z,y) = x1y1 — Yoo,
2(x,y) = yax1 + 2271,
¢3(x,y) = T2y2 — Yoo,

However, there was a serious inconvenient showed up in order to obtain the pre-image manifold of
the Hopf construction map associated to ¢, M = h;l(m), where m = (0,0, 1,0) € R?*. Since the
equation given by the commutator component (¢3(z,y) = 0) implies that its solution is a subspace
isomorphic to C immersed in K. Despite of the fact that it was proved that the condition for the
coordinates x9 and ys is not trivial and then x and y are not equal to zero. It was expected for
the solution to be seen as elements a + bey for each coordinate i.e. octonions lying on a complex
plane up to any rotation a 90° respect to the real axis which changes the imaginary part eg.
Further calculations around this assumption lead us to say that M was a 2-torus in K? x K2
while it was found an e—invariant one which involves notions on surgery theory and so far it has
not been part of the original topic of the present work.

At this moment the goals to be achieved are precise: to complete the classification of the
map [16, 16, 23] showed above by finding out the solution for h(z,y) = m, then characterise the
resultant manifold and compute its Kervaire invariant. Then makes natural to attack the problem
of classify the nonsingular maps constructed by Lam in [14] which consist of restrictions of the
original map defined in K? x K2. Finally, the work in medium-long term to attempt will consist
in the use these maps to construct new bilinear maps introducer them as a modified polynomial
multiplication as well as classify them.
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