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Resumen

En este trabajo, estudiaremos el concepto de Complejidad Topológica (TC) de espacios de con-
figuraciones para el movimiento planificado de robots. TC es un número entero positivo que mide
las discontinuidades en el proceso de movimiento planificado en el espacio de configuraciones X
(el conjunto de posibles posiciones del robot). En [6], Michael Farber determinó cotas superiores
para TC en términos de la dimensión y de la Categoría de Lusternik–Schnirelman del espacio de
configuraciones X; además, proporcionó una cota inferior trabajando con la cohomología del es-
pacio de configuraciones. Con estas herramientas, es posible calcular TC para esferas de cualquier
dimensión n y, en general, de cualquier superficie bidimensional cerrada, compacta, orientable y
de género g. En particular, el producto de m esferas de dimensión n, puede considerarse como
un brazo de robot con m articulaciones, el cual puede moverse en n dimensiones; el cálculo de
TC para ese caso, también es proporcionado en [6]. Posteriormente en [8], se estudia el caso de
espacios reales proyectivos de dimensión n, RPn, donde se proporciona una clasificación de TC
para tales espacios y, en ciertos casos particulares, el cálculo es explícito. Se introducen otros
conceptos que son de gran utilidad. De hecho, uno de los resultados más importantes es que
el cálculo de TCpRPnq, coincide con el problema clásico de inmersión de espacios reales proyec-
tivos. Proporcionaremos una sólida justificación de todos los resultados mencionados en [6] y [8],
además de varios ejemplos de casos particulares, que permitirán al lector comprender con mayor
precisión lo que determina la teoría.
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Abstract

In this work, we study the concept of Topological Complexity pTCq of configuration spaces for
robot motion planning. TC is a positive integer which measures discontinuity of the process of
motion planning in the configuration space X (the set of possible positions of the robot). In
[6], Michael Farber gave upper bounds for TC in terms of the dimension and of the Lusternik–
Schinerlman Category of the configuration space X; he also provided a lower bound working with
the cohomology of the configuration space. With these tools, it is possible to calculate TC for
spheres of any dimension n and, in general, for any 2–dimensional closed, compact, orientable
surface of genus g. In particular, the product of m spheres of dimension n, can be seen like a
robot arm with m articulations which moves in n dimensions. The calculation of TC for this
case, is also given in [6]. Later in [8], the case of real projective spaces of dimension n, RPn,
is studied, and a classification of TC for these spaces is provided and, in particular cases, the
calculation is explicit. Other useful concepts are introduced. In fact, one of the most important
results is that the calculation of TCpRPnq, coincides with the classical immersion problem of real
projective spaces. We will provide a solid justification for all results mentioned in [6] and [8], as
well as several examples of specific cases, which allow the reader to understand more precisely
what the theory determines.
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Introduction

Suppose we want to do a task in a dangerous environment for human conditions. One way to
solve this problem would be with the help of a robot. The idea is that the robot receives the
coordinates of the starting point and destination, and it is able to move between these two points.
Also we want that if we make a small modification to the coordinates, the way forward for the
robot also has a slight change.

Mathematically, let X be the space of all possible positions of a mechanical system, i.e. a
configuration space. The motion plannining problem consists of constructing a program,
which takes pairs of configurations pA,Bq P X ˆ X as an input and produces as an output a
continuous path in X, which stars at A and ends at B. For simplicity we will assume that
the configuration space X is path–connected. Nevertheless, the same set of ideas applies to the
various path–connected components.

Throughout this work, I represents the interval r0, 1s. Let PX the space of all continuous
paths γ : I Ñ X in X. We denote by π : PX Ñ X ˆ X the map associating to any path
γ P PX the pair of its initial and end points πpγq “ pγp0q, γp1qq. Equip the path space PX
with compact–open topology. The problem of motion planning in X consists of finding
a function s : X ˆX Ñ PX such that the composition π ˝ s is the identity map.

An interesting question arising from this problem is: Whether it is possible to construct a
motion planning in the configuration space X so that the continuous path spA,Bq in X, depends
continuously on the pair of points pA,Bq.

Continuity of motion planning is an important natural requirement, because absence of con-
tinuity will result in the instability of behavior:

Figure 1: A non–continuous section

There will exist arbitrarily close pairs pA,Bq and pA1, B1q of initial-desired configurations
such that the corresponding paths spA,Bq and spA1, B1q are not close.

But we have a serious problem, because a continuous motion planning exists only in very
simple situations. The next best attempt would be to decompose the configuration space as the
union of subspaces in each of which there exists a continuous motion planner. This situation is
precisely measured by the Topological Complexity.
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Chapter 1

Preliminaries

Before defining TC, recall some important concepts.

Definition 1.0.1. Let X and Y be two topological spaces.

• The maps h0 : X Ñ Y and h1 : X Ñ Y are homotopic, h0 » h1, if there exists a map, a
homotopy, H : X ˆ I Ñ Y such that:

h0pxq “ Hpx, 0q and h1pxq “ Hpx, 1q for all x P X.

If we want to emphasize the homotopy H between h0 and h1, we denote:

h0 »
H
h1

• A map is null–homotopic if it is homotopic to a constant map.

• The space X dominates the space Y if there exist maps f : X Ñ Y , g : Y Ñ X, such that
f ˝g » 1Y . We say that X and Y are homotopy equivalent if both spaces dominate each
other. In such case, we write X » Y .

• A space is contractible if it is homotopy equivalent to a one-point space.

• X is called locally contractible if any point of X has an open neighborhood U such that
the inclusion U Ñ X is null–homotopic.

Notice that if X is contractible 1X ˝ c˚ » 1X and c˚ ˝ 1X » 1X , where c˚ is a constant map
in X. Therefore c˚ » 1X , i.e. the identity map of X is null–homotopic. With this in mind, we
can prove our first result.

Theorem 1.0.2. A continuous motion planning s : X ˆ X Ñ PX exists if and only if the
configuation space is contractible.

Proof. Suppose that a continuous section s : X ˆ X Ñ PX exists. Consider the fixed point
A0 P X and the homotopy ht : X Ñ X, given by htpBq “ spA0, Bqptq, where B P X and t P r0, 1s.
Notice that h1pBq “ B and h0pBq “ A0. Therefore ht gives a contraction of the space X into
the point A0 P X.

Conversely if X is contractible, there is a continuous homotopy ht : X Ñ X such that
h0pAq “ A and h1pAq “ A0 for any A P X. Given a pair pA,Bq P X ˆX, we may compose the
path t ÞÑ htpAq with the inverse of t ÞÑ htpBq, which gives a continuous motion planning in X.

Thus, we get a motion planning in X by first moving A into the base point A0 along the
contraction, and the following inverse of the path, which brings B to A0.

6



1.1 Definition of Topological Complexity

Now that we know more about the concept of continuous motion planning, we can define topo-
logical complexity.

Definition 1.1.1. Given a path–connected topological space X, we define the topological com-
plexity of the motion planning in X as the minimal number TCpXq “ k, such that the
Cartesian product X ˆX may be covered by k open subsets:

X ˆX “ U1 Y U2 Y ¨ ¨ ¨ Y Uk

such that for any i “ 1, . . . , k there exists a continuos motion planning si : Ui Ñ PX, π˝si “ 1Ui .
If no such k exists we will set TCpXq “ 8.

According to Theorem 1.0.2, we have TCpXq “ 1 if and only if the space X is contractible.
For example, any convex subset of Rn. Explicitly: Given a pair pA,Bq, we may move along the
straight line segment connecting A and B, which is a motion planning of one instruction.

Observe that the topological complexity TCpXq is the measure of the discontinuity of any
motion planner in X. In other words, this number tells us how many different instructions our
algorithm should have in order to ensure the continuity of our motion planner regardless of the
start and end points.

Example 1.1.2. Topological Complexity of the circle S1

With the tools that we have at the moment, we can do some calculations. Let’s start
with the circle. First, S1 is not contractible, so TCpS1q ą 1. Define U1 Ă S1 ˆ S1 as
U1 “ tpA,Bq|A ‰ ´Bu. A continuous motion planning over U1 is given by the map s1 : U1 Ñ PS1

which moves A towards B along the unique shortest arc connecting A to B. See Fig. 1.1 (left).
This map s1 cannot be extended to a continuos map on the pairs of antipodal points A “ ´B,
because we will have two arcs between ´B and B. See Fig. 1.1 (right).

Figure 1.1: Motion planning over U1

Now define U2 “ tpA,Bq|A ‰ Bu. Fix an orientation of the circle S1, for example the clockwise
sense. A continuous motion planning over U2 is given by the map s2 : U2 Ñ PS1 which moves A
towards B in the positive direction along the circle.
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Figure 1.2: Motion planning over U2

Again, s2 cannot be extended to a continuous map on the whole S1ˆS1, because equal points
could have different paths. One option is to not move (Fig. 1.3 (left)) and the other is a full
turn (Fig. 1.3 (right)).

Figure 1.3: Lost of continuity for equal points

1.2 Homotopy Invariance

Often we have spaces whose Topological Complexity will be difficult to calculate. It would be
desirable to obtain information about these spaces from other spaces simpler to handle.

If X dominates Y , there exist continuous maps f : X Ñ Y and g : Y Ñ X such that
f ˝g » idY . Assume that U Ă XˆX is an open subset such that there exists a continuous motion
planning s : U Ñ PX. We will construct a motion planner for Y . Define V “ pg ˆ gq´1pUq Ă
Y ˆ Y . We have the following diagram:

PX

πX

��

PY

πY

��
U

s
66

� � // X ˆX
fˆf //

Y ˆ Y
gˆg
oo V

σ
hh

? _oo

Now, the question is: What is σ? Let pA,Bq P V . Fix a homotopy ht : Y Ñ Y with h0 “ idY
and h1 “ f ˝ g. We know that in U it is possible connect gpAq with gpBq applying our motion
planning s. By continuity we have a new path in V if we compose the path between gpAq and
gpBq with the map f . Since f ˝ g is homotopic to the identity in Y , we can move the point A
until fpgpAqq via ht. Finally, we move fpgpBqq to B through h1´t. Graphically:
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Explicitly, if τ P r0, 1s, the continuous motion planning σ : V Ñ PY is given by:

σpA,Bqpτq “

$

’

&

’

%

h3τ pAq 0 ď τ ď 1
3

fpspgpAq, gpBqqp3τ ´ 1qq 1
3 ď τ ď 2

3
h3p1´τqpBq

2
3 ď τ ď 1

Notice that any open cover tU1, . . . , Uku of XˆX with a continuous motion planning over each
Ui defines an open cover tV1, . . . , Vku of YˆY with similar properties. Therefore TCpY q ď TCpXq.
Then, if X » Y , we conclude that TCpXq “ TCpY q. In other words, TCpXq depends only on
the homotopy type of X.
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Chapter 2

An upper bound for TCpXq

2.1 Lusternik-Schnirelman category

Since we have just seen, the Topological Complexity is a homotopic invariant. We would like to
relate it with another one known invariant which allows us to obtain information about the TC.
If it is not possible to calculate the TC of certain configuration spaces, a first approach would be
to bound it. The invariant that we will use is a very strong tool in the homotopy theory. Such an
invariant is very similar to the TC. In fact, both invariants are particular cases of a more general
concept that will be studied later.

Definition 2.1.1. The Lusternik-Schnirelman category of the space X, catpXq, is defined
as the smallest integer k, such that X may be covered by k open subsets V1, . . . , Vk, with each
inclusion Vi Ñ X null-homotopic. Such cover is called categorical cover.

Notice that the difference between TC and cat, are the properties of the elements of the covers,
nevertheless, there seem to be similar characteristics. Thus, we might think that in effect, there
is a relation between both invariants.

Theorem 2.1.2. For every topological space X, we have:

catpXq ď TCpXq ď catpX ˆXq.

Proof. Let U Ă X ˆX be an open subset such that there exists a continuous motion planning
s : U Ñ PX over U . Let A0 P X be a fixed point. Define V Ă X as V “ tB P X|pA0, Bq P Uu.
Notice that V is open since V “ g´1pUq where gpBq “ pA0, Bq. Moreover, H : V ˆ I Ñ X given
by HpB, tq “ spA0, Bqptq is such that tA0u »

H
1V , therefore V ãÑ X is null–homotopic.

If TCpXq “ k, and U1 Y ¨ ¨ ¨ Y Uk is a covering of X ˆX with a continuous motion planning
over each Ui, then the sets Vi where A0 ˆ Vi “ Ui X pA0 ˆ Xq form a categorical open cover
of X. This shows that catpXq ď TCpXq. Now, if catpX ˆ Xq “ l, there is a categorical open
cover W1, . . . ,Wl of X ˆX. By Theorem 1.0.2 there is a continuous section in each Wi, thus
k ď l.

The above result is very general, however, in some cases it is difficult to work with the space
X ˆX. To obtain another upper bound in terms of X, remember the following:

Definition 2.1.3. Let be X a topological space:

1. A family tAα|α P Ωu of sets in X is called locally finite, if each point of X has a neigh-
borhood V such that V XAα ‰ H, for at most finitely many indices α.

10



2. If tAα|α P Ωαu and tBβ|β P Ωβu are two covers of X, tAαu is a refinement of tBβu, if for
each Aα there is some Bβ with Aα Ă Bβ.

3. X is paracompact if each open cover of X has an open locally finite refinement.

4. The support of a map f : X Ñ R is the closed set:

supportpfq “ tx P X|fpxq ‰ 0u.

Naturally, we asked: What is the importance of paracompactness hypothesis in our config-
uration spaces? The reason is the following concept, which plays an important role in various
topological problems.

Definition 2.1.4. Let X be a Hausdorff space. A family tκα|α P Ωu of continuous maps κα :
X Ñ I is called a partition of unity on X if:

1. The supports of the κα form a closed locally finite cover of X.

2. For each x P X,
ÿ

αPΩ
καpxq “ 1

(this sum is finite because each x lies in the support of at most finitely many κα).

Definition 2.1.5. If tUα|α P Ωu is an open cover of X, we say that a partition tκα|α P Ωu of
unity is subordinated to tUαu, if the support of each κα lies in the corresponding Uα.

As the following theorem indicates, paracompact spaces always have a partition of unity
subordinated to each open cover of the space.

Theorem 2.1.6. Let X be paracompact. Then for each open cover tUα|α P Ωu of X, there is a
partition of unity subordinated to tUαu.

Proof. See [5, Theorem 4.2 p. 170]

With this condition, it will be possible relate Lusternik–Schnirelman category with another
invariant, and of course, this invariant will be another bound for topological complexity.

Definition 2.1.7. Let X be a space and U “ tUαu any open cover of X.

• We say that the order of the cover tUαu is k, if no point of X belongs to more than k ` 1
open sets of U .

• The dimension of X, dimpXq, is the least k, such that any open cover has a refinement of
order k.

In the next result, we will exhibit importance of partitions of unity subordinated to a cover
of our space.

Lemma 2.1.8. Let U “ tUαu be an open cover of X of order n with a partition of unity
subordinate to the cover. Then, there is an open cover of X refining U , V “ tViβu, i “ 1, . . . , n`1,
such that ViβXViβ1 “ H for β ‰ β1. In particular, there is such a refinement if X is a paracompact
space with cover dimension n and U “ tUαu is any open cover of X.

11



Proof. Since the order of the cover is n, no x P X can belong to more than n` 1 of the Uα. Let
tφαu be a partition of unity subordinate to the cover U . That is, supportpφαq Ď Uα. Now, let
Bi denote the set of i´tuples obtained from the set t1, . . . , n`1u. Given β “ pα1, . . . , αiq P Bi, set

Viβ “
 

x P X|φαj pxq ą 0 for j “ 1, . . . , i and φαpxq ă φαj pxq for α R β
(

.

Since in a neighborhood of any x P X, only a finite number of φα are not identically zero, each
Viβ1 is open. If β ‰ β1, then, by the second condition, Viβ X Viβ1 “ H. Also,

Viβ Ď
č

αPβ

supportpφαq Ď
č

αPβ

Uα

so that V “ tViβu refines U . Now, given x P X let pα1, . . . , αmq be all the indices such that
φαj pxq ą 0. Then x P Xmi“1Uαi and the order of the cover U is n, so we must have m ď n ` 1.
Without lost of generality, suppose

φα1pxq “ φα2pxq “ ¨ ¨ ¨ “ φαj pxq ą φαj`1pxq ě φαj`2pxq ě ¨ ¨ ¨ ě φαmpxq

This means that x P Vjpα1,...,αjq
and V covers X.

The following result relates the category with the dimension of the space X.

Theorem 2.1.9. If X is path–connected, locally contractible and paracompact, then:

catpXq ď dimpXq ` 1.

Proof. Let U “ tU1, . . . , Un`1u be a categorical cover of X and suppose dimpXq “ k. Then, by
Lemma 2.1.8, there is an open cover tViu, i “ 1, . . . , k ` 1 of X refining U with the property
that each Vi is a union of disjoint open sets each of which lies in some Uj . Since each Uj is
contractible in X and the open sets making up Vi are disjoint, then Vi is also contractible in X
(each component of Vi is in a Uj). We have then found a categorical cover of X by k` 1 sets and
the definition of category therefore says that catpXq ď k ` 1 “ dimpXq ` 1.

The following results, require the introduction of a very intuitive concept:

Definition 2.1.10. For any topological space X we describe a finite sequence H “ V0 Ă V1 Ă
¨ ¨ ¨ Ă Vn “ X of open subsets of X as categorical, if each of the differences VizVi´1 (with
i “ 1, . . . , n), is the union of a finite number of disjoint open sets each contained in an open
categorical subset of X.

Lemma 2.1.11. Let X be a path–connected and paracompact space. Then, X admits a cate-
gorical sequence of length n if and only if catpXq ď n.

Proof. Since the sets VizVi´1 form a categorical cover of X, it is clear that catpXq is at most n.
Now, if catpXq ď n, there is a categorical cover tV1, . . . , Vnu of X, and we can define:

Wm “

m
ď

i“1
Vi.

Notice that WizWi´1 Ď Vi is open and categorical. Hence, the Wm form a categorical sequence
of length n.

Categorical sequences are used for various ”product inequalities”. The most important for our
purposes is:

12



Theorem 2.1.12. If X and Y are path-connected and paracompact, then:

catpX ˆ Y q ă catpXq ` catpY q.

Proof. Let A0 Ă ¨ ¨ ¨ Ă Am´1 and B0 Ă ¨ ¨ ¨ Ă Bn´1 be categorical sequences for X and Y ,
respectively. Then C0 Ă ¨ ¨ ¨ Ă Cm`n´2 is a categorical sequence for X ˆ Y , where C0 “ H and:

Cj “
j
ď

i“1
pAi ˆBj´i`1q.

Notice that Cj ´ Cj´1 is the union of the disjoint sets:

pAi ´Ai´1q ˆ pBj`1´i ´Bj´iq.

Hence, Lemma 2.1.11 implies the statement of the Theorem.

In summary, we have shown this result:

Theorem 2.1.13. If X is path-connected and paracompact, then:

catpXq ď TCpXq ď 2 catpXq ´ 1 ď 2 dimpXq ` 1.

2.2 General upper bound

Let X and Y be two topological spaces. For a map f : X Ñ Y , the mapping cylinder Mf is
the quotient space of the disjoint union pX ˆ Iq \ Y obtained by identifying each px, 1q P X ˆ I
with fpxq P Y .

Figure 2.1: Mapping cylinder, [10, p. 2]

Let cf : pX ˆ Iq \ Y Ñ Mf be the identification map. Notice that the spaces X and Y are
naturally embedded in the space Mf by the mappings ipxq “ cf px, 0q and jpyq “ cf pyq. In fact,
Mf is also embedded in Y by the map h : Mf Ñ Y given by:

hpzq “

#

fpxq if x P X, 0 ď t ď 1
y if y P Y

Moreover, h ˝ j “ 1Y and j ˝ h » 1Mf
, which implies Y »Mf .

Closely related to the mapping cylinder Mf is the mapping cone Cf “ Y \CX where CX
is the cone pX ˆ Iq{pX ˆ t0uq and we attach this to Y along X ˆ t1u via the identifications
px, 1q „ fpxq.

13



Figure 2.2: Mapping cone, [10, p. 13]

More generally, the join X ˚ Y , is the quotient space of X ˆ Y ˆ I under the identifications
px, y1, 0q „ px, y2, 0q and px1, y, 1q „ px2, y, 1q. Thus we are collapsing the subspace X ˆ Y ˆ t0u
to X and X ˆ Y ˆ t1u to Y .

Figure 2.3: Join, [10, p. 9]

Definition 2.2.1. The space X with a base point x0 is said to be n-connected if πqpX,x0q “ 0
for q ď n.

Thus 0–connected means path–connected and 1–connected means simply–connected. Since
n–connected implies 0–connected, the choice of the base point x0 is not significant.

In the next Theorem, we will prove the relation between the connectedness of the join of two
spaces. We will use singular homology with integer coefficients (see [10]).

Theorem 2.2.2. Suppose that X is pr´ 1q–connected and Y is ps´ 1q–connected. Then X ˚ Y
is pr ` sq–connected.

Proof. Consider the long exact homology sequence of the pair pCX ˆ CY,X ˚ Y q:

¨ ¨ ¨ Ñ HqpX ˚ Y q Ñ HqpCX ˆ CY q Ñ HqpCX ˆ CY,X ˚ Y q Ñ . . .

Since CX and CY are contractible (the cone is homotopically equivalent to a disk and this is
homotopically equivalent to a point), then HqpCX ˆ CY q “ 0. Therefore:

HqpCX ˆ CY,X ˚ Y q – Hq´1pX ˚ Y q.

Notice that the map:
h : X ˚ Y Ñ CX ˆ Y YX ˆ CY

which sends rx, y, ts P X ˚ Y to px, ry, 2tsq P X ˆ CY if t ď 1
2 and to prx, 2t´ 2s, yq P CX ˆ Y if

t ě 1
2 is an homeomorphism (see [15, p. 56-57]), therefore:

pCX ˆ CY,X ˚ Y q « pCX ˆ CY,CX ˆ Y YX ˆ CY q “ pCX,Xq ˆ pCY, Y q.

Now, for the pair pCX,Xq we have:

¨ ¨ ¨ Ñ HqpXq Ñ HqpCXq Ñ HqpCX,Xq Ñ . . .

14



Since HqpCXq “ 0, it follows that:

HqpCX,Xq – Hq´1pXq

By Künneth’s Theorem (see [10, p. 276]) we have the exact sequence:

0 ÝÑ
à

i`j“q

HipCX,Xq bHjpCY, Y q ÝÑ

ÝÑ HqppCX,Xq ˆ pCY, Y qq ÝÑ

ÝÑ
à

i`j“q´1
TorpHi´1pCX,Xq, Hj´1pCY, Y qq ÝÑ 0

By the above remarks, this sequence can be written as:

0 ÝÑ
à

i`j“q

Hi´1pXq bHj´1pY q ÝÑ Hq´1pX ˚ Y q ÝÑ

ÝÑ
à

i`j“q´1
TorpHi´1pXq, Hj´1pY qq ÝÑ 0

Applying Hurewicz’s Theorem and reduced homology (see [10, p. 366]), we have
„

H ipXq “

0 “
„

HjpY q for i ă r and j ă s. Then, all factors on the sums are zeros, which implies that for
q ă r ` s` 1 we have:

HqpX ˚ Y q “ 0.
Moreover, πrpXq – HrpXq and πspY q – HspY q. Therefore, if i´ 1 “ r and j ´ 1 “ s, the exact
sequence is:

0 ÝÑ HrpXq bHspY q ÝÑ Hr`s`1pX ˚ Y q ÝÑ 0.
Then:

Hr`s`1pX ˚ Y q – HrpXq bHspY q – πrpXq b πspY q ‰ 0.
Since the join of a path–connected space and nonempty space is simply–connected (see [13]), we
can apply Hurewicz’s Theorem again and conclude that πqpX ˚ Y q “ 0 for q ď r` s. In other
words, X ˚ Y is pr ` sq–connected.

As mentioned at the beginning of this section, the Topological Complexity and Lusternik
Schnirelman Category are particular cases of a more general concept which we introduce now.
Definition 2.2.3. A fibre space is an ordered quadruple pB,E, F, pq where B is the base space,
E is the total space and F is the typical fibre of the map p : E Ñ B. We say that the map
φ : A Ă B Ñ E is a cross–section of the fibration p on the set A if @a P A

pp ˝ φqpaq “ a.

Definition 2.2.4. The Sectional Category of the fibration p (denoted secatppq) is the cardi-
nality of the smallest open cover of the base space B consisting of the sets on each of which there
exists a cross–section.

Notice that the Topological Complexity TCpXq can be viewed as the secat of the path space
fibration π : PX Ñ X ˆX, which has the base of dimension:

dimpX ˆXq “ 2 dimpXq.

Moreover:
πqpXq “ rS

q, Xs – rΣSq´1, Xs – rSq´1,ΩXs “ πq´1pΩXq
i.e. the fibre is homotopy equivalent to the space ΩX of based loops in X, and if X is r–connected,
ΩX is pr ´ 1q–connected.

The next Theorem of [15] is the principal result to obtain the general upper bound.
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Theorem 2.2.5. Let F Ñ E
p
Ñ B be a fibre space B, whose fibre F is ps ´ 1q–connected and

whose base B is a k–dimensional CW-polyhedron. Then:

secatpBq ă k ` 1
s` 1 ` 1

Proof. By Theorem 2.2.2, the fibre Fn “ F ˚ ¨ ¨ ¨ ˚ F of the fibre space Fn Ñ En
pn
Ñ B, Bn, is

pnps`1q´1q–connected; therefore on the pnps`1q´1q–dimensional skeleton of the base B there
exists a cross-section of the fibration Bn. If nps` 1q ´ 1 ě k, then there exists a cross-section on
all of the base B of Bn and hence, for n satisfying the condition n ě pk ` 1q{ps` 1q, we have:

secatpBq ď n.

In other words:
TCpXq ă 2 dimX ` 1

r ` 1 ` 1 (2.1)

The bound given by (2.1.13) is for path–connected space X, this is, if X is 0–connected, then:

TCpXq ď 2 dimpXq ` 1 ă 2 dimpXq ` 1
0` 1 ` 1.
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Chapter 3

A lower bound for TCpXq

3.1 Zero-divisors-cup-lenght

Until now, we have only done the calculation of topological complexity for the circle. We would
like to generalize it for any sphere. nevertheless, we need algebraic tools to obtain another bound
that enables us to do the aforementioned calculation.

Let K be a field. Recall that The cohomology H˚pX;Kq is a graded K-algebra (see [10]) with
the multiplication given by the cup-product:

Y : H˚pX;Kq bH˚pX;Kq Ñ H˚pX;Kq (3.1)

The tensor product H˚pX;Kq bH˚pX;Kq is also a graded K-algebra with the multiplication:

pu1 b v1q ¨ pu2 b v2q “ p´1q|v1|¨|u2|u1u2 b v1v2 (3.2)

where |v1| and |u2| denote the degrees of cohomology classes v1 and u2 correspondingly. The
cup-product (3.1) is then a graded algebra homomorphism.

Definition 3.1.1. The kernel of homomorphism (3.1) is called the ideal of the zero-divisors
of H˚pX;Kq. The zero-divisors-cup-lenght of H˚pX;Kq, (denoted zclpXq) is the length of
the longest nontrivial cup product in the ideal of the zero-divisors of H˚pX;Kq.

Example 3.1.2. We now calculate zclpSnq

Let u P H˚pSn;Kq be the fundamental class, and let 1 P H0pSn;Kq be the unit. Observe
that

a “ 1b u´ ub 1 P H˚pSn;Kq bH˚pSn;Kq
is a zero-divisor, since applying homomorphism (3.1) to a we obtain:

Ya “ Yp1b u´ ub 1q “ Yp1b uq ´ Ypub 1q “ 1 ¨ u´ u ¨ 1 “ 0.

Another zero-divisor is b “ ub u, since u2 “ 0. Now, applying (3.2)

a2 “ p1b u´ ub 1q ¨ p1b u´ ub 1q
“ p1b uq ¨ p1b uq ´ p1b uq ¨ pub 1q ´

´pub 1q ¨ p1b uq ` pub 1q ¨ pub 1q
“ p´1q|u|¨|1|1b u2 ´ p´1q|u|¨|u|ub u´

´p´1q|1|¨|1|ub u` p´1q|1|¨|u|u2 b 1
“ 1b u2 ´ p´1qn2

ub u´ ub u` u2 b 1

“

´

p´1qn2`1 ´ 1
¯

ub u
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Hence a2 “ ´2b for n even and a2 “ 0 for n odd; the product ab vanishes for any n. We conclude
that:

zclpSnq “
#

1 for n odd
2 for n even

If we observe the particular case of the circle, we have that:

zclpS1q “ 1 ă 2 “ TCpS1q.

In the following section, we will prove that this inequality is true for any configuration space.

3.2 Fibre Spaces

Let Mp be the mapping cylinder of p : E Ñ B and i : E ãÑ Mp, h : Mp Ñ B, the natural maps
(see 2.2). Define M 1

p “MpzipEq, and consider:

• pn : En Ñ B the fibration

• hn : Mn
p Ñ Bn the product of n copies of h

• λ : En ÑMn
p the inclusion map

• d : B Ñ Bn the diagonal embedding

where En ĎMn
p zM

1n
p . Thus we have the commutative diagram:

En
pn //

λ
��

B

d
��

Mn
p hn

// Bn

Notice that:

• p˚n : H˚pB;Rq Ñ H˚pEn;Rq is a monomorphism.

• d˚ : H˚pB;Rq b ¨ ¨ ¨ bH˚pB;Rq Ñ H˚pB;Rq.

Here is our first result:

Lemma 3.2.1. If secatppnq ď n and ξ1, . . . , ξn P H
˚pB;Rq are such that d˚pξ1 b ¨ ¨ ¨ b ξnq “

ξ1 ¨ ¨ ¨ ξn ‰ 0, then λ˚h˚npξ1 b ¨ ¨ ¨ b ξnq ‰ 0.

Proof. Since p˚n is monomorphism and by commutativity, it follows that:

λ˚h˚npξ1 b ¨ ¨ ¨ b ξnq “ p˚nd
˚pξ1 b ¨ ¨ ¨ b ξnq “ p˚npξ1 ¨ ¨ ¨ ξnq ‰ 0

Let µ : Mn
p ´M

1n
p ÑMn

p . Notice that kerpλ˚h˚q “ kerpµ˚h˚q.

Lemma 3.2.2. In order that the cohomology class ξ1 b ¨ ¨ ¨ b ξn P H
˚pBn;Rq be contained in

kerpµ˚h˚nq it is sufficient that p˚pξiq “ 0 for all i “ 1, . . . , n.
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Proof. If p˚pξiq “ 0, since p˚ “ i˚h˚ and by the exact sequence of the pair pMp, ipEqq

¨ ¨ ¨ ÝÑ H˚pMp, ipEq;Rq σ˚
ÝÑ H˚pZ;Rq i˚

ÝÑ H˚pE;Rq ÝÑ ¨ ¨ ¨

there exists ηi P H˚pMp, ipEq;Rq such that σ˚pηiq “ h˚pξiq. Therefore σ˚npη1 b ¨ ¨ ¨ b ηnq “
h˚npξ1 b ¨ ¨ ¨ b ξnq, where σ˚n is the homomorphism appearing in the exact sequence of the pair
pMn

p ,M
n
p zM

1n
p q. Then µ˚σ˚n “ 0, and consequently µ˚h˚npξ1 b ¨ ¨ ¨ b ξnq “ µ˚σ˚npη1 b ¨ ¨ ¨ b ηnq “

0.

Theorem 3.2.3. Let p : E Ñ B be a fibration. If there exist cohomology classes ξ1, . . . , ξn P
H˚pB;Rq for which p˚pξiq “ 0 for all i “ 1, . . . , n, and the cohomology class ξ1 ¨ ¨ ¨ ξn P H

˚pB;Rq
is different from zero, then secatppq ě n` 1.

Proof. By Lemma 3.2.2, µ˚h˚npξ1b ¨ ¨ ¨ b ξnq “ 0, then λ˚h˚npξ1b ¨ ¨ ¨ b ξnq “ 0. If secatppq ď n,
from Lemma 3.2.1, λ˚h˚npξ1 b ¨ ¨ ¨ b ξnq ‰ 0, which leads to a contradiction.

Now, we are ready to prove the next theorem of [6].

Theorem 3.2.4. The topological complexity TCpXq is greater than the zero–divisors–cup–length
of H˚pXq.

Proof. Consider the following commutative diagram:

X
α //

∆ ##

PX

π
��

X ˆX

Here α associates to any point x P X the constant path cx at this point and ∆ is the diagonal
map:

∆pxq “ px, xq
Let β : PX Ñ X given by βpγq “ γp0q, and define H : PX ˆ I Ñ PX as:

Hpγ, tqpsq “ γptsq

Then:
Hpγ, 0q “ cγp0q “ α ˝ βpγq and Hpγ, 1q “ γ “ 1PXpγq

Equivalently α ˝ β »
H

1PX , which means that α is a homotopy equivalence.
Notice that the cup–product homomorphism (3.1), coincides with the following composition:

H˚pX;Rq bH˚pX;Rq κ
» H˚pX ˆX;Rq π

˚

Ñ H˚pPX;Rq α
˚

Ñ
»
H˚pX;Rq (3.3)

Here the homomorphism on the left κ is the Künneth isomorphism (see [10, Theorem 3.16, p.
219]), and the isomorphism on the right is due to the homotopy equivalence of α.

If zclpXq “ n, there are a1, . . . , an P kerY such that:

a1 ¨ ¨ ¨ an ‰ 0.

Then, by (3.3), @i “ 1, . . . , n
α˚π˚κpaiq “ Ypaiq “ 0.

Since α˚ is isomorphism and κpa1q ¨ ¨ ¨κpanq “ κpa1 ¨ ¨ ¨ anq ‰ 0, it follows that π˚κpaiq “ 0.
Therefore, by Theorem 3.2.3, secatpπq ě n` 1 which implies:

TCpXq ą zclpXq.

19



3.3 Basic Examples

Now we have a lower bound for Topological Complexity. Then, given a configuration space, the
idea is calculate zcl of that space and estimate its TC using some property of the space. The
following examples show the application of Theorem 3.2.4.

Example 3.3.1. The n–dimensional sphere Sn

Case n odd. Let U1 “ tpA,Bq|A ‰ ´Bu Ă SnˆSn and s1 : U1 Ñ PSn where s1pA,Bq P PS
n

is the shortest arc of Sn connecting A and B. The second set is U2 “ tpA,Bq|A ‰ Bu Ă SnˆSn

and s2 : U2 Ñ PSn will be constructed in two steps. First we move the initial point A to the
point ´B along the shortest arc as above. Now, fix a continuous tangent vector field v on Sn,
which is nowhere zero. Then we may move ´B to B along the spherical arc:

´B cosπt` vpBq

|vpBq|
sin πt

with t P r0, 1s. Since Sn is not contractible, we have TCpSnq “ 2. Notice that this case is a
generalization of Example 1.1.2, and in fact is not necessary use the lower bound.

Case n even. Let U1 Ă SnˆSn and s1 : U1 Ñ PSn as above. In this case we may construct
a continuous tangent vector field w on Sn which vanishes only at a single point B0 P S

n. Then
we define:

U2 “ tpA,Bq|A ‰ B&B ‰ ´B0u Ă Sn ˆ Sn

and s2 : U2 Ñ PSn as above. We see that U1 Y U2 covers everything except the pair p´B0, B0q.
Choose a point C P Sn such that B0 ‰ C and C ‰ ´B0. Notice that the set Y “ Sn ´ C is
contractible, then there exists a continuous motion planning s3 : U3 Ñ PSn where U3 “ Y ˆ Y .
Using Theorem 3.2.4 and Example 3.1.2, we conclude that TCpSnq “ 3.

Example 3.3.2. The n–dimensional complex projective space CPn

Remember that:

HkpCPn;Rq “
#

R for k ď 2n even
0 otherwise

Moreover, if k ď 2n is even, then the generator of HkpCPn;Qq is uk, where u P H2pCPn;Qq
is the generator. Then, for CP2, we have:

p1b u´ ub 1q2 “ 1b u2 ´ 2ub u´ u2 b 1
p1b u´ ub 1q3 “ p1b u´ ub 1qp1b u2 ´ 2ub u´ u2 b 1q

“ 3u2 b u´ 3ub u2

p1b u´ ub 1q4 “ p1b u´ ub 1qp3u2 b u´ 3ub u2q

“ 6u2 b u2

p1b u´ ub 1q5 “ p1b u´ ub 1qp6u2 b u2q

“ 0

In general, if u P H2pCPn;Qq is a generator we have:

p1b u´ ub 1q2n “ p´1qn
ˆ

2n
n

˙

un b un ‰ 0
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In other words:
zclpCPnq “ 2n.

On the other hand:
2 dimpCPnq ` 1 “ 4n` 1,

but CPn is simply—connected, then (2.1) implies that:

TCpCPnq ă 2n` 3
2 .

Hence, applying Theorem 3.2.4, we conclude:

TCpCPnq “ 2n` 1.

3.4 Orientable compact two–dimensional surfaces of genus g

Let Σg be an orientable compact two–dimensional surface of genus g. First, Theorem 2.1.13
guarantees that:

TCpΣgq ď 2 dimpΣgq ` 1 “ 5 (3.4)
Thus, we need to calculate another number that allows us to bring near the Topological

Complexity of these surfaces on the left side of (3.4).
The orientability condition is vital for our objectives, because with that hypothesis, we can

apply Poincaré’s Duality Theorem [10, p. 241], which means that:

H2pΣg;Rq – H0pΣg;Rq.

On the other hand, these surfaces are path–connected. Then [10, Prop 2.7, p. 109] implies that:

H0pΣg;Rq – R.

Therefore, H2pΣg;Rq is a non–trivial cohomology group, and in it we can obtain information of
use in order to compute zclpΣgq. Of course, to determine that number, it will be necessary to
know which is the cup product structure on Σg .

Remember that:

HqpT 2;Zq “

$

’

&

’

%

Z for q “ 0, 2
Z‘ Z for q “ 1
0 otherwise

Suppose that the generators for the non–trivial cohomology groups are:

1 P H0pT 2;Zq,

a, b P H1pT 2;Zq,
c P H2pT 2;Zq.

Figure 3.1: Torus [10, p. 232]
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If γ P H2pT
2;Zq, then:

paY bq pγq “ 1 “ c (3.5)

Based on the above analysis, we can infer what happens in Σg. Consider the quotient map q
from Σg to a wedge sum of g tori, this is:

Figure 3.2: The map q : Σg Ñ
Ž

g T
2 [10, Ex1, p. 228]

Let Y be the subspace which collapses to a point to obtain the wedge sum. Notice that Y is
homeomorphic to an S2 with g disks removed, which is homotopy equivalent to a wedge sum of
g ´ 1 circles.

Figure 3.3: The subspace Y viewed as wedge sum of circles

Define X “ Σg{Y and consider the long exact sequence in cohomology of the pair pΣg, Y q:

H1pXq
q1
Ñ H1pΣgq

f1
Ñ H1pY q Ñ H2pXq

q2
Ñ H2pΣgq Ñ 0

The zero on the right (which implies that q2 is epimorphism) is due toH2pY q – H2p
Ž

g´1 S
1q “

0. Now, by Poincaré’s Duality Theorem, the above sequence can be written as:

à

g

Z‘ Z q1
Ñ H1pΣgq

f1
Ñ

à

g´1
ZÑ

à

g

Z q2
Ñ ZÑ 0

Since the map q is epimorphism, the induced map in homology q1 : H1pΣgq Ñ H1pXq is also
epimorphism. Then, if α P H1pXq is such that q1pαq “ 0, for any b P H1pΣgq, it follows that:

0 “ q1pαqpbq “ αpq1pbqq

which implies that α “ 0 since q1 is epimorphism. Hence, q1 is monomorphism. This means
0 “ ker q1 “ Imf1, so f1 “ 0. Now, if β P H1pΣgq, we have f1pβq P H1pY q –

À

g´1 Z and
it can be evaluated in each generator of H1pY q and the result will be zero in all cases, then
β P ker f1 “ Imq1. We conclude that q1 is epimorphism. Therefore we have:

H1pΣgq – H1pXq – Z‘ Z‘ ¨ ¨ ¨ ‘ Z‘ Z
loooooooooooomoooooooooooon

2g
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where each summand Z ‘ Z represents one of the g tori in X. Each wedge summand has two
cohomology classes ai, bi P H1pXq with

ai Y bi “ ci

where ci P H2pXq is the generator corresponding to the i–th torus (see 3.5). Moreover, if i ‰ j

ai Y bj “ 0

because either ai or bj (or both) are zero when we apply the map induced in cohomology by
including the k–th torus in X. Finally, the map f˚ takes each generator ci of the H2pXq to the
unique generator T of the H2pΣgq. Hence:

ai Y bj “ δijT (3.6)

Now, suppose that g ą 1. From the above result (3.6), we may find cohomology classes:

u1, v1, u2, v2 P H
1pΣg;Qq

such that for i ‰ j,
u2
i “ v2

i “ uivj “ uiuj “ vivj “ 0

and u1v1 “ u2v2 “ A ‰ 0 where the fundamental class is precisely A P H2pΣg;Qq. Then, it holds
in the algebra H˚pΣg;Qq bH˚pΣg;Qq that:

2
ź

i“1
p1b ui ´ ui b 1q p1b vi ´ vi b 1q “ 2AbA ‰ 0

Therefore zclpΣgq is at least 4, which implies TCpΣgq ě 5. But, by (3.4), we have:

TCpΣgq “ 5 (3.7)
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Chapter 4

Motion Planning for a Robot Arm

4.1 Product Inequality

Previously we saw (Theorem 2.1.12) that if X and Y are path–connected and paracompact,
then:

catpX ˆ Y q ď catpXq ` catpY q ´ 1.
Under the same conditions and proceeding similarly, is it possible to obtain a similar result

but with topological complexity? Fortunately the answer is yes.

Theorem 4.1.1. For any path–connected and paracompact spaces X and Y :

TCpX ˆ Y q ď TCpXq ` TCpY q ´ 1.

Proof. Suppose that TCpXq “ n, then, there is an open cover tUiu of X ˆX with a continuous
motion planner si : Ui Ñ PX, for i “ 1, . . . , n. Analogously, if TCpY q “ m, there exist an open
cover tVju of Y ˆ Y with a continuous motion planner σj : Vj Ñ PY , for j “ 1, . . . ,m. Let
fi : X ˆX Ñ R and gj : Y ˆ Y Ñ R be partitions of unity subordinated to the covers tUiu and
tVju, respectively. For any pair of nonempty subsets S Ă t1, . . . , nu and T Ă t1, . . . ,mu, define
W pS, T q Ă pX ˆ Y q ˆ pX ˆ Y q as the set of all 4–tuples pA,B,C,Dq P pX ˆ Y q ˆ pX ˆ Y q, such
that for any pi, jq P S ˆ T and for any pi1, j1q R S ˆ T it holds that:

fipA,Cq ¨ gjpB,Dq ą fi1pA,Cq ¨ gj1pB,Dq.

Notice that each set W pS, T q is open, and W pS, T q XW pS1, T 1q “ H if neither S ˆ T Ă S1 ˆ
T 1 nor S1 ˆ T 1 Ă S ˆ T . Moreover, if pA,B,C,Dq P W pS, T q, we have fipA,Cq ‰ 0 and
gjpB,Dq ‰ 0, then, remembering Definition 2.1.3(4) and Definition 2.1.5, it follows that
pA,Cq P supportpfiq Ă Ui and pB,Dq P supportpgjq Ă Vj . Equivalently:

W pS, T q Ă Ui ˆ Vj (4.1)
Then, (4.1) implies that there exists a continuous motion planning over each W pS, T q. Now,

if pA,B,C,Dq P pX ˆ Y q ˆ pX ˆ Y q we can define S as the set of all indices i P t1, . . . , nu such
that fipA,Cq is the maximum of fkpA,Cq, where k “ 1, 2, . . . , n. Similarly, let T be the set of all
j P t1, . . . ,mu such that gjpB,Dq equals the maximum of glpB,Dq, where l “ 1, 2, . . . ,m. Hence
pA,B,C,Dq PW pS, T q and the sets W pS, T q cover pX ˆ Y q ˆ pX ˆ Y q.

Finally, let Wk Ă pXˆY qˆpXˆY q denote the union of all sets W pS, T q, where |S|`|T | “ k,
with k “ 2, 3, . . . , n ` m (|A| is the cardinality of the space A). Clearly, tW2, . . . ,Wn`mu is a
cover of pX ˆ Y q ˆ pX ˆ Y q. Observe that if |S| ` |T | “ |S1| ` |T 1| “ k, the corresponding sets
W pS, T q and W pS1, T 1q either coincide (if S “ S1 and T “ T 1) or are disjoint. Therefore, there
exists a continuous motion planning over each set Wk, and TCpX ˆ Y q is at most n`m´ 1.
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As a first consequence of Theorem 4.1.1, one easily checks that for a product of n copies of
the space X:

TCpX ˆ ¨ ¨ ¨ ˆXq ď nTCpXq ´ pn´ 1q (4.2)

Now, we are ready to prove the principal Theorem of this section.

Theorem 4.1.2. Let X “ Smˆ¨ ¨ ¨ˆSm be a Cartesian product of n copies of the m–dimensional
sphere Sm, then:

TCpXq “
#

n` 1 for m odd
2n` 1 for m even

Proof. Using (4.2), we can see that:

TCpSm ˆ ¨ ¨ ¨ ˆ Smq ď nTCpSmq ´ pn´ 1q.

Then, applying Example 3.3.1:

TCpXq ď
#

n` 1 for m odd
2n` 1 for m even

(4.3)

Consider the projection πi : X Ñ Sm onto the i–th factor (πi projects the Cartesian product
onto the i–th sphere of the product). This projection induces a map:

π˚i : H˚pSm;Qq Ñ H˚pX;Qq

If ui P H˚pSm;Qq is the fundamental class of the i–th factored sphere, let:

ai “ π˚i puiq P H
˚pX;Qq.

Notice that for m odd:

n
ź

i“1
p1b ai ´ ai b 1q ‰ 0 P H˚pX ˆX;Qq

and for m even:

n
ź

i“1
p1b ai ´ ai b 1q2 ‰ 0 P H˚pX ˆX;Qq.

In other words:

zclpXq ě
#

n for m odd
2n for m even

(4.4)

From Theorem 3.2.4 and equations (4.3) and (4.4), we complete the proof.

Remark. Applying Theorem 4.1.2 to T 2 “ S1 ˆ S1, one has:

TCpT 2q “ TCpS1 ˆ S1q “ 3 (4.5)

Combining (4.5) and (3.7) with the fact that TCpS2q “ 3, we have a general result for a
compact orientable two–dimensional surfaces of genus g, Σg:

TCpΣgq “

#

3 if g ď 1
5 if g ą 1
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4.2 Planar robot arm

At the beginning of this work, we mentioned that we would like to solve the task of moving in
a complicated environment for human. We proposed that a robot could help do the work. In
the simplest case (planar case), we can imagine the robot, just like an arm consisting of n bars
L1, . . . Ln, such that Li and Li`1 are connected by flexible joins. If the initial bar L1 is fixed,
the configuration of the arm is determined by n angles α1, . . . , αn, where αi is the angle between
Li and the x–axis. Note that each of the n bars can move circularly, so our configuration space
(without obstacles) is the Cartesian product of n circles.

Figure 4.1: Planar robot arm, [6, p. 10]

Then, by Theorem 4.1.2, we conclude that the Topological Complexity of the motion plan-
ning problem of a plane n–bar robot arm is:

n` 1.

Similarly, the configuration space of a robot arm in R3 is the Cartesian product of n copies
of the two–dimensional sphere:

S2 ˆ ¨ ¨ ¨ ˆ S2.

Therefore, for a spacial n–bar robot arm, the Topological Complexity is:

2n` 1.

Remark. For a n–bar robot arm in R4, the Topological Complexity is one more time n ` 1
(the configuration space is the Cartesian product of n–copies of S3, which are spheres of odd
dimension). Therefore, in theory, it is easier to program a continuous motion planning of an arm
that moves in space–time than in space.
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Chapter 5

Motion Planning in Projective Spaces

5.1 A covering space for RPn ˆ RPn

In this last section, we study a very specific configuration space; the n–dimensional real projective
space RPn. Recall that RPn can be thought of as the set of lines in Rn`1 passing through the
origin. In particular, we will give an algorithm to move such a line in R3, which is equivalent
to constructing a motion planner over RP2. To begin our study, it is necessary to recall some
concepts.

Definition 5.1.1. Let X be a topological space:

1. A covering space of X, is a space rX and a map p : rX Ñ X satisfying the following
condition: There exists an open cover U “ tUαu of X such that for all α, p´1pUαq is a
disjoint union of open subsets of rX, each of which is mapped homeomorphically onto Uα
by p.

2. A lift of a point x P X, is a point rx P p´1pxq, and a lift of a map f : Y Ñ X, is a map
rf : Y Ñ rX such that p rf “ f .

3. For a covering space p : rX Ñ X the homeomorphisms g : rX Ñ rX such that pg “ p, are
called deck transformations. These form a group G under composition.

4. A covering space p : rX Ñ X is called regular if for each x P X and each pair of lifts Ăx1,Ăx2
of x, there is a deck transformation g P G such that

gĂx1 “Ăx2

In the context of TC, we work with the Cartesian product of our configuration space, then it
is expected to study covering spaces of Cartesian products. Let p : rX Ñ X be a regular covering
map with the group of covering transformations G. Let rX ˆG rX be obtained from the product
rX ˆ rX by factorizing with respect to the diagonal action of G, i.e. gpĂx1,Ăx2q “ pgĂx1, gĂx2q. Define
the map q : rX ˆG rX Ñ X ˆ X which maps an equivalence class rĂx1,Ăx2s of a pair pĂx1,Ăx2q to
px1, x2q. Notice that the map q is well defined (there is g P G which connects any pair of lifts)
and continuous. Consider the following commutative diagram:

rX ˆ rX
h //

pˆp %%

rX ˆG rX

q

��
X ˆX
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Here hpĂx1,Ăx2q “ rĂx1,Ăx2s. If U is an open cover of X satisfying Definition 5.1.1(1), we can
define an open cover V of X ˆX consisting of open sets Uα1 ˆUα2 with Uα1 , Uα2 P U . Moreover,
since p is covering, p´1pUαq “ \Wα, where Wα is an open subset of rX. Let px1, x2q P U1ˆU2 P V.
Notice that:

q´1pU1 ˆ U2q “ trĂx1,Ăx2s | q prĂx1,Ăx2sq Ă U1 ˆ U2u

“
 

rĂx1,Ăx2s |Ăx1 P p
´1pU1q,Ăx2 P p

´1pU2q
(

“ h
`

p´1pU1q ˆ p
´1pU2q

˘

“ h pp\iW1iq ˆ p\jW2jqq

“ h p\i,jpW1i ˆW2jqq

Therefore, q : rX ˆG rX Ñ X ˆX is a covering space. Now, define the map f : PX Ñ rX ˆG rX
as follows: given a continuous path γ : r0, 1s Ñ X, let rγ : r0, 1s Ñ rX be any lift of γ, and set:

fpγq “ prγp0q, rγp1qq P rX ˆG rX

So we have this commutative diagram:

PX
f //

π
$$

rX ˆG rX

q

��

rX ˆG rX

q
xx

X ˆX

For any path γ : r0, 1s Ñ X, and for each lift Ăx0 of the starting point γp0q “ x0, there is a unique
path rγ : r0, 1s Ñ rX lifting γ starting at Ăx0. Therefore, the lift rγ of γ depends on the choice of
the initial point rγp0q P rX, but nevertheless the map f is well defined by the same reason of the
covering space q (there is g P G which connects any pair of lifts), and moreover, f is continuous
(f is a lift of π).

This is when TC appears again. The next result is Theorem 4.1 of [8].

Theorem 5.1.2. The Sectional Category of the covering space q : rXˆG rX Ñ XˆX is less than
or equal to TCpXq.

Proof. Let U Ă X ˆX an open subset and s : U Ñ PX a continuous section of the fibration π
over U . By the above diagram:

q ˝ pf ˝ sq “ pq ˝ fq ˝ s “ π ˝ s “ 1U

i.e. f ˝ s is a continuous section of q over U . If TCpXq “ k, there is an open cover U1 Y ¨ ¨ ¨ Y Uk
of X ˆX with a continuous section si of π over Ui, then f ˝ si is a continuous section of q over
Ui. Hence secatpqq is at most k.

Remark. By Theorem 5.1.2, we know that TCpRPnq is greater than or equal to the Sectional
Category of the two–fold covering:

Sn ˆZ2 S
n Ñ RPn ˆ RPn

Let ξ be the canonical real line bundle over RPn, this is:

ξ “ tpL, vq P RPn ˆ Rn`1 | v P Lu.
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The sphere bundle associated to ξ, Spξq, corresponds to the inclusion Sn ãÑ ξ given by x ÞÑ prxs, xq
and, in these terms, the bundle projection Spξq Ñ RPn is the canonical projection Sn Ñ RPn.
In particular, ξ is recovered as the Borel construction Sn ˆZ2 R where Z2 acts on R by change of
signs. If α P H1pRPn;Z2q is the generator, the first Stiefel–Whitney class of ξ is:

w1pξq “ α.

Since we want information about RPn ˆ RPn, it is necessary to construct a new bundle in that
base space, starting from ξ.

The exterior tensor product ξ1 b ξ2 is a real line bundle over RPn ˆ RPn:

ξ1 b ξ2

yy �� &&
ξ

��

RPn ˆ RPn

π1xx π2 &&

ξ

��
RPn RPn

where ξ1 and ξ2 are the pullbacks of ξ under the projections π1 and π2 respectively. Define
η “ ξ1 b ξ2. Since w1pηq “ w1pξ1q ` w1pξ2q (see [13, p. 87]), it follows that:

w1pηq “ w1pπ
˚
1 pξqq ` w1pπ

˚
2 pξqq “ π˚1 pw1ppξqq ` π

˚
2w1ppξqq “ π˚1 pαq ` π

˚
2 pαq (5.1)

Now, consider this commutative diagram:

RPn �
� i1 // RPn ˆ RPn

π1xx π2 &&

RPn? _
i2oo

RPn RPn

By Künneth (see [10, Theorem 3.16, p. 219]), we know that:

H1pRPn ˆ RPn;Z2q – H1pRPn;Z2q bH
0pRPn;Z2q ‘H

0pRPn;Z2q bH
1pRPn;Z2q

where H1pRPn;Z2q “ Z2 is generated by α and H0pRPn;Z2q “ Z2 is generated by 1. Then,
H1pRPnq bH0pRPnq “ Z2 b Z2 “ Z2 is generated by αb 1 and by the same reason, H0pRPnq b
H1pRPnq is generated by 1b α. Therefore:

H1pRPn ˆ RPn;Z2q is generated by αb 1 and 1b α (5.2)

Finally, remember that, in general we have the product:

ˆ : H˚pX;Rq bH˚pY ;Rq ÝÑ H˚pX ˆ Y ;Rq (5.3)

given by:
ub v ÞÑ uˆ v “ π˚1 puqπ

˚
2 pvq

where π1 and π2 are the canonical projections. Hence, we apply (5.3):

π˚1 pαq ` π
˚
2 pαq “ αˆ 1` 1ˆ α P H1pRPn ˆ RPn;Z2q

and we conclude that (5.1) is:
w1pηq “ αˆ 1` 1ˆ α. (5.4)
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The above constructions can be interpreted in topological terms as follows: Let the generator
of Z2 act on the Borel construction Sn ˆZ2 S

n by the rule

rpx, yqs Ñ rp´x, yqs “ rpx,´yqs. (5.5)

The canonical projection
Sn ˆZ2 S

n Ñ RPn ˆ RPn (5.6)

is a regular 2–fold covering.

Lemma 5.1.3. The associated line bundle pSn ˆZ2 S
nq ˆZ2 R Ñ RPn ˆ RPn is isomorphic to

ξ b ξ. In particular, (5.6) is the sphere bundle of ξ b ξ.

Proof. This follows from (5.4) in view of the noted isomorphism ξ – Sn ˆZ2 R and the pull-back
diagrams of double covers:

Sn

��

Sn ˆZ2 Z2

��

� � // Sn ˆZ2 S
n

��

Sn

��

Z2 ˆZ2 S
n

��

� � // Sn ˆZ2 S
n

��
RPn RPn ˆ ˚ �

� // RPn ˆ RPn, RPn ˚ ˆ RPn �
� // RPn ˆ RPn.

Corollary 5.1.4. TCpRPnq ě k where k is the minimal positive integer such that kpξbξq admits
a nowhere vanishing section.

Proof. As remarked right after the statement of Theorem 5.1.2, TCpRPnq is bounded from
below by the Sectional Category of (5.6). The result then follows from Lemma 5.1.3 and the
following result.

Lemma 5.1.5. Let λ Ñ B be a vector bundle over a paracompact base B. If k stands for the
Sectional Category of the sphere bundle Spλq, then kλ admits a nowhere vanishing section.

Proof. Let U1, . . . , Uk be an open covering of B so that the restriction Spλq|Ui
of Spλq to each Ui

admits a section si : Ui Ñ Spλq|Ui
. Think of each si as a nowhere zero section of λ defined on Ui.

By a standard partition of unit argument, it is possible to refine the covering tUiu to an open
covering tViu, Vi Ď Ui, so that each restriction si|Vi

can be extended to a (continuous) section σi
of λ defined over all of over B. Note that, although each σi may vanish at some points of B, it
never vanishes in Vi. Since the map

pσ1, . . . , σkq : B Ñ λˆ ¨ ¨ ¨ ˆ λ
looooomooooon

k

is a lift of the diagonal, it determines a section of kλ which, by construction, is evidently nowhere
zero.

It is well known (see [4, p. 4]) that catpRPnq “ n` 1, then TCpRPnq ě n` 1. In particular,
we have another bound in terms of powers of 2, given by Theorem 4.5 of [8].

Theorem 5.1.6. If 2r ą n ě 2r´1, then TCpRPnq ě 2r.

Proof. Let α P H1pRPn;Z2q be the generator. Notice that 1 b α ` α b 1 is a zero–divisor since
2α “ 0. Consider its power:
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p1b α` αb 1q2r´1 “

2r´1
ÿ

i“0

ˆ

2r ´ 1
i

˙

p1b α2r´1´iqpαi b 1q

“

2r´1
ÿ

i“0

ˆ

2r ´ 1
i

˙

pαi b α2r´1´iq

“ 1b α2r´1 ` αb α2r´2 ` ¨ ¨ ¨ `

`α2r´2 b 1` α2r´2 b α

Remember that:

HqpRPnq “

#

Z2 if q ď n

0 if q ą n

Since for all i,
`2r´1

i

˘

is odd, the only factor which is certainly nonzero is:
ˆ

2r ´ 1
n

˙

αk b αn

where k “ 2r ´ 1´ n. Applying Theorem 3.2.4 we have TCpRPnq ě 2r.

5.2 Nonsingular and Axial maps

Definition 5.2.1. A continuous map f : Rn ˆ Rn Ñ Rk is called nonsingular if it has the
following properties:

1. fpλu, µvq “ λµfpu, vq for all u, v P Rn, λ, µ P R

2. fpu, vq “ 0 implies that either u “ 0 or v “ 0.

Consider the vectors e1 “ p1, 0q, e2 “ p0, 1q, e3 “ p1, 1q. The respectively functionals are
α1px, yq “ x, α2px, yq “ y, α3px, yq “ x´y. Notice that any two of them are linearly independent.
In general, for any n, we can fix a sequence α1, α2, . . . , α2n´1 : Rn Ñ R of linear functionals such
that any n of them are linearly independent. Let u, v P Rn, we define:

fpu, vq “ pα1puqα1pvq, . . . , α2n´1puqα2n´1pvqq

If u ‰ 0, then at least n among the numbers α1puq, . . . , α2n´1puq are nonzero. Therefore, if u ‰ 0
and v ‰ 0, there exists i P t1, . . . , 2n´1u such that αipuqαipvq ‰ 0, and thus fpu, vq ‰ 0 P R2n´1.
Hence, for any n, the maximal dimension in which we can guarantee the existence of a nonsingular
map is 2n´ 1.

Lemma 5.2.2. There are not nonsingular maps f : Rn ˆ Rn Ñ Rk with k ă n.

Proof. Suppose that there exists such map. If v ‰ 0 is fixed and u P Sn´1 Ă Rn, we can consider
the map:

u ÞÑ fpu, vq P Rk Ď Rn´1

By Borsuk–Ulam Theorem (see [10, p. 32]), there exists w P Sn´1 such that fpw, vq “
fp´w, vq. But if f is nonsingular, fp´w, vq “ ´fpw, vq which implies that fpw, vq “ 0, and
clearly this is a contradiction.
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Lemma 5.2.3. For n “ 1, 2, 4, 8, there exists a nonsingular map f : Rn ˆ Rn Ñ Rn with the
property that for any u P Rn, u ‰ 0, the first coordinate of fpu, uq is positive.

Proof. For n “ 1, define fpu, vq “ uv, the usual product of real numbers. For n “ 2, we take
fpu, vq “ uv, the product of u and the conjugate of v viewed as complex numbers. Similarly, for
n “ 4, we may define fpu, vq “ uv, where v “ x1 ´ x2i ´ x3j ´ x4k is the conjugation of the
quaternion v “ x1 ` x2i ` x3j ` x4k. In all cases, fpu, uq “ |u|2. Finally, a Cayley number can
be uniquely written in the form q`Qe, where q and Q are quaternions and e is a formal symbol.
The multiplication is defined by the formula:

pq `Qeq ¨ pr `Req “
`

qr ´RQ
˘

` pRq `Qrq e

If we define:
fpq `Qe, r `Req “ pq `Qeq ¨ pr ´Req

Then, fpq `Qe, q `Qeq “ qq `QQ is real and positive, as long as q `Qe ‰ 0 is nonzero.

Lemma 5.2.4. There are not nonsingular maps f : Rn ˆ Rn Ñ Rn, for n ‰ 1, 2, 4, 8.

Proof. Suppose that f as above exists, where n ą 2. Consider the map g : Sn´1 ˆ Sn´1 Ñ Sn´1

given by:
gpx, yq “

fpx, yq

|fpx, yq|

where x, y P Sn´1. The map g is such that gp´x, yq “ ´gpx, yq “ gpx,´yq. Now restricting g
onto one factor Sn´1ˆ˚ (where ˚ is a base point) we have a self map h of Sn´1, which commutes
with the antipodal map a.

Sn´1 a //

h
��

Sn´1

h
��

Sn´1
a
// Sn´1

Therefore, by Proposition 2B.6 of [10], the degree of h is odd. Analogously, g|˚ˆSn´1 has an odd
degree. Hence, the bidegree of g is pk, lq, where both integers k and l are odd. If ι P πn´1pS

n´1q
is the generator, [16, Theorem 7.7] implies that the Whitehead product:

rkι, lιs “ kl rι, ιs P π2n´3pS
n´1q

should be zero. Nevertheless, if n is odd, then rι, ιs P π2n´3pS
n´1q is of infinite order, hence

rkι, lιs cannot vanish. Now, if n ‰ 1, 2, 4, 8 is even, rι, ιs P π2n´3pS
n´1q is nonzero (see [1]) and

has order two, which again implies that rkι, lιs is nonzero as kl is odd. We conclude that the map
f cannot exist.

Definition 5.2.5. Let n and k be two positive integers with n ă k. A Continuous map g :
RPn ˆ RPn Ñ RPk is called axial of type pn, kq if its restrictions to ˚ ˆ RPn and RPn ˆ ˚ (˚ is a
base point of RPn) are homotopic to the inclusion maps RPn Ñ RPk.

We will denote by rX,Y s the set of all homotopy classes rf s between X and Y .

Lemma 5.2.6. If n ă k, there is a bijection between rRPn,RPks and rRPn,RP8s.
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Proof. Notice that any f P rRPn,RP8s can be factorized through the n–dimensional skeleton by
another map f 1 P rRPn,RPns such that the following diagram commutes up to homotopy:

RPn f //

f 1

��

RP8

RPn �
�

i
// RPk
?�
j

OO

Then, i ˝ f 1 ÞÑ f determines a surjective map.
Now, if H : RPn ˆ I Ñ RP8 is the homotopy between the compositions:

RPn
f0 //
f1
// RPk �

� // RP8

by the Cellular Aproximation Theorem (see [10, p. 349]) there is an homotopyH 1 : RPnˆI Ñ
RPk such that initial and final branches of H 1 in RPk, are f0 and f1, i.e. f0 » f1.

Definition 5.2.7. Let G be a group a n ą 0. A connected topological space X is called
Eilenberg–MacLane space of type KpG,nq, if it has n–th homotopy group πnpXq isomorphic
to G and all other homotopy groups trivial.

Remark. Since RP8 is KpZ2, 1q, applying Lemma 5.2.6 and Brown Representability The-
orem (see [10, p. 448]), we have:

rRPn,RPks “ rRPn,RP8s “ rRPn,KpZ2, 1qs “ H1pRPn;Z2q “ Z2

In other words, any continuous map h : RPn Ñ RPk with n ă k is either homotopically trivial
or it is homotopic to the inclusion map. Therefore, if αk P H1pRPk;Z2q denotes the generator,
h˚αk P H

1pRPn;Z2q is either zero or equal to αn, the generator of H1pRPn;Z2q. The map h is
homotopically trivial if and only if h˚αk “ 0.

If g is an axial map, the following diagram commutes up to homotopy:

RPn ˆ ˚� t
i1

''

»

((
RPn ˆ RPn g // RPk

˚ ˆ RPn
* 
 i2

77

»

66

Therefore, in cohomology with coefficients in Z2, we have:

H1pRPkq ÝÑ H1pRPn ˆ RPnq – H1pRPnq bH0pRPnq ‘H0pRPnq bH1pRPnq

Applying (5.2), it follows that:

αk ÞÝÑ g˚αk “ c1 ¨ αn b 1` c2 ¨ 1b αn

Notice that c1 “ 1 due to:
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i˚1pαn b 1q “ p1RPn ˆ iq˚pαn b 1q
“ 1˚RPnαn b i

˚1
“ αn b 1

and

i˚2pαn b 1q “ piˆ 1RPnq˚pαn b 1q
“ i˚αn b 1˚RPn1
“ 0

Similarly, applying i˚1 and i˚2 to 1bαn, is easy to see that c2 “ 1. So, g˚ maps αk to αnb1`1bαn.
Again, applying (5.3) we have the formula:

g˚αk “ αn ˆ 1` 1ˆ αn P H1pRPn ˆ RPn;Z2q

This last condition fixes the homotopy type of a map RPnˆRPn Ñ RP8 since the inclusions:

¨ ¨ ¨ ãÑ RPm ãÑ RPm`1 ãÑ ¨ ¨ ¨ ãÑ RP8

gives in cohomology (with coefficients in Z2):

H1pRP8q ãÑ ¨ ¨ ¨ ãÑ H1pRPm`1q ãÑ H1pRPmq ãÑ ¨ ¨ ¨

α ÞÝÑ ¨ ¨ ¨ ÞÝÑ αm`1 ÞÝÑ αm ÞÝÑ ¨ ¨ ¨

where α P H1pRP8q is the universal class given by Brown Representability Theorem (see [10,
p. 448]), and αm P H

1pRPmq is the class α restricted by the inclusion RPm ãÑ RP8. Therefore,
if ax : RPnˆRPn Ñ RP8 is an axial map, we want to find the smallest k such that this map can
be factorized through the inclusion RPk Ñ RP8. This is:

RPk �
� // ¨ ¨ ¨ �

� // RPm �
� // RP8

RPn ˆ RPn
ax

OO
g

ff

?

kk

We will prove that k is precisely TCpRPnq.

Remark. Since RPn ˆRPn has dimension 2n, by Cellular Aproximation Theorem (see [10,
p. 349]), there always exists an axial map RPn ˆ RPn Ñ RP2n. In fact, it is possible to show
that there always exists an axial map RPn ˆ RPn Ñ RP2n´1.

Lemma 5.2.8. For n ă k, the map h : RPn Ñ RPk induced by an odd map h : Sn Ñ Sk (i.e. one
satisfying hp´xq “ ´hpxq for all x) is homotopic to the equatorial inclusion.

Proof. Assume that h is null–homotopic. Since Sk Ñ RPk is the universal cover, h admits a
lifting H : RPn Ñ Sk so the bottom triangle in the diagram:

Sn

π

��

h // Sk

π
��

RPn
h

//

H

<<

RPk

commutes on the nose. In particular hpxq “ ˘Hpπpxqq for all x P Sk. Consequently Sn is covered
by the two subsets P “ tx P Sn | hpxq “ Hpπpxqqu and N “ tx P Sn | hpxq “ ´Hpπpxqqu. Since
these are closed and disjoint, one of them is empty and the other agrees with Sn. But this is
incompatible with h been odd.
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Lemma 5.2.9. Assume that 1 ă n ă k. There exists a bijection between nonsingular maps
Rn`1 ˆ Rn`1 Ñ Rk`1 (viewed up to multiplication by a nonzero scalar) and axial maps RPn ˆ
RPn Ñ RPk.
Proof. Let f : Rn`1 ˆ Rn`1 Ñ Rk`1 be nonsingular. Consider the map g : RPn ˆ RPn Ñ RPk,
where for u, v P Sn Ă Rn`1, the value gprus, rvsq is the line through the origin containing the
point fpu, vq P Rk`1. If we fix v P Sn and vary only u P Sn, the resulting map RPn Ñ RPk lifts
to a map Sn Ñ Sk given by:

u ÞÑ
fpu, vq

|fpu, vq|

Since fp´u, vq “ ´fpu, vq, the map Sn Ñ Sk is also odd, therefore by Lemma 5.2.8, the
map RPn Ñ RPk is not null–homotopic. Similarly, using fpu,´vq “ ´fpu, vq, we find that the
restriction of g onto ˚ ˆ RPn is not null–homotopic. Then, both maps are homotopic to the
inclusion maps. Hence, g is an axial map.

Now, given an axial map g, and passing to the universal covers, we obtain a map g : SnˆSn Ñ
Sk (defined up to a sign), such that the following diagram is commutative:

Sn ˆ Sn
g //

��

Sk

��
RPn ˆ RPn g

// RPk

Therefore, for all u, v P Sn:
gp´u, vq “ ´gpu, vq “ gpu,´vq

Then, we may define a nonsingular map f : Rn`1 ˆ Rn`1 Ñ Rk`1 given by:

fpu, vq “ |u| ¨ |v| ¨ g

ˆ

u

|u|
,
v

|v|

˙

where u, v P RPn`1 ´ t0u.

Lemma 5.2.10. Suppose that for a pair of integers 1 ă n ă k, there exists a nonsingular map
Rn`1 ˆRn`1 Ñ Rk`1. Then, there exists a nonsingular map f : Rn`1 ˆRn`1 Ñ Rk`1, such that
for any u P Rn`1 ´ t0u, the first coordinate of fpu, uq P Rk`1 is positive.
Proof. Given a nonsingular map Rn`1 ˆ Rn`1 Ñ Rk`1, consider the corresponding axial map
g : RPn ˆ RPn Ñ RPk. If we restricted g to the diagonal ∆ : RPn Ñ RPn ˆ RPn then:

H1pRPk;Z2q
g˚
Ñ H1pRPn ˆ RPn;Z2q

∆˚
Ñ H1pRPn;Z2q – Z2

αk ÞÑ αn ˆ 1` 1ˆ αn ÞÑ 2αn “ 0

which implies that the restriction is null–homotopic. Hence, there exists g1 » g such that g1 :
RPn ˆ RPn Ñ RPk is constant along the diagonal. Now, consider the nonsingular map f :
Rn`1 ˆ Rn`1 Ñ Rk`1 corresponding to the axial map g1. Notice that for all u P Rn`1, u ‰ 0, we
can take the map n which sends u to u

|u| . Then:

Rn`1 ´ t0u ˆ Rn`1 ´ t0u f0 //

nˆn

��

Rk`1 ´ t0u

n
��

Sn ˆ Sn //

��

Sk

��
RPn ˆ RPn

g1
// RPk
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where f0 is the restriction of the map f . By construction any pair pruns, runsq is mapped to the
same line L˚ in RPk. Since the above diagram is commutative, the values fpu, uq P Rk`1 lie on
L˚. In fact, since n ą 1, the image f0ppRn`1 ´ t0uq ˆ pRn`1 ´ t0uqq is connected, so that it is
completely contained in one of the two rays determined by L˚. By performing an orthogonal
rotation, we may assume that all nonzero vectors of this ray have positive first coordinates.

5.3 The main theorem

Now, we want to relate the topological complexity with the dimensions of the above maps.

Proposition 5.3.1. For n ą 1, let k be an integer such that the vector bundle kpξ b ξq over
RPn ˆ RPn admits a nowhere vanishing section. Then, there exists a nonsingular map Rn`1 ˆ
Rn`1 Ñ Rk

Proof. By Lemma 5.1.3, there is an isomorphism of vector bundles kpξbξq – pSnˆZ2S
nqˆZ2Rk

where Z2 acts on Rk by change of signs, and on SnˆZ2 S
n as described in (5.5). In particular, we

get an isomorphism of associated sphere bundles S pkpξ b ξqq – pSn ˆZ2 S
nq ˆZ2 S

k´1. Then, a
nowhere zero section for kpξbξq can be normalized to a section s : RPnˆRPn Ñ pSnˆZ2 S

nqˆZ2

Sk´1. Let S denote the composition:

Sn ˆ Sn Ñ Sn ˆZ2 S
n Ñ RPn ˆ RPn s

ÝÑ pSn ˆZ2 S
nq ˆZ2 S

k´1

where unlabeled maps stand for canonical projections. Note that:

Sp´x, yq “ Spx, yq “ Spx,´yq for all x, y P Sn. (5.7)

Since n ą 1, Sn ˆ Sn is simply connected, so that [10, Prop 1.33 p. 61], implies that S admits a
lifting σ : Sn ˆ Sn Ñ pSn ˆ Snq ˆ Sk´1 through the composition of 2–fold covering projections:

pSn ˆ Snq ˆ Sk´1 Ñ pSn ˆZ2 S
nq ˆ Sk´1 Ñ pSn ˆZ2 S

nq ˆZ2 S
k´1. (5.8)

Actually, since the composite (5.8) is a 4-sheeted covering projection, there are four choices of
such liftings. Explicitely, fixing a lifting σ0 : SnˆSn Ñ pSnˆSnqˆSk´1, the other three liftings
are σ1 “ τ1 ˝ σ0, σ2 “ τ2 ˝ σ0, and σ3 “ τ2 ˝ τ1 ˝ σ0 where

τ1px, y, zq “ p´x,´y, zq, τ2px, y, zq “ p´x, y,´zq and, so, τ2 ˝ τ1px, y, zq “ px,´y,´zq. (5.9)

Since each such lifting gives the commutative diagram:

pSn ˆ Snq ˆ Sk´1

��

proj // Sn ˆ Sn

uu

pSn ˆZ2 S
nq ˆ Sk´1

��
pSn ˆZ2 S

nq ˆZ2 S
k´1

��
Sn ˆ Sn //

σi

77

Sn ˆZ2 S
n // RPn ˆ RPn

s
55

RPn ˆ RPn

where the rightmost map and the horizontal composition are the standard 4-sheeted covering,
it follows that one (and only one) of the composites proj ˝ σi is the identity. Without loss of
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generality assume this holds for i “ 0, and let f : Sn ˆ Sn Ñ Sk´1 denote the third component
of σ0. Note that (5.7) and (5.9) imply that f is Z2-biequivariant, that is, it satisfies:

fp´x, yq “ ´fpx, yq “ fpx,´yq for x, y P Sn.

Consequently, the required nonsingular map F : Rn`1 ˆ Rn`1 Ñ Rk is given by setting:

F pλx, µyq “ λµfpx, yq for x, y P Sn and λ, µ P R.

Proposition 5.3.2. If there exists a nonsingular map f : Rn`1 ˆ Rn`1 Ñ Rk with n ` 1 ă k,
then TCpRPnq ď k.

Proof. Let φ : Rn`1ˆRn`1 Ñ R be a scalar continuous map such that φpλu, µvq “ λµφpu, vq for
all u, v P Rn`1 and λ, µ P R. Define Uφ Ă RPn ˆ RPn as the set of all pairs of lines pL1, L2q in
Rn`1 such that L1 ‰ L2 and φpu, vq ‰ 0 for some points u P L1 and v P L2. Notice that Uφ is
open. Moreover, we may find unit vectors u P L1 and v P L2 such that φpu, vq ą 0. Instead of
pu, vq, we may take p´u,´vq, and both pairs determine the same orientation of the plane spanned
by L1, L2. Then, there exists a continuous motion planning map s : Uφ Ñ P pRPnq consists in
rotating L1 toward L2 in this plane, in the positive direction determined by the orientation.

Assume in addition that φ : Rn`1 ˆ Rn`1 Ñ R is positive, i.e. for any u P Rn`1, u ‰ 0,
φpu, uq ą 0. Therefore, instead of Uφ, we may take a slightly larger set U 1φ Ă RPn ˆ RPn which
consists of all pairs of lines pL1, L2q in RPn`1 such that φpu, vq ‰ 0 for some u P L1 and v P L2.
Now, all pairs of lines pL,Lq belong to U 1φ. Thereby, if L1 ‰ L2, the path from L1 to L2 is defined
as above, and if L1 “ L2, we choose the constant path at L1.

Our map f : Rn`1ˆRn`1 Ñ Rk determines k scalar maps φ1, . . . , φk : Rn`1ˆRn`1 Ñ R (the
coordinates) with its respective neighbourhoods Uφi

which cover the product RPn ˆ RPn minus
the diagonal. Since n` 1 ă k, by Lemma 5.2.10, we may replace the initial nonsingular map f
by such an f 1 that for any nonzero u P Rn`1, the first coordinate φ11pu, uq of f 1pu, uq is positive.
The open sets U 1φ1

, Uφ2 , . . . , Uφk
cover RPn ˆ RPn. We have described explicit motion planning

rules over each of these sets. Hence, TCpRPnq ď k.

Proposition 5.3.3. For n “ 1, 3, 7, TCpRPnq “ n` 1.

Proof. Proceeding as in the proof of Proposition 5.3.2 with the nonsingular maps Rn`1 ˆ
Rn`1 Ñ Rn`1 given by Lemma 5.2.3, it follows that TCpRPnq ď n` 1. On the other hand, we
have TCpRPnq ě catpRPnq “ n` 1.

With all the tools ready, we can state the main theorem.

Theorem 5.3.4. The number TCpRPnq coincides with the smallest integer k such that there
exists a nonsingular map Rn`1 ˆ Rn`1 Ñ Rk.

Proof. If n ‰ 1, 3, 7, Lemma 5.2.4 implies that there are not nonsingular maps Rn`1ˆRn`1 Ñ
Rn`1 and therefore n ` 1 ă k. By Proposition 5.3.2, TCpRPnq ď k. Let l be the smallest
integer such that the vector bundle lpξb ξq over RPnˆRPn admits a nowhere vanishing section,
then, by Proposition 5.3.1, there exists a nonsingular map Rn`1 ˆ Rn`1 Ñ Rl. Notice that
necessarily k ď l. Nevertheless, by Corollary 5.1.4, l ď TCpRPnq. The cases n “ 1, 3, 7 are
covered by Proposition 5.3.3.

Remark. The power of Theorem 5.3.4, is that the computation TCpRPnq is the same as finding
nonsingular maps Rn`1 ˆ Rn`1 Ñ Rk, which at first, seem to be different problems.
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Chapter 6

Discussion of Results

6.1 Motion Planner in RP1 and RP2

In this section, we will solve the problem of moving a line through the origin in R2 and R3.

Example 6.1.1. Topological Complexity of RP1.
First, notice that Proposition 5.3.3 states that TCpRP1q “ 2, then there exist exactly

two open subsets of RP1 ˆ RP1 with continuous motion strategy. Define U1 “ tpL1, L2q |
L1 and L2 are not perpendicular u and consider the map s1 : U1 Ñ P pRP1q which moves L1
towards L2 sweeping the smallest angle, see Fig. 6.1 (left). The problem is when L1 and L2 are
perpendicular, since we have two right angles, as shown in Fig. 6.1 (right):

Figure 6.1: Motion planning over U1

The second open set is U2 “ tpL1, L2q | L1 ∦ L2u and the continuous map is s2 : U2 Ñ P pRP1q
which moves L1 towards L2 in the clockwise sense, see Fig. 6.2. The problem with parallel
(equal) lines (see Fig. 6.3), is that one option is to rotate half a revolution and the other is not
to rotate.
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Figure 6.2: Motion planning over U2

Figure 6.3: Case of parallel lines

Example 6.1.2. Topological Complexity of RP2.
By Lemma 5.2.4, there are not nonsingular maps R3ˆR3 Ñ R3, but notice that if i, j, k P R4

are the imaginary units, the map:

px1, x2, x3q ÞÑ x1 ` x2i` x3j

is an embedding of R3 into R4. Consider the nonsingular map R4 ˆ R4 Ñ R4 of Lemma 5.2.3.
Restricting it onto R3 Ă R4, we have a nonsingular map f : R3 ˆ R3 Ñ R4 given by:

fpx, yq “ xx, yy ´

ˇ

ˇ

ˇ

ˇ

x1 x2
y1 y2

ˇ

ˇ

ˇ

ˇ

i´

ˇ

ˇ

ˇ

ˇ

x1 x3
y1 y3

ˇ

ˇ

ˇ

ˇ

j ´

ˇ

ˇ

ˇ

ˇ

x2 x3
y2 y3

ˇ

ˇ

ˇ

ˇ

k

Therefore, Theorem 5.3.4 implies that TCpRP2q “ 4. Then, proceeding as in the proof of
Proposition 5.3.2, we have four open subsets U1, U2, U3, U4 covering RP2ˆRP2, where each Ui
corresponds to the scalar map φi obtained from f by considering only the i–th coordinate:

fpx, yq “ φ1px, yq ` φ2px, yqi` φ3px, yqj ` φ4px, yqk

The subset U1 consists of the pairs of lines in R3 making an acute angle. The subset U2 consists of
pairs of lines in R3 such that their projections onto the x1x2–plane span this plane. The subsets
U3 and U4 are defined analogously replacing the x1x2–plane by the x2x3–plane and x1x3–plane
respectively. Again, by the proof of Proposition 5.3.2, we know that each functional φi defines
a continuous motion planning strategy over the subset Ui. In U1, if lines L1 and L2 make an
acute angle, we rotate L1 towards L2 in the 2–plane spanned by L1 and L2 so that L1 sweeps
the acute angle. If L1 “ L2, the L2 stays fixed. Now, in U2 fix an orientation of the x1x2–plane.
For any pair pL1, L2q P U2, we obtain an orientation of the 2–plane spanned by L1 and L2, and
we rotate L1 towards L2 in this 2–plane in the direction of the orientation. The motion planning
strategies over U3 and U4 are similarly.

39



6.2 Immersions

In this section, we show that the problem of computing the topological complexity of the motion
planning problem in RPn is equivalent to the immersion problem for the real projective spaces.
The next theorem of [2], will be fundamental for our purposes.

Theorem 6.2.1 (Adem, Gitler, James). There exists an immersion RPn í Rk (where k ą n) if
and only if there exists an axial map RPn ˆ RPn Ñ RPk.

By Lemma 5.2.9, the existence of a nonsingular map Rn`1 ˆ Rn`1 Ñ Rk`1, is equivalent
to the existence of an axial map RPn ˆ RPn Ñ RPk. As a consequence of Theorem 6.2.1 and
Theorem 5.3.4, it follows that:

Theorem 6.2.2. For any n ‰ 1, 3, 7, the number TCpRPnq equals to the smallest k such that
the projective space RPn admits an immersion into Rk´1.

Now, in the next Theorem, we give a direct construction.

Theorem 6.2.3. If RPn can be immersed into Rk, then, TCpRPnq ď k ` 1.

Proof. By definition, an immersion f : RPn í Rk induces a monomorphism T pRPnq ãÑ f˚pT pRkqq
of tangent bundles. Since Rk is parallelizable (i.e. T pRkq is trivial) and RPn is compact, we get a
Whitney sum decomposition1 kε – T pRPnq ‘ ν where ε is the trivial line bundle over RPn, and
ν – kε{T pRPnq is the normal bundle of the immersion f . In these terms, the k canonical sections
of kε are mapped under the canonical epimorphism kε – T pRPnq‘ν Ñ T pRPnq (an epimorphism
of vector bundles) onto k tangent vector fields v1, v2, . . . , vk on RPn (i.e. sections of T pRPnq).

Define U0 Ă RPnˆRPn as the set of pairs of lines pL1, L2q in Rn`1 making an acute angle. A
nonzero tangent vector v to the projective space RPn at a point L1 (a line in Rn`1) determines
a line pv in Rn`1, which is orthogonal to L1. This vector v also determines an orientation of the
two–dimensional plane spanned by L1 and pv.

For i “ 1, 2, . . . , k, define Ui Ă RPnˆRPn as the open set of all pairs of lines pL1, L2q in Rn`1

such that the vector vipL1q is nonzero and the line L2 makes an acute angle with the line {vipL1q.
Notice that the sets U0, U1, . . . , Uk cover RPn ˆ RPn. Indeed, given a pair pL1, L2q, there exists
indices 1 ď i1 ă ¨ ¨ ¨ ă in ď k such that the vectos vij pL1q pj “ 1, 2, . . . , nq, span the tangent
space TL1pRPnq. Then, the lines:

L1, {vi1pL1q, . . . , {vinpL1q

span Rn`1 and therefore the line L2 makes an acute angle with one of these lines. Hence, pL1, L2q
belongs to one of the sets U0, Ui1 , . . . , Uin .

Now, if pL1, L2q P U0, we rotate L1 towards L2 with constant velocity in the two–dimensional
plane spanned by L1 and L2 so that L1 sweeps the acute angle. This is a continuous motion
planning section s0 : U0 Ñ P pRPnq. Our continuous motion planning strategy si : Ui Ñ P pRPnq
where i “ 1, 2, . . . , k is a composition of two motions. First we rotate line L1 toward the line
{vipL1q in the two–dimensional plane spanned by both lines in the direction determined by the
orientation of this plane. On the second step, we rotate the line {vipL1q towards L2 along the
acute angle similarly to the action of s0.

We found k ` 1 continuous motion planning strategies si over each Ui, which proves the
statement.

1Actually, Hirsch’s Theorem on immersions of manifolds [11] asserts that an n-dimensional manifold M admits
an immersion in Rk precisely when the tangent bundle τM admits a k-dimensional complement (realized as the
normal bundle of the immersion).
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Remark. Notice that Theorem 5.3.4 can be written as:

TCpRPnq ď lðñ D nonsingular map Rn`1 ˆ Rn`1 Ñ Rl

By definition, if we have a motion planner for RPn given by l rules, it means that:

TCpRPnq ď l.

Then there exists a non–singular map:

Rn`1 ˆ Rn`1 Ñ Rl,

and by Lemma 5.2.9 we have an axial map:

RPn ˆ RPn Ñ RPl´1

which (applying Theorem 6.2.1) gives an immersion:

RPn í Rl´1.

Hence, starting from a motion planner for RPn, it is possible to construct an immersion:

RPn í Rk´1.
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Conclusions

In this work we reviewed the work done by Farber et. al. toward the study of Topological Com-
plexity, offering more detailed explanations than those included in the original works. We also
utilized the tools developed by several authors in order to establish results for other possible
configuration spaces.

Looking at the future, there exist many configuration spaces for which TC is unknown or there
exist some bounds. One of the most remarkable open examples is the Klein Bottle (denoted as
K), which is the configuration space of a robot having a twist attached to every rotation in two
different directions.

Figure 6.4: Klein Bottle, [10, p. 53]

It is not hard to see that zclpKq “ 3. In fact, any non–orientable surface of genus g (Ng),
is such that zclpNgq “ 3. On the other hand, by (2.1.13), we have TCpKq ď 5. Therefore, the
Topological Complexity of Klein Bottle is 4 or 5.

This problem has been attacked by many people, even Michael Farber.
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