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Resumen

En este trabajo, estudiaremos el concepto de Complejidad Topolégica (TC) de espacios de con-
figuraciones para el movimiento planificado de robots. TC es un niimero entero positivo que mide
las discontinuidades en el proceso de movimiento planificado en el espacio de configuraciones X
(el conjunto de posibles posiciones del robot). En [6], Michael Farber determiné cotas superiores
para TC en términos de la dimensién y de la Categoria de Lusternik—Schnirelman del espacio de
configuraciones X; ademas, proporcioné una cota inferior trabajando con la cohomologia del es-
pacio de configuraciones. Con estas herramientas, es posible calcular TC para esferas de cualquier
dimension n y, en general, de cualquier superficie bidimensional cerrada, compacta, orientable y
de género g. En particular, el producto de m esferas de dimensién n, puede considerarse como
un brazo de robot con m articulaciones, el cual puede moverse en n dimensiones; el calculo de
TC para ese caso, también es proporcionado en [6]. Posteriormente en [8], se estudia el caso de
espacios reales proyectivos de dimensiéon n, RP", donde se proporciona una clasificacién de TC
para tales espacios y, en ciertos casos particulares, el calculo es explicito. Se introducen otros
conceptos que son de gran utilidad. De hecho, uno de los resultados mas importantes es que
el cdlculo de TC(RP™), coincide con el problema clasico de inmersién de espacios reales proyec-
tivos. Proporcionaremos una sélida justificaciéon de todos los resultados mencionados en [6] y [8],
ademas de varios ejemplos de casos particulares, que permitiran al lector comprender con mayor
precision lo que determina la teoria.



Abstract

In this work, we study the concept of Topological Complexity (TC) of configuration spaces for
robot motion planning. TC is a positive integer which measures discontinuity of the process of
motion planning in the configuration space X (the set of possible positions of the robot). In
[6], Michael Farber gave upper bounds for TC in terms of the dimension and of the Lusternik—
Schinerlman Category of the configuration space X; he also provided a lower bound working with
the cohomology of the configuration space. With these tools, it is possible to calculate TC for
spheres of any dimension n and, in general, for any 2-dimensional closed, compact, orientable
surface of genus ¢g. In particular, the product of m spheres of dimension n, can be seen like a
robot arm with m articulations which moves in n dimensions. The calculation of TC for this
case, is also given in [6]. Later in [8], the case of real projective spaces of dimension n, RP",
is studied, and a classification of TC for these spaces is provided and, in particular cases, the
calculation is explicit. Other useful concepts are introduced. In fact, one of the most important
results is that the calculation of TC(RP"), coincides with the classical immersion problem of real
projective spaces. We will provide a solid justification for all results mentioned in [6] and [8], as
well as several examples of specific cases, which allow the reader to understand more precisely
what the theory determines.



Introduction

Suppose we want to do a task in a dangerous environment for human conditions. One way to
solve this problem would be with the help of a robot. The idea is that the robot receives the
coordinates of the starting point and destination, and it is able to move between these two points.
Also we want that if we make a small modification to the coordinates, the way forward for the
robot also has a slight change.

Mathematically, let X be the space of all possible positions of a mechanical system, i.e. a
configuration space. The motion plannining problem consists of constructing a program,
which takes pairs of configurations (A, B) € X x X as an input and produces as an output a
continuous path in X, which stars at A and ends at B. For simplicity we will assume that
the configuration space X is path—connected. Nevertheless, the same set of ideas applies to the
various path—connected components.

Throughout this work, I represents the interval [0,1]. Let PX the space of all continuous
paths v : I — X in X. We denote by # : PX — X x X the map associating to any path
v € PX the pair of its initial and end points 7(y) = (7(0),v(1)). Equip the path space PX
with compact—open topology. The problem of motion planning in X consists of finding
a function s: X x X - PX such that the composition 7o s is the identity map.

An interesting question arising from this problem is: Whether it is possible to construct a
motion planning in the configuration space X so that the continuous path s(A, B) in X, depends
continuously on the pair of points (A4, B).

Continuity of motion planning is an important natural requirement, because absence of con-
tinuity will result in the instability of behavior:

s{A,B)

.

A B

Al B'

\/

s(A',B')

Figure 1: A non—continuous section

There will exist arbitrarily close pairs (A, B) and (A’, B’) of initial-desired configurations
such that the corresponding paths s(A, B) and s(A’, B') are not close.

But we have a serious problem, because a continuous motion planning exists only in very
simple situations. The next best attempt would be to decompose the configuration space as the
union of subspaces in each of which there exists a continuous motion planner. This situation is
precisely measured by the Topological Complexity.



Chapter 1

Preliminaries

Before defining T'C, recall some important concepts.
Definition 1.0.1. Let X and Y be two topological spaces.

e The maps hg: X — Y and h; : X — Y are homotopic, hg ~ h1, if there exists a map, a
homotopy, H : X x I — Y such that:

ho(z) = H(x,0) and hy(z) = H(z,1) for all x € X.
If we want to emphasize the homotopy H between hg and hi, we denote:

ho§h1

e A map is null-homotopic if it is homotopic to a constant map.

e The space X dominates the space Y if there exist maps f : X - Y, ¢g:Y — X, such that
fog ~1y. We say that X and Y are homotopy equivalent if both spaces dominate each
other. In such case, we write X ~ Y.

e A space is contractible if it is homotopy equivalent to a one-point space.

e X is called locally contractible if any point of X has an open neighborhood U such that
the inclusion U — X is null-homotopic.

Notice that if X is contractible 1x oc, ~ 1x and ¢y 0 1x ~ 1x, where c, is a constant map
in X. Therefore ¢, ~ 1x, i.e. the identity map of X is null-homotopic. With this in mind, we
can prove our first result.

Theorem 1.0.2. A continuous motion planning s : X x X — PX exists if and only if the
configuation space is contractible.

Proof. Suppose that a continuous section s : X x X — PX exists. Consider the fixed point
Ap € X and the homotopy ht : X — X, given by ht(B) = s(Ao, B)(t), where B € X and t € [0, 1].
Notice that hy(B) = B and ho(B) = Ag. Therefore h; gives a contraction of the space X into
the point Ag € X.

Conversely if X is contractible, there is a continuous homotopy h; : X — X such that
ho(A) = A and hy(A) = Ap for any A € X. Given a pair (4, B) € X x X, we may compose the
path ¢t — h;(A) with the inverse of ¢ — h;(B), which gives a continuous motion planning in X.

Thus, we get a motion planning in X by first moving A into the base point Ay along the
contraction, and the following inverse of the path, which brings B to Ajp. O



1.1 Definition of Topological Complexity

Now that we know more about the concept of continuous motion planning, we can define topo-
logical complexity.

Definition 1.1.1. Given a path—connected topological space X, we define the topological com-
plexity of the motion planning in X as the minimal number TC(X) = k, such that the
Cartesian product X x X may be covered by k open subsets:

XxX=U1uvUyu---uU

such that for any 2 = 1, ..., k there exists a continuos motion planning s; : U; — PX, mos; = 1y,.
If no such k exists we will set TC(X) = 0.

According to Theorem 1.0.2, we have TC(X) = 1 if and only if the space X is contractible.
For example, any convex subset of R™. Explicitly: Given a pair (A, B), we may move along the
straight line segment connecting A and B, which is a motion planning of one instruction.

Observe that the topological complexity TC(X) is the measure of the discontinuity of any
motion planner in X. In other words, this number tells us how many different instructions our
algorithm should have in order to ensure the continuity of our motion planner regardless of the
start and end points.

Example 1.1.2. Topological Complexity of the circle S!

With the tools that we have at the moment, we can do some calculations. Let’s start
with the circle. First, S is not contractible, so TC(S!) > 1. Define U; < S x S! as
Uy = {(A, B)|A # —B}. A continuous motion planning over U; is given by the map s : U; — PS?!
which moves A towards B along the unique shortest arc connecting A to B. See Fig. 1.1 (left).
This map s; cannot be extended to a continuos map on the pairs of antipodal points A = —B,
because we will have two arcs between —B and B. See Fig. 1.1 (right).

O C

Figure 1.1: Motion planning over U;

Now define Uy = {(A, B)|A # B}. Fix an orientation of the circle S*, for example the clockwise
sense. A continuous motion planning over Us is given by the map s3 : Uy — PS! which moves A
towards B in the positive direction along the circle.



Aﬁ)

Figure 1.2: Motion planning over U,

Again, sy cannot be extended to a continuous map on the whole S' x S, because equal points
could have different paths. One option is to not move (Fig. 1.3 (left)) and the other is a full
turn (Fig. 1.3 (right)).

SZ{A,B} SZ{A, B_J

O O

Figure 1.3: Lost of continuity for equal points

1.2 Homotopy Invariance

Often we have spaces whose Topological Complexity will be difficult to calculate. It would be
desirable to obtain information about these spaces from other spaces simpler to handle.

If X dominates Y, there exist continuous maps f : X — Y and g : ¥ — X such that
fog ~idy. Assume that U c X x X is an open subset such that there exists a continuous motion
planning s : U — PX. We will construct a motion planner for Y. Define V = (g x ¢)"'(U) <
Y x Y. We have the following diagram:

PX PY
S (e
VAL
fxf
U—— X x X Y xY~<—V

gxg
Now, the question is: What is 0?7 Let (A, B) € V. Fix a homotopy h; : Y — Y with hg = idy
and hy = fog. We know that in U it is possible connect g(A) with ¢g(B) applying our motion
planning s. By continuity we have a new path in V if we compose the path between g(A) and

g(B) with the map f. Since f o g is homotopic to the identity in Y, we can move the point A
until f(g(A)) via h¢. Finally, we move f(g(B)) to B through hy_;. Graphically:



(g > g)

Explicitly, if 7 € [0, 1], the continuous motion planning o : V' — PY is given by:

h3‘r (A)

o<7<i
o(A,B)(r) = { f(s(9(4),9(B)(BT—1)) g<7<3
h3(1,7.)(B) % <7<1

Notice that any open cover {Uq,

..., U} of X x X with a continuous motion planning over each
U; defines an open cover {V1, ..., Vi } of Y XY with similar properties. Therefore TC(Y) < TC(X).

Then, if X ~ Y, we conclude that TC(X) = TC(Y). In other words, TC(X) depends only on
the homotopy type of X.



Chapter 2

An upper bound for TC(X)

2.1 Lusternik-Schnirelman category

Since we have just seen, the Topological Complexity is a homotopic invariant. We would like to
relate it with another one known invariant which allows us to obtain information about the TC.
If it is not possible to calculate the TC of certain configuration spaces, a first approach would be
to bound it. The invariant that we will use is a very strong tool in the homotopy theory. Such an
invariant is very similar to the TC. In fact, both invariants are particular cases of a more general
concept that will be studied later.

Definition 2.1.1. The Lusternik-Schnirelman category of the space X, cat(X), is defined
as the smallest integer k, such that X may be covered by k open subsets Vi,..., Vi, with each
inclusion V; — X null-homotopic. Such cover is called categorical cover.

Notice that the difference between TC and cat, are the properties of the elements of the covers,
nevertheless, there seem to be similar characteristics. Thus, we might think that in effect, there
is a relation between both invariants.

Theorem 2.1.2. For every topological space X, we have:
cat(X) < TC(X) < cat(X x X).

Proof. Let U € X x X be an open subset such that there exists a continuous motion planning
s:U — PX over U. Let Ag € X be a fixed point. Define V< X as V = {B e X|(Ao, B) e U}.
Notice that V is open since V = g~ 1(U) where g(B) = (Ag, B). Moreover, H : V x I — X given
by H(B,t) = s(Ao, B)(t) is such that {Ao} =~ 1y, therefore V < X is null-homotopic.

If TC(X) =k, and Uy U --- U Uy is a covering of X x X with a continuous motion planning
over each U;, then the sets V; where Ag x V; = U; n (Ag x X) form a categorical open cover
of X. This shows that cat(X) < TC(X). Now, if cat(X x X) = [, there is a categorical open
cover Wi,...,W; of X x X. By Theorem 1.0.2 there is a continuous section in each W;, thus
k<l O

The above result is very general, however, in some cases it is difficult to work with the space
X x X. To obtain another upper bound in terms of X, remember the following:

Definition 2.1.3. Let be X a topological space:

1. A family {A,|a € Q} of sets in X is called locally finite, if each point of X has a neigh-
borhood V' such that V n A, # &, for at most finitely many indices «.

10



2. If {An]a € Qo } and {Bg|8 € Q3} are two covers of X, {A,} is a refinement of { Bz}, if for
each A, there is some Bg with A, < Bg.

3. X is paracompact if each open cover of X has an open locally finite refinement.

4. The support of a map f: X — R is the closed set:

support(f) = {x € X|f(z) # 0}.

Naturally, we asked: What is the importance of paracompactness hypothesis in our config-
uration spaces? The reason is the following concept, which plays an important role in various
topological problems.

Definition 2.1.4. Let X be a Hausdorff space. A family {k,|a € Q} of continuous maps kq :
X — 1 is called a partition of unity on X if:

1. The supports of the k. form a closed locally finite cover of X.

Z Ka(z) =1

a€el)

2. For each z € X,

(this sum is finite because each z lies in the support of at most finitely many k).

Definition 2.1.5. If {U,|a € Q} is an open cover of X, we say that a partition {ks|a € Q} of
unity is subordinated to {U,}, if the support of each k, lies in the corresponding Ul,.

As the following theorem indicates, paracompact spaces always have a partition of unity
subordinated to each open cover of the space.

Theorem 2.1.6. Let X be paracompact. Then for each open cover {U,|a € Q} of X, there is a
partition of unity subordinated to {U,}.

Proof. See [5, Theorem 4.2 p. 170] O

With this condition, it will be possible relate Lusternik—Schnirelman category with another
invariant, and of course, this invariant will be another bound for topological complexity.

Definition 2.1.7. Let X be a space and U = {U,} any open cover of X.

e We say that the order of the cover {U,} is k, if no point of X belongs to more than k + 1
open sets of U.

e The dimension of X, dim(X), is the least k, such that any open cover has a refinement of
order k.

In the next result, we will exhibit importance of partitions of unity subordinated to a cover
of our space.

Lemma 2.1.8. Let 4 = {U,} be an open cover of X of order n with a partition of unity
subordinate to the cover. Then, there is an open cover of X refiningf, V = {Vjg}, i =1,...,n+1,
such that V;gnV;p = & for § # f'. In particular, there is such a refinement if X is a paracompact
space with cover dimension n and U = {U,} is any open cover of X.

11



Proof. Since the order of the cover is n, no x € X can belong to more than n + 1 of the U,. Let
{¢a} be a partition of unity subordinate to the cover U. That is, support(¢,) S U,. Now, let
B; denote the set of i—tuples obtained from the set {1,...,n+1}. Given 8 = (o, ...,q;) € B;, set

Vig = {z € X|¢q,(z) >0 for j =1,...,i and ¢o(x) < ¢q,(z) for ar ¢ 5} .
Since in a neighborhood of any = € X, only a finite number of ¢, are not identically zero, each
Vi is open. If B # [/, then, by the second condition, Vjg n Vi = &&. Also,
Vig < ﬂ support(¢q) S ﬂ Uy,
aef aep

so that V = {Vig} refines &Y. Now, given z € X let (aq,..., ) be all the indices such that
Pa,; () > 0. Then z € N{"1U,, and the order of the cover U is n, so we must have m < n + 1.
Without lost of generality, suppose

¢a1(x) = (ZSOQ(x) = ¢aj(w) > ¢Oéj+l(x) = ¢Otj+2(x) =2 (Zﬁam(l')
This means that € Vj(a,,.. ;) and V covers X. O
The following result relates the category with the dimension of the space X.

Theorem 2.1.9. If X is path—connected, locally contractible and paracompact, then:
cat(X) < dim(X) + 1.

Proof. Let U = {Uy,...,Uy+1} be a categorical cover of X and suppose dim(X) = k. Then, by
Lemma 2.1.8, there is an open cover {V;}, i = 1,...,k + 1 of X refining ¢ with the property
that each V; is a union of disjoint open sets each of which lies in some Uj. Since each U; is
contractible in X and the open sets making up V; are disjoint, then V; is also contractible in X
(each component of V; is in a U;). We have then found a categorical cover of X by k + 1 sets and
the definition of category therefore says that cat(X) < k + 1 = dim(X) + 1. O

The following results, require the introduction of a very intuitive concept:

Definition 2.1.10. For any topological space X we describe a finite sequence @ = Vy < V; <

- < V, = X of open subsets of X as categorical, if each of the differences V;\V;_; (with
i =1,...,n), is the union of a finite number of disjoint open sets each contained in an open
categorical subset of X.

Lemma 2.1.11. Let X be a path—connected and paracompact space. Then, X admits a cate-
gorical sequence of length n if and only if cat(X) < n.

Proof. Since the sets V;\V;_; form a categorical cover of X, it is clear that cat(X) is at most n.

Now, if cat(X) < n, there is a categorical cover {Vi,...,V,,} of X, and we can define:
m
W = J Vi
i=1

Notice that W;\W;_1 € V; is open and categorical. Hence, the ,,, form a categorical sequence
of length n. O

Categorical sequences are used for various ”product inequalities”. The most important for our
purposes is:

12



Theorem 2.1.12. If X and Y are path-connected and paracompact, then:
cat(X x Y) < cat(X) + cat(Y).

Proof. Let Ag < -+ € Ap—1 and By < -+ < B,_1 be categorical sequences for X and Y,
respectively. Then Cy < --- < C,,,4n—2 is a categorical sequence for X x Y, where Cy = ¢ and:

J
Cj = U(AZ X Bj—i+1)-
i=1

Notice that C; — Cj_1 is the union of the disjoint sets:
(Ai — Ai1) x (Bjt1-i — Bj—i).
Hence, Lemma 2.1.11 implies the statement of the Theorem. O

In summary, we have shown this result:

Theorem 2.1.13. If X is path-connected and paracompact, then:

cat(X) < TC(X) < 2cat(X) — 1 < 2dim(X) + 1.

2.2 General upper bound

Let X and Y be two topological spaces. For a map f : X — Y, the mapping cylinder M; is
the quotient space of the disjoint union (X x I) u'Y obtained by identifying each (z,1) € X x I
with f(z) e Y.

Figure 2.1: Mapping cylinder, [10, p. 2]

Let ¢y : (X x I) uY — My be the identification map. Notice that the spaces X and Y are
naturally embedded in the space M by the mappings i(x) = cf(x,0) and j(y) = c¢(y). In fact,
My is also embedded in Y by the map h : M; — Y given by:

h(z>:{f(ﬂf) ifreX,0<t<1

Y ifyeY
Moreover, hoj =1y and joh ~ 1y, which implies Y ~ M.

Closely related to the mapping cylinder M} is the mapping cone Cy =Y 1 CX where CX
is the cone (X x I)/(X x {0}) and we attach this to Y along X x {1} via the identifications

(z,1) ~ f(2).

13



Figure 2.2: Mapping cone, [10, p. 13]

More generally, the join X * Y, is the quotient space of X x Y x I under the identifications
(z,41,0) ~ (z,92,0) and (z1,y,1) ~ (x2,y,1). Thus we are collapsing the subspace X x Y x {0}
to X and X xY x {1} to Y.

X
I

Figure 2.3: Join, [10, p. 9]

Definition 2.2.1. The space X with a base point zg is said to be n-connected if 7,(X, zg) = 0
for ¢ < n.

Thus 0—connected means path—connected and 1-connected means simply—connected. Since
n—connected implies O—connected, the choice of the base point x( is not significant.

In the next Theorem, we will prove the relation between the connectedness of the join of two
spaces. We will use singular homology with integer coefficients (see [10]).

Theorem 2.2.2. Suppose that X is (r — 1)—connected and Y is (s — 1)—connected. Then X =Y
is (r + s)—connected.

Proof. Consider the long exact homology sequence of the pair (CX x CY, X #Y):
o> Hy(X#Y) > HY(CX xCY) > H(CX xCY, X *Y) - ...

Since CX and CY are contractible (the cone is homotopically equivalent to a disk and this is
homotopically equivalent to a point), then H,(CX x CY) = 0. Therefore:

Hy(CX x CY,X Y) = Hy_1(X #Y).

Notice that the map:
h: XY ->CXxYuXxCY

which sends [z,y,t] € X «Y to (z,[y,2t]) € X x CY if t < 5 and to ([z,2t —2],y) e CX x Y if
t > 3 is an homeomorphism (see [15, p. 56-57]), therefore:

1
2

(CX xCY,X*Y)~ (CX x CY,CX xY U X x CY) = (CX, X) x (CY,Y).
Now, for the pair (CX, X) we have:

- — Hy(X) - Hy(CX) - Hy(CX, X) — ...

14



Since Hy(CX) = 0, it follows that:
Hy(CX,X) = Hy_1(X)

By Kiinneth’s Theorem (see [10, p. 276]) we have the exact sequence:

0— P Hi(CX,X)®H;(CY,Y)—

i+j=q
— @ Tor(Hi—1(CX,X),H;—1(CY,Y)) —0

i+j=q—1

By the above remarks, this sequence can be written as:
00— @ Hl;l(X)®Hj,1(Y)—> q,l(X*Y)—>
i+j=q
— 6—) TOT(HZ'_l(X),Hj_l(Y)) — 0
i+j=q—1
Applying Hurewicz’s Theorem and reduced homology (see [10, p. 366]), we have H (X)) =
0= H;() for i <r and j < s. Then, all factors on the sums are zeros, which implies that for
q <1+ s+ 1 we have:
Hy(X +Y) = 0.
Moreover, m,(X) =~ H,(X) and 75(Y) =~ Hs(Y). Therefore, if i —1 = r and j — 1 = s, the exact
sequence is:
0 —> Ho(X)® Hy(Y) —> Hyysr1(X #Y) —> 0.
Then:
Hoys1(X*Y) 2 H.(X)Q Hg(Y) = 7,.(X) @ ms(Y) # 0.

Since the join of a path—connected space and nonempty space is simply—connected (see [13]), we
can apply Hurewicz’s Theorem again and conclude that 7,(X *Y) = 0 for ¢ <7+ s. In other
words, X #Y is (r + s)—connected. O

As mentioned at the beginning of this section, the Topological Complexity and Lusternik
Schnirelman Category are particular cases of a more general concept which we introduce now.

Definition 2.2.3. A fibre space is an ordered quadruple (B, E, F,p) where B is the base space,
FE is the total space and F' is the typical fibre of the map p : £ — B. We say that the map
¢: Ac B — FEis a cross—section of the fibration p on the set A if Va e A

(po¢)(a) = a.

Definition 2.2.4. The Sectional Category of the fibration p (denoted secat(p)) is the cardi-
nality of the smallest open cover of the base space B consisting of the sets on each of which there
exists a cross—section.

Notice that the Topological Complexity TC(X) can be viewed as the secat of the path space
fibration 7 : PX — X x X, which has the base of dimension:

dim(X x X) = 2dim(X).

Moreover:
Te(X) = [S%, X] = [2897H X] = [S971,QX] = 7,1 (2X)

i.e. the fibre is homotopy equivalent to the space 2.X of based loops in X, and if X is r—connected,
QX is (r — 1)—connected.
The next Theorem of [15] is the principal result to obtain the general upper bound.
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Theorem 2.2.5. Let F — E % B be a fibre space B, whose fibre F is (s — 1)-connected and
whose base B is a k—dimensional CW-polyhedron. Then:

k+1
+
s+1

secat(B) <

Proof. By Theorem 2.2.2, the fibre Fj, = F « --- % F of the fibre space F,, — E,, 23 B, B,, is
(n(s+1)—1)-connected; therefore on the (n(s+ 1) —1)-dimensional skeleton of the base B there
exists a cross-section of the fibration B,,. If n(s + 1) — 1 > k, then there exists a cross-section on
all of the base B of B,, and hence, for n satisfying the condition n > (k + 1)/(s + 1), we have:

secat(B) < n.

In other words: 5 [
imX +

TC(X) < —— +1 2.1

() < =2 21)

The bound given by (2.1.13) is for path—connected space X, this is, if X is 0—connected, then:

2dim(X) +1

TC(X) < 2dim(X 1
(X) im(X)+1< 0 ¥

+ 1.
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Chapter 3

A lower bound for TC(X)

3.1 Zero-divisors-cup-lenght

Until now, we have only done the calculation of topological complexity for the circle. We would
like to generalize it for any sphere. nevertheless, we need algebraic tools to obtain another bound
that enables us to do the aforementioned calculation.
Let K be a field. Recall that The cohomology H*(X; K) is a graded K-algebra (see [10]) with
the multiplication given by the cup-product:
v HY(X;K)®@ H*(X;K) > H*(X; K) (3.1)
The tensor product H*(X; K) ® H*(X; K) is also a graded K-algebra with the multiplication:
(U1 ® 1)1) 0 ('LLQ ® 2)2) = (—1)|v1|'|u2|’u,1UQ ® V1V2 (32)

where |v1| and |ug| denote the degrees of cohomology classes v; and uy correspondingly. The
cup-product (3.1) is then a graded algebra homomorphism.

Definition 3.1.1. The kernel of homomorphism (3.1) is called the ideal of the zero-divisors
of H*(X; K). The zero-divisors-cup-lenght of H*(X; K), (denoted zcl(X)) is the length of
the longest nontrivial cup product in the ideal of the zero-divisors of H*(X; K).

Example 3.1.2. We now calculate zcl(S™)

Let u € H*(S™; K) be the fundamental class, and let 1 € H(S™; K) be the unit. Observe
that
a=1Qu—u®le H*(S"; K)® H*(S™; K)

is a zero-divisor, since applying homomorphism (3.1) to a we obtain:
ve=uv(l®u—u®l)=uv(l®u)—uvu®l)=1-u—u-1=0.
Another zero-divisor is b = u ® u, since u? = 0. Now, applying (3.2)
a’® = 1IRu—-—u®l)- 1Qu—u®1l)
= (1®u) - 1®u)—(1Qu) - (u®1l)—
—(u®1l)- 1®u)+(u®l) (u®1)
= (=DM @u? — (=)l @u —
— (=) @u 4+ (=D y2 @1
= 1Qu’>-— (—1)”2u®u—u®u+u2®1
= ((—1)"2+1 - 1) U@ u
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Hence a? = —2b for n even and a® = 0 for n odd; the product ab vanishes for any n. We conclude

that:
1 for n odd

zcl(S™) =
2 for n even
If we observe the particular case of the circle, we have that:

zel(SY) =1 < 2 = TC(SY).

In the following section, we will prove that this inequality is true for any configuration space.

3.2 Fibre Spaces

Let M, be the mapping cylinder of p : E — B and ¢ : E — M,, h : M, — B, the natural maps
(see 2.2). Define M}, = M,\i(E), and consider:

e p, : E, — B the fibration
® Ny : My — B™ the product of n copies of h
e \: E, — M) the inclusion map

e d: B — B" the diagonal embedding

where E,, € MJ\M,". Thus we have the commutative diagram:
E,—2-B
)\l ld
My — B"
Notice that:
e p': H*(B; R) > H*(Ey; R) is a monomorphism.
o i* : H*(B;R)®---® H*(B;R) — H*(B; R).

Here is our first result:

Lemma 3.2.1. If secat(p,) < n and &i,...,§, € H*(B; R) are such that d*({1 ® - ® &,) =
§1---&n # 0, then N*hj (& @ ® &) # 0.

Proof. Since p} is monomorphism and by commutativity, it follows that:

)‘*h:’;(§1®®€n) :p:d*<§1®®§n) :p;(glgn) #0

Let p: My — M* — M. Notice that ker(\*h*) = ker(u*h*).

Lemma 3.2.2. In order that the cohomology class £ ® -+ ® &, € H*(B"; R) be contained in
ker(p*hY) it is sufficient that p*(&) =0 foralli=1,...,n.
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Proof. If p*(&;) = 0, since p* = i*h* and by the exact sequence of the pair (M,,i(E))
o¥* ¥
. — H*(M,,i(E); R) <> H*(Z; R) > H*(E; R) —> - -

there exists n; € H*(M,,i(E); R) such that o*(n;) = h*(&). Therefore o)(m ® --- @ n,) =
hi(€1 ® - ®&,), where o) is the homomorphism appearing in the exact sequence of the pair
(M, MJ\M]"). Then p*oy; = 0, and consequently p*hy (61 ® - ®&,) = prop(m @ - @) =
0. O

Theorem 3.2.3. Let p : E — B be a fibration. If there exist cohomology classes &1,...,&, €
H*(B; R) for which p*(§) =0 for all i = 1,...,n, and the cohomology class & --- &, € H*(B; R)
is different from zero, then secat(p) > n + 1.

Proof. By Lemma 3.2.2, p*h ({1 ® - ®&,) = 0, then A*hf (§1® - ®E,) = 0. If secat(p) < n,
from Lemma 3.2.1, \*h% (61 ® - - ®&,) # 0, which leads to a contradiction. O

Now, we are ready to prove the next theorem of [6].

Theorem 3.2.4. The topological complexity TC(X) is greater than the zero—divisors—cup—-length
of H*(X).

Proof. Consider the following commutative diagram:
X —2-PX
U
A
X x X

Here « associates to any point x € X the constant path ¢, at this point and A is the diagonal
map:

Az) = (z,x)
Let §: PX — X given by 5(y) = 7(0), and define H : PX x [ — PX as:
H(y,t)(s) = y(ts)
Then:
H(v,0) = cy0) = a0 B(7) and H(y,1) =~ =1px(v)
Equivalently oo 3 = 1px, which means that « is a homotopy equivalence.

Notice that the cup—product homomorphism (3.1), coincides with the following composition:
H*(X;R)® H*(X; R) < H*(X x X;R) 14 H*(PX;R) Oij» H*(X;R) (3.3)

Here the homomorphism on the left  is the Kiinneth isomorphism (see [10, Theorem 3.16, p.
219]), and the isomorphism on the right is due to the homotopy equivalence of «.
If zcl(X) = n, there are ay,...,a, € ker U such that:

al"'anséo.

Then, by (3.3),Vi=1,...,n

a*r*k(a;) = u(a;) = 0.
Since a* is isomorphism and x(a1)---k(an) = k(a1 --a,) # 0, it follows that 7*k(a;) = 0.
Therefore, by Theorem 3.2.3, secat(m) = n + 1 which implies:

TC(X) > zcl(X).
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3.3 Basic Examples

Now we have a lower bound for Topological Complexity. Then, given a configuration space, the
idea is calculate zcl of that space and estimate its TC using some property of the space. The
following examples show the application of Theorem 3.2.4.

Example 3.3.1. The n—dimensional sphere S™

Case n odd. Let U; = {(A, B)|A # —B} c S"xS™ and s1 : U] — PS™ where s1(A, B) € PS"
is the shortest arc of S™ connecting A and B. The second set is Uy = {(4, B)|A # B} < S™ x S"
and s9 : Uy — PS™ will be constructed in two steps. First we move the initial point A to the
point —B along the shortest arc as above. Now, fix a continuous tangent vector field v on S,
which is nowhere zero. Then we may move —B to B along the spherical arc:

v(B)

|v(B)]

with ¢ € [0,1]. Since S™ is not contractible, we have TC(S™) = 2. Notice that this case is a
generalization of Example 1.1.2; and in fact is not necessary use the lower bound.

—Bcosnt + sin 7t

Case n even. Let U; < S™ x S™ and s1 : Uy — PS™ as above. In this case we may construct
a continuous tangent vector field w on S™ which vanishes only at a single point By € S™. Then

we define:
Uy = {(A,B)|A # B&B # —Bp} < S" x S"

and sg : Uy — PS™ as above. We see that U; u Uy covers everything except the pair (— By, By).
Choose a point C' € S™ such that By # C and C # —By. Notice that the set Y = §™ — C is
contractible, then there exists a continuous motion planning sg : U3 — PS™ where U3 =Y x Y.
Using Theorem 3.2.4 and Example 3.1.2, we conclude that TC(S™) = 3.
Example 3.3.2. The n—dimensional complex projective space CP"

Remember that:
R for k < 2n even
0  otherwise

H*(CP™";R) = {

Moreover, if k < 2n is even, then the generator of H*(CP";Q) is u*, where u € H?(CP"; Q)
is the generator. Then, for CP?, we have:

(1®u—u®1)2 = 1u—22uQu—u’®1
(1®u—u®1)3 = (1®u—u®1)(1®u2—2u®u—u2®1)
= 3u2®u—3u®u2
I®u-—u®l)! = 1Qu—-—u®1)(B3u*®u—3u®u?)
= 6u’®u’
1®u—-u®1)’ = (1®u—u®l)(6u’®u?)
= 0

In general, if u € H?(CP"; Q) is a generator we have:
2n n 2n n n
1I®u—-u®1)™ = (-1) o) ®@u" #0
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In other words:
zcl(CP™) = 2n.

On the other hand:
2dim(CP") +1=4n +1,

but CP" is simply—connected, then (2.1) implies that:
3
Hence, applying Theorem 3.2.4, we conclude:

TC(CP") = 2n + 1.

3.4 Orientable compact two—dimensional surfaces of genus g

Let ¥4 be an orientable compact two-dimensional surface of genus g. First, Theorem 2.1.13
guarantees that:

TC(Z,) < 2dim(3,) +1 =5 (3.4)

Thus, we need to calculate another number that allows us to bring near the Topological
Complexity of these surfaces on the left side of (3.4).

The orientability condition is vital for our objectives, because with that hypothesis, we can
apply Poincaré’s Duality Theorem [10, p. 241], which means that:

H*(Z4; R) = Ho(Z; R).
On the other hand, these surfaces are path—connected. Then [10, Prop 2.7, p. 109] implies that:
Ho(X4;R) = R.

Therefore, H 2(Eg; R) is a non—trivial cohomology group, and in it we can obtain information of
use in order to compute zcl(¥,). Of course, to determine that number, it will be necessary to
know which is the cup product structure on ¥, .

Remember that:

Z for g =0,2
HYT%7Z) = Z®Z forq=1
0 otherwise

Suppose that the generators for the non—trivial cohomology groups are:
1e HY(T%7),
a,be H(T? 7),
ce H(T*% 7).

Figure 3.1: Torus [10, p. 232]

21



If v € Hy(T?;Z), then:
(aub)(y)=1=c (3.5)

Based on the above analysis, we can infer what happens in ;. Consider the quotient map ¢
from ¥, to a wedge sum of g tori, this is:

Figure 3.2: The map ¢ : ¥4 — \/g T2 [10, Ex1, p. 228]

Let Y be the subspace which collapses to a point to obtain the wedge sum. Notice that Y is
homeomorphic to an S? with ¢ disks removed, which is homotopy equivalent to a wedge sum of
g — 1 circles.

}.f

Figure 3.3: The subspace Y viewed as wedge sum of circles

Define X = ¥,/Y and consider the long exact sequence in cohomology of the pair (X4,Y):
1 1 2
H'(X) & H'(S,) & H'(Y) — H(X) & H(S) = 0

The zero on the right (which implies that 2 is epimorphism) is due to H2(Y) =~ H?(\/
0. Now, by Poincaré’s Duality Theorem, the above sequence can be written as:

sty —

g—1

ProzS H'(S) L Pz->PzLZ -0
Y g—1 9

Since the map ¢ is epimorphism, the induced map in homology ¢i : Hi(X4) — Hi(X) is also
epimorphism. Then, if « € H*(X) is such that ¢*(a) = 0, for any b e Hy(%,), it follows that:

0 =q'(a)(b) = (a1 (b))

which implies that o = 0 since ¢; is epimorphism. Hence, ¢' is monomorphism. This means
0 = kerqy = Imfy, so fi = 0. Now, if 8 € H(X,), we have f}(8) € H!(Y) =~ (—Dgle and
it can be evaluated in each generator of H'(Y) and the result will be zero in all cases, then
B € ker f1 = Imq'. We conclude that ¢' is epimorphism. Therefore we have:

H () =2H'(X)2Z0Z® - ®LZBZ

2g

22



where each summand Z @ Z represents one of the g tori in X. Each wedge summand has two
cohomology classes a;,b; € H'(X) with

a; U bi = C;
where ¢; € H?(X) is the generator corresponding to the i-th torus (see 3.5). Moreover, if i # j
a;ub; =0

because either a; or b; (or both) are zero when we apply the map induced in cohomology by
including the k-th torus in X. Finally, the map f* takes each generator ¢; of the H2(X) to the
unique generator 7' of the H%(%,). Hence:

a; Ub; = 8T (3.6)
Now, suppose that g > 1. From the above result (3.6), we may find cohomology classes:
Ui, V1, U2,vV2 € Hl(zgp@)

such that for ¢ # j,
uf =v? = uvj = ujuj; = v;vj =0

and u1v; = ugvs = A # 0 where the fundamental class is precisely A € H 2(Z]g; Q). Then, it holds
in the algebra H*(X4; Q) ® H*(X,; Q) that:

2
[Jo®ui—u®)(1®@vi—1®1) =240 A+ 0
1

Therefore zcl(3,) is at least 4, which implies TC(X,) > 5. But, by (3.4), we have:

TC(Z,) =5 (3.7)
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Chapter 4

Motion Planning for a Robot Arm

4.1 Product Inequality

Previously we saw (Theorem 2.1.12) that if X and Y are path—connected and paracompact,
then:
cat(X x Y) < cat(X) + cat(Y) — 1.

Under the same conditions and proceeding similarly, is it possible to obtain a similar result
but with topological complexity? Fortunately the answer is yes.

Theorem 4.1.1. For any path—connected and paracompact spaces X and Y:
TC(X xY) <TC(X)+ TC(Y) — 1.

Proof. Suppose that TC(X) = n, then, there is an open cover {U;} of X x X with a continuous
motion planner s; : U; — PX, for i = 1,...,n. Analogously, if TC(Y) = m, there exist an open
cover {V;} of Y x Y with a continuous motion planner o; : V; — PY, for j = 1,...,m. Let
fi: X xX —-Rand g;: Y xY — R be partitions of unity subordinated to the covers {U;} and
{V;}, respectively. For any pair of nonempty subsets S < {1,...,n} and T' < {1,...,m}, define
W(S,T)c (X xY) x (X xY) as the set of all 4-tuples (4,B,C,D)e (X xY) x (X xY), such
that for any (i,7) € S x T and for any (i, j') ¢ S x T it holds that:

fz(A,C) 'gj(BaD) > fi’(Aa C) 'gj/(B’D)'

Notice that each set W(S,T) is open, and W (S,T) n W(S",T') = & if neither S x T < 5" x
T nor 8" x T" < S x T. Moreover, if (A,B,C,D) € W(S,T), we have f;(A,C) # 0 and
gj(B,D) # 0, then, remembering Definition 2.1.3(4) and Definition 2.1.5, it follows that
(A, C) e support(f;) < U; and (B, D) € support(g;) < V;. Equivalently:

W(S,T) c U; x V; (4.1)

Then, (4.1) implies that there exists a continuous motion planning over each W(S,T'). Now,
if (A,B,C,D)e (X xY) x (X xY) we can define S as the set of all indices i € {1,...,n} such
that f;(A,C) is the maximum of fi(A,C), where k = 1,2,...,n. Similarly, let T be the set of all
je{l,...,m} such that g;(B, D) equals the maximum of ¢;(B, D), where [ = 1,2,...,m. Hence
(A,B,C,D) e W(S,T) and the sets W(S,T) cover (X xY) x (X xY).

Finally, let Wy, < (X xY) x (X xY) denote the union of all sets W (S, T), where |S|+|T| = k,
with k = 2,3,...,n +m (|A] is the cardinality of the space A). Clearly, {Wa,...,Wyipn} is a
cover of (X xY) x (X xY). Observe that if |S| + |T'| = |S’| + |T'| = k, the corresponding sets
W(S,T) and W (S’,T") either coincide (if S = 5" and T' = T") or are disjoint. Therefore, there
exists a continuous motion planning over each set Wy, and TC(X x Y) is at most n+m —1. O
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As a first consequence of Theorem 4.1.1, one easily checks that for a product of n copies of
the space X:
TC(X x---xX)<nTC(X)—(n—-1) (4.2)

Now, we are ready to prove the principal Theorem of this section.

Theorem 4.1.2. Let X = 5™ x---x 5™ be a Cartesian product of n copies of the m—dimensional
sphere 5™, then:

TC(X)z{TH_l for m odd

2n+1 for m even
Proof. Using (4.2), we can see that:

TC(S™ x -+ x §™) <nTC(S™) — (n—1).
Then, applying Example 3.3.1:

n+1 for m odd

TC(X) < { (4.3)

2n+1 for m even

Consider the projection m; : X — S™ onto the i—th factor (m; projects the Cartesian product
onto the i—th sphere of the product). This projection induces a map:

mf H*(S™;Q) - H*(X;Q)
If u; € H*(S™; Q) is the fundamental class of the i—th factored sphere, let:

a; = (u;) € H*(X;Q).
Notice that for m odd:

7

1®a;—a;®1)#0e H* (X x X;Q)
=1

and for m even:

(1®a;—a; ®1)* #0e H*(X x X;Q).

—

©
Il
e

In other words:

Sl as

From Theorem 3.2.4 and equations (4.3) and (4.4), we complete the proof. O
Remark. Applying Theorem 4.1.2 to 7?2 = S x S, one has:

TC(T?) = TC(S' x 81) =3 (4.5)

Combining (4.5) and (3.7) with the fact that TC(S?) = 3, we have a general result for a
compact orientable two-dimensional surfaces of genus g, ¥:

3 ifg<l1
TC(Eg):{ LY

5 ifg>1
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4.2 Planar robot arm

At the beginning of this work, we mentioned that we would like to solve the task of moving in
a complicated environment for human. We proposed that a robot could help do the work. In
the simplest case (planar case), we can imagine the robot, just like an arm consisting of n bars
Lq,... Ly, such that L; and L;, are connected by flexible joins. If the initial bar L; is fixed,
the configuration of the arm is determined by n angles aq, ..., a,, where ¢; is the angle between
L; and the z—axis. Note that each of the n bars can move circularly, so our configuration space
(without obstacles) is the Cartesian product of n circles.

Figure 4.1: Planar robot arm, [6, p. 10]

Then, by Theorem 4.1.2, we conclude that the Topological Complexity of the motion plan-
ning problem of a plane n—bar robot arm is:

n+ 1.

Similarly, the configuration space of a robot arm in R3 is the Cartesian product of n copies

of the two—dimensional sphere:
5% % .o x 82,

Therefore, for a spacial n—bar robot arm, the Topological Complexity is:
2n + 1.

Remark. For a n-bar robot arm in R?*, the Topological Complexity is one more time n + 1
(the configuration space is the Cartesian product of n—copies of S3, which are spheres of odd
dimension). Therefore, in theory, it is easier to program a continuous motion planning of an arm
that moves in space—time than in space.
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Chapter 5

Motion Planning in Projective Spaces

5.1 A covering space for RP" x RP"

In this last section, we study a very specific configuration space; the n—dimensional real projective
space RP™. Recall that RP™ can be thought of as the set of lines in R"*! passing through the
origin. In particular, we will give an algorithm to move such a line in R3, which is equivalent
to constructing a motion planner over RP2. To begin our study, it is necessary to recall some
concepts.

Definition 5.1.1. Let X be a topological space:

1. A covering space of X, is a space X and a map p : X > X satisfying the following
condition: There exists an open cover U = {U,} of X such that for all a, p~(U,) is a
disjoint union of open subsets of X, each of which is mapped homeomorphically onto U,

by p.

2. A lift of a point z € X, is a point Z € p ~!(z), and a lift of a map f : Y — X, is a map
f Y — X such that pf f-

3. For a covering space p : X — X the homeomorphisms g : X — X such that pg = p, are
called deck transformations. These form a group G under composition.

4. A covering space p : X — X is called regular if for each z € X and each pair of lifts 77, 75
of x, there is a deck transformation g € G such that

gr1 = x2

In the context of TC, we work with the Cartesian product of our configuration space, then it
is expected to study covering spaces of Cartesian products. Let p : X > X bea regular covering
map with the group of covering transformations G. Let X x¢ X be obtained from the product
X xX by factorizing with respect to the diagonal action of G, i.e. g(z7,22) = (9271, gx2). Define
the map ¢ : X x¢ X — X x X which maps an equivalence class [z71, 73] of a pair (z71,732) to
(x1,x2). Notice that the map ¢ is well defined (there is g € G which connects any pair of lifts)
and continuous. Consider the following commutative diagram:

Nz

X xX ">

\ i

X
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Here h(x7,73) = [21,72]. If U is an open cover of X satisfying Definition 5.1.1(1), we can
define an open cover V of X x X consisting of open sets Uy, x Uy, with Uy, , U, € U. Moreover,
since p is covering, p~!(U,) = LW, where W, is an open subset of X. Let (x1,22) € Uy x Uy € V.
Notice that:

UL x Us) = {[@1, 73] | q([71,73]) < Uy x Us}
= { 71 .132 \xl eEp- (Ul),ﬁz\iEp_l(Ug)}
= h(p~ p~ ' (U2))
= h((‘—‘zwlz) ('—'jW2j))
= h(uij(Wi x Way))

Therefore, q : X X @G X > XxXisa covering space. Now, define the map f: PX — X X X
as follows: given a continuous path v : [0,1] — X, let 4 : [0, 1] — X be any lift of -, and set:

f(y) = (50),7(1)) € X xg X

So we have this commutative diagram:

PX— L R xg XR——FXxg X
X x X

For any path v : [0,1] — X, and for each lift zg of the starting point v(0) = xo, there is a unique
path 7 : [0,1] - X lifting ~ starting at Zo. Therefore, the lift ¥ of v depends on the choice of
the initial point 4(0) € X, but nevertheless the map f is well defined by the same reason of the

covering space ¢ (there is g € G which connects any pair of lifts), and moreover, f is continuous
(f is a lift of ).
This is when TC appears again. The next result is Theorem 4.1 of [8].

Theorem 5.1.2. The Sectional Category of the covering space q : X XG)N( — X x X is less than
or equal to TC(X).

Proof. Let U € X x X an open subset and s : U — PX a continuous section of the fibration 7
over U. By the above diagram:

o(fos)=(gqof)os=mos=1y

i.e. fosisa continuous section of ¢ over U. If TC(X) = k, there is an open cover Uy U --- U Uy
of X x X with a continuous section s; of m over U;, then f o s; is a continuous section of ¢ over
Ui. Hence secat(q) is at most k. O

Remark. By Theorem 5.1.2, we know that TC(RP") is greater than or equal to the Sectional
Category of the two—fold covering:

S™ xz, S" — RP" x RP"
Let £ be the canonical real line bundle over RP", this is:

€ ={(L,v) e RP" x R"*! | v e L}.

28



The sphere bundle associated to &, S(), corresponds to the inclusion S™ < ¢ given by x — ([z], )
and, in these terms, the bundle projection S(§) — RP" is the canonical projection S™ — RP".
In particular, & is recovered as the Borel construction S™ xz, R where Zg acts on R by change of
signs. If « € HY(RP"; Zs) is the generator, the first Stiefel-Whitney class of ¢ is:

wi(§) = o

Since we want information about RP" x RP", it is necessary to construct a new bundle in that
base space, starting from &.
The exterior tensor product & ® & is a real line bundle over RP™ x RP":

§1®&

et

RP™ x RP"

| -

RP™ RP™
where & and & are the pullbacks of £ under the projections 7y and s respectively. Define
n =& ®&. Since wi(n) = wi(&1) + wi(&2) (see [13, p. 87]), it follows that:

wi(n) = wi(w7 (§)) + wi(r3(§)) = 71 (wi((§)) + mwi((§)) = 77 () + 73 () (5.1)

Now, consider this commutative diagram:

RP" "L RP" x RP" <2 ORP"

By Kiinneth (see [10, Theorem 3.16, p. 219]), we know that:
HY(RP" x RP";Zy) = H'(RP"; Zs) @ H*(RP"; Z3) ® H°(RP"; Zs) ® H' (RP™; Z5)
where HY(RP";Zy) = Zy is generated by o and H(RP";Zs) = Zy is generated by 1. Then,
HY(RP") @ HY(RP") = Zs ® Zy = Zs is generated by a® 1 and by the same reason, H°(RP") ®
H'(RP") is generated by 1 ® a. Therefore:
HY(RP" x RP"; Z5) is generated by a ® 1 and 1 ® « (5.2)
Finally, remember that, in general we have the product:

%t H*(X;R)® H*(Y;R) — H*(X x Y R) (5.3)

given by:
U®v—uxv=m;(ums(v)

where m and 7y are the canonical projections. Hence, we apply (5.3):
¥ (a) + 75 (a) = a x 1+ 1 x a € HY(RP" x RP"; Z,)

and we conclude that (5.1) is:
win)=ax1l+1xa. (5.4)
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The above constructions can be interpreted in topological terms as follows: Let the generator
of Zy act on the Borel construction S™ xz, S™ by the rule

[(z,9)] = [(=z,9)] = [(z, —y)]. (5.5)

The canonical projection
S" xz, S™ — RP" x RP" (5.6)

is a regular 2—fold covering.

Lemma 5.1.3. The associated line bundle (S™ xz, S™) xz, R — RP" x RP" is isomorphic to
¢ ®¢&. In particular, (5.6) is the sphere bundle of £ ® &.

Proof. This follows from (5.4) in view of the noted isomorphism § =~ S™ xz, R and the pull-back
diagrams of double covers:

SEE==— 5" X22Z2C—>Sn X 7o Sn 8”722 X 7o St ——s Gn X 7o S
RP" == RP" x * —— RP" x RP", RP" % x RP" ——— RP" x RP".

O

Corollary 5.1.4. TC(RP") > k where k is the minimal positive integer such that k(£ ®¢) admits
a nowhere vanishing section.

Proof. As remarked right after the statement of Theorem 5.1.2, TC(RP") is bounded from
below by the Sectional Category of (5.6). The result then follows from Lemma 5.1.3 and the
following result. O

Lemma 5.1.5. Let A — B be a vector bundle over a paracompact base B. If k stands for the
Sectional Category of the sphere bundle S()\), then kA admits a nowhere vanishing section.

Proof. Let Uy, ...,U; be an open covering of B so that the restriction S(A)|y, of S(A) to each U;
admits a section s;: U; — S ()\)|Ui' Think of each s; as a nowhere zero section of A defined on Uj;.
By a standard partition of unit argument, it is possible to refine the covering {U;} to an open
covering {V;}, V; € U;, so that each restriction si|v, can be extended to a (continuous) section o
of X\ defined over all of over B. Note that, although each o; may vanish at some points of B, it
never vanishes in V;. Since the map

B> AXx oo x A
(Ula 7076’) X - X

is a lift of the diagonal, it determines a section of kA which, by construction, is evidently nowhere
ZE€ro. O

It is well known (see [4, p. 4]) that cat(RP") = n + 1, then TC(RP") > n + 1. In particular,
we have another bound in terms of powers of 2, given by Theorem 4.5 of [8].

Theorem 5.1.6. If 2" > n > 27! then TC(RP") > 2".

Proof. Let a € H'(RP"; Zs) be the generator. Notice that 1 ® a + a ® 1 is a zero-divisor since
2a = 0. Consider its power:
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_1 7‘— . .
I®a+a®1)? 1 = Z (2 4 1)(1®a2T_1_Z)(0ﬂ®1)

Remember that:
Zo ifg<n

0 ifg>n

H(RP") = {

Since for all 4, (2Ti_1) is odd, the only factor which is certainly nonzero is:

(2 - 1)0/’“@04”
n

where k = 2" — 1 — n. Applying Theorem 3.2.4 we have TC(RP") > 2".

5.2 Nonsingular and Axial maps

Definition 5.2.1. A continuous map f : R” x R” — R* is called nonsingular if it has the
following properties:

1. f(Au, pv) = Apf(u,v) for all u,v e R" \,pe R
2. f(u,v) = 0 implies that either v =0 or v = 0.

Consider the vectors e; = (1,0),e2 = (0,1),e3 = (1,1). The respectively functionals are
a1(x,y) =z, a0(x,y) = y,a3(z,y) = x—y. Notice that any two of them are linearly independent.
In general, for any n, we can fix a sequence aq, s, ...,as,—1 : R” — R of linear functionals such
that any n of them are linearly independent. Let u,v € R™, we define:

flu,v) = (a1 (uw)ag(v), ..., an—1(u)az—1(v))

If u # 0, then at least n among the numbers a;(u), ..., ag,—1(u) are nonzero. Therefore, if u # 0
and v # 0, there exists i € {1,...,2n— 1} such that a;(u)a;(v) # 0, and thus f(u,v) # 0 e R?"~1,
Hence, for any n, the maximal dimension in which we can guarantee the existence of a nonsingular
map is 2n — 1.

Lemma 5.2.2. There are not nonsingular maps f : R” x R"* — R* with k < n.

Proof. Suppose that there exists such map. If v # 0 is fixed and v € S"~! = R”, we can consider
the map:
u— f(u,v) e R¥ ¢ R*!

By Borsuk-Ulam Theorem (see [10, p. 32]), there exists w € S"~! such that f(w,v) =
f(—w,v). But if f is nonsingular, f(—w,v) = —f(w,v) which implies that f(w,v) = 0, and
clearly this is a contradiction. O
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Lemma 5.2.3. For n = 1,2,4,8, there exists a nonsingular map f : R™” x R" — R™ with the
property that for any u € R™, u # 0, the first coordinate of f(u,u) is positive.

Proof. For n = 1, define f(u,v) = wv, the usual product of real numbers. For n = 2, we take
f(u,v) = uv, the product of v and the conjugate of v viewed as complex numbers. Similarly, for
n = 4, we may define f(u,v) = uv, where U = 1 — x9i — x3j — x4k is the conjugation of the
quaternion v = x1 + x2i + x3j + x4k. In all cases, f(u,u) = |ul?. Finally, a Cayley number can
be uniquely written in the form ¢ + Qe, where ¢ and @ are quaternions and e is a formal symbol.
The multiplication is defined by the formula:

(g+ Qe) - (r + Re) = (qr—ﬁ@) + (Rq+ QF)e

If we define:
fla+ Qe,r + Re) = (¢ + Qe) - (T — Re)

Then, f(q+ Qe,q+ Qe) = qg + QQ is real and positive, as long as q¢ + Qe # 0 is nonzero. O
Lemma 5.2.4. There are not nonsingular maps f : R™ x R” — R", for n # 1, 2,4, 8.

Proof. Suppose that f as above exists, where n > 2. Consider the map g : S"~! x §n~1 — gn—1
given by:
f(z,y)
g(z,y) =
|f(z, )l

where z,y € S"~!. The map ¢ is such that g(—z,y) = —g(z,y) = g(x, —y). Now restricting g
onto one factor S"~! x % (where # is a base point) we have a self map h of S"~!, which commutes
with the antipodal map a.

Sn—l a Sn—l

Therefore, by Proposition 2B.6 of [10], the degree of h is odd. Analogously, gl gn—1 has an odd
degree. Hence, the bidegree of g is (k,[), where both integers k and [ are odd. If t € m,_1(S™ 1)
is the generator, [16, Theorem 7.7] implies that the Whitehead product:

[ke,1t] = Kkl [¢, 1] € Ton_3(S™})

should be zero. Nevertheless, if n is odd, then [i,¢] € 7o, 3(S™"!) is of infinite order, hence
[kt,lt] cannot vanish. Now, if n # 1,2,4,8 is even, [t,t¢] € T2,_3(S""!) is nonzero (see [1]) and
has order two, which again implies that [k, (] is nonzero as kl is odd. We conclude that the map
f cannot exist. O

Definition 5.2.5. Let n and k be two positive integers with n < k. A Continuous map g :
RP" x RP" — RP* is called axial of type (n, k) if its restrictions to * x RP™ and RP" x # ( is a
base point of RP™) are homotopic to the inclusion maps RP" — RP".

We will denote by [X, Y] the set of all homotopy classes [f] between X and Y.

Lemma 5.2.6. If n < k, there is a bijection between [RP", RP¥] and [RP", RP*].
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Proof. Notice that any f € [RP", RP®] can be factorized through the n—dimensional skeleton by
another map f’ € [RP", RP"] such that the following diagram commutes up to homotopy:

RP" — . RP®

!

RP"—— RPF

Then, i o f’ — f determines a surjective map.
Now, if H : RP" x I — RP® is the homotopy between the compositions:

fo
RP™ ? RIPkC RP®

1

by the Cellular Aproximation Theorem (see [10, p. 349]) there is an homotopy H' : RP" xI —
RP* such that initial and final branches of H' in RP¥, are fy and fi, i.e. fo ~ fi.
O

Definition 5.2.7. Let G be a group a n > 0. A connected topological space X is called
Eilenberg—MacLane space of type K(G,n), if it has n—th homotopy group m,(X) isomorphic
to G and all other homotopy groups trivial.

Remark. Since RP® is K(Zs, 1), applying Lemma 5.2.6 and Brown Representability The-
orem (see [10, p. 448]), we have:

[RIP’”,]RIF’k] = [RP", RP®] = [RP", K (Z3,1)] = H(RP"; Zy) = Zy

In other words, any continuous map h : RP® — RP* with n < k is either homotopically trivial
or it is homotopic to the inclusion map. Therefore, if o € H 1(R]P’k; Zs) denotes the generator,
h*ay € HY(RP"; Zs) is either zero or equal to a,, the generator of H'(RP";Zs). The map h is
homotopically trivial if and only if h*ay = 0.

If g is an axial map, the following diagram commutes up to homotopy:

RP™ x

RP" x RP* 2~ RP*

/N

* X RP™

Therefore, in cohomology with coefficients in Zo, we have:
HY(RPF) — HY(RP" x RP") ~ H(RP") ® H*(RP") ® H°(RP") ® H'(RP")
Applying (5.2), it follows that:
ap— gFap=c1 - ®1+ - 1Qay

Notice that ¢; = 1 due to:
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it ®1) = (lgpr xi)*(a, ®1)
= lIgpray, ®i*1
= a,®1
and
i3, ®1) = (i x 1gpn)*(an, ®1)
= "oy ® Igpnl
=0
Similarly, applying i} and i3 to 1®aqy,, is easy to see that ca = 1. So, ¢* maps oy, to , @1+ 1Qw,.
Again, applying (5.3) we have the formula:
g ag = ap x 141 x ay, € HY(RP™ x RP"™; Zy)
This last condition fixes the homotopy type of a map RP" x RP" — RP® since the inclusions:
s> RP™ — RP™! s ... 5 RP®
gives in cohomology (with coefficients in Zsz):

H'RP®) «— ... < HYRP") < HYRP™") <

o —_— .. — Qmp+1 —> (a77% —

where o € H! (RP®) is the universal class given by Brown Representability Theorem (see [10,
p. 448]), and a,, € H'(RP™) is the class « restricted by the inclusion RP™ <> RP®. Therefore,
if az : RP" x RP" — RP® is an axial map, we want to find the smallest & such that this map can
be factorized through the inclusion RP¥ — RP®. This is:

RPFC— .. .C— RP"< RP*®
B g T
~ ax
- -
RP" x RP"

We will prove that k is precisely TC(RP").

Remark. Since RP" x RP" has dimension 2n, by Cellular Aproximation Theorem (see [10,
p. 349]), there always exists an axial map RP" x RP" — RP?". In fact, it is possible to show
that there always exists an axial map RP" x RP" — RP?"~!,

Lemma 5.2.8. For n < k, the map h: RP" — RP* induced by an odd map h: S™ — S* (i.e. one
satisfying h(—z) = —h(x) for all z) is homotopic to the equatorial inclusion.

Proof. Assume that & is null-homotopic. Since S* — RP* is the universal cover, h admits a
lifting H: RP" — S* so the bottom triangle in the diagram:

gn M _ gk

RP" —— RP*
h
commutes on the nose. In particular h(z) = + H (7 (z)) for all z € S*. Consequently S™ is covered
by the two subsets P = {z € S" | h(z) = H(w(x))} and N = {z € S | h(x) = —H(w(z))}. Since

these are closed and disjoint, one of them is empty and the other agrees with S™. But this is
incompatible with A been odd. ]
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Lemma 5.2.9. Assume that 1 < n < k. There exists a bijection between nonsingular maps
R"*1 x R™1 — RF*1 (viewed up to multiplication by a nonzero scalar) and axial maps RP" x
RP" — RP*.

Proof. Let f : R"t1 x R**1 — RF*+1 he nonsingular. Consider the map g : RP" x RP" — RP*,
where for u,v € S* < R"*! the value g([u],[v]) is the line through the origin containing the
point f(u,v) € RF*t1. If we fix v € S” and vary only u € S”, the resulting map RP" — RP* lifts
to a map S™ — S* given by:

f(u,v)
e
|f(u,v)]
Since f(—u,v) = —f(u,v), the map S — S¥ is also odd, therefore by Lemma 5.2.8, the

map RP" — RP” is not null-homotopic. Similarly, using f (u,—v) = —f(u,v), we find that the
restriction of g onto * x RP™ is not null-homotopic. Then, both maps are homotopic to the
inclusion maps. Hence, ¢ is an axial map.

Now, given an axial map ¢, and passing to the universal covers, we obtain a map g : ™" xS —
S* (defined up to a sign), such that the following diagram is commutative:

Snxgn 9 gk
RP" x RP" ——~ RP*
Therefore, for all u,v € S™:

g(_uv U) = _g(ua U) = g(u7 —’U)
Then, we may define a nonsingular map f : R**! x R**! — R*¥*1 given by:

u v
Fuy) = ( )
] ol
where u,v € RP"*! — {0}. O

Lemma 5.2.10. Suppose that for a pair of integers 1 < n < k, there exists a nonsingular map
R+ x R**1 — RF+1 Then, there exists a nonsingular map f : R**! x R»*1 — RE*+1 such that
for any u € R"*1 — {0}, the first coordinate of f(u,u) e R¥*! is positive.

Proof. Given a nonsingular map R**! x R**1 — R¥*1 consider the corresponding axial map
g : RP" x RP" — RP¥. If we restricted g to the diagonal A : RP" — RP" x RP” then:

HY(RP*; Zy) 7 HYRP" x RP™;Z,) &5 H'(RP“Z,) =~ Zs
oy — a, X 1+1 X% ay — 2a, = 0

which implies that the restriction is null-homotopic. Hence, there exists ¢’ ~ ¢ such that ¢’ :

RP" x RP" — RP* is constant along the diagonal. Now, consider the nonsingular map f :
R x R — RF*L corresponding to the axial map ¢’. Notice that for all u e R, u # 0, we
can take the map n which sends u to I%\ Then:

RnJrl _ {0} % Rn+1 _ {0} i)RkJrl o {0}

S x S" Sk
RP" x RP" , RP*
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where fy is the restriction of the map f. By construction any pair ([uy,], [u,]) is mapped to the
same line Ly in RP. Since the above diagram is commutative, the values f (u,u) € R¥1 lie on
L. In fact, since n > 1, the image fo((R"** — {0}) x (R"*! — {0})) is connected, so that it is
completely contained in one of the two rays determined by L.. By performing an orthogonal
rotation, we may assume that all nonzero vectors of this ray have positive first coordinates. [

5.3 The main theorem

Now, we want to relate the topological complexity with the dimensions of the above maps.

Proposition 5.3.1. For n > 1, let k be an integer such that the vector bundle k(¢ ® &) over
RP" x RP" admits a nowhere vanishing section. Then, there exists a nonsingular map R"*! x
Rn-{-l T Rk:

Proof. By Lemma 5.1.3, there is an isomorphism of vector bundles k(£®¢) = (S™ xz, S™) xz, R¥
where Zs acts on R¥ by change of signs, and on S™ xz, S™ as described in (5.5). In particular, we
get an isomorphism of associated sphere bundles S (k(€ ® £)) = (S™ xz, S®) xz, S¥~1. Then, a
nowhere zero section for k({®¢) can be normalized to a section s: RP" x RP" — (S™ x7, S™) x7,
Sk=1 TLet S denote the composition:

5™ x 8" — S" xz, 8" — RP" x RP" —> (S" xz, S™) xz, S¥~1
where unlabeled maps stand for canonical projections. Note that:
S(—z,y) = S(x,y) = S(z,—y) foral z,yeS" (5.7)

Since n > 1, S™ x S™ is simply connected, so that [10, Prop 1.33 p. 61], implies that S admits a
lifting o: S™ x S™ — (S™ x S™) x S*~1 through the composition of 2-fold covering projections:

(8™ x §™) x SF71 (8™ xz, 8™) x SF71 — (8™ xz, S") xz, SF7L. (5.8)

Actually, since the composite (5.8) is a 4-sheeted covering projection, there are four choices of
such liftings. Explicitely, fixing a lifting og: S™ x S™ — (S™ x S™) x S¥~1, the other three liftings
are oy = T4 009, 02 = T 000, and 03 = T 07| 0 0g Where

Tl(.’E, Y, Z) S (_"1:7 Y, Z)? TQ('I7 Y, Z) = (—IE, Y, _Z) a'ndv S0, T2 0 T1 (IIZ‘, Y, Z) = (CU, -Y, _Z)' (59)
Since each such lifting gives the commutative diagram:

proj

(Sn > Sn) ~ Sk:—14>5n x S

(S™ x7, S") x SF1

(Sn XZa Sn) XZa Sk_l

/

S x S —— S" xz, " —— RP" x RP"" =———=RP" x RP"

where the rightmost map and the horizontal composition are the standard 4-sheeted covering,
it follows that one (and only one) of the composites proj o o; is the identity. Without loss of

36



generality assume this holds for i = 0, and let f: S x S™ — S*~1 denote the third component
of 0g. Note that (5.7) and (5.9) imply that f is Zo-biequivariant, that is, it satisfies:

f(=z,y) = = f(2,y) = f(z,—y) for x,ye 5"
Consequently, the required nonsingular map F': R"*1 x R"*1 — RF is given by setting:
F(Ax,py) = Apf(z,y) for z,ye S™ and A\, ueR.
O

Proposition 5.3.2. If there exists a nonsingular map f : R**! x R**! - R* with n 4+ 1 < k,
then TC(RP") < k.

Proof. Let ¢ : R"! x R"*! — R be a scalar continuous map such that ¢(Au, pv) = Aug(u,v) for
all u,v € R"! and A\, € R. Define Uy = RP™ x RP" as the set of all pairs of lines (L1, L) in
R™*! such that L1 # Lo and ¢(u,v) # 0 for some points u € L; and v € Ly. Notice that Uy is
open. Moreover, we may find unit vectors u € Ly and v € Lo such that ¢(u,v) > 0. Instead of
(u,v), we may take (—u, —v), and both pairs determine the same orientation of the plane spanned
by L1, L. Then, there exists a continuous motion planning map s : Uy — P(RP") consists in
rotating L; toward Lo in this plane, in the positive direction determined by the orientation.

Assume in addition that ¢ : R x R**! — R is positive, i.e. for any u € R**! u # 0,
¢(u,u) > 0. Therefore, instead of Uy, we may take a slightly larger set Uj = RP™ x RP" which
consists of all pairs of lines (L1, Ly) in RP"! such that ¢(u,v) # 0 for some u € Ly and v € Lo.
Now, all pairs of lines (L, L) belong to Uqlb' Thereby, if L1 # Lo, the path from L to Lo is defined
as above, and if L; = Lo, we choose the constant path at L;.

Our map f : R**! x R**! — RF determines k scalar maps ¢1,. .., ¢y : R*™1 x R*"*! - R (the
coordinates) with its respective neighbourhoods Uy, which cover the product RP" x RP" minus
the diagonal. Since n + 1 < k, by Lemma 5.2.10, we may replace the initial nonsingular map f
by such an f’ that for any nonzero u € R™*! the first coordinate ¢} (u,u) of f'(u,u) is positive.
The open sets Ud/n’ Ugy, .., Uy, cover RP" x RP". We have described explicit motion planning
rules over each of these sets. Hence, TC(RP") < k. O

Proposition 5.3.3. For n = 1,3,7, TC(RP") = n + 1.

Proof. Proceeding as in the proof of Proposition 5.3.2 with the nonsingular maps R"*! x
R — R"*! given by Lemma 5.2.3, it follows that TC(RP") < n + 1. On the other hand, we
have TC(RP") > cat(RP") = n + 1. O

With all the tools ready, we can state the main theorem.

Theorem 5.3.4. The number TC(RP") coincides with the smallest integer k£ such that there
exists a nonsingular map R**! x R**! — RF,

Proof. If n # 1,3,7, Lemma 5.2.4 implies that there are not nonsingular maps R**! x R**+1 —
R"*! and therefore n + 1 < k. By Proposition 5.3.2, TC(RP") < k. Let [ be the smallest
integer such that the vector bundle I(§ ® £) over RP" x RP" admits a nowhere vanishing section,
then, by Proposition 5.3.1, there exists a nonsingular map R**! x R**! — R!. Notice that
necessarily k < [. Nevertheless, by Corollary 5.1.4, | < TC(RP"). The cases n = 1,3,7 are
covered by Proposition 5.3.3. O

Remark. The power of Theorem 5.3.4, is that the computation TC(RP") is the same as finding
nonsingular maps R x R**! — RF, which at first, seem to be different problems.
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Chapter 6

Discussion of Results

6.1 Motion Planner in RP' and RP?

In this section, we will solve the problem of moving a line through the origin in R? and R3.

Example 6.1.1. Topological Complexity of RP.

First, notice that Proposition 5.3.3 states that TC(RIF’I) = 2, then there exist exactly
two open subsets of RP! x RP! with continuous motion strategy. Define Uy = {(L1, Lo) |
L; and Ly are not perpendicular } and consider the map s; : U3 — P(RIF’I) which moves L;
towards Lo sweeping the smallest angle, see Fig. 6.1 (left). The problem is when L; and Lo are
perpendicular, since we have two right angles, as shown in Fig. 6.1 (right):

s1fl1.L2)
Pl I

L2 Lz

Figure 6.1: Motion planning over U

The second open set is Us = {(L1, L2) | L1 }f L2} and the continuous map is sy : Uy — P(RP!)
which moves L; towards Lo in the clockwise sense, see Fig. 6.2. The problem with parallel
(equal) lines (see Fig. 6.3), is that one option is to rotate half a revolution and the other is not

to rotate.
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Figure 6.2: Motion planning over Uy

-
L1 L1

) s2(L1,L2)

L2
Lz

Figure 6.3: Case of parallel lines

Example 6.1.2. Topological Complexity of RP?.
By Lemma 5.2.4, there are not nonsingular maps R? x R? — R3, but notice that if 4, j, k € R*
are the imaginary units, the map:

(%1,132,.%3) — X1 + X9t + .’xgj

is an embedding of R3 into R*. Consider the nonsingular map R* x R* — R* of Lemma 5.2.3.
Restricting it onto R3 = R*, we have a nonsingular map f : R? x R? — R* given by:

Tl T2
yr Y2

Therefore, Theorem 5.3.4 implies that TC(RIF’Q) = 4. Then, proceeding as in the proof of
Proposition 5.3.2, we have four open subsets Uy, Ua, Us, Uy covering RP? x RP?, where each U;
corresponds to the scalar map ¢; obtained from f by considering only the i—th coordinate:

f(2,y) = o1z, y) + G2, y)i + ¢3(, y)j + Palw, y)k

The subset U; consists of the pairs of lines in R? making an acute angle. The subset U, consists of
pairs of lines in R3 such that their projections onto the x;xo-plane span this plane. The subsets
Us and Uy are defined analogously replacing the xixo—plane by the zoxs—plane and xx3—plane
respectively. Again, by the proof of Proposition 5.3.2, we know that each functional ¢; defines
a continuous motion planning strategy over the subset U;. In Uy, if lines L and Lo make an
acute angle, we rotate Lq towards Lo in the 2—plane spanned by L; and Lo so that L sweeps
the acute angle. If Ly = Lo, the Lo stays fixed. Now, in Us fix an orientation of the xjzs—plane.
For any pair (L, L2) € Ua, we obtain an orientation of the 2-plane spanned by L; and Lo, and
we rotate L towards Lo in this 2—plane in the direction of the orientation. The motion planning
strategies over Us and Uy are similarly.

r1 x3
Yyr Y3

T2 X3
Y2 Y3

f(xvy) — <x,y>—
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6.2 Immersions

In this section, we show that the problem of computing the topological complexity of the motion
planning problem in RP" is equivalent to the immersion problem for the real projective spaces.
The next theorem of [2], will be fundamental for our purposes.

Theorem 6.2.1 (Adem, Gitler, James). There exists an immersion RP" 9> R* (where k > n) if
and only if there exists an axial map RP" x RP" — RP*. O

By Lemma 5.2.9, the existence of a nonsingular map R"*! x R"t!1 — RFt1 i equivalent
to the existence of an axial map RP" x RP” — RP*. As a consequence of Theorem 6.2.1 and
Theorem 5.3.4, it follows that:

Theorem 6.2.2. For any n # 1,3,7, the number TC(RP") equals to the smallest k& such that
the projective space RP" admits an immersion into RF¥~1. O

Now, in the next Theorem, we give a direct construction.
Theorem 6.2.3. If RP" can be immersed into R¥, then, TC(RP") < k + 1.

Proof. By definition, an immersion f: RP" 9> R* induces a monomorphism T(RP") — f*(T(R¥))
of tangent bundles. Since R” is parallelizable (i.e. T(R¥) is trivial) and RP" is compact, we get a
Whitney sum decomposition® ke =~ T(RP™) @ v where ¢ is the trivial line bundle over RP", and
v = ke/T(RP") is the normal bundle of the immersion f. In these terms, the k canonical sections
of ke are mapped under the canonical epimorphism ke =~ T'(RP")@®v — T'(RP") (an epimorphism
of vector bundles) onto k tangent vector fields vy, va, ..., v on RP" (i.e. sections of T'(RP")).

Define Uy = RP"™ x RP" as the set of pairs of lines (L1, L) in R""! making an acute angle. A
nonzero tangent vector v to the projective space RP" at a point L; (a line in R"*!) determines
a line ¥ in R™*!, which is orthogonal to Li. This vector v also determines an orientation of the
two—dimensional plane spanned by L and 7.

Fori=1,2,...,k, define U; = RP™ x RP" as the open set of all pairs of lines (L1, Ly) in R**1
such that the vector v;(L) is nonzero and the line Ly makes an acute angle with the line "‘XL\I)
Notice that the sets Uy, Uy, ..., Ui cover RP" x RP". Indeed, given a pair (L1, Lg), there exists
indices 1 < i1 < - < i, < k such that the vectos v;;(L1) (j = 1,2,...,n), span the tangent
space 17, (RP™). Then, the lines:

Ll,vil (Ll), 000 ,Uin(lq)

span R"*! and therefore the line Ly makes an acute angle with one of these lines. Hence, (L1, L2)
belongs to one of the sets Uy, U;,, ..., U, .

Now, if (L1, La) € Up, we rotate L; towards Lo with constant velocity in the two—dimensional
plane spanned by L; and Lo so that L, sweeps the acute angle. This is a continuous motion
planning section sg : Uy — P(RP"™). Our continuous motion planning strategy s; : U; — P(RP")

where ¢ = 1,2,...,k is a composition of two motions. First we rotate line L; toward the line

v;(L1) in the two-dimensional plane spanned by both lines in the direction determined by the

orientation of this plane. On the second step, we rotate the line m towards Lo along the
acute angle similarly to the action of sg.

We found k£ + 1 continuous motion planning strategies s; over each U;, which proves the
statement. [

! Actually, Hirsch’s Theorem on immersions of manifolds [11] asserts that an n-dimensional manifold M admits
an immersion in R” precisely when the tangent bundle 7a; admits a k-dimensional complement (realized as the
normal bundle of the immersion).
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Remark. Notice that Theorem 5.3.4 can be written as:
TC(RP") < | «= 3 nonsingular map R"*! x R**1 — R/
By definition, if we have a motion planner for RP" given by [ rules, it means that:
TC(RP") < 1.
Then there exists a non—singular map:
R x R RE
and by Lemma 5.2.9 we have an axial map:
RP" x RP" — RP‘™!
which (applying Theorem 6.2.1) gives an immersion:
RP™ 4> R
Hence, starting from a motion planner for RIP", it is possible to construct an immersion:

RP" ¢ RF1,
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Conclusions

In this work we reviewed the work done by Farber et. al. toward the study of Topological Com-
plexity, offering more detailed explanations than those included in the original works. We also
utilized the tools developed by several authors in order to establish results for other possible
configuration spaces.

Looking at the future, there exist many configuration spaces for which T'C is unknown or there
exist some bounds. One of the most remarkable open examples is the Klein Bottle (denoted as
K), which is the configuration space of a robot having a twist attached to every rotation in two
different directions.

Figure 6.4: Klein Bottle, [10, p. 53]

It is not hard to see that zcl(K) = 3. In fact, any non-orientable surface of genus g (Ny),
is such that zcl(Ny) = 3. On the other hand, by (2.1.13), we have TC(K) < 5. Therefore, the
Topological Complexity of Klein Bottle is 4 or 5.

This problem has been attacked by many people, even Michael Farber.
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