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Resumen

Desde la confirmación de la existencia del bosón de Higgs, su modelo ha tenido gran impacto
en la comunidad científica, especialmente en el modelo estándar de la física de partículas, la
necesidad de la constante cosmológica, así como su creación experimental en colisionadores
de adrones e investigaciones sobre la masa de dicha partícula. En este trabajo, presentamos
una serie de esquemas en diferencias finitas con diferentes enfoques para la obtención de
una solución aproximada a la ecuación del bosón de Higgs en el espacio-tiempo de de Sitter.
Dichos esquemas conservarán las propiedades variacionales presentes en su forma continua,
tales como la disipación de la energía en el tiempo. Cabe destacar que la mayoría de los
resultados obtenidos en esta disertación son válidos para p∈ N dimensiones espaciales, aunque
las simulaciones son realizadas para p⩽ 3. Además, en los diferentes esquemas considerados
en esta tesis, se llevó a cabo un análisis riguroso de consistencia, unicidad y estabilidad. Todos
los esquemas son convergentes con un orden cuadrático en tiempo y en espacio. El análisis se
efectuó para un modelo mucho más general donde el coeficiente de difusión (que depende
del tiempo en nuestro trabajo) y el potencial (que es una función no lineal de la solución)
son funciones diferenciables en general. Es importante mencionar que también se consideró
una extensión del modelo de Higgs que considera la presencia de difusión fraccionaria de
Riesz. En las implementaciones computacionales mostradas en este trabajo, hacemos énfasis
especial en demostrar la presencia de soluciones tipo “burbuja”. Dichas soluciones son típicas
en el modelo de Higgs y son de gran relevancia en el mundo científico.

Keywords: fractional Higgs boson equation; de Sitter space-time; Riesz space-fractional
equations; fractional centered differences; fractional energy method; stability and
convergence analyses
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Abstract

Since the confirmation of the existence of the Higgs boson, his model has a great impact on
the scientific community, especially on the standard model of particle physics. The need for
the cosmological constant, its experimental creation in adron colliders, and investigations on
the mass of the said particle. In this work, we present a series of finite difference schemes
with different approaches to obtain an approximate solution to the Higgs boson equation in
Sitter spacetime. Said schemes ging to preserve the variational properties present in their
continuous form, such as the dissipation of energy over time. Most of the results obtained in
this dissertation are valid for p∈N spatial dimensions, although the simulations are performed
for p⩽ 3. Furthermore, in the different schemes treated in this thesis, a rigorous analysis
of consistency, uniqueness, and stability was carried out. All the schemes are convergent
with a quadratic order in time and space. The analysis was carried out for a much more
general model where the diffusion coefficient (which depends on time in our work) and the
potential (which is a non-linear function of the solution) are generally differentiable functions.
It is important to mention that it is also considered an extension of the Higgs model that
considers the presence of fractional Riesz diffusion. In the computational implementations
shown in this work, we place special emphasis on demonstrating the presence of “bubble”
type solutions. These solutions are typically in the Higgs model and are of great relevance in
the scientific world.

Keywords: fractional Higgs boson equation; de Sitter space-time; Riesz space-fractional
equations; fractional centered differences; fractional energy method; stability and
convergence analyses
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Introduction

The study of the Higgs boson has been of great interest from the perspective of phenomenology
since the introduction of the theoretical concept of spontaneous gauge symmetry breaking
in particle physics in 1964 [43, 27, 42]. This pioneering work was independently carried out
by Peter Higgs, François Englert, Robert Brout, Gerald Guralnik, C. R. Hagen, and Tom
Kibble. Their theory aimed to explain how elementary particles acquire mass, a fundamental
property that governs their interactions and gives rise to the formation of structure in the
Universe.

The existence of the Higgs boson was experimentally confirmed in 2012 by the ATLAS
and CMS experiments at the Large Hadron Collider (LHC) at CERN [2, 18]. This historic
detection was a monumental achievement for particle physics and was recognized with the
Nobel Prize in Physics in 2013, awarded to François Englert and Peter Higgs for their
pioneering work in predicting the existence of the Higgs boson.

The Standard Model of particle physics is the theoretical framework that describes the
interactions between the fundamental particles that constitute all matter in the Universe. This
model includes quarks and leptons [112], as well as the fundamental forces associated with
gauge symmetries. However, in its original formulation, elementary particles were massless,
which contradicted experimental observations [39]. The incorporation of the Higgs mechanism
addressed this critical issue in the theory. The Higgs mechanism was proposed as a solution
to this problem. It introduces the Higgs field, a scalar field that permeates all of space.
The Higgs field is characterized by its unique property of spontaneous symmetry breaking,
where its ground state is not invariant under certain transformations [43]. As a result of this
symmetry breaking, the Higgs field acquires a non-zero vacuum expectation value, leading
to the emergence of mass for certain particles. Specifically, in the Higgs mechanism, the
interactions between particles and the Higgs field endow some particles, like quarks and
charged leptons, with mass [44]. The massive particles acquire mass by interacting with the
Higgs field, while other particles, like the photon and the gluon, remain massless because they
do not interact with the Higgs field. The Higgs boson is a fundamental piece of the Standard
Model as it is responsible for endowing particles with mass through its interaction with the
Higgs field. Without this interaction, all particles would be completely massless, and the
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structure of the Universe as we know it could not form. Therefore, the presence of the Higgs
boson is essential for our understanding of physics at both the subatomic and cosmic levels.

In addition to explaining the generation of mass, the Higgs boson also has implications
in cosmology and the evolution of the Universe. Some studies suggest that during the first
fractions of a second after the Big Bang, the Higgs field played a significant role in the process
of cosmic inflation, driving an extremely rapid expansion of spacetime [10]. This inflationary
period is responsible for the observed features in the distribution of the cosmic microwave
background radiation, providing valuable insights into the initial conditions of the Universe.

The discovery of the Higgs boson has not only been a milestone in particle physics but
has also opened new possibilities for exploration in understanding the nature of dark matter
and dark energy [7], which constitute the majority of the content of the Universe and lie
beyond the scope of the Standard Model. The detection and detailed study of the Higgs
boson at the LHC continue to play a fundamental role in the search for new particles and
physical phenomena that challenge the current description of nature.

The present work is divided into four sections, each focusing on different aspects of the
Higgs boson equation and its implications.

In the first section, an approximation to the solution of the Higgs boson equation in
de Sitter space is presented, utilizing finite differences in a multidimensional system with a
generalized potential and a time-dependent diffusion coefficient.

The second section focuses on a particular case of 3+1 dimensions with radially symmetric
solutions, proposing a discrete implicit scheme for its study.

In the third section, a discretization of a fractional extension of the Higgs boson equation
in de Sitter spacetime is proposed, introducing Riesz space-fractional derivatives of orders in
the interval (1,2]. All these models are accompanied by associated energy functionals that
evolve in time, providing insights into the dynamics of the Higgs field.

Finally, in the fourth section, the conclusions of the work are presented, summarizing the
contributions and potential implications of the findings.



9

1 A two-dimensional Higgs boson equation

FOR THE FIRST TIME IN THE LITERATURE, a dissipation-preserving computational
technique to approximate the solutions of a dissipative generalization of the Higgs boson
equation in the de Sitter space-time is proposed. The model is a multidimensional system
which considers a generalized potential and a general time-dependent diffusion coefficient. The
system has an associated energy functional which is dissipated in time. Motivated by this fact,
we propose a finite-difference methodology to approximate the solutions of the mathematical
model. In addition to the numerical approximation for the solutions of the system, we propose
also a discrete energy functional which is dissipated with respect to the discrete time. Using a
computer implementation in two spatial dimensions, we provide some simulations that confirm
the presence of bubble-like solutions, in agreement with the theory available in the literature.

1.1 Background

For the sake of convenience, let In = {0,1, . . . ,n} and In = In∪{−1}, for each n∈N. Let p∈N,
and let x ∈ Rp be a vector which is represented component-wise as x= (x1,x2, . . . ,xp). Define
the spatial domain B =∏p

i=1(ai, bi) ⊆ Rp, where −∞ < ai < bi < ∞, for each i = 1,2 . . . ,p.
Let T > 0, and define Ω =B× (0,T ) as the space-time domain.

Throughout, let γ ∈ R+ and suppose that f : R+ → R is a differentiable function. Let
F : R → R be differentiable, and suppose that ϕ0,ϕ1 :B → R are continuously differentiable
functions. In the present chapter, we will investigate the numerical solution of the initial-
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boundary-value problem

∂2ϕ(x,t)
∂t2

−f(t)∆ϕ(x,t)+γ
∂ϕ(x,t)
∂t

+F ′(ϕ(x,t)) = 0, ∀(x,t) ∈ Ω,

such that


ϕ(x,0) = ϕ0(x), ∀x ∈B,
∂ϕ(x,0)
∂t

= ϕ1(x), ∀x ∈B,

∇ϕ(x,t) ·n = 0, ∀(x,t) ∈ ∂B× [0,T ].

(1.1.1)

Here, ∆ represents the spatial Laplacian. Moreover, we use ∇ to represent the gradient
operator, and n is the vector which is normal to the boundary of B. Notice that we obtain
the standard Higgs boson equation when f(t) = e−2t, γ = p and F (ϕ) = −1

2µ
2ϕ2 + 1

q+1λ|ϕ|q+1,
for each t ∈ [0,T ] and ϕ ∈ R (see [57, 45]). In that context, the following is one of the most
important results on the qualitative behavior of solutions of Higgs boson equation.

Theorem 1.1.1 (Yagdjian [114]). Let 2 ≤ r <∞, and suppose that ϕ ∈ C([0,∞];Lr(Rp)) is a
global weak solution of the standard Higgs boson equation in the de Sitter space-time. Suppose
that the initial data satisfy

σ

p
2

√
p2

4 +µ2

ϕ0(x)+ϕ1(x)

> 0, ∀x ∈ Rp, (1.1.2)

where σ = 1 (respectively, σ = −1), and that

σ

∫
Rp

|ϕ(x,t)|q−1ϕ(x,t)dx≤ 0, (1.1.3)

is satisfied for all t outside of a sufficiently small neighborhood of 0. Then the solution
ϕ cannot be an asymptotically time-weighted Lq-non-positive (respectively, -nonnegative)
solution, where a0 =

√
n2

4 +µ2 − n
2 , and either aϕ < a0 and bϕ ∈ R, or aϕ = a0 and bϕ < 2.

Corollary 1.1.2 (Yagdjian [114]). Bubble-like solutions of the standard Higgs boson equation
in the de Sitter space-time will form if the initial data satisfy the conditions of Theorem 1.1.1.

It is well known that Higgs boson equation in the de Sitter space-time has an associated
energy. More precisely, it is easy to verify that the total energy of the system (1.1.1) at the
time t is given by

E(t) = eγt
[

1
2

∥∥∥∥∂ϕ∂t
∥∥∥∥2

x,2
+ γ

2

〈
∂ϕ

∂t
,ϕ

〉
x,2

+ f(t)
2 ∥∇ϕ∥2

x,2 + ⟨F (ϕ),1⟩
]
, ∀t ∈ (0,T ). (1.1.4)

Notice that if ϕ is a solution of (1.1.1) then the local energy density of the system at the
point (x,t) is given by

H(x,t) = eγt
[

1
2

∣∣∣∣∂ϕ(x,t)
∂t

∣∣∣∣2 + γ

2
∂ϕ(x,t)
∂t

ϕ(x,t)+ f(t)
2 |∇ϕ(x,t)|2 +F (ϕ(x,t))

]
. (1.1.5)
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Moreover, differentiating E with respect to t, it is easy to show that the rate of change of the
energy of (1.1.1) is given by

E ′(t) = eγt
[
f ′(t)

2 ∥∇ϕ∥2
x,2 − γ

2 ⟨F ′(ϕ),ϕ⟩x+γ⟨F (ϕ),1⟩x
]
, ∀t ∈ (0,T ). (1.1.6)

Higgs boson equation in the de Sitter space-time has been extensively investigated in
the literature. Indeed, some analytical results are known on the solutions of this system
[114, 119, 121]. Nevertheless, we must mention that there are very few papers available in
the literature which propose reliable numerical methodologies to solve Higgs boson equation
in the de Sitter space-time, that are capable of preserving the energy properties of this
system. Among the recent progresses in that direction, we can mention some articles which
propose high-performance implementations of Runge–Kutta schemes [6]. Unfortunately, those
discretizations are not capable of preserving the energy properties of the continuous model.
Following some recent successful derivations of energy-conserving systems [50, 76, 111, 35, 13],
we will propose a discretization of the model (1.1.1) which is capable of preserving the energy
features.

1.2 Numerical method

Divide the interval [0,T ] into K ∈ N subintervals of length τ = T/K. For each i= 1,2, . . . ,p,
divide the interval [ai, bi] into Mi ∈ N subintervals of length hi = (bi−ai)/Mi. Obviously, the
nodes of these partitions are

tk = kτ ∀k ∈ IK , (1.2.1)
xi,j = ai+ jhi ∀i= 1,2, . . . ,p, ∀j ∈ IMi . (1.2.2)

Define J =∏p
i=1 IMi and J =∏p

i=1 IMi+1. Moreover, for any multi-index j = (j1, j2, . . . , jp) ∈
J , let us agree that xj = (x1,j1 ,x2,j2 , . . . ,xp,jp), and let ∂J = {j ∈ J : xj ∈ ∂B}. Let h =
(h1,h2, . . . ,hp) and h∗ = h1h2 · · ·hp. Fix the grid Rh = {xj : j ∈ J}, and use Vh to denote the
set of all real functions defined on Rh. If Ψ ∈ Vh then we let Ψj = Ψ(xj), for each j ∈ J .
Moreover, if (j,k) ∈ J×IK then we convey that Φk

j is a numerical approximation to ϕ(xj , tk).
Obviously, Φk = (Φk

j )j∈J is a member of Vh, for each k ∈ IK . For the remainder, we set
Φ = (Φk)k∈IK

unless we say otherwise.

Definition 1.2.1 (Discrete temporal operators). Let (Ψk)k∈IK
⊆ Vh. Define the discrete

linear temporal operators

µtΨk
j =

Ψk+1
j +Ψk

j

2 , ∀(j,k) ∈ J × IK−1, (1.2.3)

µ
(1)
t Ψk

j =
Ψk+1
j +Ψk−1

j

2 , ∀(j,k) ∈ J × IK−1, (1.2.4)
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δtΨk
j =

Ψk+1
j −Ψk

j

τ
, ∀(j,k) ∈ J × IK−1. (1.2.5)

We also define δ(1)
t Ψk

j = (µt ◦ δt)Ψk−1
j and δ

(2)
t Φk

j = (δt ◦ δt)Ψk−1
j , for each (j,k) ∈ J × IK−1.

On the other hand, if F : R → R is a differentiable function and (j,k) ∈ J × IK−1, then we
define the discrete nonlinear temporal operator

δΨ,tF (Ψk
j ) =


F (Ψk+1

j )−F (Ψk
j )

Ψk+1
j −Ψk

j

, if Ψk+1
j ̸= Ψk

j ,

F ′(Ψk
j ), otherwise.

(1.2.6)

Definition 1.2.2 (Discrete spatial operators). Let (Ψk)k∈IK
be a finite sequence in Vh. For

each i ∈ Ip and (j,k) ∈ J × IK , we define the discrete linear spatial operators

δxiΨk
j =

Ψk
j1,...,ji−1,ji+1,ji+1,...,jp

−Ψk
j

hi
, ∀(j,k) ∈ J × IK−1, (1.2.7)

δ(1)
xi

Ψk
j =

Ψk
j1,...,ji−1,ji+1,ji+1,...,jp

−Ψj1,...,ji−1,ji−1,ji+1,...,jp

2hi
, ∀(j,k) ∈ J × IK−1, (1.2.8)

δ(2)
xi

Ψk
j =

Ψj1,...,ji−1,ji+1,ji+1,...,jp −2Ψk
j +Ψj1,...,ji−1,ji−1,ji+1,...,jp

h2
i

, ∀(j,k) ∈ J × IK−1. (1.2.9)

Moreover, the spatial Laplacian will be approximated with a quadratic order of consistency
using the discrete operator

δ(2)
x Ψk

j =
p∑
i=1

δ(2)
xi

Ψk
j , ∀(j,k) ∈ J × IK−1. (1.2.10)

Meanwhile, define ΛxΨk
j = (δx1Ψk

j , δx2Ψk
j , . . . , δxp

Ψk
j ) and Λ(1)

x Ψk
j = (δ(1)

x1 Ψk
j , δ

(1)
x2 Ψk

j , . . . , δ
(1)
xp Ψk

j ),
for each (j,k) ∈ J × IK .

Using these conventions, the numerical scheme method to solve (1.1.1) is given by the
discrete system

(µt ◦ δ(2)
t )Φk

j −µt
(
f(tk)δ(2)

x Φk
j

)
+γδtΦk

j + δΦ,tF (Φk
j ) = 0, ∀(j,k) ∈ J × IK−2,

such that


Φ0
j = µ

(1)
t Φ0

j = ϕ0(xj), ∀j ∈ J,

δ
(1)
t Φ0

j = ϕ1(xj), ∀j ∈ J,

(Λ(1)
x Φk

j ) ·n = 0, ∀(j,k) ∈ ∂J × IK .

(1.2.11)

Associated to this finite-difference scheme, we define the discrete energy density at the point
xj and time tk for each (j,k) ∈ J × IK−1 by

Hk
j = eγtk

[1
2(δtΦk

j )(δtΦk−1
j )+ γ

2 (δtΦk
j )(µtΦk−1

j )− f(tk)
2 Φk

j (δ(2)
x Φk

j )+F (Φk
j )
]
. (1.2.12)



1.2 Numerical method 13

The following result is a discrete form of the product rule. Its proof is straightforward.

Lemma 1.2.3. If (Φk)k∈IK
and (Ψk)k∈IK

are sequences in Vh then δt(Φk
jΨk

j ) = Φk
j δtΨk

j +
Ψk+1
j δtΦk

j , for each k ∈ IK−1.

Lemma 1.2.4. Suppose that f : [0,T ] → R is nonnegative, and let (Φk)k∈IK
and (Ψk)k∈IK

be sequences in Vh. Then

(a) ⟨µtδ(2)
t Φk, δtΦk⟩ = 1

2δt⟨δtΦk, δtΦk−1⟩, for each k ∈ IK−2.

(b) ⟨δtΦk, δtΦk−1⟩ = µt∥δtΦk−1∥2
2 − 1

2τ
2∥δ(2)

t Φk∥2
2, for each k ∈ IK−1.

(c) ⟨δΦ,tF (Φk), δtΦk⟩ = δt⟨F (Φk),1⟩, for each k ∈ IK−1.

(d) δt⟨δtΦk,µtΦk−1⟩ = ⟨δtΦk+1, δ
(1)
t Φk⟩+ ⟨δ(2)

t Φk,µtΦk−1⟩, for each k ∈ IK−2.

(e) For each k ∈ IK−1 and i= 1,2, . . . ,p,

2
〈
−µt

(
f(tk)δ(2)

xi
Φk
)
, δtΦk

〉
= δt

(
f(tk)∥δxiΦk∥2

2

)
− (δtf(tk))⟨δxiΦk+1, δxiΦk⟩. (1.2.13)

Proof. The identities (a)–(c) are straightforward, so we will only establish (d) and (e). To
prove (d), notice that

δt⟨δtΦk,µtΦk−1⟩ = 1
τ

[
⟨δtΦk+1,µtΦk⟩ −⟨δtΦk+1,µtΦk−1⟩

+⟨δtΦk+1,µtΦk⟩ −⟨δtΦk,µtΦk−1⟩
] (1.2.14)

holds for each k ∈ IK−2. Identity (d) readily follows after an algebraic simplification. To
establish (e) now, fix the value of i ∈ {1,2, . . . ,p}. Using the definitions of the discrete
operators, the distributivity property of the inner product and the square-root properties of
fractional-ordered centered differences, we obtain

⟨−µt(f(tk)δ(2)
xi

Φk), δtΦk⟩ = 1
2τ
[
f(tk+1)⟨−δ(2)

xi
Φk+1,Φk+1⟩

−f(tk+1)⟨−δ(2)
xi

Φk+1,Φk⟩+f(tk)⟨−δ(2)
xi

Φk,Φk+1⟩−f(tk)⟨−δ(2)
xi

Φk,Φk⟩
]

= 1
2τ
[
f(tk+1)∥δxiΦk+1∥2

2 −f(tk)∥δxiΦk∥2
2 +(f(tk)−f(tk+1))⟨δxiΦk+1, δxiΦk⟩

]
,

(1.2.15)

for each k ∈ IK−1, which leads to (e). The identities of this result have been readily established
now.

Lemma 1.2.5. Let (Φk)k∈IK
be any sequence in Vh. For each k ∈ IK−2, the following

identities are satisfied:

1
2δt

[
eγtk⟨δtΦk, δtΦk−1⟩

]
= 1

2δte
γtk⟨δtΦk, δtΦk−1⟩+eγtk+1⟨µtδ(2)

t Φk, δtΦk⟩, (1.2.16)

δt
[
eγtk⟨F (Φk),1⟩

]
= δte

γtk⟨F (Φk),1⟩+eγtk+1⟨δΦ,tF (Φk), δtΦk⟩, (1.2.17)
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Parameter B γ λ µ p q τ h
Value (−1,1)× (−1,1) 2 0.1 0.1 2 3 0.001 0.01
Function f(t) = e−2t F (ϕ) = −1

2µ
2ϕ2 + 1

q+1λ|ϕ|q+1

Table 1.1 Table of the values of the parameters and the expressions of the functions
employed to obtain the simulations of Section 1.3.

γ

2 δt
[
eγtk⟨δtΦk,µtΦk−1⟩

]
= γ

2 δte
γtk⟨δtΦk,µtΦk−1⟩+ γ

2 e
γtk+1⟨δ(2)

t Φk+1,µtΦk⟩ (1.2.18)

+ γ

2 e
γtk+1⟨δtΦk, δ

(1)
t Φk⟩,

and

1
2δt

[
eγtkf(tk)∥ΛxΦk∥2

2

]
= 1

2δte
γtkf(tk)∥ΛxΦk∥2

2 + 1
2e

γtk+1δtf(tk)⟨ΛxΦk+1,ΛxΦk⟩

−eγtk+1⟨µt[f(tk)δ(2)
x Φk], δtΦk⟩.

(1.2.19)

Proof. The proofs of all these identities are established using Lemmas 1.2.4 and 1.2.3.

Theorem 1.2.6. Let Φ be a solution of (1.2.11), and define the discrete energy

Ek = h∗
∑
j∈J

Hk
j = eγtk

[1
2⟨δtΦk, δtΦk−1⟩+ γ

2 ⟨δtΦk,µtΦk−1⟩+ f(tk)
2 ∥ΛxΦk∥2

2 + ⟨F (Φk),1⟩
]
,

(1.2.20)
for each k ∈ IK−1. Then the following identity holds, for each k ∈ IK−2:

δtE
k = −γeγtk+1∥δtΦk∥2

2

+ eγtk+1

2
[
γ⟨δ(2)

t Φk+1,µtΦk⟩+γ⟨δtΦk, δ
(1)
t Φk⟩+(δtf(tk))⟨ΛxΦk+1,ΛxΦk⟩

]
+ δte

γtk

2
[
⟨δtΦk, δtΦk−1⟩+γ⟨δtΦk,µtΦk−1⟩+f(tk)∥ΛxΦk∥2

2 +2⟨F (Φk),1⟩
]
.

(1.2.21)

Proof. The proof readily follows from the identities in the lemma and straightforward algebraic
calculations.

1.3 Results

We restrict our attention to the two-dimensional scenario. Throughout, we will use the param-
eters in Table 1.1. For each x0 ∈ R2 and R> 0, define B(·;x0,R) : R2 → R by B(x;x0,R) = 0
if ∥x−x0∥2 ≥R, and by

B(x;x0,R) = exp
( 1
R2 − 1

R2 −∥x−x0∥2
2

)
, if ∥x−x0∥2 <R. (1.3.1)
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Define x1 = (0.5,0), x2 = (−0.5,0), x3 = (0,−0.5) and x4 = (0,0.5) of R2. We consider the
problem (1.1.1) withϕ0(x) = B(x;x1,0.3)+B(x;x2,0.3)+B(x;x3,0.3)+B(x;x4,0.3), ∀x ∈B,

ϕ1(x) = −5ϕ0(x), ∀x ∈B.
(1.3.2)

Figure 1.1 shows some snapshots of the solutions of (1.1.1). The results show how the
four localized initial bubbles interact and generate a complex behavior. Eventually, new
bubbles begin to form, in agreement with the qualitative behavior witnessed using some
standard Runge–Kutta methods [6]. For convenience, Figure 1.2 shows the dynamics of the
total energy of the system for two, four and eight initial bubbles, using T = 1. The graph
shows that the total energy of the Higgs boson equation is decreasing, in agreement with the
theory on this continuous model.
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(a) (b)

(c) (d)

Figure 1.1 Graphs of the approximate solution of (1.1.1) versus (x1,x2) ∈ [−1,1]× [−1,1],
obtained using the finite-difference scheme (1.2.11). Various times were employed, namely,
(a) 0, (b) 0.1, (c) 0.5 and (d) 2. Throughout, we used the parameters in Table 1.1, and the
initial conditions (1.3.2). Also, we let f(t) = e−2t, γ = p and F (ϕ) = −1

2µ
2ϕ2 + 1

q+1λ|ϕ|q+1,
for each t∈ [0,T ] and ϕ∈R. The insets provide the corresponding interpolated checkerboard
plots of the local energy densities.
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Figure 1.2 Graphs of the total energy of the system (1.1.1) versus t, obtained using the
finite-difference scheme (1.2.11). Throughout, we used the parameters in Table 1.1, and the
initial conditions (1.3.2). Also, we let f(t) = e−2t, γ = p and F (ϕ) = −1

2µ
2ϕ2 + 1

q+1λ|ϕ|q+1,
for each t ∈ [0,T ] and ϕ ∈ R. The graphs correspond to initial data with one bubble-type
initial condition (blue), two bubbles (red) and four bubbles (yellow).
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2 A radially symmetric Higgs boson equation

THE PRESENT CHAPTER introduces a numerical scheme that preserves the dissipation of
energy of the Higgs boson equation in the de Sitter space-time. More precisely, the model
considered in this chapter is a mathematical generalization of Higgs’ model which includes a
general time-dependent diffusion coefficient and a generalized potential. The mathematical
system is dissipative, and we propose an implicit discrete method which approximates
consistently the radially symmetry solutions of the continuous system. At the same time,
a discrete energy functional is presented, and we prove that, as its continuous counterpart,
the numerical technique dissipates the energy of the discrete system. The properties of
consistency, stability and convergence of the numerical model are proved rigorously. To
confirm the theoretical results, we approximate some radially symmetric solutions of the
classical Higgs boson equation in the de Sitter space-time. In particular, the numerical results
confirm the stability and the formation of bubble-like solutions.

2.1 Background

The Higgs boson equation is a fundamental system in the unification of various theories in
physics. Indeed, Higgs boson equation in the Minkowski and in the de Sitter space-times are
employed to unify the theories on weak, strong and electromagnetic interactions [113]. Since
the publication of the report confirming experimentally the existence of Higgs’ boson [2], this
model has been studied extensively mainly from the physical point of view. Indeed, there
are many physical studies focusing on the phenomenological investigation of Higgs boson
[14, 26], some of them making theoretical advances within the frame of the Standard Model of
particle physics [10]. Some other recent experimental and theoretical studies concentrate on
observing the decay of Higgs boson to bottom quarks [98], on its experimental production at
hadron colliders using high-energy physics [78] or on next-to-next-to-leading order corrections
with top quark mass effects [41]. Other works provide experimental evidence for the Higgs
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boson decay to a bottom quark–antiquark pair [96], or investigate second-order quantum
chromodynamics effects in Higgs boson production through vector boson fusion [19], highly
boosted Higgs bosons decaying to bottom quark-antiquark pairs [97] or the decaying of the
Higgs boson to charm quarks [1]. Moreover, the investigation of the mass of this particle is
also an active topic of research, as shown by reports on the measurement of the Higgs boson
mass in the diphoton decay channel [99], the reconciliation of the Effective Field Theory and
hybrid calculations of the light Minimal Supersymmetric Standard Model Higgs-boson mass
[5, 28], among various other articles [74].

From the mathematical point of view, the investigation of Higgs boson equation in the
Minkowski and the de Sitter space-times has proved to be a hard task. There are some recent
works which investigate the behavior of the global solutions of these models from a rigorous
point of view. As an example, there are reports which provide sufficient conditions for the
existence of the zeros of global solutions [114]. As a consequence, some conditions for the
creation of the so-called “bubbles” have been established therein. Here, it is important to
point out that those “bubbles” are of considerable theoretical interest in particle physics and
inflationary cosmology [60, 110]. Additionally, some conditions for the global solutions to be
oscillatory in time have been thoroughly proven. However, to the best of our knowledge the
proof of the existence of global solutions for this model is still an open problem of research
to-day. Nevertheless, some other efforts have been reported in the mathematical literature,
like some analytical results on semilinear hyperbolic partial differential equations in curved
space-times [117], a maximum principle and sign changing solutions of hyperbolic equations
with the Higgs potential [119], the Huygens’ principle for the Klein-Gordon equation in the
de Sitter space-time [116], the global existence of the self-interacting scalar field in the de
Sitter universe [118] and global solutions of semilinear system of Klein-Gordon equations in
the de Sitter space-time [115], among other important reports by K. Yagdjian and coworkers.

In view of the lack of a mathematically rigorous apparatus to elucidate the existence of
global-in-time solutions of the Higgs boson equation in the de Sitter space-time, some reports
have turned the attention to the numerical investigation of this model [6, 107]. However,
it is worth pointing out here that most of those reports employ discretizations to solve
first-order systems that approximate partial differential equations, like commercial Runge–
Kutta methods which are already built in Matlab® or Mathematica®. Motivated by these
limitations, the authors of the present work have devoted some efforts to propose and analyze
a discretization of the Higgs boson equation in the de Sitter space-time which are capable of
resembling the Hamiltonian structure of the problem. Historically, the problem of designing
energy-conserving methods may date back to the decade of the 1970s [4, 95]. However, it is
worth mentioning that L. Vázquez and coauthors were probably the first researchers who
pointed out the physical and mathematical significance of designing this type of schemes
[85]. Various seminal papers by Vázquez and his coworkers were published in the 1990s,
including various energy-conserving numerical schemes to solve partial differential equations
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like the Schrödinger equation [102], the sine-Gordon equation [9, 30], Klein–Gordon equations
[100], and even systems consisting of ordinary differential equations [29]. In those papers,
the authors established thoroughly the capability of their schemes to preserve the energy
properties of the continuous problem. They employed a discrete form of the energy method
to establish rigorously the stability and the convergence properties of the schemes. After the
publication of those works, the investigation on energy-conserving schemes became a highly
transited route of research, and many interesting articles were proposed in the specialized
literature [46, 56, 91]. It is worth mentioning here that Vázquez and coworkers still continue
to propose contributions in various areas of the physical sciences [93, 94, 108], including some
recent progresses in research related to the future missions to Mars [90, 51, 109].

Some reports are already available in the literature to solve the Higgs boson equation
in the de Sitter space-time using Hamiltonian discretizations [79, 80]. Those articles show
various limitations, including that the methods proposed are practically impossible to be
extended to the three-dimensional scenario. In the present chapter, we will propose and
theoretically analyze a Hamiltonian finite-difference scheme to solve our mathematical model
in the three-dimensional case. We will limit our attention to the approximation of radially
symmetric solutions, whence a convenient simplification of the mathematical model will
be readily at hand. A sufficiently general form of Higgs boson equation in the de Sitter
space-time will be considered, and an energy functional is available for that system. An
obvious advantage of studying radial solutions will be that a reduced (1 + 1)-dimensional
system will result [100], though the solutions are obviously valid for the three-dimensional
case. Moreover, the new (1+1)-dimensional system will present a singularity at the origin,
whence the stability and the convergence analysis of the discrete model proposed will be
a mathematical challenge that will be solved in this paper. We will prove thoroughly the
dissipation properties of the finite-difference scheme, and the quadratic order of convergence
of the discrete model will be rigorously established. Some numerical simulations will be
provided to show the capability of the scheme to approximate the radially symmetric solutions
of the Higgs boson equation in the de Sitter space-time, and the presence of bubble-like
solutions will be shown in that context. The advantage of our approach is obviously the
simplicity of the discretization. In addition, the numerical scheme proposed in this chapter is
uniquely solvable, preserves the dissipation of the energy, and is numerically efficient (that is,
it is consistent, stable and convergent). We will provide a computational code in detail at
the end of this chapter for the sake of convenience.

2.2 Physical model

For the remainder of this chapter and unless we mention otherwise, we consider an open
and bounded spatial domain D ⊆ R3, and a temporal interval [0,T ], for some T > 0. We
define the space-time domain Ω =D× (0,T ), and use D and Ω to denote, respectively, the
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closures of D and Ω in the standard topology of R4. Let f : [0,T ] → R and F : R → R be
differentiable functions, and assume that ϕ0,ϕ1 :D → R are continuously differentiable. The
point of departure of our investigation is the following initial-boundary-value problem, which
is governed by a general form of the Higgs boson equation in the de Sitter space-time:

∂2ϕ(x,t)
∂t2

−f(t)∆ϕ(x,t)+3∂ϕ(x,t)
∂t

+F ′(ϕ(x,t)) = 0, ∀(x,t) ∈ Ω,

such that


ϕ(x,0) = ϕ0(x), ∀x ∈D,
∂ϕ(x,0)
∂t

= ϕ1(x), ∀x ∈D,

ϕ(x,t) = 0, ∀(x,t) ∈ ∂D× [0,T ].

(2.2.1)

In the initial-boundary-value problem (2.2.1), the symbol ∆ represents the standard
Laplacian in the three spatial variables. Meanwhile, ∇ will represent the gradient operator
in the spatial coordinates, and ∂D denotes the boundary of D. From a variational point of
view, the total energy associated to the system (2.2.1) is given by (see [79])

E(t) = e3t
∫
D

[
1
2

∣∣∣∣∂ϕ∂t
∣∣∣∣2 + 3

2
∂ϕ

∂t
ϕ+ f(t)

2 |∇ϕ|2 +F (ϕ)
]
dx, ∀t ∈ (0,T ). (2.2.2)

In particular, the energy density is given by the Hamiltonian function

H(x,t) = e3t
[

1
2

∣∣∣∣∂ϕ∂t
∣∣∣∣2 + 3

2
∂ϕ

∂t
ϕ+ f(t)

2 |∇ϕ|2 +F (ϕ)
]
, ∀(x,t) ∈ Ω. (2.2.3)

Moreover, differentiating (2.2.2) with respect to t, it is easy to show that the rate of change
of the energy of the initial-boundary-value problem (2.2.1) is given by

E ′(t) = e3t
∫
D

[
f ′(t)

2 |∇ϕ|2 − 3
2F

′(ϕ)ϕ+3F (ϕ)
]
dx, ∀t ∈ (0,T ). (2.2.4)

It is worth pointing out here that if f(t) = e−2t and F (ϕ) = −1
2µ

2ϕ2 + 1
4λϕ

4, then we
readily obtain the classical expression of the Higgs boson equation in the de Sitter space-time
[45, 57]. In that context, the following is one of the most important results on the qualitative
behavior of the solutions of Higgs’ equation.

Theorem 2.2.1 (Yagdjian [114]). Assume that f(t) = e−2t and F (ϕ) = −1
2µ

2ϕ2 + 1
4λϕ

4. Let
2 ≤ c <∞, and suppose that ϕ ∈ C([0,∞];Lc(R3)) is a global weak solution of the standard
Higgs boson equation in the de Sitter space-time. Suppose that the initial data satisfy

σ

[(
3
2 +

√
9
4 +µ2

)
ϕ0(x)+ϕ1(x)

]
> 0, ∀x ∈ R3, (2.2.5)
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where σ = 1 (respectively, σ = −1), and that

σ

∫
Rp

|ϕ(x,t)|q−1ϕ(x,t)dx≤ 0, (2.2.6)

is satisfied for all t outside of a sufficiently small neighborhood of 0. Then the solution ϕ

cannot be an asymptotically time-weighted Lq-non-positive (respectively, -nonnegative) solution
with the weighted function νϕ(t) = eaϕttbϕ, where either aϕ < 2

√
9
4 +µ2 − 3 and bϕ ∈ R, or

aϕ = 2
√

9
4 +µ2 −3 and bϕ < 2.

Corollary 2.2.2 (Yagdjian [114]). Bubble-like solutions of the standard Higgs boson equation
in the de Sitter space-time will form if the initial data satisfy the conditions of Theorem
2.2.1.

Bubble-like solutions of the Higgs boson equation are radially symmetric functions.
Physically, this fact is justified partly due to the cosmological principle, which assumes that
the Universe is homogeneous and isotropic on large scales. Based on these facts, we will
let r = ∥x∥, where ∥ · ∥ represents the Euclidean norm in R3 of x, and we will suppose that
ϕ= ϕ(r, t) is a radially symmetric solution of the system (2.2.1). Moreover, we will assume
that D is the open sphere in R3 with center at the origin and radius equal to L > 0. Under
these circumstances, the nonlinear partial differential equation of (2.2.1) is transformed into
the following model, assuming that the solutions possess radial symmetry:

∂2ϕ

∂t2
−f(t)

(
∂2ϕ

∂r2 + 2
r

∂ϕ

∂r

)
+3∂ϕ

∂t
+F ′(ϕ) = 0, ∀(r, t) ∈ (0,L)× (0,T ). (2.2.7)

Let us consider the transformation ψ(r, t) = rϕ(r, t). It is obvious that ψ(0, t) = 0, for
each t ∈ [0, t]. Also, the following identities trivially hold, for each 0< r < L:

1
r

∂2ψ

∂t2
= ∂2ϕ

∂t2
, (2.2.8)

1
r

∂2ψ

∂r2 = ∂2ϕ

∂r2 + 2
r

∂ϕ

∂r
. (2.2.9)

As a consequence, the initial-boundary-value problem (2.2.1) is equivalent to

∂2ψ

∂t2
−f(t)∂

2ψ

∂r2 +3∂ψ
∂t

+ rF ′(ψ/r) = 0, ∀(r, t) ∈ (0,L)× [0,T ],

such that


ψ(r,0) = rϕ0(r), ∀r ∈ (0,L),
∂ψ

∂t
(r,0) = rϕ1(r), ∀r ∈ (0,L),

ψ(0, t) = ψ(L,t) = 0, ∀t ∈ [0,T ].

(2.2.10)

In turn, the expression of the total energy for the system (2.2.10) in terms of the new scalar
function ψ is provided by the following result.
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Theorem 2.2.3. If ϕ be a radially symmetric solution of (2.2.1) and ψ(r, t) = rϕ(r, t), for
each (r, t) ∈ Ω, then the total energy of the system at the time t ∈ [0,T ] is given by

E(t) = 4πe3t
L∫

0

[
1
2

(
∂ψ

∂t

)2
+ 3

2
∂ψ

∂t
ϕ+ f(t)

2

(
∂ψ

∂r

)2
+ r2F (ψ/r)

]
dr. (2.2.11)

Proof. Recall firstly that the expression for the gradient in radially symmetric coordinates is
given by ∇ϕ(r, t) = ∂ϕ/∂r, and ψ = rϕ. Thus, the energy equation (2.2.2) is transformed into

E(t) = e3t
∫∫∫
D

{
1
2

[
∂ψ

∂t

]2
+ 3

2
∂ψ

∂t
ψ+ f(t)

2

[
∂ψ

∂r

]2
+ r2F (ψ/r)

}
sinΞdrdΞdΘ, (2.2.12)

for each t ∈ [0,T ]. The conclusion of this result readily follows now.

In light of this theorem, the energy density of the model (2.2.10) at the point (r, t) is

H(r, t) = 4πe3t
{

1
2

[
∂ψ

∂t

]2
+ 3

2
∂ψ

∂t
ψ+ f(t)

2

[
∂ψ

∂r

]2
+ r2F (ψ/r)

}
. (2.2.13)

In similar fashion, we apply a change of variables in (2.2.4) to obtain the expression for the
rate of change of energy of the system (2.2.10) at time t. One can readily establish that

E ′(t) = 4πe3t
L∫

0

{
f ′(t)

2

[
∂ψ

∂r

]2
− 3

2rF
′(ψ/r)ψ+3r2F (ψ/r)

}
dr. (2.2.14)

2.3 Numerical method

To approximate numerically the solution of the model (2.2.10) over the space-time domain Ω,
we will follow a finite-difference approach and let M,N ∈ N. To that end, let us fix a regular
partition of the interval [0,L], of the form 0 = r0 < r1 < · · ·< rM = L. Also, take a regular
partition of [0,T ], of the form 0 = t0 < t1 < · · · < tN = T . Define the spatial and temporal
partition norms, respectively, by h= L/M and τ = T/N .

For the sake of convenience, let In = {0,1, . . . ,n} and In = In∪{−1}, for each n ∈ N. In
this chapter, we use the symbol Vh to denote the real vector space of all real functions defined
on the grid {rj : j ∈ IM}. For the remainder of this chapter and unless we say otherwise,
the numerical approximation of the value ψnj = ψ(rj , tn) will be denoted by Ψn

j , for each
(j,n) ∈ IM × IN . Moreover, let Ψn = (Ψn

j )j∈IM
∈ Vh, for each n ∈ IN . It is obvious that the

finite sequence r = (rj)j∈IM
can be considered also a member of Vh.

Definition 2.3.1. If Φ and Ψ are any functions in Vh, then we define component-wise the
sum, the difference, the multiplication and the division (whenever they are defined) of Φ
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and Ψ. More concretely, if ∗ represents any of those operations, we let (Φ ∗ Ψ)j = Φj ∗ψj ,
for each j ∈ IM . Moreover, if G : R → R is any function and Ψ ∈ Vh, then we also define the
composition G◦Ψ component-wise, which means that (G◦Ψ)j =G(Ψj), for each j ∈ IM .

Definition 2.3.2 (Discrete temporal operators). Let (Ψn)n∈IN
be any finite sequence in Vh.

Define the discrete operators

δtΨn
j =

Ψn+1
j −Ψn

j

τ
, ∀(j,n) ∈ IM × IN−1, (2.3.1)

δ
(1)
t Ψn

j =
Ψn+1
j −Ψn−1

j

2τ , ∀(j,n) ∈ IM × IN−1, (2.3.2)

δ
(2)
t Ψn

j =
Ψn+1
j −2Ψn

j +Ψn−1
j

τ2 , ∀(j,n) ∈ IM × IN−1. (2.3.3)

In addition, if F : R → R is a differentiable function and (j,n) ∈ IM × IN−1, then we define

δ
(1)
Ψ,tF (Ψn

j ) =


F (Ψn+1

j )−F (Ψn−1
j )

Ψn+1
j −Ψn−1

j

, if Ψn+1
j ̸= Ψn−1

j ,

F ′(Ψn
j ), otherwise.

(2.3.4)

Definition 2.3.3 (Discrete spatial operators). Let (Ψn)n∈IN
be any finite sequence in Vh.

Define the discrete operators

δrΨn
j =

Ψn
j+1 −Ψn

j

h
, ∀(j,n) ∈ IM−1 × IN (2.3.5)

δ(1)
r Ψn

j =
Ψn
j+1 −Ψn

j−1
2h , ∀(j,n) ∈ IM−1 × IN , (2.3.6)

δ(2)
r Ψn

j =
Ψn
j+1 −2Ψn

j +Ψn
j−1

h2 , ∀(j,n) ∈ IM−1 × IN . (2.3.7)

Moreover, we agree that δrt = δr ◦ δt and δtr = δt ◦ δr. Obviously, δrt = δtr.

Definition 2.3.4. Let p ∈ [1,∞). We define the inner product ⟨·, ·⟩ : Vh×Vh → R and the
norm ∥ · ∥p : Vh → R, respectively, by

⟨Φ,Ψ⟩ = h
∑

j∈IM−1

ΦjΨj , ∀Φ,Ψ ∈ Vh, (2.3.8)

∥Φ∥p =

h ∑
j∈IM−1

|Φj |p
1/p

, ∀Φ ∈ Vh. (2.3.9)

The Euclidean norm induced by ⟨·, ·⟩ is obviously ∥ · ∥2. Meanwhile, ∥ · ∥∞ : Vh → R will be
the infinity norm in Vh, which is defined as ∥Φ∥∞ = max{|Φj | : j ∈ IM−1}, for each Φ ∈ Vh.

In the sequel, we will restrict our attention to functions in Vh which vanish at r0 and rM .
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Figure 2.1 Forward-difference stencil for the approximation to the exact solution of the
mathematical model (2.2.10) at the time tn, using the finite-difference scheme (2.3.11).
The black circles represent the known approximations at the times tn−1 and tn, while the
cross denotes the unknown approximation at the time tn+1.

Lemma 2.3.5. If Φ,Ψ ∈ Vh, then ⟨−δ2
rΦ,Ψ⟩ = ⟨Φ,−δ2

rΨ⟩ = ⟨δrΦ, δrΨ⟩. Moreover,

∥δrΦ∥2
2 ≤ 4h−1∥Φ∥2

2, ∀Φ ∈ Vh. (2.3.10)

Proof. The proof is a particular case of Lemma 4.3 and property (C) in [72]

Let ϕ0 and ϕ1 be smooth initial conditions, and suppose that f and F are differentiable
functions. The scheme to approximate the solutions of the differential model (2.2.10) is given
by the system of discrete equations

δ
(2)
t Ψn

j −f(tn)δ(2)
r Ψn

j +3δ(1)
t Ψn

j + rjδ
(1)
Ψ,tF (Ψn

j /rj) = 0, ∀(j,n) ∈ IM−1 × IN−1,

such that


Ψ0
j = rjϕ0(xj), ∀j ∈ IM−1,

δ
(1)
t Ψ0

j = rjϕ1(xj), ∀j ∈ IM−1,

Ψn
0 = Ψn

M = 0, ∀n ∈ IN−1.

(2.3.11)

It is clear that this scheme is a three-step implicit discrete model. As a consequence, to solve
the discrete model (2.3.11), we will require to use the Newton–Raphson method for nonlinear
systems of algebraic equations. On the other hand, letting n = 0 in the main equation of
(2.3.11), and using the condition δ

(1)
t Ψ0

j = rjϕ1(xj), we readily obtain that

Ψ1
j = rjϕ0(xj)+ τrjϕ1(xj)+ τ2

2 f(t0)δ(2)
r (rjϕ0(xj))− 3

2τ
2rjϕ1(xj)

− τrj
F (Ψ1

j/rj)−F (Ψ1
j/rj −2τϕ1(xj))

4ϕ1(xj)
, ∀j ∈ IM−1.

(2.3.12)
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These relations are employed to obtain the first numerical approximations of the finite-
difference scheme. In such way, the fictitious approximations at the time t−1 are not
employed in the computational implementation of the numerical method. For the sake of
convenience, Figure 2.1 shows the stencil of the implicit method (2.3.11) (see [69]).

The following proposition will be used to prove the existence of solutions of (2.3.11).

Lemma 2.3.6 (Brouwer’s fixed-point theorem). Let V be a finite-dimensional vector space
over R, and let ⟨·, ·⟩ be an inner product on V. Assume that r : V → V is continuous, and
that there exists λ > 0 such that ⟨r(Φ),Φ⟩ ≥ 0, for all Φ ∈ V with ∥Φ∥ = λ. Then there exists
Φ ∈ V with ∥Φ∥ ≤ λ, such that r(Φ) = 0.

Our first step will be to prove the existence of solutions of the finite-difference scheme
(2.3.11). To that end, let Φ ∈ Vh, and suppose that (Ψn)n∈IN

is a finite sequence in Vh. In
the next result, we will require to use the following nonlinear operator:

δ
(1)
Φ,Ψ,tF

n
j =


F (Φj)−F (Ψn−1

j )
Φj −Ψn−1

j

, if Φj ̸= Ψn−1
j ,

F ′(Ψn
j ), otherwise.

(2.3.13)

Theorem 2.3.7 (Existence of solutions). Suppose that there exists K1 ≥ 0 such that |f(t)| ≤
K1, for all t ∈ [0,T ]. If F ′ ∈ L∞(R), then the finite-difference scheme (2.3.11) is solvable for
any set of initial conditions.

Proof. Notice that Ψ0 and Ψ1 are defined through the initial data. So let n ∈ IN−1, and
assume that we have been already calculated the solutions Ψn−1 and Ψn at the times tn−1

and tn, respectively. The assumption on the regularity of F assures then that there exists
a constant K2 ≥ 0, such that ∥δ(1)

Φ,Ψ,tF
n∥2 ≤K2. Let s : Vh → Vh be the continuous function

whose jth component sj : Vh → R is defined by

sj(Φ) =
Φj −2Ψn

j +Ψn−1
j

τ2 −f(tn)δ(2)
r Ψn

j +3
Φj −Ψn−1

j

2τ + rjδ
(1)
Ψ,Φ,tF

n
j , (2.3.14)

for each Φ ∈ Vh. Applying the Cauchy–Schwarz inequality, using the inequality in Lemma 2.3.5
along with the square-root property stated in that result, we obtain that

⟨s(Φ),Φ⟩ ≥ 1
τ2

(
∥Φ∥2

2 −2∥Ψn∥2∥Φ∥2 −∥Ψn−1∥2∥Φ∥2
)

−f(tn)⟨δ(1)
r Ψn, δ(1)

r Φ⟩

+ 3
2τ
(
∥Φ∥2

2 −∥Ψn−1∥2∥Φ∥2
)

−∥rδ(1)
Φ,Ψ,tF

n∥2∥Φ∥2

≥ ∥Φ∥2
2τ2

[
(2+3τ)∥Φ∥2 −4∥Ψn∥2 − (2+3τ)∥Ψn−1∥2 −2LK2τ

2
]

−K1∥δ(1)
r Ψn∥2∥δ(1)

r Φ∥2

≥ 2+3τ
2τ2 ∥Φ∥2 [∥Φ∥2 −λ] ,

(2.3.15)



2.3 Numerical method 27

for each Φ ∈ Vh. Here, we used the constant

λ=
(
4h+8τ2K1

)
h−1∥Ψn∥2 +(2+3τ)∥Ψn−1∥2 +2LK2τ

2

2+3τ > 0. (2.3.16)

Notice that ⟨s(Φ),Φ⟩ ≥ 0 is satisfied, for each Φ ∈ Vh with ∥Φ∥2 = λ. By Lemma 2.3.6, there
exists Ψn+1 ∈ Vh with ∥Ψn+1∥2 ≤ λ, such that s(Ψn+1) = 0. This means that Ψn+1 is a
solution of the nth recursive equation in (2.3.11). The theorem follows now by induction.

Definition 2.3.8. Define the approximation of the Hamiltonian (2.2.13) at the point (xj , tn)
for each (j,n) ∈ IM−1 × IN−1 by

Hn
j = 4πe3tn

[1
2(δtΨn

j )2 + 3
2δtΨ

n
j µtΨn

j + 1
2µtf(tn)δrΨn+1

j δrΨn
j + r2

jµtF (Ψn
j /rj)

]
. (2.3.17)

Additionally, the discrete total energy at time tn is defined as

En = 4πe3tn
[1

2∥δtΨn∥2
2 + 3

2⟨δtΨn,µtΨn⟩

+1
2µtf(tn)⟨δrΨn+1, δrΨn⟩+ ⟨µtF (Ψn/r), r2⟩

]
, ∀n ∈ IN−1

(2.3.18)

We will require the following technical result to calculate the discrete rate of change of
the total energy of the finite-difference system (2.3.11).

Lemma 2.3.9. Let F : R → R be nonnegative, and let (Ψn)n∈IN
be a sequence in Vh. Then

(a) ⟨δ(2)
t Ψn, δ

(1)
t Ψn⟩ = 1

2δt∥δtΨn−1∥2, for each n ∈ IN−1.

(b) δt⟨δtΨn−1,µtΨn−1⟩ = ⟨δtΨn−1, δ
(1)
t Ψn⟩+ ⟨δ(2)

t Ψn,µtΨn⟩, for each n ∈ IN−1.

(c) ⟨rδ(1)
Ψ,tF (Ψn/r), δ(1)

t Ψn⟩ = δt⟨r2,µtF (Ψn−1/r)⟩, for each n ∈ IN−1.

(d) ⟨−δ(2)
r Ψn, δ

(1)
t Ψn⟩ = 1

2δt⟨δrΨn, δrΨn−1⟩, for each n ∈ IN−1.

(e) ⟨δrΨn+1, δrΨn⟩ = µt∥δrΨn∥2
2 − 1

2τ
2∥δrtΨn∥2

2, for each n ∈ IN−1.

Proof. The identity (a) is the result of using the definitions of the discrete temporal operators
and some algebra. To establish (b), notice that

δt⟨δtΨn−1,µtΨn−1⟩ = 1
τ

[
⟨δtΨn−1,µtΨn−µtΨn−1⟩+ ⟨δtΨn− δtΨn−1,µtΨn⟩

]
, (2.3.19)

holds for each n ∈ IN−2, whence the result follows. In the case of (c), it is enough to use the
formula (2.3.4) and the definitions of the discrete operators. To show (d), it suffices to notice
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that the following hold, for each n ∈ IN−1:

⟨δ(2)
r Ψn, δ

(1)
t Ψn⟩ = 1

2τ
[
⟨δ(2)
r Ψn,Ψn+1⟩−⟨δ(2)

r Ψn,Ψn−1⟩
]

= − 1
2τ
[
⟨δrΨn, δrΨn+1⟩−⟨δrΨn−1, δrΨn⟩

]
.

(2.3.20)

Finally, the formula of (e) follows after noting that

⟨δrΨn+1, δrΨn⟩ = µt∥δrΨn∥2
2

+ 1
2⟨δrΨn, δr(Ψn+1 −Ψn)⟩− 1

2⟨δrΨn+1, δr(Ψn+1 −Ψn)⟩.
(2.3.21)

The identities of this result have been established now.

Lemma 2.3.10 (Product rule). Assume that (Φn)n∈IN
and (Ψn)n∈IN

are any finite sequences
in Vh. If (j,n) ∈ IM−1 × IN−1, then δt(Ψn

j Φn
j ) = Ψn

j δtΦn
j +Φn+1

j δtΨn
j .

Lemma 2.3.11. If (Ψn)n∈IN
is any finite sequence in Vh, then the following identities are

satisfied for each n ∈ IN−2:

1
2δt

[
e3tn∥δtΨn∥2

2

]
= 1

2δte
3tn∥δtΨn+1∥2

2 +e3tn⟨δ(2)
t Ψn+1, δ

(1)
t Ψn+1⟩, (2.3.22)

δt
[
e3tn⟨µtF (Ψn/r), r2⟩

]
= δte

3tn⟨µtF (Ψn+1/r), r2⟩+e3tn⟨rδΨ,tF (Ψn+1/r), δ(1)
t Ψn+1⟩,

(2.3.23)

3
2δt

[
e3tn⟨δtΨn,µtΨn⟩

]
= 3

2δte
3tn⟨δtΨn+1,µtΨn+1⟩+ 3

2e
3tn⟨δ(2)

t Ψn+1,µtΨn+1⟩

+ 3
2e

3tn⟨δtΨn, δ
(1)
t Ψn+1⟩

(2.3.24)

and

1
2δt

[
e3tn(µtf(tn))⟨δrΨn+1, δrΨn⟩

]
= 1

2(δte3tn)(µtf(tn+1))⟨δrΨn+1, δrΨn⟩

+ 1
2e

3tn(δ(1)
t f(tn+1))⟨δrΨn+1, δrΨn⟩−e3tn+1(µtf(tn+1))⟨δ(2)

r Ψn+1, δ
(1)
t Ψn+1⟩.

(2.3.25)

Proof. These identities are straightforward results of Lemmas 2.3.9 and 2.3.10.

For the remainder of this chapter, we will let Ψ = (Ψn)n∈IN
represent any solution of the

equation (2.3.11).
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Theorem 2.3.12 (Energy dissipation). If Ψ is a solution of (2.3.11) and n ∈ IN−2, then

δtE
n = 4π

[1
2(δte3tn)∥δtΨn+1∥2

2 +e3tn⟨δ(2)
t Ψn+1, δ

(1)
t Ψn+1⟩

+ 3
2(δte3tn)⟨δtΨn+1,µtΨn+1⟩+ 3

2e
3tn⟨δ(2)

t Ψn+1,µtΨn+1⟩

+ 3
2e

3tn⟨δtΨn, δ
(1)
t Ψn+1⟩+ 1

2(δte3tn)(µtf(tn+1))⟨δrΨn+1, δrΨn⟩

+ 1
2e

3tn(δ(1)
t f(tn+1))⟨δrΨn+1, δrΨn⟩−e3tn+1(µtf(tn+1))⟨δ(2)

r Ψn+1, δ
(1)
t Ψn+1⟩

+(δte3tn)⟨µtF (Ψn+1/r), r2⟩+ e3tn⟨rδΨ,tF (Ψn+1/r), δ(1)
t Ψn+1⟩

]
.

(2.3.26)

Proof. The result readily follows from Lemma 2.3.11 and the discrete total energy (2.3.18).

2.4 Numerical properties

The purpose of this section is to establish the main numerical properties of the finite-difference
scheme (2.3.11). In particular, we will show that the numerical model is quadratically
consistent, stable and quadratically convergent. To establish the consistency of the numerical
model (2.3.11), we need to define the differential operator

L(ψ(r, t)) = ∂2ψ

∂t2
−f(t)∂

2ψ

∂r2 +3∂ψ
∂t

+ rF ′(ψ/r), ∀(r, t) ∈ (0,L)× (0,T ), (2.4.1)

and the difference operator

L(ψnj ) = δ
(2)
t ψnj −f(tn)δ(2)

r ψnj +3δ(1)
t ψnj + rjδ

(1)
ψ,tF (ψnj /rj), ∀(j,n) ∈ IM−1 × IN−1. (2.4.2)

Theorem 2.4.1 (Consistency). Let f : [0,T ] → R be bounded, and suppose that F ∈ C2(R) is
such that F ′′ ∈ L∞(R). If ψ ∈ C4,3

x,t (Ω) then there exist nonnegative constants C and C ′ which
are independent of τ and h, with the property that∣∣∣L(ψ(rj , tn))−L(ψnj )

∣∣∣≤ C(τ2 +h2), ∀(j,n) ∈ IM−1 × IN−1, (2.4.3)∣∣∣H(rj , tn+ 1
2
)−Hn

j

∣∣∣≤ C ′(τ2 +h2), ∀(j,n) ∈ IM−1 × IN−1. (2.4.4)

Proof. Since f is bounded, then there exists a nonnegative number K such that |f(t)| ≤K, for
each t ∈ [0,T ]. Using the usual argument based on Taylor’s theorem along with the regularity
of F and ψ, there exist nonnegative constants C1, C2, C3 and C4 which are independent of τ
and h, such that the following inequalities hold:∣∣∣∣∣∂2ψ(rj , tn)

∂t2
− δ

(2)
t ψnj

∣∣∣∣∣≤ C1τ
2, ∀(j,n) ∈ IM−1 × IN−1, (2.4.5)
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∣∣∣∣∣f(tn)∂
2ψ(rj , tn)
∂r2 −f(tn)δ(2)

r ψnj

∣∣∣∣∣≤KC2h
2, ∀(j,n) ∈ IM−1 × IN−1, (2.4.6)∣∣∣∣∂ψ(rj , tn)

∂t
− δ

(1)
t ψnj

∣∣∣∣≤ C3τ
2, ∀(j,n) ∈ IM−1 × IN−1, (2.4.7)∣∣∣rjF ′(ψ(rj , tn)/rj)− rjδ

(1)
ψ,tF (ψnj /rj)

∣∣∣≤ LC4τ
2, ∀(j,n) ∈ IM−1 × IN−1. (2.4.8)

The first inequality of this theorem readily follows with C = C1 +KC2 +3C3 +LC4, which
is a nonnegative constant that is independent of τ and h, as desired. The existence of the
constant C ′ is established in similar fashion.

The aim of the following discussion is to establish the stability and convergence properties
of the finite-difference method (2.3.11). To that end, various assumptions and technical
results will be required. In particular, we will assume that f is a positive and continuously
differentiable function on [0,T ]. In particular, these hypothesis guarantee the existence of
positive constants C0, C1 and C2, such that

• |δ(1)
t f(tn)| ≤ C0, for each n ∈ IN , and

• C1 ≤ f(tn) ≤ C2, for each n ∈ IN .

Lemma 2.4.2 (Macías-Díaz [72]). Let F ∈ C2(R) and F ′′ ∈ L∞(R), and suppose that
(Ψn)n∈IN

, (Ψ̃n)n∈IN
and (Rn)n∈IN

are sequences in Vh. For each n ∈ IN , let ϵn = Ψn− Ψ̃n

and
F̃n = δ

(1)
Ψ,tF (Ψn/r)− δ

(1)
Ψ̃,t
F (Ψ̃n/r), ∀n ∈ IN−1. (2.4.9)

Then there exists a constant C3 ∈ R+ which depends only on F , such that for each m ∈ IN−1,

2τ
∣∣∣∣∣
m∑
n=1

⟨Rn− rF̃n, δ
(1)
t ϵn⟩

∣∣∣∣∣≤ 2τ
m∑
n=0

∥Rn∥2
2 +C3∥ϵ0∥2

2 +C3τ
m∑
n=0

∥δtϵn∥2
2. (2.4.10)

The following lemma is a discrete form of Gronwall’s inequality.

Lemma 2.4.3 (Pen-Yu [84]). Let (ωn)Nn=0 and (ρn)Nn=0 be finite sequences of nonnegative
real numbers, and suppose that there exists C ≥ 0 such that

ωm ≤ ρm+Cτ
m−1∑
n=0

ωn, ∀m ∈ IN . (2.4.11)

Then ωn ≤ ρneCnτ , for each n ∈ IN .

In the following, we will assume that Ψ is the solution of the discrete initial-boundary-value
problem (2.3.11) associated to the initial data (ϕ0,ϕ1). We will consider also a second set of
initial data (ϕ̃0, ϕ̃1), and we will assume that Ψ̃ is the corresponding solution of (2.3.11). In
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other words, the following discrete problem is satisfied:

δ
(2)
t Ψ̃n

j −f(tn)δ(2)
r Ψ̃n

j +3δ(1)
t Ψ̃n

j + rjδ
(1)
Ψ̃,t
F (Ψ̃n

j /rj) = 0, ∀(j,n) ∈ IM−1 × IN−1,

such that


Ψ̃0
j = rjϕ̃0(xj), ∀j ∈ IM−1,

δ
(1)
t Ψ̃0

j = rjϕ̃1(xj), ∀j ∈ IM−1,

Ψ̃n
0 = Ψ̃n

M = 0, ∀n ∈ IN−1.

(2.4.12)

Theorem 2.4.4 (Stability). Suppose that f is positive and continuously differentiable in
[0,T ], and let F ∈ C2(R) satisfy F ′′ ∈ L∞(R). Let (ϕ0,ϕ1) and (ϕ̃0, ϕ̃1) be two sets of initial
conditions, and let Ψ and Ψ̃ be the respective numerical solutions obtained using (2.3.11).
Define ϵnj = Ψn

j − Ψ̃n
j , for each (j,n) ∈ IM × IN , and suppose that

τ

(
C3 + 2τ

h
C2

)
<

1
2 . (2.4.13)

Then there exists a constant C5 which is independent of τ and h, such that for each n ∈ IN−1,

1
2∥δtϵn∥2

2 +C1µt∥δrϵn∥2
2 ≤ C5

(
∥δtϵ0∥2

2 +C2µt∥δrϵ0∥2
2 +C3∥ϵ0∥2

2

)
. (2.4.14)

Proof. Throughout, the constants C0, C1, C2 and C3 will be those provided in the previous
paragraphs. Observe that ϵ satisfies the following discrete initial-boundary-value problem:

δ
(2)
t ϵnj −f(tn)δ(2)

r ϵnj +3δ(1)
t ϵnj + rjF̃

n
j = 0, ∀(j,n) ∈ IM−1 × IN−1,

such that


ϵ0j = rj [ϕ0(xj)− ϕ̃0(xj)], ∀j ∈ IM−1,

δ
(1)
t ϵ0j = rj [ϕ1(xj)− ϕ̃1(xj)], ∀j ∈ IM−1,

ϵn0 = ϵnM = 0, ∀n ∈ IN−1.

(2.4.15)

Here, F̃nj is as in Lemma 2.4.2, for each (j,n) ∈ IM−1 × IN−1. Let m be a arbitrary (though
fixed) element of IN−1. Using the identity of Lemma 2.3.9(a) along with the formula for
telescoping sums, it is easy to check that

m∑
n=1

⟨δ(2)
t ϵn, δ

(1)
t ϵ⟩ = 1

2

m∑
n=1

δt∥δtϵn−1∥2
2 = 1

2τ
[
∥δtϵm∥2

2 −∥δtϵ0∥2
2

]
. (2.4.16)
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Using now the identities (d) and (e) of Lemma 2.3.9, a discrete form of the product rule and
the formula for telescoping sums, we readily notice that

m∑
n=1

⟨−f(tn)δ(2)
r ϵn, δ

(1)
t ϵn⟩ = 1

2

m∑
n=1

f(tn)δt⟨δrϵn, δrϵn−1⟩

= 1
2

m∑
n=1

δt
[
f(tn−1)⟨δrϵn, δrϵn−1⟩

]
− 1

2

m∑
n=1

(δtf(tn−1))⟨δrϵn, δn−1
r ⟩

= f(tm)
2τ

[
µt∥δrϵm∥2

2 − τ2

2 ∥δrtϵm∥2
2

]
− f(t0)

2τ

[
µt∥δrϵ0∥2

2 − τ2

2 ∥δrtϵ0∥2
2

]

− 1
2

m∑
n=1

(δtf(tn−1))⟨δrϵn, δrϵn−1⟩.

(2.4.17)

Calculate the inner product of δ(1)
t ϵn with the recursive equation of (2.4.15) at the time tn,

and take the sum over all indexed n ∈ Im. Substitute then the identities (2.4.16) and (2.4.17),
rearrange terms algebraically and employ the bound provided by Lemma 2.4.2 with Rnj = 0,
for each (j,n) ∈ IM × IN . For the sake of simplicity, we let

ωm0 = ∥δtϵm∥2
2 +C1µt∥δrϵm∥2

2, (2.4.18)
ρ= ∥δtϵ0∥2

2 +C2µt∥δrϵ0∥2
2 +C3∥ϵ0∥2

2. (2.4.19)

Use now Young’s inequality and the bound provided by Lemma 2.3.5. In such way, one may
check then that the following inequalities are satisfied:

ωm0 ≤ ∥δtϵm∥2
2 +f(tm)µt∥δrϵm∥2

2

≤ ∥δtϵ0∥2
2 +f(t0)µt∥δrϵ0∥2

2 +2τ
m∑
n=1

(δtf(tn−1))⟨δrϵn, δn−1
r ⟩

−2τ
m∑
n=1

⟨rF̃n, δ(1)
r ϵn⟩+ 1

2τ
2f(tm)∥δrtϵm∥2

2

≤ ρ+C4τ
m−1∑
n=0

[1
2∥δtϵn∥2

2 +C1µt∥δrϵn−1∥2
2

]
+ τ

(
C3 + 2τ

h
C2

)
∥δtϵm∥2

2

≤ ρ+C4τ
m−1∑
n=0

[1
2∥δtϵn∥2

2 +C1µt∥δrϵn−1∥2
2

]
+ 1

2∥δtϵm∥2
2.

(2.4.20)

Here, we let
C4 = 2C0

C1
+2C3. (2.4.21)

Obviously, we employed the condition (2.4.13) in the last step. Subtract 1
2∥δtϵm∥2

2 on both
ends of the inequalities (2.4.13). Applying Lemma 2.4.3 with ωn = ωn0 − 1

2∥δtϵn∥2
2 for each



2.4 Numerical properties 33

n∈ IN−1, it follows that ωn ≤C5ρ is satisfied for each n∈ IN . Here, we define C5 = exp(C4T ),
which is independent of τ and h. The conclusion readily follows now.

As a consequence of Theorem 2.4.4, we establish the uniqueness of solutions of the
finite-difference scheme (2.3.11). This property is stated in the following result.

Corollary 2.4.5 (Uniqueness of solutions). Let f be positive and continuously differentiable
in [0,T ], and let F ∈ C2(R) satisfy F ′′ ∈ L∞(R). Let Ψ and Ψ̃ be two solutions of (2.3.11)
corresponding to the initial data (ϕ0,ϕ1), and suppose that (2.4.13) holds. Then Ψ = Ψ̃.

Proof. Let ϵnj = Ψn
j − Ψ̃n

j , for each (j,n) ∈ IM × IN . Theorem 2.4.4 guarantees then that
(2.4.14) is satisfied for each n ∈ IN−1. This means that all the terms on the right-hand side
of that inequality are equal to zero. It follows that

0 ≤ 1
τ

∣∣∣∥ϵn+1∥2 −∥ϵn∥2
∣∣∣≤ ∥δtϵn∥2 = 0, ∀n ∈ IN−1, (2.4.22)

which implies that ∥ϵn+1∥2 = ∥ϵn∥2, for each n ∈ IN−1. Using induction, we may readily
check that ∥ϵn∥2 = ∥ϵ0∥2 = 0, for each n ∈ IN . In turn, this implies that ϵn = 0, for each
n ∈ IN , whence the result readily follows.

Finally, we tackle the problem of the convergence of the scheme. Recall that ψ represents
the exact solution of the problem (2.2.10) for a set of initial conditions (ϕ0,ϕ1), while Ψ denotes
a solution to the discrete model (2.3.11) for the same initial data. Assuming that (2.4.13) is
satisfied, the solution Ψ is unique. Moreover, the following discrete initial-boundary-value
problem is satisfied by the function ψ:

δ
(2)
t ψnj −f(tn)δ(2)

r ψnj +3δ(1)
t ψnj + rjδ

(1)
ψ,tF (ψnj /rj) =Rnj , ∀(j,n) ∈ IM−1 × IN−1,

such that


ψ0
j = rjϕ0(xj), ∀j ∈ IM−1,

δ
(1)
t ψ0

j = rjϕ1(xj), ∀j ∈ IM−1,

ψn0 = ψnM = 0, ∀n ∈ IN−1.

(2.4.23)

Here, Rnj represents the local truncation error which, under the hypotheses of Theorem 2.4.1,
satisfies |Rnj | ≤ C(τ2 +h2), for some constant C ≥ 0 which is independent of τ and h. It
follows that there exists a constant C∗ ≥ 0, such that ∥Rn∥2

2 ≤ C2
∗ (τ2 +h2)2, for each n ∈ IN .

These facts will be employed in the proof of the following result.

Theorem 2.4.6 (Convergence). Assume that f is positive and continuously differentiable in
[0,T ], and let F ∈ C2(R) be such that F ′′ ∈ L∞(R). If the inequality (2.4.13) is satisfied and
ψ ∈ Cx,t(Ω), then the solution of the numerical model (2.3.11) converges to the solution of
the problem (2.2.10), with order of convergence O(τ2 +h2) in the norm ∥ · ∥2.

Proof. Consider a fixed set of initial data (ϕ0,ϕ1), and notice that the numerical approximation
Ψ and the exact solution ψ satisfy, respectively, the discrete initial-boundary-value problems
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(2.3.11) and (2.4.23). Subtracting those problems and letting ϵnj = Ψn
j −ψnj , for each (j,n) ∈

IM × IN , one readily checks that the following problem is satisfied:

δ
(2)
t ϵnj −f(tn)δ(2)

r ϵnj +3δ(1)
t ϵnj + rjF̃

n
j +Rnj = 0, ∀(j,n) ∈ IM−1 × IN−1,

such that


ϵ0j = 0, ∀j ∈ IM−1,

δ
(1)
t ϵ0j = 0, ∀j ∈ IM−1,

ϵn0 = ϵnM = 0, ∀n ∈ IN−1.

(2.4.24)

In this case, F̃nj = δ
(1)
Ψ,tF (Ψn

j /rj)− δ
(1)
ψ,tF (ψnj /rj), for each (j,n) ∈ IM−1 × IN−1. Assume that

m is an arbitrary (though fixed) element of IN−1. Notice that the identities (2.4.16) and
(2.4.17) hold in this case also. Following the idea in the proof of Theorem 2.4.4, we let ωm0
be as therein and, for each m ∈ IN−1, we define the constants

ρm = ∥δtϵ0∥2
2 +C2µ∥δrϵ0∥2

2 +C3∥ϵ0∥2
2 +2τ

m∑
n=1

∥Rn∥2
2 = 2τ

m∑
n=1

∥Rn∥2
2. (2.4.25)

Obviously, the simplification at the right-hand side of this last identity is obtained using the
initial conditions of (2.4.24). Next, take the inner product of the main equation of (2.4.24)
at the time tn with the vector δ(1)

t ϵn, and take the sum over all indexes n ∈ Im. Use then the
identities (2.4.16) and (2.4.17), and rearrange algebraically all the terms involved. Employ
then Lemma 2.4.2, Young’s inequality together with the constants C0, C1 and C2 defined in
the previous paragraphs. In such way, it is possible to check that the following inequality
holds:

ωm0 ≤ ρm+C4τ
m−1∑
n=0

ωn+ 1
2∥δtϵm∥2

2. (2.4.26)

Here, C4 is as in the proof of Theorem 2.4.4. Subtract 1
2∥δtϵm∥2

2 on both sides of this last
inequality, and let C5 be as in the proof of Theorem 2.4.4. The hypotheses of Lemma 2.4.3
are satisfied, whence it follows that, for each m ∈ IM−1,

1
2∥δtϵm∥2

2 ≤ ωm ≤ C5ρ
m = 2C5τ

m∑
n=1

∥Rn∥2
2 ≤ 2C5TC

2
∗ (τ2 +h2)2. (2.4.27)

This implies that ∥δtϵm∥2 ≤ C6(τ2 +h2), for each m ∈ IN−1. Here, we let C6 = 2C∗
√
C5T .

Use then the triangle inequality, multiply by τ and sum over all m ∈ In−1, for any n ∈ IN−1.
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If C7 = C6T , then it is readily checked that

∥ϵn∥2 = ∥ϵn∥2 −∥ϵ0∥2 =
n−1∑
m=0

(∥ϵm+1∥2 −∥ϵm∥2)

≤ τ
n−1∑
m=0

∥δtϵm∥2

≤ C6τn(τ2 +h2) ≤ C7(τ2 +h2), ∀n ∈ IN−1.

(2.4.28)

We conclude that the finite-difference scheme (2.3.11) converges to the solution of (2.2.10)
with quadratic order of convergence in the ∥ · ∥2 norm, as desired.

(a) (c) (e)

(b) (d) (f)

Figure 2.2 Solutions of the problem (2.5.1) at the times t= 0.060 (left column), t= 0.120
(middle column) and t= 0.180 (right column), obtained using the scheme (2.3.11). The
graphs on the top row show the approximate solution ψ(x,t), for each x ∈D. The insets
are the corresponding graph of ψ(r, t) in the radial coordinate r. The graphs on the bottom
row correspond to those of the Hamiltonians. We used the parameters τ = h = 0.002,
L= 1, λ= 2 and µ= 3. The initial data were ϕ0(r) = B(r;0.5,0.3) and ϕ1(r) = −5ϕ0(r),
for each r ∈ [0,1].

2.5 Results

The purpose of this section is to provide some illustrative simulations using a computational
implementation of the scheme (2.3.11). A Matlab® implementation of this scheme is provided
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in the Appendix A.1 for the sake of convenience. It is important to mention that the program
was employed to produce the simulations of the present section, and that it is provided
specifically to approximate radially symmetric solutions of the three-dimensional Higgs boson
equation in the de Sitter space-time.

(a) (c) (e)

(b) (d) (f)

Figure 2.3 Solutions of the problem (2.5.1) at the times t= 0.060 (left column), t= 0.120
(middle column) and t= 0.180 (right column), obtained using the scheme (2.3.11). The
graphs on the top row show the approximate solution ψ(x,t), for each x ∈D. The insets
are the corresponding graph of ψ(r, t) in the radial coordinate r. The graphs on the bottom
row correspond to those of the Hamiltonians. We used the parameters τ = h = 0.002,
L= 1, λ= 2 and µ= 3. The initial data were ϕ0(r) = 2B(r;0.5,0.2) and ϕ1(r) = 5ϕ0(r),
for each r ∈ [0,1].

For the remainder of this section, we will let D ⊆ R3 be the open ball with center at the
origin and radius L > 0, and we will consider the following initial-boundary-value problem,
governed by the three-dimensional Higgs boson equation in the de Sitter space-time:

∂2ϕ(x,t)
∂t2

−e−2t∆ϕ(x,t)+3∂ϕ(x,t)
∂t

−µ2ϕ(x,t)+λ|ϕ(x,t)|q−1ϕ(x,t) = 0,

such that


ϕ(x,0) = ϕ0(x), ∀x ∈B,
∂ϕ(x,0)
∂t

= ϕ1(x), ∀x ∈B,

ϕ(x,t) = 0, ∀(x,t) ∈ ∂B× [0,T ],

(2.5.1)
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for each (x,t) ∈ B×R+. It is easy to check that this model is a particular form of (2.2.1).
Moreover, we will focus our attention on the radially symmetric solutions of (2.5.1). To that
end, we will let ϕ(x,t) = ϕ(r, t), and consider the transformation ψ(r, t) = rϕ(r, t), for each
(r, t) ∈ [0,L]× [0,T ]. As we saw previously, ϕ satisfies (2.5.1) if and only if ψ satisfies (2.2.10).
To approximate the solutions of ϕ, we employ the finite-difference method (2.3.11). We need
only mention that the energy associated to (2.5.1) is given by

E(t) = e3t
[

1
2

∥∥∥∥∂ϕ∂t + 3
2ϕ
∥∥∥∥2

x,2
+ e−2t

2 ∥∇ϕ∥2
x,2 −

(
9
8 + µ2

2

)
∥ϕ∥2

x,2 +
λ∥ϕ∥q+1

x,q+1
q+1

]
, (2.5.2)

for each t ∈ (0,T ). This system is dissipative in view that

dE(t)
dt

= −e3t
(
e−2t∥∇ϕ∥2

x,2 + 3λ(q−1)
2(q+1) ∥ϕ∥q+1

x,q+1

)
, ∀t ∈ (0,T ). (2.5.3)

(a) (c) (e)

(b) (d) (f)

Figure 2.4 Solutions of the problem (2.5.1) at the times t= 0.060 (left column), t= 0.120
(middle column) and t= 0.180 (right column), obtained using the scheme (2.3.11). The
graphs on the top row show the approximate solution ψ(x,t), for each x ∈D. The insets
are the corresponding graph of ψ(r, t) in the radial coordinate r. The graphs on the bottom
row correspond to those of the Hamiltonians. We used the parameters τ = h = 0.002,
L = 1, λ = 2 and µ = 3. The initial data were ϕ0(r) = 3B(r;0.5,0.3) and ϕ1(r) = 0, for
each r ∈ [0,1].
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Definition 2.5.1. For each R> 0 and r0 ∈ R, we define the function B(·;r0,R) : R3 → R by

B(r;r0,R) =

 exp
( 1
R2 − 1

R2 −|r− r0|2
)
, if |r− r0|<R,

0, if |r− r0| ≥R.
(2.5.4)

In all our examples, we will let τ = h= 0.002, set L= 1 and let D be the unit ball in R3.
Moreover, we will employ the model parameters λ= 2 and µ= 3. Different initial conditions
will be considered for the initial-boundary-value problem (2.5.1).

In a first example, we let ϕ0(r) = B(r;0.5,0.3) and ϕ1(r) = −5ϕ0(r), for each r ∈ [0,1].
Under these circumstances, Figure 2.2 shows the solutions of the problem (2.5.1) at the times
t= 0.060 (top row), t= 0.120 (middle row) and t= 0.180 (bottom row). The graphs on the
top row of Figure 2.2 show the approximate solution ϕ(x,t), for each x ∈ D. Meanwhile,
the insets provide the corresponding graph of the function ϕ(r, t) in the radial coordinate.
On the other hand, the graphs on the bottom row correspond to those of the Hamiltonians.
Obviously, the insets are the same Hamiltonians as functions of the radial variable r. The
three-dimensional graphs were obtained using of the Matlab® function isosurface. In each
graph, the corresponding isovalue was given by the red line of the associated inset.

In addition to the experiment described in the previous paragraph, we have used two
additional sets of initial conditions, namely, ϕ0(r) = 2B(r;0.5,0.2) and ϕ1(r) = 5ϕ0(r), for each
r ∈ [0,1], and ϕ0(r) = 3B(r;0.5,0.3) and ϕ1(r) = 0, for each r ∈ [0,1]. The results are shown
in Figures 2.3 and 2.4, respectively. From all these simulations, some observations need to be
highlighted. Firstly, the numerical simulations obtained in this section illustrate the fact that
the numerical model proposed in this chapter is a stable technique when the computational
parameters are sufficiently small. Secondly, the simulations above were performed to compare
them against those obtained in [6]. It is worth pointing out that our results are in good
qualitative agreement with those available in the literature. This provides strong evidence on
the accuracy of our numerical model and its computational implementation. Finally, notice
that the graphs show the formation of bubble-like solutions, in agreement with Theorem
2.2.1.
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3 A fractional Higgs boson equation

THE PRESENT CHAPTER is the first paper in the literature to report on a Hamiltonian
discretization of the (fractional) Higgs boson equation in the de Sitter space-time, and its
theoretical analysis. More precisely, we design herein a numerically efficient finite-difference
Hamiltonian technique for the solution of a fractional extension of the Higgs boson equation
in the de Sitter space-time. The model under investigation is a multidimensional equation
with generalized potential and Riesz space-fractional derivatives of orders in (1,2]. An energy
integral for the model is readily available, and we propose a nonlinear, implicit and consistent
numerical technique based on fractional-order centered differences, with similar Hamiltonian
properties in the discrete scenario. A fractional energy approach is used then to prove the
properties of stability and convergence of the technique. For simulation purposes, we consider
both the classical and the fractional Higgs real-valued scalar fields in the de Sitter space-time,
and find results qualitatively similar to those available in the literature. For the sake of
convenience, we provide the Matlab code of an alternative linear discretization of the method
presented in this chapter. This linear implicit approach is thoroughly analyzed also.

3.1 Background

The design of energy-preserving methods for physical systems has been a fruitful avenue of
research in the last decades. Historically, the problem of designing energy-conserving methods
may date back to the decade of the 1970s [4, 95] or before. However, it is worth mentioning
that L. Vázquez and coauthors were probably the first researchers who pointed out the
physical and mathematical significance of designing this type of schemes [85]. Various seminal
papers by Vázquez and his coworkers were published in the 1990s, including various energy-
conserving numerical schemes to solve partial differential equations like the Schrödinger
equation [102], the sine-Gordon equation [9, 30], the Klein–Gordon equations [100], and
even systems consisting of ordinary differential equations [29]. In those papers, the authors
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established thoroughly the capability of their schemes to preserve the energy properties of
the continuous problem. Moreover, they employed a discrete form of the energy method
to establish rigorously the stability and the convergence properties of the schemes. After
the publication of those works, the investigation on energy-conserving schemes became a
highly transited route of investigation, and many interesting articles were proposed in the
specialized literature. As examples, some energy-preserving methods have been proposed
to simulate the nonlinear dynamics of three-dimensional beams undergoing finite rotations
[46], to approximate the kinematics of geometrically exact rods [91] and frictionless dynamic
contact problems [56], among other interesting reports.

After those seminal works by Vázquez and coauthors, the investigation on energy-
preserving schemes became a vast area of research. However, those papers by D. Furihata
and collaborators published at the beginning of the millennium became a landmark in the
area [33, 35]. In particular, they contributed to the state of the art by reviewing various
existing methods for hyperbolic partial differential equations which conserved or dissipated
the energy of the systems [34, 76]. Those works would eventually pave the road to the birth of
the discrete variational derivative method, which is a helpful tool to construct finite-difference
schemes resembling the variational properties of continuous models [36]. Various works
have been published in that area, including studies for the simulation of nonlinear partial
differential equations with variable coefficients [48], the solution of nonlinear systems based
on the use of discrete differential forms [120], the investigation of numerical schemes using
average-difference approaches [37], the two-dimensional vorticity equation [101], the solution
of Hamilton’s equation using variational principles [49] and the investigation of coupled
partial differential equations through an alternating form of the discrete variational derivative
method [54], among other interesting works. Needless to mention that this approach has
been extended to consider different discretization methods, including finite elements [47] and
other techniques [75].

It is worth pointing out that most of the problems investigated using the discrete
variational derivative method are hyperbolic systems. However, there are some systems which
have not been able to be solved using this approach, one of them being the Higgs boson
equation in the de Sitter space-time. Some analytical results are known on the solutions of
this system [114, 119], including some analytical approximations to its solutions [121]. About
the physical relevance of this model, there are already various works available in the literature
which justify its physical use [45, 57]. Nevertheless, we must mention that there are very
few papers available in the literature which propose numerical methodologies to solve Higgs
boson equation in the de Sitter space-time, that are capable of preserving the variational
properties of this system. Among the most recent progress in this field, we can mention some
articles which propose high-performance implementations of Runge–Kutta finite-difference
schemes for this model [6]. Unfortunately, those discretizations are not capable of preserving
the energy properties of the continuous Higgs boson equation in the de Sitter space-time. In
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general, the literature lacks numerical models to solve this physical equation, in such way
that the energy structure of the continuous system is reflected on the discrete case. Such
numerical integrators would be extremely useful, especially in the investigation of special
types of solutions of this equation, like the so-called “bubbles” and other physically relevant
structures [114].

On the other hand, fractional derivatives have been introduced to mathematical models
in order to provide more realistic descriptions of the physical phenomena. For instance, many
fractional systems have been obtained as the continuous limit of discrete systems of particles
with long-range interactions [103, 104], and fractional derivatives have been successfully used
in the theory of viscoelasticity [53], the theory of thermoelasticity [88], financial problems
under a continuous-time frame [92], self-similar protein dynamics [40] and quantum mechanics
[81]. As expected, the complexity of fractional problems is considerably higher than that of
integer-order models, whence the need to design reliable numerical techniques to approximate
the solutions is pragmatically justified [71]. In this direction, the literature reports on various
methods to approximate the solutions of fractional systems. For example, some numerical
methods have been proposed to solve fractional partial differential equations using fractional
centered differences [82, 62, 63], the time-fractional diffusion equation [3], the fractional
Schrödinger equation in multiple spatial dimensions [11], the nonlinear fractional Korteweg–
de Vries–Burgers equation [25] and the fractional FitzHugh–Nagumo monodomain models
[61], among other examples [52, 59, 32, 77, 89].

Motivated by these facts, we propose here a fractional extension of the Higgs boson
equation in the de Sitter space-time that considers spatial fractional derivatives. The
generalization introduced in this chapter not only extends the equation of motion of that
model, but also the Hamiltonian associated to the system. We show that the total energy
of the fractional system is dissipated with respect to time, and it extends the well-known
formula for the integer-order case. To that end, we will use some functional properties of the
fractional differential operators. A finite-difference discretization of the physical model is
proposed in this chapter and we provide discrete forms of the Hamiltonian functional. We
show that, like the continuous regime, the system is capable of preserving the dissipative
nature of the total energy. The method is an implicit technique, and we show here that the
numerical model is consistent of the second order in both space and time. Also, we employ
a fractional discrete form of the energy method to prove the stability and the convergence
of the finite-difference method. It is worth pointing out that the uniqueness of the discrete
solutions will be a consequence of the stability of the scheme. Moreover, for the sake of
convenience, we will introduce and analyze a linear form of our numerical model which is
easy to implement.

The present chapter is sectioned as follows. In Section 3.2, we present the fractional
partial differential equation of interest. We propose an energy density function associated
to our model. We prove therein that the total energy of the system is dissipated, and it
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extends to the fractional scenario the well-known formulas of the Higgs boson equation in
the de Sitter space-time. The boundedness of the solutions readily follows under suitable
analytical assumptions. Section 3.3 introduces the discrete nomenclature employed throughout
this chapter, and presents the finite-difference scheme to approximate the solutions of the
mathematical model. Discrete forms of the local and total energy are presented therein, and
we establish a discrete analogue of the theorem on the conservation/dissipation of energy of
the continuous model. As expected, the boundedness of the numerical solutions is established
under the same conditions of the continuous-case scenario. In turn, the purpose of Section
3.5 is to establish the main numerical features of our discrete model. Some illustrative
simulations are shown in Section 3.6, including some numerical results that exhibit the
presence of bubble-type solutions. Finally, we close this chapter with a section of concluding
remarks, followed by two appendices: one which provides alternative discretizations of the
terms in the discrete energy scheme (let see appendix A.2), and another in which we present
the Matlab code to produce the simulations of this chapter (let see appendix A.3).

3.2 Physical model

In this section, we will present the partial differential equation of interest, and recall various
useful properties of its solutions. In particular, we will recall the energy properties associated
to the Higgs boson equation, and record some theorems on the existence of special solutions.
Moreover, the concept of Riesz fractional derivative will be recalled from the literature along
with some properties. For the sake of convenience, we will let In = {1, . . . ,n} and In = In∪{0},
for each n ∈ N. Also, integration in this chapter will be understood in the sense of Lebesgue.
Moreover, any vector x ∈ Rp will be represented component-wise as x= (x1,x2, . . . ,xp), for
each p ∈ N.

The present chapter is motivated by the lack in the literature of Hamiltonian and
numerically efficient finite-difference schemes to solve the well-known Higgs boson equation
in the de Sitter space-time. Concretely, let ϕ : Rp ×R+ be a sufficiently smooth function
with p ∈ N, and suppose that ϕ0,ϕ1 : Rp → R are two smooth functions. The model under
investigation is described by the semi-linear hyperbolic partial differential equation with
initial data

∂2ϕ(x,t)
∂t2

−e−2t∆ϕ(x,t)+p
∂ϕ(x,t)
∂t

+F ′(ϕ(x,t)) = 0, ∀(x,t) ∈ Rp×R+,

such that

 ϕ(x,0) = ϕ0(x), ∀x ∈ Rp,
∂ϕ(x,0)
∂t

= ϕ1(x), ∀x ∈ Rp,

(3.2.1)

with F ′(ϕ(x,t)) = −µ2ϕ(x,t) + λ|ϕ(x,t)|q−1ϕ(x,t). In this expression, ∆ denotes the p-
dimensional Laplacian operator, µ and λ are positive constants, and p≥ 1. The determination
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of necessary and sufficient conditions for the existence and uniqueness of solutions for this
model is still an open problem of research. There are recent reports on some sufficient
conditions for the global temporal existence of solutions [118], while other works report on
the qualitative behavior of the global solutions of (3.2.1) and the existence of zeros [114].
However, the analytical investigation of (3.2.1) is still an ongoing topic of study.

It is worth pointing out that Higgs boson equation is an important scalar field in the
standard model of particle physics [27]. Moreover, a standard transformation, variational
arguments and straightforward substitutions show that the total energy of the system (3.2.1)
is given for each t ∈ (0,T ) by the expression

E(t) = ept
(

1
2

∥∥∥∥∂ϕ∂t + p

2ϕ
∥∥∥∥2

x,2
+ e−2t

2 ∥∇ϕ∥2
x,2 − 1

2

(
p2

4 +µ2
)

∥ϕ∥2
x,2 + λ

q+1∥ϕ∥q+1
x,q+1

)
. (3.2.2)

In this formula, the symbol ∇ represents the usual gradient in the spatial variables. Using
elementary analysis, one may readily check that the rate of change of energy is a non-increasing
function of time. In fact, it is easy to see that

dE(t)
dt

= −ept
(
e−2t∥∇ϕ∥2

x,2 + λp(q−1)
2(q+1) ∥ϕ∥q+1

x,q+1

)
, ∀t ∈ (0,T ). (3.2.3)

Obviously, the constants ϕ= ±µ/
√
λ are nontrivial solutions of (3.2.1). In either case, the

total energy at the time t is given by E(t) = eptµ2(2p2 −1)/(8λ). The following is one of the
most important results on the qualitative behavior of solutions of (3.2.1).

Theorem 3.2.1 (Yagdjian [114]). Let 2 ≤ r <∞, and let ϕ ∈ C([0,∞];Lr(Rp)) be a global
weak solution of (3.2.1). Suppose that the initial data satisfy

σ

p
2

√
p2

4 +µ2

ϕ0(x)+ϕ1(x)

> 0, ∀x ∈ Rp, (3.2.4)

where σ = 1 (respectively, σ = −1), and that

σ

∫
Rp

|ϕ(x,t)|q−1ϕ(x,t)dx≤ 0 (3.2.5)

is satisfied for all t outside of a sufficiently small neighborhood of 0. Then the solution
ϕ cannot be an asymptotically time-weighted Lq-non-positive (respectively, -nonnegative)
solution of the problem (3.2.1) with the weight µϕ(t) = eaϕttbϕ , where a0 =

√
n2

4 +µ2 − n
2 , and

either

(a) aϕ < a0 and bϕ ∈ R, or

(b) aϕ = a0 and bϕ < 2.
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Definition 3.2.2 (Podlubny [87]). Let f : R → R be a function, and let n ∈ N∪ {0} and
α ∈ R satisfy n−1<α< n. The Riesz fractional derivative of f of order α at x ∈ R is defined
(when it exists) as

dαf(x)
d|x|α

= −1
2cos(πα2 )Γ(n−α)

dn

dxn

∫ ∞

−∞

f(ξ)dξ
|x− ξ|α+1−n . (3.2.6)

Definition 3.2.3 (Podlubny [87]). Assume that p ∈ N and i ∈ Ip. Let α ∈ R and n ∈ N
satisfy n−1<α<n, and suppose that ϕ : Rp×R → R is a function. When it exists, the Riesz
fractional partial derivative of ϕ of order α with respect to xi at the point (x,t) ∈ Rp×R is
defined by

∂αϕ(x,t)
∂|xi|α

= − 1
2cos(πα2 )Γ(n−α)

∂n

∂xni

∫ ∞

−∞

ϕ(x1, . . . ,xi−1, ξ,xi+1, . . . ,xp, t)
|xi− ξ|α+1−n dξ, (3.2.7)

whenever it exists. For the remainder of this chapter, we will consider differentiation orders
satisfying 1<α< 2. Moreover, for convenience, we will agree that the Riesz partial fractional
derivatives of ϕ of order 1 and 2 with respect to xi coincide with the usual first- and second-
order partial derivatives of ϕ with respect to xi, respectively. Finally, the Riesz fractional
Laplacian of ϕ of order α at (x,t) will be defined as

∆αϕ(x,t) =
p∑
i=1

∂αϕ(x,t)
∂|xi|α

. (3.2.8)

Also, the corresponding fractional gradient of ϕ at (x,t) will be given by the p-dimensional
vector

∇α/2ϕ(x,t) =
(
∂α/2ϕ(x,t)
∂|x1|α/2 ,

∂α/2ϕ(x,t)
∂|x2|α/2 , . . . ,

∂α/2ϕ(x,t)
∂|xp|α/2

)
. (3.2.9)

It is interesting to point out that various different representations of the Riesz derivative are
available in the literature of space-fractional quantum mechanics [8].

For the remainder of this chapter, let p ∈ N represent the number of spatial dimensions,
and let B =∏p

i=1(ai, bi) ⊆ Rp be a spatial domain, where −∞< ai < bi <∞, for each i ∈ Ip.
Let T be a positive number, and define Ω =B× (0,T ) as the space-time domain of reference.
Also, we will consider real functions defined on Ω, and we will extend them to all of Rp× [0,T ]
by setting them equal to zero outside of B.

Definition 3.2.4. Let Lx,2(Ω) denote the set of all functions ϕ : Ω → R such that ϕ(·, t) ∈
L2(B), for each t ∈ [0,T ]. Moreover, for each pair ϕ,ψ ∈ Lx,2(Ω), the inner product of f and
g is the function of t defined by

⟨ϕ,ψ⟩x =
∫
B
ϕ(x,t)ψ(x,t)dx, ∀t ∈ [0,T ]. (3.2.10)



3.2 Physical model 45

In turn, the Euclidean norm of ϕ ∈ Lx,2(Ω) is the function of t defined by ∥ϕ∥x,2 =
√

⟨ϕ,ϕ⟩x.
In general, if 1 ⩽ q <∞ then Lx,q(Ω) represents the set of all functions ϕ : Ω → R such that
ϕ(·, t) ∈Lq(B), for each t∈ [0,T ]. For each such function ϕ, we define its norm as the function
of t given by

∥ϕ∥x,q =
(∫

B
|ϕ(x,t)|qdx

)1/q
, ∀t ∈ [0,T ]. (3.2.11)

It is important to recall that the Riesz fractional derivative of order α ∈ (1,2] is a self-
adjoint and negative operator [55]. Moreover, it is a well-known fact that positive self-adjoint
operators possess positive square-roots, and that they are unique when they exist [31]. This
and [55] imply that the additive inverse of the Riesz fractional derivative has a unique
square-root operator. It turns out that such square root is the Riesz fractional derivative of
order α/2, and it satisfies the following property, for all functions ϕ,ψ : Ω → R and i ∈ Ip:

〈
− ∂αϕ

∂|xi|α
,ψ

〉
x

=
〈
∂α/2ϕ

∂|xi|α/2 ,
∂α/2ψ

∂|xi|α/2

〉
x

=
〈
ϕ,− ∂αψ

∂|xi|α
〉
x

. (3.2.12)

In this chapter, we will study an extended form of (3.2.1) which considers a general
time-dependent diffusion coefficient, fractional diffusion and a generalized potential. More
precisely, let α ∈ (0,1) ∪ (1,2], let γ ∈ R+, and suppose that f : R+ → R is a differentiable
function. Let F : R → R be differentiable, and suppose that ϕ0,ϕ1 : B → R are continuous
functions. In the present chapter, we will investigate the numerical solution of the initial-value
problem

∂2ϕ(x,t)
∂t2

−f(t)∆αϕ(x,t)+γ
∂ϕ(x,t)
∂t

+F ′(ϕ(x,t)) = 0, ∀(x,t) ∈ Ω,

such that

 ϕ(x,0) = ϕ0(x), ∀x ∈B,
∂ϕ(x,0)
∂t

= ϕ1(x), ∀x ∈B.

(3.2.13)

Obviously, the Higgs boson equation in the de Sitter space-time is obtained from (3.2.13)
in the case when f(t) = e−2t, γ = p and F (ϕ) = −1

2µ
2ϕ2 + 1

q+1λ|ϕ|q+1, for each t ∈ R+ and
ϕ ∈ R.

Theorem 3.2.5. The total energy of the system (3.2.13) at the time t is given by

E(t) = eγt
[

1
2

∥∥∥∥∂ϕ∂t
∥∥∥∥2

x,2
+ γ

2

〈
∂ϕ

∂t
,ϕ

〉
x

+ f(t)
2
∥∥∥∇α/2ϕ

∥∥∥2

x,2
+ ⟨F (ϕ),1⟩x

]
, ∀t ∈ (0,T ].

(3.2.14)

Proof. Beforehand, notice that the partial differential equation of (3.2.13) becomes an
undamped system using the standard transformation ϕ(x,t) = exp(−γ

2 t)ψ(x,t), for each
(x,t) ∈ Ω. After a straightforward substitution and algebraic simplifications, the resulting
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equation of motion reads

∂2ψ(x,t)
∂t2

−f(t)∆αψ(x,t)− γ2

4 ψ(x,t)+e
γ
2 tF ′(ϕ(x,t)) = 0, ∀(x,t) ∈ Ω. (3.2.15)

Notice that the Lagrangian of the new system (3.2.15) is given by

L(ψ,∇α/2ψ) = −γ2

8 ψ
2(x,t)+ f(t)

2
∥∥∥∇α/2ψ(x,t)

∥∥∥2

2
+eγtF (ϕ(x,t)), ∀(x,t) ∈ Ω. (3.2.16)

Using the variational derivative of L with respect to (ψ,∇α/2ϕ), it is easy to obtain the
following expression for the total energy of (3.2.15) at the time t:

E(t) = 1
2

∥∥∥∥∂ψ∂t
∥∥∥∥2

x,2
+ f(t)

2
∥∥∥∇α/2ψ

∥∥∥2

x,2
− γ2

8 ∥ψ∥2
x,2 +eγt⟨F (ϕ),1⟩x, ∀t ∈ (0,T ). (3.2.17)

The conclusion of this theorem follows now recalling that ψ(x,t) = exp(γ2 t)ϕ(x,t) holds for
each (x,t) ∈ Ω, substituting this expression into (3.2.17) and simplifying algebraically.

The following result is straightforward. We provide here an abridged version of the proof
in order to be able to carry it over to the discrete-case scenario.

Corollary 3.2.6 (Energy rate of change). The rate of change of the energy of the system
(3.2.13) at time t is given by

E ′(t) = eγt
[
f ′(t)

2
∥∥∥∇α/2ϕ

∥∥∥2

x,2
− γ

2 ⟨F ′(ϕ),ϕ⟩x+γ⟨F (ϕ),1⟩x
]
, ∀t ∈ (0,T ). (3.2.18)

Proof. Beforehand, note that the following identities can be easily established using the
product rule, the chain rule and functional properties of the fractional differential operators.
It is important to point out that they are satisfied for all t ∈ (0,T ):

d

dt

[
eγt

2

∥∥∥∥∂ϕ∂t
∥∥∥∥2

x,2

]
= γeγt

2

∥∥∥∥∂ϕ∂t
∥∥∥∥2

x,2
+eγt

〈
∂2ϕ

∂t2
,
∂ϕ

∂t

〉
x

, (3.2.19)

d

dt

[
γeγt

2

〈
∂ϕ

∂t
,ϕ

〉
x,2

]
= γ2eγt

2

〈
∂ϕ

∂t
,ϕ

〉
x

+ γeγt

2

〈
∂2ϕ

∂t2
,ϕ

〉
x

+ γeγt

2

∥∥∥∥∂ϕ∂t
∥∥∥∥
x,2
, (3.2.20)

d

dt

[
f(t)eγt

2
∥∥∥∇α/2ϕ

∥∥∥2

x,2

]
= γeγtf(t)

2
∥∥∥∇α/2ϕ

∥∥∥2

x,2
+ eγtf ′(t)

2
∥∥∥∇α/2ϕ

∥∥∥2

x,2

−eγtf(t)
〈

∆αϕ,
∂ϕ

∂t

〉
x
,

(3.2.21)

d

dt

[
eγt⟨F (ϕ),1⟩

]
= γeγt⟨F (ϕ),1⟩x+eγt

〈
F ′(ϕ), ∂ϕ

∂t

〉
x
. (3.2.22)

Take now the derivative of (3.2.14) with respect to t, substitute the identities above,
collect then the last terms corresponding to the right-hand sides of the identities (3.2.19),
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(3.2.21) and (3.2.22), and substitute the equation of motion in (3.2.13). At the same time,
collect those inner products with ϕ. As a consequence, we readily obtain the identities

E ′(t) = eγt
[
γ

2

〈
∂2ϕ

∂t2
+γ

∂ϕ

∂t
,ϕ

〉
x

+ γf(t)
2

∥∥∥∇α/2ϕ
∥∥∥2

x,2

+ f ′(t)
2

∥∥∥∇α/2ϕ
∥∥∥2

x,2
+γ⟨F (ϕ),1⟩x

]

= eγt
[
γf(t)

2 ⟨∆αϕ,ϕ⟩x− γ

2
〈
F ′(ϕ),ϕ

〉
x+ γf(t)

2
∥∥∥∇α/2ϕ

∥∥∥2

x,2

+ f ′(t)
2

∥∥∥∇α/2ϕ
∥∥∥2

x,2
+γ⟨F (ϕ),1⟩x

]
.

(3.2.23)

Finally, use the square-root properties of the fractional derivatives to cancel out the first and
the third terms on the right-hand side of this equation. The conclusion of this result readily
follows.

Definition 3.2.7. Let ϕ be a solution of (3.2.13). We define the energy density of the system
at the point (x,t) by

H(x,t) = eγt
[

1
2

(
∂ϕ(x,t)
∂t

)2
+ γ

2
∂ϕ(x,t)
∂t

ϕ(x,t)+ f(t)
2
∣∣∣∇α/2ϕ(x,t)

∣∣∣2 +F (ϕ(x,t))
]
. (3.2.24)

3.3 Numerical method

In this section, we will introduce the discrete nomenclature and the numerical model to solve
the initial-value problem (3.2.13). To that end, we will follow a finite-difference methodology.
Throughout this chapter, we will let K be a natural number, and consider a uniform partition
of the temporal interval [0,T ] consisting of K subintervals. Obviously, the norm of this
partition is given by the number τ = T/K. On the other hand, let Mi ∈ N for each i ∈ Ip,
and fix a uniform partition of [ai, bi] with norm hi = (bi−ai)/Mi. Introduce the respective
partition nodes

tk = kτ, ∀k ∈ IK , (3.3.1)
xi,j = ai+ jhi, ∀i ∈ Ip,∀j ∈ IMi . (3.3.2)

For convenience, we agree that tk+ 1
2

= (k+ 1
2)τ , for each k ∈ IK−1. Moreover, define the

sets J =∏p
i=1 IMi−2 and J =∏p

i=1 IMi . Finally, for any multi-index j = (j1, j2, . . . , jp) ∈ J , we
define xj = (x1,j1 ,x2,j2 , . . . ,xp,jp).

Throughout this paper, we will convey that h= (h1,h2, . . . ,hp) and h∗ = h1h2 · · ·hp. In
this chapter, we fix the grid set Rh = {xj : j ∈ J}, and use the symbol Vh to denote the
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real vector space of all real functions defined on Rh which vanish on ∂J . If u ∈ Vh is any
function then we let uj = u(xj), for each j ∈ J . Moreover, if (j,k) ∈ J × IK then we convey
that ϕkj = ϕ(xj , tk), and we let Φk

j represent a numerical approximation to the exact value of
ϕkj . It is easy to see that ϕk = (ϕkj )j∈J and Φk = (Φk

j )j∈J are actually members of the set Vh,
for each k ∈ IK .

For the remainder of this chapter and unless we mention otherwise, we agree that
Φ = (Φk)k∈IK

.

Definition 3.3.1. Define the inner product ⟨·, ·⟩ : Vh×Vh → R and the norm ∥ · ∥p : Vh → R
by

⟨Φ,Ψ⟩ = h∗
∑
j∈J

ΦjΨj , ∀Φ,Ψ ∈ Vh, (3.3.3)

∥Φ∥p =

h∗
∑
j∈J

|Φj |p
1/p

, ∀Φ ∈ Vh. (3.3.4)

The Euclidean norm induced by ⟨·, ·⟩ will be denoted by ∥ ·∥2, and ∥ ·∥∞ : Vh → R will be the
usual infinity norm in Vh, which is defined as ∥Φ∥∞ = max{|Φj | : j ∈ J}, for each Φ ∈ Vh.

Definition 3.3.2. We introduce the following linear operators on Vh, for each (Ψk)k∈IK
⊆ Vh:

µtΨk
j =

Ψk+1
j +Ψk

j

2 , ∀(j,k) ∈ J × IK−1, (3.3.5)

µ
(1)
t Ψk

j =
Ψk+1
j +Ψk−1

j

2 , ∀(j,k) ∈ J × IK−1, (3.3.6)

δtΨk
j =

Ψk+1
j −Ψk

j

τ
, ∀(j,k) ∈ J × IK−1, (3.3.7)

δ
(1)
t Ψk

j =
Ψk+1
j −Ψk−1

j

2τ , ∀(j,k) ∈ J × IK−1, (3.3.8)

δ
(2)
t Ψk

j =
Ψk+1
j −2Ψk

j +Ψk−1
j

τ2 , ∀(j,k) ∈ J × IK−1. (3.3.9)

If F : R → R is differentiable then we introduce the following nonlinear operator, for all
(j,k) ∈ J × IK−1:

δ
(1)
Ψ,tF (Ψk

j ) =


F (Ψk+1

j )−F (Ψk−1
j )

Ψk+1
j −Ψk−1

j

, if Ψk+1
j ̸= Ψk−1

j ,

F ′(Ψk
j ), otherwise.

(3.3.10)

It is important to mention that the finite averages and differences in Definition 3.3.2
are quadratically consistent approximations of some suitable differential operators. More
concretely, under suitable regularity conditions on the function Ψ, the average operator
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(3.3.5) is a consistent approximation of Ψ(xj , tk+ 1
2
), while (3.3.6) approximates consistently

the value Ψ(xj , tk).
On the other hand, the difference operators (3.3.7) and (3.3.8) approximate consistently

the partial derivative of Ψ with respect to t at (xj , tk+ 1
2
) and (xj , tk), respectively. In turn,

the operator (3.3.9) estimates the second-order partial derivative of Ψ with respect to t at
(xj , tk), and (3.3.10) estimates F ′(Ψ(xj , tk)).

In this chapter, we will approximate fractional derivatives using fractional-order centered
differences. We recall now the definition from the literature along with some useful properties.

Definition 3.3.3 (Ortigueira [82]). For any function f : R → R, any h > 0 and α >−1, the
fractional centered difference of order α of f at the point x is defined as

∆(α)
h f(x) =

∞∑
k=−∞

g
(α)
k f(x−kh), ∀x ∈ R, (3.3.11)

where
g

(α)
k = (−1)kΓ(α+1)

Γ(α2 −k+1)Γ(α2 +k+1) , ∀k ∈ Z. (3.3.12)

Lemma 3.3.4 (Çelik and Duman [16]). If 1< α⩽ 2 then the coefficients (g(α)
k )∞

k=−∞ satisfy
various properties.

(a) The following recursive identities hold:

g
(α)
0 = Γ(α+1)

Γ(α/2+1)2 , and g
(α)
k+1 =

(
1− α+1

α/2+k+1

)
gk, ∀k ∈ N∪{0}. (3.3.13)

(b) g
(α)
0 > 0.

(c) g
(α)
k = g

(α)
−k ⩽ 0 for all k ̸= 0.

(d)
∞∑

k=−∞
g

(α)
k = 0. As a consequence, it follows that g(α)

0 = −
∞∑

k=−∞
k ̸=0

g
(α)
k .

Lemma 3.3.5 (Çelik and Duman [16]). Let f ∈ C5(R) and assume that all its derivatives up
to order five are integrable. If 1< α⩽ 2 then, for almost all x,

−∆α
hf(x)
hα

= dαf(x)
d|x|α

+O(h2). (3.3.14)

Definition 3.3.6. Let α ∈ (1,2] and suppose that (Φk)k∈IK
⊆ Vh. For each i ∈ Ip and

(j,k) ∈ J × IK , we let

δ(α)
xi

Φk
j = − 1

hαi

Mi∑
l=0

g
(α)
ji−lΦ

k
j1,...,ji−1,l,ji+1,...,jp . (3.3.15)
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In light of Lemma 3.3.5, the operator δ(α)
xi yields a quadratically consistent approximation to

the Riesz fractional partial derivative of ϕ of order α with respect to xi at the point (xj , tk).
Moreover, the fractional Laplacian will be approximated with a quadratic order of consistency
using the discrete operator

δ(α)
x Φk

j =
p∑
i=1

δ(α)
xi

Φk
j . (3.3.16)

Meanwhile, the discrete gradient operator of order α is defined as

δ(α/2)
x Φk

j =
(
δ(α/2)
x1 Φk

j , δ
(α/2)
x2 Φk

j , . . . , δ
(α/2)
xp

Φk
j

)
. (3.3.17)

Lemma 3.3.7 (Macías-Díaz [72]). If 1<α⩽ 2 then there exists a unique positive self-adjoint
(square-root) operator δ(α/2)

xi : Vh → Vh, such that ⟨−δ(α)
x Φk,Ψk⟩x = ⟨δ(α/2)

x Φk, δ
(α/2)
x Ψk⟩x, for

each Φ,Ψ ∈ Vh.

The following result summarizes some properties of the fractional centered differences
and their square-roots.

Lemma 3.3.8 (Macías-Díaz [62]). Let α ∈ (1,2] and define g(α)
h = 2h∗g

(α)
0

p∑
i=1

h−α
i . If Φ ∈ Vh

and i ∈ Ip then

(a) ∥δ(α/2)
xi Φ∥2

2 ⩽ 2g(α)
0 h∗h

−α
i ∥Φ∥2

2,

(b) ∥δ(α)
xi Φ∥2

2 ⩽ ∥δ(α/2)
xi δ

(α/2)
xi Φ∥2

2,

(c) ∥δ(α)
xi Φ∥2

2 ⩽ 2g(α)
0 h∗h

−α
i ∥δ(α/2)

xi Φ∥2
2 ⩽ 4

(
g

(α)
0 h∗h

−α
i

)2
∥Φ∥2

2,

(d)
p∑
i=1

∥δ(α)
xi

Φ∥2
2 ⩽ 2h∗g

(α)
0

p∑
i=1

h−α
i ∥δ(α/2)

xi
Φ∥2

2 ⩽ 4h2
∗∥Φ∥2

2

p∑
i=1

(
g

(α)
0 h−α

i

)2
, and

(e)
p∑
i=1

∥δ(α)
xi

Φ∥2
2 ⩽ g

(α)
h

p∑
i=1

∥δ(α/2)
xi

Φ∥2
2 ⩽

(
g

(α)
h ∥Φ∥2

)2
.

Let ϕ0,ϕ1 :B → R be sufficiently smooth initial conditions for the problem (3.2.13). The
finite-difference method to approximate the solutions of the continuous problem (3.2.13) is
given by the system of discrete equations

δ
(2)
t Φk

j −µ
(1)
t

(
f(tk)δ(α)

x Φk
j

)
+γδ

(1)
t Φk

j + δ
(1)
Φ,tF (Φk

j ) = 0, ∀(j,k) ∈ J × IK−1,

such that
{

Φ0
j = ϕ0(xj), ∀j ∈ J,

δ
(1)
t Φ0

j = ϕ1(xj), ∀j ∈ J.

(3.3.18)

It is easy to check that the discrete model (3.3.18) is a three-step implicit finite-difference
model. For the sake of convenience, Figure 3.1 shows the forward-difference stencil of this
scheme in the one-dimensional case. In general, the computer implementation of (3.2.13)
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would require an algorithm to solve coupled systems of nonlinear algebraic equations, like
and implementation of the Newton–Raphson method to approximate real roots of nonlinear
systems of algebraic equations.

6

-

t
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t1

...
tk−1
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tk+1

...
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Figure 3.1 Forward-difference stencil for the approximation to the exact solution of the
one dimensional form of (3.2.13) at the time tk, using the finite-difference scheme (3.3.18).
The black circles represent the known approximations at the times tk−1 and tk, while the
crosses denote the unknown approximations at the time tk+1.

About the computer implementation, we just need to mention that the approximation
at time t = 0 using the recursive formula of (3.3.18) with k = 0, makes use of the initial
conditions δ(1)

t Φ0
j = ϕ1(xj), for each j ∈ J . Indeed, from this expressions we readily obtain

that Φ−1
j = Φ1

j − 2τ2ϕ1(xj), for each j ∈ J . This expressions are substituted then into the
recursive formula, obtaining algebraic equations in which the only unknown is the vector Φ1.
More precisely, the following identity must be satisfied, for each j ∈ J :

Φ1
j = ϕ0(xj)+ τ2ϕ1(xj)+ τ2

2
[
µ

(1)
t f(t0)

]
δ(α)
x Φ1

j − τ4

2 f(t−1)ϕ1(xj)− τ2γ

2 ϕ1(xj)

−
F (Φ1

j )−F (Φ1
j −2τ2ϕ1(xj))

4ϕ1(xj)
.

(3.3.19)

Definition 3.3.9. Let Φ be a solution of the discrete model (3.3.18). For each (j,k) ∈
J × IK−2, we define the discrete energy density at the point (xj , tk) through the formula

Hk
j = eγtk−1

[
1
2
(
δtΦk−1

j

)2
+ γ

2 (δtΦk−1
j )(µtΦk−1

j )+ f(tk−1)
2 (δ(α/2)

x Φk
j )(δ(α/2)

x Φk−1
j )

+µtF (Φk−1
j )

]
,

(3.3.20)
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meanwhile, the discrete total energy at the time tk is defined as

Ek = h∗
∑
j∈J

Hk
j

= eγtk−1

[
1
2
∥∥∥δtΦk−1

∥∥∥2

2
+ γ

2 ⟨δtΦk−1,µtΦk−1⟩+ f(tk−1)
2 ⟨δ(α/2)

x Φk, δ(α/2)
x Φk−1⟩

+µt⟨F (Φk−1),1⟩
]
.

(3.3.21)

3.4 Structural properties

In this stage of our work, we will establish the most important structural properties of
the finite-difference scheme (3.3.18). More precisely, we will show that our method and its
discrete total energy operator (3.3.21) satisfy a discrete analogue of Theorem 3.2.6. However,
we must establish firstly the solvability of the discrete system (3.3.18). The following result
will be helpful to that end.

Lemma 3.4.1 (Brouwer’s fixed-point theorem). Let V be a finite-dimensional vector space
over R, and let ⟨·, ·⟩ be an inner product on V. Assume that r : V → V is continuous, and
that there exists λ > 0 such that ⟨r(Φ),Φ⟩ ⩾ 0, for all Φ ∈ V with ∥Φ∥2 = λ. Then there exists
Φ ∈ V with ∥Φ∥2 ⩽ λ, such that r(Φ) = 0.

We establish next that the finite-difference method (3.3.18) is solvable. For convenience,
additional notation will be required in the proof. Concretely, for each Φ,Ψ ∈ Vh and j ∈ J ,
we define

δ
(1)
Φ,Ψ,tF (Φk

j ) =


F (Ψj)−F (Φk−1

j )
Ψj −Φk−1

j

, if Ψj ̸= Φk−1
j ,

F ′(Φk
j ), otherwise.

(3.4.1)

Theorem 3.4.2 (Solvability). Suppose that there is K1 ≥ 0 such that |f(t)| ⩽K1, for all
t > 0. If F ′ ∈ L∞(R) and 2 +γτ − τ2K1g

(α)
h > 0 holds then the discrete method (3.3.18) is

solvable for any set of initial conditions.

Proof. Notice that Φ0 and Φ1 are defined through the initial data. So let k ∈ IK−1, and
assume that Φk−1 and Φk have been calculated already. Notice now that the assumptions
on the regularity of F imply that there exists a constant K2 ≥ 0, with the property that
∥δ(1)
ψ,ϕ,tF (Φk)∥2 ⩽ K2. Let r : Vh → Vh be the continuous function whose jth component

rj : Vh → R is defined by

rj(Ψ) =
Ψj −2Φk

j +Φk−1
j

τ2 +
f(tk+1)δ(α)

x Ψj +f(tk−1)δ(α)
x Φk−1

j

2 +γ
Ψj −Φk−1

j

2τ
+ δ

(1)
Φ,Ψ,tF (Φk

j ),
(3.4.2)
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for each Ψ ∈ Vh. Applying the Cauchy–Schwarz inequality, using the formulas in Lemma
3.3.8 along with the square-root properties of fractional-order centered differences, we obtain

⟨r(Ψ),Ψ⟩ ⩾ 1
τ2

(
∥Ψ∥2

2 −2∥Φk∥2∥Ψ∥2 −∥Φk−1∥2∥Ψ∥2
)

− f(tk+1)
2 ∥δ(α/2)

x Ψ∥2
2

− f(tk−1)
2 ⟨δ(α/2)

x Φk−1, δ(α/2)
x Ψ⟩+ γ

2τ
(
∥Ψ∥2

2 −∥Φk−1∥2∥Ψ∥2
)

−∥δ(1)
Ψ,Φ,tF (Φk)∥2∥Ψ∥2

⩾
1

2τ2 ∥Ψ∥2
[
(2+γτ)∥Ψ∥2 −4∥Φk∥2 − (2+γτ)∥Φk−1∥2 −2K2τ

2
]

− f(tk+1)
2 ∥δ(α/2)

x Ψ∥2
2 − f(tk−1)

2 ⟨δ(α/2)
x Φk−1, δ(α/2)

x Ψ⟩

⩾
∥Ψ∥2
2τ2

[
(2+γτ − τ2K1g

(α)
h )∥Ψ∥2 −4∥Φk∥2 − (2+γτ + τ2K1g

(α)
h )∥Φk−1∥2

−2K2τ
2
]

= 2+γτ − τ2K1g
(α)
h

2τ2 ∥Ψ∥2 [∥Ψ∥2 −λ] ,

(3.4.3)

for each Ψ ∈ Vh. Here, we used the constant

λ= 4∥Φk∥2 +(2+γτ + τ2K1g
(α)
h )∥Φk−1∥2 +2K2τ

2

2+γτ − τ2K1g
(α)
h

. (3.4.4)

Notice that λ > 0 by hypothesis. Also, ⟨r(Ψ),Ψ⟩ ⩾ 0 is satisfied, for each Ψ ∈ Vh with
∥Ψ∥2 = λ. By Lemma 3.4.1, there exists Φk+1 ∈ Vh with ∥Φk+1∥2 ⩽ λ, such that r(Φk+1) = 0.
Equivalently, Φk+1 is a solution of the kth recursive equation in (3.3.18). The theorem follows
now by induction.

Lemma 3.4.3. If (Ψk)k∈IK
is any sequence in Vh then

2τ⟨δ(2)
t Ψk, δ

(1)
t Ψk⟩ = ∥δtΨk∥2

2 −∥δtΨk−1∥2
2, ∀k ∈ IK . (3.4.5)

Proof. Let k ∈ IK . It is easy to see that

∥δtΨk∥2
2 −∥δtΨk−1∥2

2 = ⟨δtΨk, δtΨk⟩−⟨δtΨk, δtΨk−1⟩+ ⟨δtΨk, δtΨk−1⟩

−⟨δtΨk−1, δtΨk−1⟩.
(3.4.6)

The conclusion follows from the fact that the right-hand side is equal to 2τ⟨δtδtΨk−1,µtδtΨk−1⟩.

To establish the most important energy properties of the discrete model (3.3.18), we will
prove now discrete analogues of the continuous identities (3.2.19)–(3.2.22).
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Lemma 3.4.4. If Φ is a solution of (3.3.18) then the following identities hold for each
k ∈ IK−1:

δt

[
eγtk−1

2 ∥δtΦk−1∥2
2

]
= δte

γtk−1

2 ∥δtΦk∥2
2 +eγtk−1

〈
δ

(2)
t Φk, δ

(1)
t Φk

〉
, (3.4.7)

δt

[
γeγtk−1

2 ⟨δtΦk−1
j ,µtΦk−1

j ⟩
]

= γeγtk

2 ⟨δ(1)
t Φk

j , δtΦk
j ⟩+ γeγtk

2 ⟨δ(2)
t Φk

j ,µtΦk−1
j ⟩

+ γδte
γtk−1

2 ⟨δtΦk−1
j ,µtΦk−1

j ⟩,
(3.4.8)

δt

[
eγtk−1f(tk−1)

2 ⟨δ(α/2)
x Φk

j , δ
(α/2)
x Φk−1

j ⟩
]

= δte
γtk−1

2 f(tk)⟨δ(α/2)
x Φk+1

j , δ(α/2)
x Φk

j ⟩

+ eγtk−1

2 δtf(tk−1)⟨δ(α/2)
x Φk+1

j , δ(α/2)
x Φk

j ⟩−eγtk−1f(tk−1)⟨δ(α)
x Φk

j , δ
(1)
t Φk

j ⟩,
(3.4.9)

and

δt
[
eγtk−1µt⟨F (Φk−1

j ,1)⟩
]

= eγtk⟨δ(1)
Φ,tF (Φk

j ), δ
(1)
t Φk

j ⟩+ δte
γtk−1µt⟨F (Φk−1

j ),1⟩. (3.4.10)

Proof. Let Φ be a solution of (3.3.18), and let k ∈ IK−1. Using the definition of the difference
operator, adding and subtracting the term exp(γtk−1)∥δtΦk

j ∥2
2/2τ , using Lemma 3.4.3 and

simplifying, we obtain

δt

[
eγtk−1

2 ∥δtΦk−1
j ∥2

2

]
= 1

2

(
eγtk −eγtk−1

τ

)
∥δtΦk

j ∥2
2 + eγtk−1

2τ
[
∥δtΦk

j ∥2
2 −∥δtΦk−1

j ∥2
2

]
. (3.4.11)

This readily establishes (3.4.7), and the identity (3.4.8) is proved in similar fashion. On the
other hand,

δt

[
eγtk−1f(tk−1)

2 ⟨δ(α/2)
x Φk

j , δ
(α/2)Φk−1

j ⟩
]

=

δte
γtk−1

2 f(tk)⟨δ(α/2)
x Φk+1

j , δ(α/2)
x Φk

j ⟩+ eγtk−1

2 δtf(tk−1)⟨δ(α/2)
x Φk+1

j , δ(α/2)
x Φk

j ⟩

+ eγtk−1

2τ f(tk−1)
[
⟨δ(α/2)
x Φk+1

j , δ(α/2)
x Φk

j ⟩−⟨δ(α/2)
x Φk

j , δ
(α/2)
x Φk−1

j ⟩
]
.

(3.4.12)

Applying the square-root property of Lemma 3.3.7 on the last term, we can readily reach
(3.4.9). Finally, the identity (3.4.10) is proved in an analogous way.

It is important to point out that the identities (3.4.7)–(3.4.10) may be expressed in
alternative (though equivalent) forms. Some of those alternative expressions are provided in
the Appendix A.2 for convenience. To prove them, one needs to employ arguments similar to
those used in the proofs of Lemma 3.4.4. Using those results, one can readily reach alternative
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conclusions of the following theorem, which summarizes the most important energy properties
of our numerical model.

Theorem 3.4.5 (Discrete energy rate of change). If Φ is a solution of (3.3.18) then

δtE
k = eγtk

〈
δ

(1)
Φ,tF (Φk

j ), δ
(1)
t Φk

j

〉
+ δte

γtk−1µt
〈
F (Φk−1

j ),1
〉

+ γeγtk

2 ⟨δ(1)
t Φk

j , δtΦk
j ⟩+ γeγtk

2 ⟨δ(2)
t Φk

j ,µtΦk−1
j ⟩+ γδte

γtk−1

2 ⟨δtΦk−1
j ,µtΦk−1

j ⟩

+ δte
γtk−1

2 f(tk)⟨δ(α/2)
x Φk+1

j , δ(α/2)
x Φk

j ⟩+ eγtk−1

2 δtf(tk−1)⟨δ(α/2)
x Φk+1

j , δ(α/2)
x Φk

j ⟩

−eγtk−1f(tk−1)⟨δ(α)
x Φk

j , δ
(1)
t Φk

j ⟩+ δte
γtk−1

2 ∥δtΦk
j ∥2

2 +eγtk−1
〈
δ

(2)
t Φk

j , δ
(1)
t Φk

j

〉
.

(3.4.13)

Proof. The conclusion readily follows from the identities in Lemma 3.4.4.

Before closing this section, it is worthwhile to notice that the formulas in Lemma 3.4.4
are consistent approximations of the formulas (3.2.19)–(3.2.22), respectively. This fact will
be used in the following section in order to show the consistency properties in the energy
domain of the discrete model (3.3.18).

3.5 Numerical properties

In this section, we will derive the most important numerical properties of the finite-difference
model (3.3.18). More precisely, we will establish that consistency, stability and convergence
of our numerical scheme. To prove the consistency properties of our methodology, we need
to define the following continuous and discrete functionals:

Lϕ(x,t) = ∂2ϕ(x,t)
∂t2

−f(t)∆αϕ(x,t)+γ
∂ϕ(x,t)
∂t

+F ′(ϕ(x,t)), ∀(x,t) ∈ Ω, (3.5.1)

Lϕkj = δ
(2)
t ϕkj −µ

(1)
t (f(tk)δ(α)

x ϕkj )+γδ
(1)
t ϕkj + δ

(1)
ϕ,tF (ϕkj ), ∀(j,k) ∈ J × IK−1. (3.5.2)

Theorem 3.5.1 (Consistency). Suppose that f : R+ → R and F : R → R are differentiable
functions. If ϕ∈ C5,4

x,t (Ω) then exists a constant C,C ′ > 0 such that, for any uniform partitions
of Ω and [0,T ] with respective norms h= (h1,h2, . . . ,hp) and τ , the following are satisfied for
each (j,k) ∈ J × IK−2:∣∣∣Lϕ(xj , tk)−Lϕkj

∣∣∣⩽ C(τ2 +∥h∥2
2) and

∣∣∣H(xj , tk)−Hk
j

∣∣∣⩽ C ′(τ +∥h∥2
2). (3.5.3)

Proof. Using the regularity of ϕ, f and F , the Mean Value Theorem, Taylor’s theorem and
Lemma 3.3.5, there exist constants C1,C3,C4 ⩾ 0 and C2,i ⩾ 0 for i ∈ Ip, such that∣∣∣∣∣∂2ϕ(xj , tk)

∂t2
− δ

(2)
t ϕkj

∣∣∣∣∣⩽ C1τ
2, ∀(j,k) ∈ J × IK−2, (3.5.4)
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∣∣∣∣f(tk)
∂αϕ(xj , tk)
∂|xi|α

−µ
(1)
t (f(tk)δ(α)

xi
ϕkj )

∣∣∣∣⩽ C2,i(τ2 +h2
i ), ∀(j,k) ∈ J × IK−2, (3.5.5)∣∣∣∣∂ϕ(xj , tk)

∂t
− δ

(1)
t ϕkj

∣∣∣∣⩽ C3τ
2, ∀(j,k) ∈ J × IK−2, (3.5.6)∣∣∣F ′(ϕ(xj , tk))− δ

(1)
ϕ,tF (ϕkj )

∣∣∣⩽ C4τ
2, ∀(j,k) ∈ J × IK−2. (3.5.7)

The first inequality of (3.5.3) is reached if we take C as the maximum between C1, γC3, C4

and C2,i for i ∈ Ip, and after applying the triangle inequality. To prove the second inequality
of (3.5.3), we use again the Mean Value Theorem, Taylor’s theorem, Lemma 3.3.5 and
the regularity assumptions to show that there exist a constant C5 ≥ 0, such that for each
(j,k) ∈ J × IK−2,∣∣∣∣∣eγtk

(
∂ϕ(xj , tk)

∂t

)2
−eγtk−1(δtϕk−1

j )2
∣∣∣∣∣⩽

∣∣∣∣eγtk ∂ϕ(xj , tk)
∂t

∣∣∣∣ ∣∣∣∣∂ϕ(xj , tk)
∂t

− δtϕ
k−1
j

∣∣∣∣
+
∣∣∣eγtkδtϕk−1

j

∣∣∣ ∣∣∣∣∂ϕ(xj , tk)
∂t

− δtϕ
k−1
j

∣∣∣∣+ ∣∣∣eγtk −eγtk−1
∣∣∣ ∣∣∣δtϕk−1

j

∣∣∣2 ⩽ C5τ.

(3.5.8)

Similarly, there exist constants C6,C7,i,C8 ∈ R+ ∪{0} for i ∈ Ip, with the property that∣∣∣∣∂ϕ(xj , tk)
∂tk

ϕ(xj , tk)− (δtϕk−1
j )(µtϕk−1

j )
∣∣∣∣⩽C6τ, (3.5.9)∣∣∣∣∣∣f(tk)

(
∂α/2ϕ(xj , tk)
∂|xi|α/2

)2

−f(tk−1)(δ(α/2)
xi

Φk
j )(δ(α/2)

xi
Φk−1
j )

∣∣∣∣∣∣⩽C7,i(τ +h2
i ), (3.5.10)

∣∣∣F (ϕ(x,t))−µtF (Φk−1
j )

∣∣∣⩽C8τ. (3.5.11)

The conclusion is reached now letting C ′ being the maximum of C5/2, γC6/2, C8 and C7,i/2
for i ∈ Ip, and applying triangle inequality.

In order to establish the remaining numerical properties of the finite-difference method
(3.3.18), various crucial lemmas and hypotheses will be needed. The following are some of
the hypotheses which will be required and their consequences.

H1 f ∈ C1([0,T ]). As a consequence of this condition and the Mean Value Theorem,
there exists C0 ≥ 0 such that |δ(1)

t f(tk)| ≤ C0, for each k ∈ IK−1.

H2 f is positive on [0,T ]. This assumption together with the regularity of f in H1

guarantee that there exists C1 > 0 which depends on f , such that f(t) ≥ C1 for all
t ∈ [0,T ].

It is worth pointing out that the function f for the Higgs boson equation in the de Sitter
space-time obviously satisfies these hypotheses. In addition, the following lemmas will be
cornerstones to prove stability and convergence of (3.3.18).
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Lemma 3.5.2. If f is a nonnegative function on R+ ∪{0} and (Ψk)k∈IK
is any sequence in

Vh then

〈
−µ(1)

t

(
f(tk)δ(α)

x Ψk
)
, δ

(1)
t Ψk

〉
= −1

2
(
δ

(1)
t f(tk)

)
⟨δ(α/2)
x Ψk+1, δ(α/2)

x Ψk−1⟩
1
2τ
[
µt
(
f(tk)∥δ(α/2)

x Ψk∥2
2

)
−µt

(
f(tk−1)∥δ(α/2)

x Ψk−1∥2
2

)]
, ∀k ∈ IK−1.

(3.5.12)

Proof. Using the definitions of the discrete operators, the distributivity property of the inner
product and the square-root properties of the fractional-ordered centered differences, we
obtain〈

−µ(1)
t

(
f(tk)δ(α)

x Ψk
)
, δ

(1)
t Ψk

〉
= 1

4τ
[
f(tk+1)⟨−δ(α)

x Ψk+1,Ψk+1⟩−f(tk+1)⟨−δ(α)
x Ψk+1,Ψk−1⟩

+f(tk−1)⟨−δ(α)
x Ψk−1,Ψk+1⟩−f(tk−1)⟨−δ(α)

x Ψk−1,Ψk−1⟩
]

= 1
4τ
[
f(tk+1)∥δ(α/2)

x Ψk+1∥2
2 −f(tk−1)∥δ(α/2)

x Ψk−1∥2
2

+ (f(tk−1)−f(tk+1))⟨δ(α/2)
x Ψk+1, δ(α/2)

x Ψk−1⟩
]
, ∀k ∈ IK−1.

(3.5.13)

The conclusion of this result readily follows after adding and subtracting the term
f(tk)∥δ(α/2)

x Ψk∥2
2 inside the parenthesis, and combining terms.

Lemma 3.5.3 (Macías-Díaz [72]). Let F ∈ C2(R) and F ′′ ∈ L∞(R), and suppose that
(Φk)k∈IK

, (Ψk)k∈IK
and (Rk)k∈IK

are sequences in Vh. Let εk = Φk − Ψk and F̃ k =
δ

(1)
Φ,tF (Φk) − δ

(1)
Ψ,tF (Ψk), for each k ∈ IK . Then there exist constants C2,C3 ∈ R+ which

depend only on G such that for each m ∈ IK−1,

2τ
∣∣∣∣∣
m∑
k=1

⟨Rk − F̃ k, δ
(1)
t εk⟩

∣∣∣∣∣≤ 2τ
m∑
k=0

∥Rk∥2
2 +C2∥ε0∥2

2 +C3τ
m∑
k=0

∥δtεk∥2
2. (3.5.14)

Lemma 3.5.4 (Pen-Yu [84]). Let (ωk)Kk=0 and (ρk)Kk=0 be finite sequences of nonnegative
real numbers, and suppose that there exists C ≥ 0 such that

ωm ≤ ρm+Cτ
m−1∑
k=0

ωk, ∀m ∈ IK . (3.5.15)

Then ωk ≤ ρkeCkτ , for each k ∈ IK .

In the following result, the constants C0, C1, C2 and C3 will as Lemma 3.5.3 and its
preceding remark. Moreover, we will let Φ0 = (ϕ0,ϕ1) and Ψ0 = (ψ0,ψ1) denote two sets of
initial conditions of (3.3.18), and the corresponding numerical solutions will be represented
by Φ = (Φk)k∈IK

and Ψ = (Ψk)k∈IK
.



58 A fractional Higgs boson equation

Theorem 3.5.5 (Stability). Let F ∈ C2(R) and F ′′ ∈L∞(R), and assume that f ∈ C1([0,T ]) is
positive on [0,T ]. Let Φ and Ψ be solutions of (3.3.18) corresponding to the initial conditions
Φ0 and Ψ0, respectively, and let εk = Φk − Ψk for each k ∈ IK . Define the nonnegative
constants

ρ= 2
(
C2∥ε0∥2

2 +∥δtε0∥2
2 +µt

[
f(t0)∥δ(α/2)

x ε0∥2
2

])
, (3.5.16)

ωk = ∥δtεk∥2
2 +µt

[
f(tk)∥δ(α/2)

x εk∥2
2

]
, ∀k ∈ IK , (3.5.17)

and suppose that the following inequality is satisfied

2
(
C3 + 2C0

C1

)
τ < 1. (3.5.18)

Then there exists C4 ∈ R+ ∪ {0} independent of Φ and Ψ, such that ωk ≤ ρeC4kτ for each
k ∈ IK .

Proof. It is easy to see that the sequence (εk)k∈K satisfies

δ
(2)
t εkj −µ

(1)
t

(
f(tk)δ(α)

x εkj

)
+γδ

(1)
t εkj + F̃ kj = 0, ∀(j,k) ∈ J × IK−1,

such that
{
ε0
j = ϕ0(xj)−ψ0(xj), ∀j ∈ J,

δ
(1)
t ε0

j = ϕ1(xj)−ψ1(xj), ∀j ∈ J.

(3.5.19)

Here, we are using the nomenclature of Lemma 3.5.3. On the other hand, according to
Lemmas 3.4.3 and 3.5.2, the following identities are satisfied, for each k ∈ IK :

〈
δ

(2)
t εk, δ

(1)
t εk

〉
= 1

2τ
[
∥δtεk∥2

2 −∥δtεk−1∥2
2

]
(3.5.20)

and〈
−µ(1)

t

(
f(tk)δ(α)

x εk
)
, δ

(1)
t εk

〉
= −1

2δ
(1)
t f(tk)⟨δ(α/2)

x εk+1, δ(α/2)
x εk−1⟩

+ 1
2τ
[
µt
(
f(tk)∥δ(α/2)

x εk∥2
2

)
−µt

(
f(tk−1)∥δ(α/2)

x εk−1∥2
2

)]
.

(3.5.21)

Let k ∈ IK−1 and take the inner product of δ(1)
t εk with both sides of the kth difference

equation of (3.5.19). Substitute the identities (3.5.20) and (3.5.21). Fix m ∈ IK−1, and take
the sum over all indexes k ∈ Im and use the formula for telescoping sums. After multiplying
both sides by 2τ , we obtain the identity
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∥δtεm∥2
2 −∥δtε0∥2

2 +µt
[
f(tm)∥δ(α/2)

x εm∥2
2

]
−µt

[
f(t0)∥δ(α/2)

x ε0∥2
2

]
= τ

m∑
k=1

δ
(1)
t f(tk)⟨δ(α/2)

x εk+1, δ(α/2)
x εk−1⟩−2τγ

m∑
k=1

∥δ(1)
t εk∥2

2 −2τ
m∑
k=1

⟨F̃ k, δ(1)
t εk⟩.

(3.5.22)
Rearranging terms, taking absolute value on both sides, using the upper bound C0,

applying then Lemma 3.5.3 with Rk = 0 for each k ∈ IK , and using Young’s inequality, we
see that

ωm ≤ ρ

2 + C0
2C1

τ
m∑
k=1

(
C1∥δ(α/2)

x εk+1∥2
2 +C1∥δ(α/2)

x εk−1∥2
2

)
+C3τ

m∑
k=0

∥δtεk∥2
2

≤ ρ

2 + C0
2C1

τ
m∑
k=1

(
f(tk+1)∥δ(α/2)

x εk+1∥2
2 +f(tk−1)∥δ(α/2)

x εk−1∥2
2

)
+C3τ

m∑
k=0

∥δtεk∥2
2

≤ ρ

2 + C0
C1
τ

m∑
k=1

[
µt
(
f(tk)∥δ(α/2)

x εk∥2
2

)
+µt

(
f(tk−1)∥δ(α/2)

x εk−1∥2
2

)]
+C3τ

m∑
k=0

∥δtεk∥2
2

≤ ρ

2 + 2C0
C1

τ
m∑
k=0

µt
(
f(tk)∥δ(α/2)

x εk∥2
2

)
+C3τ

m∑
k=0

∥δtεk∥2
2

≤ ρ

2 +
(
C3 + 2C0

C1

)
τ

m∑
k=0

ωk,

(3.5.23)
for each m ∈ IK−1. Using this inequality and the hypothesis (3.5.18), we obtain

ωm = 2
(
ωm− 1

2ω
m
)

≤ 2ρ+2
(
C3 + 2C0

C1

)
τ

m∑
k=0

ωk −ωm = ρ+C4τ
m−1∑
k=0

ωk, (3.5.24)

for each m ∈ IK−1. Here, we employed the nonnegative constant C4 = 2(C3 + 2C0
C1

). The
conclusion of the theorem readily follows now by Lemma 3.5.4.

The uniqueness of the solutions of (3.3.18) is now a consequence of Theorem 3.5.5.

Corollary 3.5.6 (Uniqueness). Let F ∈ C2(R) and F ′′ ∈ L∞(R), and let f ∈ C1([0,T ]) be
positive on [0,T ]. If (3.5.18) holds then any two solutions of (3.3.18) corresponding to the
same initial conditions are equal.

Proof. Let Φ and Ψ be two solutions corresponding to the initial data Φ0, and define
εk = Φk − Ψk, for each k ∈ IK . By Theorem 3.5.5, there exists a constant C4 ≥ 0 which is
independent of Φ and Ψ, such that ωk ≤ ρeC4kτ holds for each k ∈ IK . As a consequence,
note that

∥δtεk∥2
2 ≤ ωk ≤ 2eC4T

(
C2∥ε0∥2

2 +∥δtε0∥2
2 +µt

[
f(t0)∥δ(α/2)

x ε0∥2
2

])
, ∀k ∈ IK−1. (3.5.25)
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But the assumption on the initial conditions guarantee that the Euclidean norms at the
right-hand side of this chain of inequalities are all equal to zero. This means that ∥δtεk∥2 = 0
or, equivalently, that εk+1 = εk is satisfied, for each k ∈ IK−1. Applying a recursive argument,
we conclude that the two solutions Φ and Ψ are the same, as desired.

Finally, we establish the convergence property of the finite-difference scheme (3.3.18).

Theorem 3.5.7 (Convergence). Let F ∈ C2(R) and F ′′ ∈ L∞(R), and let f ∈ C1([0,T ]) be
positive on [0,T ]. If ϕ ∈ C5,4

x,t (Ω) is solution of (3.2.13) corresponding to the initial data Φ0

and (3.5.18) is satisfied, then the solutions of (3.3.18) converge quadratically to ϕ in the
∥ · ∥2-norm.

Proof. Let h and τ be computational parameters satisfying (3.5.18), and let Φ be a solution
of (3.3.18) corresponding to the initial conditions Φ0. For each k ∈ IK , define ϵk = Φk −ϕk,
and let Rkj represent the local truncation error at the point (xj , tk). Notice that the following
problem is satisfied:

δ
(2)
t ϵkj −µ

(1)
t

(
f(tk)δ(α)

x ϵkj

)
+γδ

(1)
t ϵkj + F̃ kj =Rkj , ∀(j,k) ∈ J × IK−1,

such that
{
ϵ0j = ϵ1j = 0, ∀j ∈ J.

(3.5.26)

The argument is similar to the proof of Theorem 3.5.5. In a first stage, let k ∈ IK−1 and take
the inner product of δ(1)

t ϵk with both sides of the difference equation of (3.5.26). Substitute
the equivalent forms of identities (3.5.20) and (3.5.21), and fix m ∈ IK−1. Take the sum over
all indexes k ∈ Im and use the formula for telescoping sums. After multiplying both sides by
2τ , we reach

∥δtϵm∥2
2 −∥δtϵ0∥2

2 +µt
[
f(tm)∥δ(α/2)

x ϵm∥2
2

]
−µt

[
f(t0)∥δ(α/2)

x ϵ0∥2
2

]
= τ

m∑
k=1

(
δ

(1)
t f(tk)

)
⟨δ(α/2)
x ϵk+1, δ(α/2)

x ϵk−1⟩

−2τγ
m∑
k=1

∥δ(1)
t ϵk∥2

2 +2τ
m∑
k=1

⟨R̃k −F k, δ
(1)
t ϵk⟩.

(3.5.27)

Rearranging terms, taking absolute value on both sides, using the upper bound C0, applying
then Lemma 3.5.3 with Rk = 0 for each k ∈ IK , and using Young’s inequality, we obtain that

ωm = ρm+C4τ
m−1∑
k=0

ωk, ∀m ∈ IK−1, (3.5.28)

where C4 is as in the proof of Theorem 3.5.5, and

ρm = 2
(
C2∥ϵ0∥2

2 +∥δtϵ0∥2
2 +µt

[
f(t0)∥δ(α/2)

x ϵ0∥2
2

]
+2τ

m∑
k=0

∥Rk∥2
2

)
, ∀m ∈ IK , (3.5.29)
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ωm = ∥δtϵm∥2
2 +µt

[
f(tm)∥δ(α/2)

x ϵm∥2
2

]
, ∀m ∈ IK . (3.5.30)

Notice that a convenient simplification in the expressions (3.5.29) is readily at hand when we
consider the initial conditions of (3.5.26). Also, the regularity on ϕ guarantees that there
exists a constant C ≥ 0 which is independent of h and τ , such that ∥Rk∥2 ≤ C(τ2 + ∥h∥2),
for each k ∈ IK . Moreover, the conclusion of Lemma 3.5.4 yields now that

∥δtϵm∥2
2 ≤ωm ≤ ρmeC4T = 4eC4T τ

m∑
k=0

∥Rk∥2
2 ≤ 4C2eC4TT (τ2 +∥h∥2

2)2, ∀m∈ IK . (3.5.31)

Taking square-root on both sides, using the triangle inequality and multiplying by τ , it follows
that

∥ϵm+1∥2 −∥ϵm∥2 ≤ 2CeC4T/2√
Tτ(τ2 +∥h∥2

2), ∀m ∈ IK−1. (3.5.32)

Let k ∈ IK−1, and take the sum on both ends of this inequalities, for k ∈ IK−1. Using
the formula for telescoping sums, the initial data in (3.5.26) and bounding from above, we
readily observe that for each k ∈ IK , it follows that ∥ϵk∥2 ≤C5(τ2 +∥h∥2

2), where the constant
C5 = 2CeC4T/2T 3/2 is independent of h and τ . We conclude that the solutions of (3.3.18)
converge to ϕ in the ∥ · ∥2-norm, as desired.

3.6 Results

The present section is devoted to provide some illustrative computer simulations of the scheme
(3.3.18). Moreover, a simpler algorithm will be introduced and theoretically analyzed in the
second half of this section. Throughout, we will consider only the one-dimensional problem
p= 1, and set M =M1.

For our simulations, we will use the fully discrete discrete scheme (3.3.18), which uses
an implementation of the Newton–Raphson method to approximate real roots of nonlinear
systems of equations. To that end, a maximum number of iterations equal to 20 and a tolerance
of 1 × 10−8 in the infinity norm will be employed. Beforehand, we must mention that the
maximum number of iterations was sufficient to achieve the desired level of tolerance. Indeed,
most steps of Newton’s method reached the desired tolerance in less than 10 iterations. It is
important to point out also that our numerical experiments are motivated by the simulations
obtained in [6]. Following ideas in that article, for each x0 ∈ R and R > 0, we define the
function φx0,R : R → R by

φx0,R(x) =

 exp
( 1
R2 − 1

R2 − (x−x0)2

)
, if |x−x0|<R,

0, if |x−x0| ≥R.
(3.6.1)
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Example 3.6.1. Consider the system (3.2.13) with f(t) = e−2t, F (ϕ) = −1
2µ

2ϕ2 + 1
q+1λ|ϕ|q+1ϕ

parameters γ = 1, q = 3, λ = 2 and µ = 3. The diffusion and the potential functions are
those corresponding to the Higgs boson equation in the de Sitter space-time. We restrict
our attention to the spatial domain B = (−1,2) and let T = 0.03. Computationally, we let
h = 0.01 and τ = 0.00005, and set the initial conditions ϕ0 = φ0.5,0.3 and ϕ1 = 0. Under
these circumstances, Figure 3.2 provides the approximate solutions obtained using our
implementation of the discrete model (3.3.18). Various values of α were used, namely, α= 1.6
(left column), α= 1.8 (middle column) and α= 2 (right column). The top row provides the
graphs of the approximate solution of the system as a function of x and t, while the graphs
on the bottom correspond to the respective discrete energy densities. The results are in good
qualitative agreement with [6]. Particularly, it is important to point out the presence of
one-dimensional “bubbles”, as predicted by Theorem 3.2.1 when α= 2.

(a) (c) (e)

(b) (d) (f)

Figure 3.2 Graphs of the approximate solution (top row) and the respective local energy
density (bottom row) versus x and t, of the system (3.2.13) with γ = 1, q = 3, λ= 2, µ= 3,
F (ϕ) = −1

2µ
2ϕ2 + 1

q+1λ|ϕ|q+1ϕ, f(t) = e−2t, B = (−1,2) and T = 0.03. Computationally,
we let h = 0.01 and τ = 0.00005. We employed α = 1.6 (left column), α = 1.8 (middle
column) and α= 2 (right column). As initial data, we used ϕ0 = φ0.5,0.3 and ϕ1 = 0.

Example 3.6.2. Consider the same problem studied in Example 3.6.1, using now the initial
data ϕ0 = −φ0.5,0.3 +φ0.55,0.3 and ϕ1 = 0. In this case, observe that the initial profile is the
difference between two “bubbles”. The results of our simulations are shown in Figure 3.3, for
α= 1.6 (left column), α= 1.8 (middle column) and α= 2 (right column). The results again
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show the presence of moving “bubbles” as before. Again, this fact is in perfect agreement
with the theoretical results available for the case when α= 2.

(a) (c) (e)

(b) (d) (f)

Figure 3.3 Graphs of the approximate solution (top row) and the respective local energy
density (bottom row) versus x and t, of the system (3.2.13) with γ = 1, q = 3, λ= 2, µ= 3,
F (ϕ) = −1

2µ
2ϕ2 + 1

q+1λ|ϕ|q+1ϕ, f(t) = e−2t, B = (−1,2) and T = 0.03. Computationally,
h= 0.01 and τ = 0.00005. We used α= 1.6 (left column), α= 1.8 (middle column) and
α= 2 (right column). As initial data, we let ϕ0 = −φ0.5,0.3 +φ0.55,0.3 and ϕ1 = 0.

Finally, we will detail a computer implementation of the finite-difference scheme in the
case when the definition of the operator (3.3.10) reduces to δ(1)

Ψ,tF (Ψk
j ) = F ′(Ψk

j ). The method
below will be easy to implement, but it will have no energy properties associated, as opposed
to the variational scheme (3.3.18). With this convention, multiply the kth difference equation
of (3.3.18) by 2τ2 and rearrange terms algebraically. It is easy to see then that the equation
is equivalent to the expression

ζk+1Φk+1
j +Rk+1

M∑
l=0
l ̸=j

gj−lΦk+1
l = 4Φk

j −2τ2F ′(Φk
j )−ηk+1Φk−1

j −Rk−1
M∑
l=0
l ̸=j

g
(α)
j−lΦ

k−1
l , (3.6.2)

for each j ∈ IM , where

ζk = 2+γτ +Rk+1g
(α)
0 , ∀k ∈ IK , (3.6.3)

ηk = 2−γτ +Rk−1g
(α)
0 , ∀k ∈ IK . (3.6.4)
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Here, we agree that Rk = τ2h−αf(tk), for each k ∈ IK . In turn, the set of equations (3.6.2),
for all j ranging in IM , can be rewritten equivalently in vector form as[

(2+γτ)I+Rk+1H(α)
]
Φk+1 = 4Φk −2τ2GkΦ −

[
(2−γτ)I+Rk−1H(α)

]
Φk−1, (3.6.5)

for each k ∈ IK−1, such that Φ0 = ϕ0 and δ(1)
t Φ0 = ϕ1. For the sake of convenience, a Matlab

implementation of an even simpler form of this scheme will be provided in A.3. It is worth
pointing out once more that the simulations obtained in Examples 3.6.1 and 3.6.2 were
obtained using an implementation of (3.3.18), which is more complicated. The computations
were performed in Matlab 8.5.0.197613 (R2015a) on a ©Sony Vaio PCG-5L1P laptop computer
with Fedora 31 as operating system.

In the expression (3.6.5), I is the identity matrix of size (M +1)× (M +1), and we let

Φk =
(
Φk

0,Φk
1, . . . ,Φk

M

)⊤
, ∀k ∈ IK , (3.6.6)

GkΦ =
(
F ′(Φk

0),F ′(Φk
1), . . . ,F ′(Φk

M )
)⊤

, ∀k ∈ IK , (3.6.7)

ϕ0 = (ϕ0(x0),ϕ0(x1), . . . ,ϕ0(xM ))⊤ , (3.6.8)
ϕ1 = (ϕ1(x0),ϕ1(x1), . . . ,ϕ1(xM ))⊤ . (3.6.9)

Obviously, the symbol ⊤ in these expressions represents the matrix operation of transposition.
Meanwhile, the matrix H(α) has size (M + 1) × (M + 1). Using the properties summarized in
Lemma 3.3.4, the matrix H(α) can be presented as

H(α) =



g
(α)
0 g

(α)
1 g

(α)
2 · · · g

(α)
M

g
(α)
1 g

(α)
0 g

(α)
1 · · · g

(α)
M−1

g
(α)
2 g

(α)
1 g

(α)
0 · · · g

(α)
M−2

...
...

... . . . ...
g

(α)
M g

(α)
M−1 g

(α)
M−2 · · · g

(α)
0


. (3.6.10)

Theorem 3.6.3 (Solvability). The recursive scheme (3.6.5) has a unique solution for any
set of initial conditions.

Proof. Notice that Φ0 and Φ1 are defined through the initial conditions, so suppose that Φk−1

and Φk have been calculated already, for some k ∈ IK−1, and let Ak+1 = (2+γτ)I+Rk+1H(α).
Let us represent Ak+1 = (ajl), where j, l ∈ IM . Notice that the properties stated in Lemma
3.3.4 imply that

M∑
l=0
l ̸=j

|ajl| =Rk+1
M∑
l=0
l ̸=j

|g(α)
j−l| = −Rk+1

M∑
l=0
l ̸=j

g
(α)
j−l ≤Rk+1g

(α)
0 < ajj , ∀j ∈ IM . (3.6.11)
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This means that the matrix Ak+1 is strictly diagonally dominant, so invertible. As a
consequence, it follows that the kth vector equation in (3.6.5) has a unique solution for Φk+1.
The conclusion follows now using induction.

Definition 3.6.4. A real matrix is a Z-matrix if all its off-diagonal entries are non-positive.

Definition 3.6.5. We say that a square real matrix A is a Minkowski matrix if the following
are satisfied:

(i) A is a Z-matrix,

(ii) all the diagonal entries of A are positive, and

(iii) there is a diagonal matrix D with positive diagonal entries, such that AD is strictly
diagonally dominant.

As a side note, the matrices Ak of Theorem 3.6.3 are Minkowski matrices. Minkowski
matrices are important in numerical analysis because they are nonsingular matrices, and all
the entries of their inverses are positive numbers. Several characterizations of Minkowski
matrices can be found in [86]. Moreover, it is important to remark that the matrices Ak do
not depend on Φ.

Lemma 3.6.6 (Chen et al. [17]). Let A be a real matrix of size M ×M that satisfies

M∑
j=1
j ̸=i

|aij | ≤ |aii|−1, ∀i ∈ IM . (3.6.12)

Then ∥v∥∞ ≤ ∥Av∥∞ is satisfied for all v ∈ RM .

In the following results, Ak will denote the matrix introduced in the proof of Theorem 3.6.3.
Moreover, Bk will be the matrix of size (M+1)×(M+1) defined by Bk = (2−γτ)I+RkH(α),
for each k ∈ IK .

Lemma 3.6.7. If k ∈ IK and Φ ∈ Vh then ∥Φ∥∞ ≤ ∥AkΦ∥∞.

Proof. Using the same argument as in the proof of Theorem 3.6.3, we readily note that

M∑
l=0
l ̸=j

|ajl| ≤Rk+1g
(α)
0 < 1+γτ +Rk+1g

(α)
0 = |ajj |−1, ∀j ∈ IM . (3.6.13)

The conclusion is now a straightforward consequence of Lemma 3.6.6.

Definition 3.6.8. For each real matrix B of size M ×M , the infinity norm of B is defined
by

∥B∥∞ = sup
{

∥Bv∥∞ : v ∈ RM such that ∥v∥∞ = 1
}

= max
1≤i≤M

M∑
j=1

|bij |. (3.6.14)
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Lemma 3.6.9. Let C ′ ≥ 0 satisfy |f(t)| ≤ C ′, for all t ∈ [0,T ]. If γτ < 2 then

∥Bk∥∞ < 2−γτ +2τ2h−1C ′g
(α)
0 , ∀k ∈ IK . (3.6.15)

Proof. Beforehand, notice that Bk is a symmetric matrix. Now, let j ∈ IM and observe that

M∑
l=0

|bjl| = 2−γτ +Rkg
(α)
0 +Rk

M∑
l=0
l ̸=j

|g(α)
j−l| ≤ 2−γτ +Rkg

(α)
0 −Rk

∞∑
l=−∞
l ̸=0

g
(α)
l

= 2−γτ +2Rkg(α)
0 .

(3.6.16)

Obviously, Rk ≤ τ2h−1C ′g
(α)
0 , whence the conclusion of the theorem readily follows.

The following result establishes the stability of the linear scheme (3.6.5). The quadratic
convergence of this method will be obviously a consequence of Lax’s equivalence theorem.

Theorem 3.6.10 (Stability). Fix h,τ ∈ R∪{0} such that γτ < 2. If f is bounded on [0,T ]
and F ′ is Lipschitz on R then there exist constants C1,C2 ∈ R+ ∪{0} such that, for any two
solutions Φ and Ψ of (3.3.18) corresponding to the initial conditions Φ0 and Ψ0, respectively,
the following is satisfied:

∥εk+1∥∞ ≤ C1∥ε0∥∞ +C2∥ε1∥∞, ∀k ∈ IK−1. (3.6.17)

Proof. Beforehand, observe that the hypotheses guarantee that there exists C ′ ≥ 0 such that
(3.6.15) is satisfied. On the other hand, let C ′′ ≥ 0 be a Lipschitz constant for the function
F ′ on R. Then

∥εk+1∥∞ ≤ ∥Ak+1(Φk+1 −Ψk+1)∥∞ ≤ 4∥εk∥∞ +2τ2∥GkΦ −GkΨ∥∞ +∥Bk−1εk−1∥∞

≤ (4+2τ2C ′′)∥εk∥∞ +(2−γτ +2τ2h−1C ′g
(α)
0 )∥εk−1∥∞, ∀k ∈ IK .

(3.6.18)

Using a recursive argument, it is easy to show that there exist constants C1,C2 ≥ 0 which
are independent of Φ and Ψ, such that the inequality (3.6.17) is satisfied.
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Conclusions

Conclusions from Chapter 1

In this work, we considered a multi-dimensional equation with an arbitrary potential, general
time-dependent diffusion and an energy function. Motivated by these facts, we proposed a
finite-difference discretization of our model. The scheme considers an associated discrete
energy and we established a formula for the discrete rate of change of energy. The methodology
was implemented computationally, and some simulations were produced.

The simulations are in qualitative agreement with some results available in the literature
on the presence of bubble-like solutions. We confirmed numerically that the energy of Higgs
boson equation in the de Sitter space-time is a decreasing function of time, in agreement
with the theory in the literature. On the other hand, various avenues of research open after
the completion of this work. To start with, the rigorous analysis of the stability and the
convergence of the scheme proposed here is a task that must be tackled in a future work.
Moreover, extending the present approach to the three-dimensional scenario would be a
physically meaningful direction of investigation. The use of such methodology could be
helpful in elucidating novel results on the solutions of Higgs boson equation in the de Sitter
space-time.

Conclusions from Chapter 2

In this work, we investigated the radially symmetric solutions of a generalization of the Higgs
boson equation in the de Sitter space-time. The model investigated here is a three-dimensional
system with initial-boundary data on a sphere with center at the origin of R3. The system
has an energy functional which is dissipated with respect to time, and we expressed the
mathematical model, the total energy and the rate of change of energy in terms of the new
radial variable. Using a finite-difference methodology, we proposed an implicit discrete model
to approximate the solutions of the radially symmetric Higgs equation of interest. At the
same time, a discrete form of the total energy of the system was provided, and we showed that
the discrete model is a dissipative technique. The existence of solutions for any set of initial
conditions was established using Brouwer’s fixed-point theorem, and we provided a formula
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for the dissipation of energy. The numerical properties of quadratic consistency, stability
and quadratic convergence were theoretically proved. The uniqueness of discrete solutions
was obtained as a consequence of stability. It is worth pointing out that the properties
of stability and convergence were also proved using a discrete form of the energy method.
Some numerical simulations were provided to show the effectiveness of our approach. In
particular, we provided illustrations of radially symmetric solutions of the mathematical
model, and exhibited the presence of bubble-like solutions of the mathematical model. For
the convenience of the reader and for reproducibility purposes, we also provided Matlab®

functions to obtain the approximations to the solutions of the continuous model. In various
senses, this manuscript improves some previous reports available in the literature to solve
numerically the Higgs boson equation in the de Sitter space-time.

After the completion of this work, there are various avenues of research which remain open.
From the physical point of view, the present methodology and the code available at the end of
this work may be helpful simulation tools in the investigation of radially symmetric solutions
of the Higgs boson equation in the de Sitter space time. However, from the theoretical point
of view, the applicability of the present approach to other different problems may be also a
topic of interest in various areas of applied mathematics. As one of the reviewers pointed out,
the present approach and the theoretical analysis may find applications in the investigation of
the traffic dynamics on transportation networks [58, 38, 83, 24, 22], general urban networks
[20, 12, 15] and urban networks and supply chains [21, 23]. Moreover, another topic of interest
may be the feasibility to extend the present approach using differential quadrature methods
[73, 105, 106]. In addition, a possible extension of the present methodology to fractional
forms of variants of the Higgs boson equation in the de Sitter space-time. Some progress has
been reported already [63], but the design of fully Hamiltonian schemes for dissipative wave
equations is still a question whose answer is missing in the literature. There are already some
reports available in the literature in those scenarios [64, 70, 65], but most of the schemes
proposed in those works are Hamiltonian discretizations in the regimes without damping.

Conclusions from Chapter 3

For the first time in the literature, the present work reports on a finite-difference discretization
for the Higgs boson equation in the De Sitter space-time, which is capable of preserving
the energy properties of the continuous model. The model investigated in this manuscript
is actually a general form of the Higgs boson equation. Indeed, the mathematical model
investigated in this work considers the presence of fractional diffusion of the Riesz type, a finite
(though arbitrary) number of spatial dimensions, an extended time-dependent diffusion factor,
a generalized potential function and an arbitrary constant damping coefficient. We noted that
the mathematical model has an associated energy functional, and we calculated its dissipation
of energy. The finite-difference model proposed to solve the continuous system also considers
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a discretized form of the energy functions, and the discrete system satisfies energy properties
which resemble the continuous counterpart. In that sense, the numerical integrator is a three-
step implicit Hamiltonian methodology. We proved thoroughly the consistency properties of
both the discrete equations of motion and the discrete energy densities. The method is a
stable technique which is quadratically convergent. Some simulations were conducted in order
to assess the applicability of the methodology. In particular, our simulations exhibited the
existence of “bubble” solutions in the non-fractional scenario, when the analytical apparatus
available in the literature predicted them. It is worth pointing out that these structures were
also found in the fractional case, for which no analytical theory is available to this day.

Before closing this work, we must mention that there are various avenues of research
which still remain open, not mentioning the potential physical applications [66, 68, 67]. For
example, the methodology reported in this work is an implicit technique which is difficult to
be implemented computationally for dimensions higher than 1. A natural question is whether
it is possible to provide an explicit discretization for the model (3.2.13) which can alleviate
this shortcoming. Moreover, in view of the physical relevance of the three-dimensional
scenario and the computational cost for that case, it would be expected to wonder if parallel
implementations of such explicit techniques. Such computational implementation would be a
helpful tool in the investigation of the solutions of fractional forms of Higgs boson equation in
the de Sitter space-time and, in particular, in the search for more analytical conditions which
guarantee the existence of “bubble” solutions. Also, it is important to point out that the
discrete methodology (3.3.18) has interesting variational properties. However, the expression
for the discrete rate of change of energy provided in Theorem 3.4.5 cannot be simplified to
agree with the conclusion of its continous counterpart, Corollary 3.2.6. This is perhaps the
most important analytical limitation of our approach. Various discretizations for the discrete
energy can be proposed, but the present is the expression that provides the most interesting
structural and numerical properties.
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A Appendices

A.1

In this appendix, we will provide a Matlab® implementation of the finite-difference scheme
(2.3.11) to approximate the solutions of the problem (2.2.10). The code may be modified and
improved freely by the interested reader. Various input and output parameters are employed
in this implementation of the numerical model, all of them related to the mathematical model
and the computational setting described in the previous sections. The relation between the
computational variables and the model/numerical parameters is described next.

• Input parameters. All the input parameters may be modified within the Matlab®

code.

• Model parameters. Those parameters correspond to the expression of the
problem (2.5.1).

∗ lambda= λ.

∗ mu= µ.

• Space-time domain parameters.

∗ T= T .

∗ L= L.

• Computational parameters.

∗ h= h.

∗ tau= τ .

• Initial conditions.

∗ phi0= ϕ0.
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∗ phi1= ϕ1.

• Output variables.

∗ r= (rk)Kk=0.

∗ PSI= (ΨN
k )Kk=0.

∗ H= (HN
k )Kk=0.

∗ t= (tn)Nn=0.

∗ E= (En)Nn=0.

f u n c t i o n [ r , PSI ,H,E] = HiggsRadia l

lambda = 2 ;
mu = 3 ;

L = 1 ;
T = 7 ;
tau = 0 . 0 0 2 ;
h = 0 . 0 0 2 ;
r = (h : h : L) ' ;
t = ( 0 : tau :T) ' ;
M = s i z e ( r , 1 ) ;
N = s i z e ( t , 1 ) ;

phi0 = 3∗B( r , 0 . 5 , 0 . 3 ) ' ;
phi1 = 0∗ phi0 ;
p s i 0 = r . ∗ phi0 ;
p s i 1 = r . ∗ phi1 ;

PSI1 = z e r o s (M, 1 ) ;
H = z e r o s (M,N−2) ;
E = z e r o s (N−2 ,1) ;
J = z e r o s (M,M) ;
F_x = z e r o s (M, 1 ) ;

S = ones (M, 1 ) ;
l = 1 ;
PSI1 = (2∗ ps i0 −2∗tau ∗ p s i 1
−f ( t (1 ) ) ∗( tau /h) ^ 2 ∗ ( [ p s i 0 ( 2 :M) ;0] −2∗ p s i 0 +[0 ; p s i 0 ( 1 :M−1) ] ) ...
−3∗tau ∗ p s i 0+tau ^2∗ r . ∗ Fprim ( phi0 ) ) /(2+3∗ tau ) ;

PSI = z e r o s (M,N−2) ;
PSI ( : , 1 : 3 ) = [ PSI1−2∗tau ∗ r . ∗ phi1 , r . ∗ phi0 , PSI1 ] ;

f o r n=3:N−1
PSI ( : , n+1) = (2∗ PSI ( : , n )−PSI ( : , n−1)...
+ f ( t (n−1) ) ∗( tau /h) ^ 2 . ∗ ( [ PSI ( 2 :M, n) ; 0]−2∗PSI ( : , n ) +[0 ; PSI ( 1 :M−1,n) ] ) ...
+ 3∗ tau ∗PSI ( : , n )−tau ^2∗ r . ∗ Fprim ( PSI ( : , n ) . / r ) ) /(1+3∗ tau ) ;

l = 1 ;
S = ones (M, 1 ) ;
whi l e l <100 && norm(S , i n f ) >10^(−9)
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l = l +1;
F_x = PSI ( : , n+1) − 2∗PSI ( : , n ) + PSI ( : , n−1)...
− f ( t (n−1) ) ∗( tau /h) ^ 2 . ∗ ( [ PSI ( 2 :M, n) ; 0]−2∗PSI ( : , n ) +[0 ; PSI ( 1 :M−1,n) ] ) ...
+ 3∗ tau ∗( PSI ( : , n+1)−PSI ( : , n ) ) + tau ^2∗ r . ∗ Fprim ( PSI ( : , n ) . / r ) ;

J = z e r o s (M,M) ;
J ( ( 0 :M−1)∗M+(1:M) ) = 1 + 3∗ tau ;
S = l i n s o l v e ( J,−F_x) ;
PSI ( : , n+1) = PSI ( : , n+1) + S ;

end
H( : , n−2) = 4∗ pi ∗exp (3∗ t (n−2) ) ∗(...

0 .5/ tau ∗( PSI ( : , n+1)−PSI ( : , n ) ) .^2 ...
+1.5/(2∗ tau ) ∗( PSI ( : , n+1)−PSI ( : , n ) ) . ∗ ( PSI ( : , n+1)+PSI ( : , n ) ) ...

+(0.5/h^2) ∗ f ( t (n−2) ) ∗ ( [ 0 ; PSI ( 2 :M, n+1)]−PSI ( : , n+1) ) . ∗ ( [ 0 ; PSI ( 2 :M, n) ]−PSI ( : , n ) )
+r . ^ 2 . ∗F( PSI ( : , n ) . / r ) ) ;

E(n−2) = h∗sum(H( : , n−2) ) ;
end

end

f u n c t i o n Fp_k = Fprim ( phik )
mu = 3 ; lambda = 2 ;
Fp_k = −mu^2∗ phik + lambda∗ abs ( phik ) . ^ 2 . ∗ phik ;

end

f u n c t i o n F_k = F( phik )
mu = 3 ; lambda = 2 ;
F_k = −0.5.∗mu^2∗ phik .^2 + 0.25∗ lambda∗ abs ( phik ) . ^ 4 ;

end

f u n c t i o n y = f ( t )
y = exp(−2∗ t ) ;

end

f u n c t i o n Bb = B( r ,C,R)
Bb = exp ( (1/R^2) − 1 . / ( R^2−(r−C) .^2 ) ) . ∗ ( abs ( r−C)<R) ;
Bb( i snan ( Bb ) ) = 0 ;
Bb = Bb ' ;

end

A.2

This section is devoted record some alternative expressions of the equations (3.4.7)–(3.4.10).
With such expressions, one can establish alternative forms of the discrete rate of change of
energy given in Theorem 3.4.5. Those expressions are provided in the following lemma, which
is stated without proof in view of the similarity to Lemma 3.4.4.

Lemma A.2.1. Let Φ ∈ Vh be a solution of (3.3.18), and (j,k) ∈ J × IK−2. The following
identities hold:

1
2δt

[
eγtk−1∥δtΦk−1

j ∥2
x,2

]
= δte

γtk−1

2 ∥δtΦk−1
j ∥2

x,2 +eγtk
〈
δ

(2)
t Φk

j , δ
(1)
t Φk

j

〉
x
,
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1
2δt

[
γeγtk−1

〈
δtΦk−1

j ,µtΦk−1
j

〉
x

]
= γeγtk−1

2
〈
δ

(1)
t Φk

j , δtΦk−1
j

〉
x

+ γeγtk−1

2
〈
δ

(2)
t Φk

j ,µtΦk
j

〉
x

+ γδte
γtk−1

2
〈
δtΦk

j ,µtΦk
j

〉
x

= γeγtk−1

2
〈
δ

(1)
t Φk

j , δtΦk
j

〉
x

+ γeγtk−1

2
〈
δ

(2)
t Φk

j ,µtΦk−1
j

〉
x

+ γδte
γtk−1

2
〈
δtΦk

j ,µtΦk
j

〉
x
,

1
2δt

[
eγtk−1f(tk−1)

〈
δ(α/2)
x Φk

j , δ
(α/2)
x Φk−1

j

〉
x

]
= δte

γtk−1

2 f(tk−1)
〈
δ(α/2)
x Φk

j , δ
(α/2)
x Φk−1

j

〉
x

+ eγtk

2 δtf(tk−1)
〈
δ(α/2)
x Φk

j , δ
(α/2)
x Φk−1

j

〉
x

−eγtkf(tk)
〈
δ(α)
x Φk

j , δ
(1)
t Φk

j

〉
x

= δte
γtk−1

2 f(tk)
〈
δ

(α/2)
(x) Φk

j , δ
(α/2)
x Φk−1

j

〉
x

+ eγtk−1

2 δtf(tk−1)
〈
δ(α/2)
x Φk

j , δ
(α/2)
x Φk−1

j

〉
x

−eγtkf(tk)
〈
δ(α)
x Φk

j , δ
(1)
t Φk

j

〉
x

and

δt
(
eγtk−1µt

〈
F (Φk−1

j ,1)
〉
x

)
= eγtk−1

〈
δ

(1)
t,ΦF (Φk

j ), δ
(1)
t Φk

j

〉
x

+ δte
γtk−1µt

〈
F (Φk

j ),1
〉
x
.

A.3

The following is a Matlab implementation of the numerical model (3.6.5). It is important to
mention that the code considers exact initial data. Some straightforward changes readily
lead to the implementation of the full finite-difference scheme (3.6.5).
f u n c t i o n [ x , t , phi3 , LocalE , TotalE ]= h iggs

f u n c t i o n y=b a l l (x ,C,R)
L=length ( x ) ;
y=z e r o s (1 ,L) ;
f o r l =1:L

i f abs ( x ( l )−C)<R
y ( l )=exp ( 1 . /R.^2 −1./(R.^2 −(x ( l )−C) . ^ 2 ) ) ;

end
end

end

a=−1;
b=2;
T=0.03;
h=0.01;
tau =0.00005;

mu=3;
alpha =2;
gama=1;
lambda=2;

x=a : h : b ;
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t =0: tau :T;

M=length ( x ) ;
K=length ( t ) ;

g=z e r o s (1 ,M) ;
g (1 )=gamma( alpha +1)/gamma( 0 . 5 ∗ alpha +1)^2/h^ alpha ;
f o r k=1:M−1

g ( k+1)=(1−(alpha +1) / ( 0 . 5 ∗ alpha+k ) ) ∗g ( k ) ;
end

I=eye (M) ;
H=z e r o s (M,M) ;
f o r i =1:M

f o r j =1:M
H( i , j )=g ( abs ( i−j ) +1) ;

end
end

R=tau .^2∗ exp ( −2.∗ t ) . / h^ alpha ;

phi1=b a l l (x , 0 . 5 , 0 . 3 ) ' ;
phi2=phi1 ;

TotalE=z e r o s (1 ,K) ;

f r a c 1=H∗ phi1 ;
F1=−0.5.∗mu. ^ 2 . ∗ phi1 .^2+0.25 .∗ lambda . ∗ abs ( phi1 ) . ^ 4 ;

f o r k=2:K−1
A=(2+gama∗ tau ) . ∗ I+R( k+1) . ∗H;
B=(2−gama∗ tau ) . ∗ I+R(k−1) . ∗H;
G=lambda . ∗ phi2 . ∗ abs ( phi2 ) .^2−mu. ^ 2 . ∗ phi2 ;
v=4∗phi2 −2.∗ tau . ^ 2 . ∗G−B∗ phi1 ;

f r a c 2=H∗ phi2 ;
F2=−0.5.∗mu. ^ 2 . ∗ phi2 .^2+0.25 .∗ lambda . ∗ abs ( phi2 ) . ^ 4 ;
LocalE=exp (gama∗ t (k−1) ) . ∗ ( 0 . 5 . ∗ ( phi2−phi1 ) . ^ 2 . / tau / tau...

+0.25.∗gama . ∗ ( phi2−phi1 ) . ∗ ( phi2+phi1 ) . / tau...
+0.5 .∗ exp(−2∗ t (k−1) ) . ∗ f r a c 2 . ∗ f r a c 1 +0.5 .∗( F1+F2) ) ;

TotalE ( k )=tau ∗sum( LocalE ) ;

phi3=l i n s o l v e (A, v ) ;
phi1=phi2 ;
phi2=phi3 ;
f r a c 1=f r a c 2 ;
F1=F2 ;

end
end

In light of this code, the method (3.6.5) is obviously a simple scheme in the sense that
its computational implementation is relatively easy. Indeed, once that the matrices A and
B of the code have been constructed at each iteration, the resolution of the linear system
describing (3.6.5) is straightforward. In our case, we have used the Matlab function linsolve
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to solve the linear system. It is important to point out that the matrix A is a full matrix
in the fully fractional case. This fact could result in a slow performance of the scheme for
relatively large matrices. This method could be combined with the full nonlinear scheme
(3.3.18) to provide the initial approximations needed by Newton’s method.
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