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Resumen

En este trabajo se presenta un método simple, de diferencias finitas para aproximar
soluciones positivas y acotadas de una ecuación diferencial parcial parabólica con la
difusión no lineal que describe la dinámica de crecimiento de colonias de bacterias.
Un teorema sobre la existencia y unicidad de soluciones positivas y acotadas del
modelo considerado se encuentra disponible en la literatura estándar; sin embargo,
las soluciones anaĺıticas para este modelo son dif́ıciles de calcular en forma exacta.
El enfoque lineal utilizado en este manuscrito proporciona una manera conveniente
de representar el método en forma de vector a través de la multiplicación de las
nuevas aproximaciones por una matriz cuadrada que, bajo condiciones adecuadas,
resulta ser una M -matriz. Los hechos de que cada M -matriz es invertible y que todas
las entradas de sus inversas son números positivos, se emplean para determinar las
condiciones que garantizan que los perfiles iniciales positivos y acotados devienen en
nuevas aproximaciones positivas y acotadas. El método es relativamente simple, el
tamaño de paso temporal es variable en general, y su implementación computacional
eficiente hace uso del método de gradiente de bi-conjugado estabilizado. Propor-
cionamos simulaciones numéricas con el fin de evidenciar que el método preserva en
la práctica los aspectos positivos y acotados de las aproximaciones. Desde un punto
de vista cient́ıfico, nuestra técnica se puede emplear en posibles trabajos futuros
relacionados con la simulación controlada del crecimiento de colonias microbianas
en las ciencias de los materiales y la ingenieŕıa biomédica.
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Asbtract

In this work, we present a simple, finite-difference method to approximate positive
and bounded solutions of a parabolic partial differential equation with nonlinear
diffusion which describes the growth dynamics of colonies of bacteria. A theorem
on the existence and uniqueness of positive and bounded solutions of the model
considered is available in the standard literature; however, analytical solutions for
this model are difficult to calculate in exact form. The linear approach used in
this manuscript provides a convenient way to represent the method in vector form
through the multiplication of the new approximations by a square matrix which,
under suitable conditions, turns out to be an M -matrix. The facts that every M -
matrix is invertible and that all the entries of their inverses are positive numbers,
are employed to elucidate conditions which guarantee that positive and bounded ini-
tial profiles evolve into positive and bounded new approximations. The method is
relatively simple, the temporal step-size is variable in general, and its efficient com-
putational implementation makes use of the stabilized bi-conjugate gradient method.
We provide numerical simulations in order to evince that the method preserves in
the practice the positive and the bounded characters of the approximations. From
a scientific perspective, our technique may be employed in possible future works
related to the controlled simulation of the growth/decay of microbial colonies, in
material science and biomedical engineering.

4



Introduction

Several phenomena in disciplines such as biology, chemistry, physics and economics
require complex models which are described by the interaction and change of mul-
tiple variables through space and time. Those interactions can often be translated
into the rigorous and well defined language of partial differential equations (PDE);
differential equations that relate the partial derivatives of unknown multivariable
functions. In the context of chemistry, the type of equations that we study in this
manuscript describe the evolution of the concentration of chemical species in a fluid
due to three factors: Advection, diffusion and reaction. Advection is the transport of
a conserved property or substance by a fluid due to the fluid’s bulk motion, e.g. the
transport of granular material in a river by water flow. Diffusion is also a transport
mechanism which causes the substances to spread out over a surface in space, e.g.
when a drop of dye falls into still water and it travels from regions of high concen-
tration to regions of low concentration. Reaction is, according to IUPAC, a process
that leads to the transformation of one set of chemical substances into another, e.g.
when elemental sodium is placed in water and produces hydrogen which self-ignites.
PDE that involve these three phenomena are termed Advection-Diffusion-Reaction
equations (ADR’s). The next logical step when one has an ADR is to solve it. A
naive approach would be to use the current analytical tools at our disposal to extract
a solution. However simple the strategy, the truth is that solving these equations in
their more general form by means of analytic techniques is fairly impossible. The
way to overcome that difficulty is with the aid of numerical methods. Numerical
methods for solving PDE include but are not restricted to the following: Finite dif-
ferences, finite elements, finite volumes, spectral, meshfree, domain decomposition
and multigrid. Among these, the one that has been most extensively studied and the
one we use is the finite difference method (FDM) in which a domain is discretized
and functions are represented by the calculated values at certain grid points on
which the derivatives are approximated by differences. Once the equation and the
numerical method have been defined, the finite difference scheme has to be designed.
This last part is obviously the most complicated because at this point we are not
only concerned with the approximations of the solutions, but also with their nature;
since the model comes from a physical context, the solutions may only have sense
under certain circumstances such as non-negativity, boundedness or monotonicity,
therefore the approximations should likewise.

This manuscript is divided in 6 chapters which can be treated in an independent
way so that the reader might jump to the desired section without loosing sense
of content or continuity. In the first five chapters the concept and properties of
M -matrices play a major role as a crucial tool to derive properties. Chapter one
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presents a technique to compute bounded solutions of a Newell-Whitehead-Segel
equation. In chapter two conditions to guarantee the non-negativity and bound-
edness of the approximations to a FitzHugh-Nagumo equation are provided. In
Chapter three we propose a method that preserves the boundedness and positivity
of the solutions and the skew-symmetry of the Burgers-Huxley equation from fluid
dynamics. Chapter four considers a one dimensional, time-delayed, advective ver-
sion of the Fisher-KPP equation from population dynamics. Chapter five develops a
method to compute solutions of a non-linear ADR model in two spatial dimensions.
Chapter six comes in the form of an epilogue which describes a non-linear iterative
technique to approximate solutions of Burgers-Huxley equation.
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Chapter 1

Preliminaries

In general, let us consider an open, connected, spatial domain Ω ⊂ R3 which
physically represents the substrate on which a biological film will grow. For ev-
ery x = (x, y, z) ∈ Ω, let u(x, y, z, t) represent the biomass density at the point
x and the time t ≥ 0, normalized with respect to the maximum biomass density.
Suppose that u : Ω× R+ → R is twice differentiable. Let α and β be real numbers
with α, β ≥ 1, and let δ be a relatively small, positive number. Let D : [0, 1) → R
be the function given by

D(u) = δ
uβ

(1− u)α
, ∀u ∈ [0, 1). (1.1)

Let ∇ represent the gradient operator in the three spatial dimensions. Moreover,
suppose that r : Ω × R+ → R is a continuous function which physically describes
the rate at which biomass is created. Under these conventions, the equation that
governs the growth dynamics of biological mass on the substrate Ω is provided by

∂u

∂t
= ∇ · (D(u)∇u) + ru, ∀(x, t) ∈ Ω× R+. (1.2)

The function D(u) is a nonlinear diffusion factor, which physically is telling us how
the biomass is spreading in the domain. Its expression —as given by (1.1)— is in
agreement with various experimental observations [7], one of them being that the
spread of biomass is significant when u is close to the maximum biomass density,
namely, when u ≈ 1. Otherwise, the spatial rate of diffusion of the biomass should
be relatively small, which is the rationale behind the choice of δ.

Evidently, suitable, initial-boundary conditions must be imposed. Throughout
this work, we will assume that the initial data are given by the formula

u(x, 0) = ϕ(x), ∀x ∈ Ω, (1.3)

where ϕ : Ω → R is a function with range in [0, 1], and Ω denotes the closure of Ω
in R3. The function u physically represents the fraction of the bacterial population
together with the extracellular polymeric substances, and we may think of the spatial
domain Ω as the topological interior of a glass substrate or a Petri dish.

In general, the partial differential equation (1.2) is a model for which is difficult
to obtain analytical solutions given arbitrary initial-boundary data, whence the
need to develop reliable numerical methods to approximate its complex dynamics is
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pragmatically justified. However, some analytical results on the qualitative behavior
of its solutions are available in the literature.

Let F : [0, 1)→ R be defined by the expression

F (u) =

∫ u

0

vβ

(1− v)α
dv, ∀u ∈ [0, 1). (1.4)

With this nomenclature at hand, the following proposition justifies the numerical
investigation reported in this work.

Proposition 1. Let r be a nonnegative function, and suppose that ϕ is a nonnegative
function such that ϕ ∈ L∞(Ω), F (ϕ) ∈ H1

0 (Ω), and ‖ϕ‖L∞(Ω) < 1. Then there exists
a unique solution u to (1.2) subject to the initial condition (1.3), satisfying the
following properties:

1. u ∈ L∞(Ω× R+) ∩ C(L2(Ω), [0,∞)),

2. F (u) ∈ L∞(H1(Ω),R+) ∩ C(L2(Ω), [0,∞)),

3. 0 ≤ u(x, t) ≤ 1 for every (x, t) ∈ Ω× R+ and ‖u‖L∞(Ω×R+) < 1, and

4. u(x, t) = 0 for every (x, t) ∈ ∂Ω× R+.

Proof. See Theorem 2.1 in [8].

Where, L2(Ω) is the space of square integrable functions, H1 is a Sobolev space
also denoted as W 1,2(Ω) consisting of the functions f : Ω→ R sucht that ||F ||H1 <
∞ and C(L2(Ω), [0,∞)) consists of the square continuous integrable functions on
[0,∞) .

As a consequence, the existence of positive and bounded solutions of (1.2) is guar-
anteed under the premises of Proposition 1. Qualitatively, numerical simulations
performed in [6] have shown that the solution reaches the maximum density in
finite time when a nonzero initial profile and homogeneous Neumann boundary con-
ditions are imposed. If homogeneous Dirichlet data are used on a portion or on all
the boundary of Ω, then the solution is less than 1 almost everywhere, for every
t ∈ R+.

Remark 2. It is important to remark that Equation (1.2) is a simplification of a
more general biofilm model derived in [7] under suitable physical assumptions, such
as

(a) the presence of a sharp front of biomass at the fluid/solid transition,

(b) the existence of a threshold of biomass density,

(c) the fact that the biomass spreading is significant only when the biomass is
close to the threshold,

(d) the application of reaction kinetics mechanisms in the production of biomass,

(e) the compatibility of the biomass spreading mechanism with hydrodynamics
and with nutrient transfer/consumption models,
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among other physically motivated hypotheses. One readily notices that the expres-
sion of the diffusion factor D, as given by (1.1), satisfies conditions (b) and (c)
above. On the other hand, the mathematical assumptions provided in Proposition
1 yield sufficient conditions for the existence and uniqueness of solutions of (1.2)
which satisfy the physical constraints. It is worthwhile to mention that the authors
do not have knowledge of more general analytical results related to the existence of
positive and bounded solutions of the model (1.2).
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Chapter 2

Discretization

The present discussion will focus on the design of a numerical method for Equation
(1.2) in two spatial dimensions. Afterwards, we believe that its extension to the
three-dimensional case and its particular treatment in the one-dimensional scenario

should be straightforward. Throughout this work, we convey that Z+
= Z+ ∪ {0}.

Also, for every p ∈ Z+ with p > 1, we let Zp = {1, . . . , p− 1} and Zp = Zp ∪ {0, p}.
Let a, b, c and d be real numbers such that a < b and c < d, and let M and N be

positive integers greater than 1. From a physical perspective, consider a relatively
thin, rectangular glass substrate whose perimeter of the base is represented by the
boundary of the open rectangle Ω = (a, b)×(c, d) in R2. Following a finite-difference
methodology, we fix uniform partitions

a = x0 < x1 < . . . < xM = b, (2.1)

and
c = y0 < y1 < . . . < yN = d, (2.2)

of the intervals [a, b] and [c, d], respectively, with step sizes given respectively by
∆x = (b−a)/M and ∆y = (d−c)/N . Likewise, fix provisionally a uniform temporal
step ∆t > 0, and a uniform partition

0 = t0 < t1 < . . . < tk < . . . , ∀k ∈ Z+
(2.3)

of the interval [0,∞).

For every (m,n, k) ∈ ZM × ZN × Z+
, we employ the notations ukm,n and rkm,n to

represent a numerical approximation to the exact value of the solution u and the
exact value of the function r, respectively, at the point (xm, yn, tk). We introduce
the standard, forward-difference operators

δ+
x u

k
m,n =

ukm+1,n − ukm,n
∆x

, ∀m ∈ ZM , ∀n ∈ ZN , ∀k ∈ Z+
, (2.4)

δ+
y u

k
m,n =

ukm,n+1 − ukm,n
∆y

, ∀m ∈ ZM , ∀n ∈ ZN ,∀k ∈ Z+
, (2.5)

δ+
t u

k
m,n =

uk+1
m,n − ukm,n

∆t
, ∀m ∈ ZM ,∀n ∈ ZN ,∀k ∈ Z+

, (2.6)

which are first-order consistent approximations to the corresponding partial deriva-
tives of u with respect to x, y and t, respectively, at (xm, yn, tk). For the sake of
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convenience, we introduce the following linear operators, too:

δ−x u
k
m,n =

ukm−1,n − ukm,n
∆x

, ∀m ∈ ZM , ∀n ∈ ZN , ∀k ∈ Z+
, (2.7)

δ−y u
k
m,n =

ukm,n−1 − ukm,n
∆y

, ∀m ∈ ZM , ∀n ∈ ZN ,∀k ∈ Z+
. (2.8)

For every m ∈ ZM , every n ∈ ZN and every k ∈ Z+
, let

µ±x u
k
m,n =

ukm±1,n + ukm,n
2

, µ±y u
k
m,n =

ukm,n±1 + ukm,n
2

, (2.9)

ε±x u
k
m,n = D(µ±x u

k
m,n)δ±x u

k+1
m,n, ε±y u

k
m,n = D(µ±y u

k
m,n)δ±y u

k+1
m,n, (2.10)

εxu
k
m,n =

ε+x u
k
m,n + ε−x u

k
m,n

∆x
, εyu

k
m,n =

ε+y u
k
m,n + ε−y u

k
m,n

∆y
. (2.11)

To approximate the reaction and the diffusion terms in (1.2), we employ a
Mickens-type, non-standard approach [11, 18]. More precisely, for every m ∈ ZM ,

n ∈ ZN and k ∈ Z+
, we approximate the exact value of r(xm, yn, tk+1)u(xm, yn, tk+1)

by rk+1
m,nu

k
m,n, and the diffusion term at the point (xm, yn, tk+1) is approximated

through ∇ · (D(u)∇u) ≈ (εx + εy)u
k
m,n. Meanwhile, the partial derivative of u with

respect to t at the same point will be approximated by means of (2.6). Therefore,
the finite-difference method employed in this work to approximate the solutions of
(1.2) is given by the system of equations

δ+
t u

k
m,n = (εx + εy)u

k
m,n + rk+1

m,nu
k
m,n, (2.12)

which is valid for every m ∈ ZM , n ∈ ZN and k ∈ Z+
. At the initial time, we use

the discrete constraint u0
m,n = ϕm,n, where ϕm,n = ϕ(xm, yn) for every m ∈ ZM and

n ∈ ZN . It is easy to check that this method provides a consistent approximation
of order O((∆x)2 + (∆y)2 + ∆t), to the exact solutions of model (1.2).

Computationally, it is necessary to impose appropriate, discrete constraints on
the edges of the rectangle Ω. In our investigation, these constraints may be ho-
mogeneous, Neumann or Dirichlet conditions; in any case, these conditions may be
expressed through the identities

ukm,0 − λukm,1 = 0, ∀m ∈ ZM , (2.13)

ukm,N − µukm,N−1 = 0, ∀m ∈ ZM , (2.14)

uk0,n − νuk1,n = 0, ∀n ∈ ZN , (2.15)

ukM,n − ξukM−1,n = 0, ∀n ∈ ZN . (2.16)

Here, each of the constants λ, µ, ν and ξ refers to the boundary points (xm, a),
(xm, b), (c, yn) and (d, yn), respectively, and each of them is equal to 0 if there is a
homogeneous Dirichlet boundary condition at the point of reference, and is equal to
1 in the case of homogeneous Neumann boundary data.

Remark 3. Before we close this stage of our work, notice that each of the equations
in (1.2) may be approximated by

ψkm−1,n,xu
k+1
m−1,n + ψkm,n−1,yu

k+1
m,n−1 + φkm,nu

k+1
m,n+

ψkm,n+1,yu
k+1
m,n+1 + ψkm+1,n,xu

k+1
m+1,n = χkm,nu

k
m,n,

(2.17)
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m−1

m

m+1

n−1

n

n+1

k

k+1

Figure 2.1: Forward-difference stencil of the numerical method (2.12) around the
spatial point (xm, yn) at time tk. The circles at the kth time level represent known
approximations, while those at the time tk+1 denote the unknown estimates.

for every m ∈ ZM , n ∈ ZN and k ∈ Z+
. Let

Rx =
∆t

(∆x)2
, Ry =

∆t

(∆y)2
. (2.18)

Then, the coefficients in this approximation of (1.2) are provided by

ψkm±1,n,x = −RxD(µ±x u
k
m,n), ψkm,n±1,y = −RyD(µ±y u

k
m,n) (2.19)

φkm,n = 1 +Rx

[
D(µ+

x u
k
m,n) +D(µ−x u

k
m,n)

]
+Ry

[
D(µ+

y u
k
m,n) +D(µ−y u

k
m,n)

]
, (2.20)

χkm,n = 1 + rk+1
m,n∆t. (2.21)

In fact, Figure 2.1 presents the forward-difference stencil of the finite-difference
scheme (2.12) in view of this new presentation of the method. When D assumes
the form (1.1), each of the expressions in (2.19) is non-positive for example Rx is
positive and D(µ±x u

k
m,n), is also positive thus these terms are non-positive and each

of those in (2.20) are greater than one, as we said Rx,y are positive and D is also
positive thus it is clear that these terms are greater than one.
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Chapter 3

Vector representation

Beforehand, we must mention that we will use herein the nomenclature introduced
in the previous sections.

It is important to notice that each iteration of the recursive method (2.12) may

be rewritten conveniently in vector form. Indeed, for every k ∈ Z+
, let uk be the

lexicographically ordered vector of the approximate solution at the time tk. In other
words, let

uk = (uk0,0, u
k
0,1, . . . , u

k
0,N , u

k
1,0, u

k
1,1, . . . , u

k
1,N , . . . , u

k
M,0, u

k
M,1, . . . , u

k
M,N). (3.1)

Let u0 be the vector with the information on the initial approximation, that is,

u0 = (ϕ0,0, ϕ0,1, . . . , ϕ0,N , ϕ1,0, ϕ1,1, . . . , ϕ1,N , . . . , ϕM,0, ϕM,1, . . . , ϕM,N), (3.2)

and let I be the identity matrix of size (N + 1)× (N + 1). For every m ∈ ZM and

every k ∈ Z+
, let Bk

m be the matrix of the same size as I given by

Bk
m =



0 0 0 · · · 0 0
0 χkm,1 0 · · · 0 0
0 0 χkm,2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · χkm,N−1 0
0 0 0 · · · 0 0


, (3.3)

and let Bk be the matrix defined by blocks through

Bk =



0 0 0 · · · 0 0 0
0 Bk

1 0 · · · 0 0 0
0 0 Bk

2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · Bk
M−2 0 0

0 0 0 · · · 0 Bk
M−1 0

0 0 0 · · · 0 0 0


. (3.4)

Evidently, Bk is a square matrix with (M + 1)(N + 1) rows and a similar amount
of columns, needless to mention that the symbol 0 in the definition of Bk represents
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the zero matrix of size (N+1)× (N+1). In addition, for every m ∈ ZM and k ∈ Z+

we define the matrices Akm and Ck
m of sizes (N + 1)× (N + 1) by

Akm =



1 −λ 0 · · · 0 0
ψkm,0,y φkm,1 ψkm,1,y · · · 0 0

0 ψkm,1,y φkm,2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · φkm,N−1 ψkm,N−1,y

0 0 0 · · · −µ 1


, (3.5)

and

Ck
m =



0 0 0 · · · 0 0
0 ψkm,1,x 0 · · · 0 0
0 0 ψkm,2,x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ψkm,N−1,x 0
0 0 0 · · · 0 0


. (3.6)

For every k ∈ Z+
, define the block matrix

Ak+1 =



I −νI 0 0 · · · 0 0 0
Ck

0 Ak+1
1 Ck

2 0 · · · 0 0 0
0 Ck

1 Ak+1
2 Ck

3 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · Ck

M−2 Ak+1
M−1 Ck

M

0 0 0 0 · · · 0 −ξI I


, (3.7)

which has size (M +1)(N +1)× (M +1)(N +1). With this nomenclature, the itera-
tive method (2.12) may be conveniently represented in vector form as the recursive
system of vector equations with initial condition{

Ak+1uk+1 = Bkuk, ∀k ∈ Z+
,

u0 = u0.
(3.8)

Remark 4. Clearly, the method (2.12) is implicit. At each iteration, the matrix
Ak+1 is a function of the vector uk, while Bk is a function of the time value tk+1

and the mesh grid {(xm, yn) : m ∈ ZM , n ∈ ZN}. In our computational code of
the recursive, vector system (3.8), we use an implementation of the stabilized bi-
conjugate gradient method.
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Chapter 4

Properties

In this section, we establish the fact that our method conditionally preserves the
properties of positivity and boundedness. The cornerstone in the proofs is the
concept of M -matrices. By an M-matrix we mean a square, real matrix A which
satisfies all of the following properties:

1. The off-diagonal elements of A are non-positive numbers.

2. The diagonal entries of A are positive numbers.

3. A is strictly diagonally dominant, meaning that |aii| >
∑

j 6=i |aij| where aij
denotes the entry in the i-th row and j-th column.

In our study, the importance of the M -matrices lies in the facts that they are
nonsingular, and that all the entries of their inverses are positive numbers [9]. Ev-
idently, this notion will help us establish conditions which guarantee the positivity
of the numerical approximations and, ultimately, their boundedness, too.

Let x be a real vector, and let e be the vector of the same dimension as x, all
of whose components are equal to 1. We say that x is positive if all its entries
are positive numbers; this fact is represented by the notation x > 0. Clearly, x is
non-negative if all its components are nonnegative numbers, in which case we use
the nomenclature x ≥ 0.

We use the notation x < 1 to mean that each of the components of this vector
are less than 1 and, in this case, we say that x is bounded from above by 1; evidently,
the inequality x < 1 is satisfied if and only if e − x is positive. The inequalities
0 ≤ x < 1 represent the facts that x is a nonnegative vector which is bounded from
above by 1.

Lemma 5. Let k ∈ Z+
, and suppose that 0 ≤ uk < 1. Then Ak+1 is an M-matrix.

Proof. The proof is straightforward after the closing remarks of Section 2.

We prove next that our method is positivity- and boundedness-preserving when
we consider suitable, non-constant time-steps.

Proposition 6. Let ϕ and r be nonnegative functions such that ϕ < 1. For each

k ∈ Z+
, let (∆t)k be the temporal step-size in the kth iteration. If the inequality

rkm,nu
k
m,n(∆t)k < 1− ukm,n (4.1)

is satisfied for every m ∈ ZM , n ∈ ZN and k ∈ Z+
, then 0 ≤ uk ≤ 1.
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Figure 4.1: Graphs of the approximate solution of (1.2) on Ω = (0, 1) × (0, 1)
at four different times, namely, t = 0, 1, 2, 3, obtained using the finite-difference
method (2.12). The following parameters were employed: α = β = 4, δ = 1× 10−4,
r ≡ 0.42; ∆x = ∆y = 0.025, and the initial temporal step-size is equal to 0.001.
Discrete homogeneous Neumann conditions were imposed on the boundary of Ω,
and the initial profile is given by (5.5).

Proof. The conclusion is obviously true when k = 0. Let us suppose that 0 < uk < 1,

for some k ∈ Z+
. Lemma 5 guarantees that Ak+1 is an M -matrix; by hypothesis,

χkm,n is positive for every m ∈ ZM and n ∈ ZN . Consequently, Bkuk is a positive
vector, whence uk+1 = (Ak+1)−1Bkuk is likewise positive. To establish boundedness,
let wk+1 = e − uk+1. A substitution in Equation (3.8) yields Ak+1wk+1 = bk+1,
where

bk+1 = Ak+1e−Bkuk. (4.2)

The first and the last N + 1 rows of the vector bk+1, as well as those labeled
m(N+1)+1 and (m+1)(N+1) are nonnegative for every m ∈ ZM ; the components
of the remaining rows are of the form 1− (1 + (∆t)kr

k
m,n)ukm,n, for suitable m ∈ ZM

and n ∈ ZN , and the positivity of these components follows from (4.1). The fact
that wk+1 is positive follows as a result from the fact the Ak+1 is an M -matrix,
whence uk+1 < 1. The result is readily established by induction.
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Figure 4.2: Interpolated checkerboard plots of the approximate solution of (1.2)
on Ω = (0, 1) × (0, 1) at four different times, namely, t = 2.7, 2.8, 2.9, 3, obtained
using the finite-difference method (2.12). The following parameters were employed:
α = β = 4, δ = 1 × 10−4, r ≡ 0.42; ∆x = ∆y = 0.025, and the initial temporal
step-size is equal to 0.001. Discrete homogeneous Neumann conditions were imposed
on the boundary of Ω, and the initial profile is given by (5.5).

Remark 7. It is worthwhile to notice that the results in this section are valid for
every function D which is nonnegative in [0, 1], and not only the function given by
Equation (1.1).
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Chapter 5

Simulations

In the present section, we will show that the method introduced in this manuscript
preserves the properties of positivity and boundedness of solutions when the con-
straints of Proposition 6 are observed. Evidently, such results will be in qualitative
agreement with Proposition 1.

In the following simulations, an initial, temporal step-size is employed; however,
if the inequality (4.1) is not satisfied, then the value of (∆t)k is reduced by half, and
this process is repeated as many times as it be necessary in order for (4.1) to hold,
for every m ∈ ZM and every n ∈ ZN . The open spatial domain is Ω = (0, 1)× (0, 1),
and we use the parameter values α = β = 4 and δ = 1 × 10−4 in the expression of
the function D.

Example 8. Let r be the constant function equal to 0.42 in Ω×R+. Computation-
ally, let ∆x = ∆y = 0.025, and choose an initial, temporal step-size equal to 0.001.
Fix homogeneous Neumann conditions on the boundary of Ω, and let

x1 = (0.2, 0.2), (5.1)

x2 = (0.8, 0.8), (5.2)

x3 = (0.3, 0.7), (5.3)

x4 = (0.7, 0.2). (5.4)

Let x = (x, y), and consider an initial profile of the form

ϕ(x) = 0.3e−200‖x−x1‖2 + 0.35e−300‖x−x2‖2

+0.4e−600‖x−x3‖2 + 0.25e−400‖x−x4‖2 , ∀x ∈ Ω,
(5.5)

which is positive and bounded from above by 1, because it is a sum of functions of
the form f(x) = exp(−rx2) which are bounded between 0 and k and a sum of bounded
terms is bounded. Under these conditions, Figure 4.1 presents the development of
the solution at 4 different times, namely, 0, 1, 2 and 3. The simulations show that
the solution remains bounded within (0, 1) throughout time, as predicted by Propo-
sition 6. This behavior is also observed in Figure 4.2, which presents interpolated
checkerboard plots of of the solutions at the times 2.7, 2.8, 2.9 and 3, when the
colonies begin to merge.

In the next example, we consider Dirichlet boundary data, instead.
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Figure 5.1: Graphs of the approximate solution of (1.2) on Ω = (0, 1) × (0, 1) at
four different times, namely, t = 2.7, 2.8, 2.9, 3, obtained using the finite-difference
method (2.12). The following parameters were employed: α = β = 4, δ = 1× 10−4,
r ≡ 0.42; ∆x = ∆y = 0.025, and the initial temporal step-size is equal to 0.001.
Discrete homogeneous Dirichlet conditions were imposed on the boundary of Ω, and
the initial profile is given by (5.5).

Example 9. We reproduce Example 8, now with homogeneous Dirichlet data on
the boundary of Ω. Figure 5.1 shows the approximate solution at the times 2.7, 2.8,
2.9 and 3. Once more, notice that positivity and boundedness are preserved in our
simulations, even when different colonies of bacteria begin to merge.

Remark 10.

• It is worthwhile to remark once more that the method presented in this
manuscript is capable of preserving the positivity and the boundedness of the
numerical approximations, for any real numbers α, β ≥ 1, and any discrete
reaction factor which satisfies the properties of Proposition 6.

• We have performed more simulations in order to assess the validity of this
claim. The results (not shown here) suggest the fact that the method preserves
the properties of interest, as postulated by Proposition 6.

• The results were obtained using c©Matlab 7.12.0.635 (R2011a) on a c©Sony
Vaio PCG-5L1P laptop computer, with Kubuntu 12.04 as operating system.
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Under the computational and model parameter values employed in Examples
8 and 9, the computer time needed to simulate a time period of length 1 was
equal to 3.289769 seconds, as recorded by the average of 20 such simulations.
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Chapter 6

Discusion of results

This appendix reports on some incorrect simulations obtained via an implementation
of the method introduced in [Int. J. Comput. Meth. 9 (2012) 1250050]. In the
present note, we show the correct numerical results of Example 6.1 in that work.
A new computer experiment is added in order to observe the process of merging
colonies in biological films.
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Figure 6.1: Graphs of Figure 2 in [Morales-Hernández et al. (2012)], obtained
through a faithful implementation of the method reported in that manuscript.
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Figure 6.2: Graphs of the approximate solution of (2) in [Morales-Hernández et al.
(2012)] on Ω = (0, 1) × (0, 1) at four times. We used the parameters α = β = 4,
δ = 1×10−4, r ≡ 0.4; ∆x = ∆y = 0.02, ∆t = 0.01, and the initial profile of Example
11.

Examples

Using our Matlab R© code, we obtained the graphs of Figure 6.1 in the present
manuscript, which are the correct versions of the corresponding graphs in Figure
2 of [17]. In this experiment, however, the process of merging of colonies is not
observed. To observe it, we propose the following example.

Example 11. let Ω = (0, 1)× (0, 1), and consider the initial condition

u0(x) =
5∑
l=1

Cle
−rl‖x−xl‖2 , ∀x ∈ Ω, (6.1)

where C1 = 0.025, C2 = 0.03, C3 = 0.035, C4 = 0.02, C5 = 0.025; r1 = 25, r2 = 50,
r3 = 125, r4 = 100, r5 = 50; x1 = (0.25, .3), x2 = (0.5, .25), x3 = (0.7, 0.65),
x4 = (0.4, 0.8), and x5 = (0.5, 0.55). Let α = β = 4, δ = 1 × 10−4, r ≡ 0.4,
∆x = ∆y = 0.02, and ∆t = 0.01. Consider homogeneous Neumann conditions on
the boundary of Ω. Figure 6.2 presents the approximate solution using the method
in [17], at the times t = 0, 6, 8, 10.
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Conclusions

In this work, we introduced a non-constant time-step, finite-difference scheme to
approximate the solutions of a parabolic partial differential equation which governs
the growth of some biological films. The linear discretization proposed is a two-step
method, and each iteration of the technique may be presented in vector form through
the multiplication of a real, square matrix which, under suitable conditions, is an
M -matrix. As a consequence, the matrix representing each iteration of the method
is nonsingular, and each of the entries of the inverse is a positive, real number. This
fact guarantees the preservation of the positivity of initial profiles which are also
positive. Moreover, once positivity is established, it is easy to find conditions under
which the numerical technique is also capable of preserving the boundedness of the
solutions at every point.

It is important to mention that the biological model investigated in this manuscript
has solutions which are positive and essentially bounded; however, such solutions
are not reported in the literature in an analytical form [8], whence the design of
positivity- and boundedness-preserving computational technique to approximate
such solutions of the model under consideration is pragmatically justified. The nu-
merical simulations obtained through a computational implementation of our tech-
nique confirm that the mathematical properties of interest of solutions are preserved
throughout time. Some of such simulations are recorded in this manuscript to sup-
port numerically these assertions.
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