
CENTRO DE CIENCIAS BÁSICAS
DEPARTAMENTO DE SISTEMAS ELECTRÓNICOS

TESIS

A COMPUTATIONALLY EFFICIENT ALGORITHM TO SOLVE SOME
SYSTEMS OF NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL

EQUATIONS

PRESENTA

Jorge Eduardo Herrera Serrano

PARA OPTAR POR EL GRADO DE MAESTRO EN CIENCIAS EN
COMPUTACIÓN

TUTOR

Dr. Jorge Eduardo Maćıas-D́ıaz

COMITÉ TUTORAL

Dr. Juan Manuel Gómez Reynoso (co-tutor)
Dr. José Antonio Guerrero D́ıaz de León (asesor)

Dr. Francisco Javier Álvarez Rodŕıguez (asesor)

Aguascalientes, Ags., 6 de febrero de 2020













Acknowledgments

First of all, I want to thank my tutors, Dr. Jorge Eduardo Maćıas-Dı́az and Dr. Juan Manuel Gómez
Reynoso because they were the main pillars for completing this thesis. To both of them I thank
you very much for your dedication, support and effort that you put into making this research going
forward. Without your help I would not have been unable to finish it. I am also grateful that, despite
the circumstances, they did not abandon me and for keep working with me. I will take all your advice
and words of encouragement with me forever. Thank you for all you did for me.

I also always want to thank my parents for supporting me and being there in those difficult times,
my brothers for always encouraging me to continue and, above all, I want to thank my wife and
daughter because they were always the main reasons for me to giving my best. Thank you all for being
my motivation.

I also want to thank CONACYT and the Autonomous University of Aguascalientes for giving me
this great opportunity to study a master’s degree. . . .

Jorge Eduardo Herrera Serrano



Contents

List of Tables 2

List of Figures 2

Resumen 6

Abstract 7

Introduction 8

1 Mathematical models 12
1.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Numerical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Computational models 22
2.1 Computational model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Simplified model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Computer simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Computational method 46
3.1 Types of software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Software solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Final solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Application development 52
4.1 Methodology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Interface design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Analysis 58
5.1 Instrument Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Instrument Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 TurPatt Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Conclusions 65

A Fortran code 68

1



List of Tables

2.1 Set of fixed model and computational parameters employed in the simulations of Ex-
amples 2.3 and 2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Set of fixed model and computational parameters employed in the simulations of Ex-
ample 2.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Parameters that influence response time . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Learnability Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Usability compliance Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Operability Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Reliability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6 Reliability statistics by factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.7 Comparison of the starting interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.8 Comparison of work screen interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2



List of Figures

1.1 Forward-difference stencil for the approximation to the exact solution of the one di-
mensional form of (1.7) at the time tn, using the finite-difference scheme (1.43) when
p = q = 1. The black circles represent the known approximations at the times tn−1, tn
and tn+1, while the cross denotes the unknown approximation at the time tn+2. . . . . 18

2.1 Snapshots of the approximate solutions of the variable u of (2.27) versus (x, y), using
the parameters of Table 2.1 for Example 2.3, and b = 0.5. The times (a) t = 100, (b)
t = 400, (c) t = 1000 and (d) t = 2500 were used in these simulations. The graphs were
normalized with respect to the absolute maximum of the solution at each time. . . . . . 30

2.2 Snapshots of the approximate solutions of the variable u of (2.27) versus (x, y), using
the parameters of Table 2.1 for Example 2.3, and b = 1.5. The times (a) t = 100, (b)
t = 400, (c) t = 1000 and (d) t = 2500 were used in these simulations. The graphs were
normalized with respect to the absolute maximum of the solution at each time. . . . . . 31

2.3 Snapshots of the approximate solutions of the variable u of (2.27) versus (x, y), using
the parameters of Table 2.1 for Example 2.3, and b = 2.5. The times (a) t = 100, (b)
t = 400, (c) t = 1000 and (d) t = 2500 were used in these simulations. The graphs were
normalized with respect to the absolute maximum of the solution at each time. . . . . . 32

2.4 Approximation to the solutions of (2.27), using the finite-difference scheme (1.43) with
the model and computational parameters in Table 2.1 for Example 2.4, and b = 0.5.
Various times were considered, namely, (a) t = 50, (b) t = 100, (c) t = 250, (d) t = 500,
(e) t = 1000 and (f) t = 2000. The graphing subroutines were based on the function
isosurface with values of the isovalue parameter equal to 0.01. . . . . . . . . . . . . 33

2.5 Approximation to some x-, y- and z-cross sections of the solutions of (2.27), using the
finite-difference scheme (1.43) with the model and computational parameters in Table
2.1 for Example 2.4, and b = 0.5. Various times were considered, namely, (a) t = 50,
(b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. . . . . . . . . . . . . 34

2.6 Approximation to the solutions of (2.27), using the finite-difference scheme (1.43) with
the model and computational parameters in Table 2.1 for Example 2.4, and b = 1.5.
Various times were considered, namely, (a) t = 50, (b) t = 100, (c) t = 250, (d) t = 500,
(e) t = 1000 and (f) t = 2000. The graphing subroutines were based on the function
isosurface with values of the isovalue parameter equal to 0.01. . . . . . . . . . . . . 35

2.7 Approximation to some x-, y- and z-cross sections of the solutions of (2.27), using the
finite-difference scheme (1.43) with the model and computational parameters in Table
2.1 for Example 2.4, and b = 1.5. Various times were considered, namely, (a) t = 50,
(b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. . . . . . . . . . . . . 36

3



2.8 Approximation to the solutions of (2.27), using the finite-difference scheme (1.43) with
the model and computational parameters in Table 2.1 for Example 2.4, and b = 2.5.
Various times were considered, namely, (a) t = 50, (b) t = 100, (c) t = 250, (d) t = 500,
(e) t = 1000 and (f) t = 2000. The graphing subroutines were based on the function
isosurface with values of the isovalue parameter equal to 0.01. . . . . . . . . . . . . 37

2.9 Approximation to some x-, y- and z-cross sections of the solutions of (2.27), using the
finite-difference scheme (1.43) with the model and computational parameters in Table
2.1 for Example 2.4, and b = 2.5. Various times were considered, namely, (a) t = 50,
(b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. . . . . . . . . . . . . 38

2.10 Approximation to the solutions of (1.7) with reaction functions (2.33)-(2.34), using the
finite-difference scheme (2.14) with the model and computational parameters in Table
2.1, and b = 0.5. Various times were considered, namely, (a) t = 0, (b) t = 100, (c)
t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. The results were obtained using a
parallel Fortran 95 implementation of the Algorithm 1. The graphing subroutines were
based on the function isosurface with values of the isovalue parameter equal to (a)
0.006, (b) 0.01 and (c)–(d) 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.11 Approximation to some x-, y- and z-cross sections of the solutions of (1.7) with reaction
functions (2.33)-(2.34), using the finite-difference scheme (2.14) with the model and
computational parameters in Table 2.1, and b = 0.5. Various times were considered,
namely, (a) t = 0, (b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000.
The results were obtained using a parallel Fortran 95 implementation of the Algorithm 1. 40

2.12 Approximation to the solutions of (1.7) with reaction functions (2.33)-(2.34), using the
finite-difference scheme (2.14) with the model and computational parameters in Table
2.1, and b = 1.5. Various times were considered, namely, (a) t = 0, (b) t = 100, (c)
t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. The results were obtained using a
parallel Fortran 95 implementation of the Algorithm 1. The graphing subroutines were
based on the function isosurface with values of the isovalue parameter equal to (a)
0.006, (b) 0.01 and (c)–(d) 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.13 Approximation to some x-, y- and z-cross sections of the solutions of (1.7) with reaction
functions (2.33)-(2.34), using the finite-difference scheme (2.14) with the model and
computational parameters in Table 2.1, and b = 1.5. Various times were considered,
namely, (a) t = 0, (b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000.
The results were obtained using a parallel Fortran 95 implementation of the Algorithm 1. 42

2.14 Approximation to the solutions of (1.7) with reaction functions (2.33)-(2.34), using the
finite-difference scheme (2.14) with the model and computational parameters in Table
2.1, and b = 2.5. Various times were considered, namely, (a) t = 0, (b) t = 100, (c)
t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. The results were obtained using a
parallel Fortran 95 implementation of the Algorithm 1. The graphing subroutines were
based on the function isosurface with values of the isovalue parameter equal to (a)
0.006, (b) 0.01 and (c)–(d) 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.15 Approximation to some x-, y- and z-cross sections of the solutions of (1.7) with reaction
functions (2.33)-(2.34), using the finite-difference scheme (2.14) with the model and
computational parameters in Table 2.1, and b = 2.5. Various times were considered,
namely, (a) t = 0, (b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000.
The results were obtained using a parallel Fortran 95 implementation of the Algorithm 1. 44

3.1 Sample Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Graphical representation of sequential programming . . . . . . . . . . . . . . . . . . . . 49
3.3 Division of cycles by parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Comparation of execution time. The number of iterations is in hundreds. . . . . . . . . 51

4.1 Phases of RAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



4.3 Main screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 About button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Complete Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 User help message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



Resumen

Es bien sabido que la simulación de sistemas fraccionarios es una tarea dif́ıcil desde todos los puntos
de vista. En particular, la implementación por computadora de algoritmos numéricos para simular
sistemas fraccionarios de ecuaciones diferenciales parciales en tres dimensiones es una tarea dif́ıcil que
no se ha resuelto satisfactoriamente. En este trabajo, proponemos un método numérico para resolver
sistemas de ecuaciones diferenciales parciales hiperbólicas (fraccionarias o no fraccionarias) que gener-
alizan varios modelos conocidos de f́ısica, qúımica y bioloǵıa. El esquema es una técnica expĺıcita que
tiene la ventaja de ser fácil de implementar para cualquier cient́ıfico con un conocimiento mı́nimo sobre
programación cient́ıfica. Proponemos una implementación eficiente que explota las ventajas del álgebra
matricial ya disponibles en Fortran y otros lenguajes. El algoritmo se presenta matemáticamente y
también en pseudocódigo, y en el apéndice se proporciona una implementación básica en Fortran del
algoritmo informático. Este código es susceptible de ser compilado en paralelo usando OpenMP, de
donde se deduce que el tiempo de la computadora se puede reducir sustancialmente. Como apli-
cación, proporcionamos algunas simulaciones ilustrativas sobre la formación de patrones de Turing en
un sistema tridimensional de sustancias inhibidoras-activadoras. Los gráficos se obtuvieron utilizando
funciones de Matlab con las salidas numéricas generadas por nuestro código Fortran. En el método
computacional, se programó el método numérico obtenido previamente. Un total de 3 diferentes algo-
ritmos fueron desarrollados para obtener el mejor de ellos, en cuanto a tiempo de ejecución. Una vez
que el resultado fue favorable, se procedió a realizar un sistema completo, el cual contiene una interfaz
gráfica para manipular los parámetros del algoritmo de manera más fácil. El sistema fue probado
bajo una rúbrica de evaluación y se diseñó un nuevo sistema a partir de los resultados obtenidos en la
evaluación.

6



Abstract

It is well know that the simulation of fractional systems is a difficult task from all points of view.
In particular, the computer implementation of numerical algorithms to simulate fractional systems of
partial differential equations in three dimensions is a hard task which has no been solved satisfactorily.
In this work, we propose a numerical method to solve systems of hyperbolic (fractional o non-fractional)
partial differential equations that generalize various known models from physics, chemistry and biology.
The scheme is an explicit technique which has the advantage of being easy to implement for any scientist
with minimal knowledge on scientific programming. We propose a computer implementation which
exploits the advantages of the efficient matrix algebra already available in Fortran and other languages.
The algorithm is presented mathematically as well as in pseudo-code, and a raw Fortran implementation
of the computer algorithm is provided in the appendix. This code is susceptible to be compiled in
parallel using OpenMP, whence it follows that the computer time can be substantially reduced. As
application, we provide some illustrative simulations on the formation of Turing patterns in a three-
dimensional system of inhibitor-activator substances in physics. The graphs were obtained using
functions of Matlab with the numerical outputs generated by our Fortran code. In the computational
method, the previously obtained numeric method was programmed. A total of 3 different algorithms
were developed to get the best of them, in terms of runtime. Once the result was favorable, a complete
system was carried out, in which it would contain a graphical interface to manipulate the algorithm
parameters more easily. The system was tested under an evaluation rubric and a new system was
designed based on the results obtained in the evaluation.

7



Introduction

Background

The investigation on the conditions under which Turing patterns appear in physical systems has been
a highly transited avenue of research from the mathematical, the numerical and the physical points of
view. It is well know that many nonlinear systems exhibit Turing patterns under suitable conditions on
the parameters of the model and the initial data. Some diffusion-reaction systems exhibit the presence
of Turing patterns, like some coupled systems which describe the interaction between inhibitor and
activator substances in chemistry [1, 2], especially in chemical reactions with chlorine dioxide, iodine,
and malonic acid [3]. In fact, several different Turing patterns are also found in the chlorine-iodide-
malonic acid reaction, including hexagonal and striped [4], and oscillatory structures [5]. Outside
the chemical sciences, there is also evidence of the presence of this kind of nonlinear behavior. For
instance, there is experimental evidence on the presence of azimuthal Turing patterns in Kerr combs
generated by whispering-gallery-mode resonators [6], and the theory suggests that diffusion-reaction
systems may be used to understand the formation of this type of patterns in biology [7]. Even the
labyrinthine structure of the cerebral cortex has been identified as a complex three-dimensional Turing
pattern [8], among other applications [9]. Moreover, it is well known that the Brusselator is a system
which exhibits the presence of that type of structures [10, 11].

The physical models described in the paragraph above are diffusive equations. It is well known
that these systems have the physical limitation that any perturbation is instantaneously propagated
throughout the system. For that reason, hyperbolic forms of these equations are physically preferred.
It turns out that a wide variety of Turing patterns have been found also in hyperbolic systems. For
example, Turing instabilities have been investigated in diffusive predator-prey models with hyperbolic
mortality [12, 13], in hyperbolic models for locally interacting cell systems [14], in the hyperbolic
chaos of standing-wave patterns generated by a modulated pump source [15] and in the spreading of
infectious diseases in hyperbolic susceptible-infected-removed models [16]. Also, the presence of various
wave and Turing patterns has been studied in the context of hyperbolic forms of the Brusselator [17, 18],
in some hyperbolic models for self-organized biological aggregations and movement [19], in network
systems through collective patterns and single differentiated nodes [20], in predator-prey reaction-
diffusion models with spatio-temporal delays [21] and in hyperbolic vegetation models for semiarid
environments [22], just to mention some systems.

In recent years, fractional derivatives have been introduced to mathematical models in order to
provide more realistic descriptions of the physical phenomena. For instance, many fractional systems
have been obtained as the continuous limit of discrete systems of particles with long-range interac-
tions [23, 24]. However, independently of that, fractional derivatives have been successfully used in
the theory of viscoelasticity [25], the theory of thermoelasticity [26], financial problems under a con-
tinuous time frame [27], self-similar protein dynamics [28] and quantum mechanics [29]. Moreover,
some distributed-order fractional diffusion-wave equations are used in the modeling of groundwater
flow to and from wells [30, 31]. As expected, the complexity of fractional problems is considerably

8



higher than that of integer-order models, whence the need to design reliable numerical techniques to
approximate the solutions is pragmatically justified [32]. In this direction, the literature reports on
various methods to approximate the solutions of fractional systems. For example, some numerical
methods have been proposed to solve fractional partial differential equations using fractional centered
differences [33, 34], the time-fractional diffusion equation [35], the fractional Schrödinger equation in
multiple spatial dimensions [36], the nonlinear fractional Korteweg–de Vries–Burgers equation [37],
the fractional FitzHugh–Nagumo monodomain model in two spatial dimensions [38], distributed-order
time-fractional diffusion-wave equations on bounded domains [39] and some Hamiltonian hyperbolic
fractional differential equations that generalize various well-known equations from quantum field theory
[40].

In light of these facts, the investigation on the presence of Turing patterns in fractional systems
(in both the parabolic and hyperbolic types) has been also an interesting topic of research in recent
years. Some reports have studied the presence of these patterns in simple models with fractional
diffusion [41], in fractional reaction-diffusion systems with indices of different order [42] and with
multiple homogeneous states [43], in hyperbolic inhibitor-activator systems with fractional diffusion
[44], in two-species fractional reaction-diffusion systems [45] and in reaction models with sub-diffusion
[46]. At the same time, various numerical methods have been proposed in the literature to investigate
complex nonlinear models [47, 48, 49]. However, it is worth pointing out that most of the computational
methods proposed in the literature are computationally slow and highly demanding [50]. This is a
consequence of the fact that the calculation of fractional derivatives require the use of global information
of the system at each time step [51, 52, 53, 54]. The present thesis is intended to alleviate partially
such shortcomings. Moreover, it is important to point out that, as opposed to some previous efforts
[33, 40, 55], the present approach is not Hamiltonian and considers a family consisting of more than one
hyperbolic partial differential equation. As a consequence, various physical systems can be simulated
using the numerical technique reported in this thesis.

Despite the great advances and discoveries that have been made in all areas of science, there are
still existing problems that need to be solved, or in some cases, generate better solutions. In the area
of mathematics intersecting with the area of researching environmental issues there are many problems
that has to be addressed. One of such problems requires the use of Turing Patterns, which demand
intensive and high-volume computational power. Therefore, this area presents the opportunity to
conduct a new research.

The present research intends to solve this issue. For this purpose, an algorithm was developed that
solves the numerical method previously proposed, which consists of a chemical model of activator and
inhibitory substances. However, in order to find the optimal solution, it was considered necessary to
implement such algorithm by developing a software application. In order to do this, three different
approaches were developed that are capable of executing the proposed numerical method. A first
solution was developed using Fortran as programming language, which was able to solve the numerical
method, however, it has a considerable weakness: the response time required for each iteration was
too large, to the extent of having to wait more than two days for heavy sets (100,000 iterations). This
solution uses the traditional sequential programming approach. Thus, it was necessary to search for an
improved solution. We found that the programmed algorithm was possible to be parallelized. Thus,
the new solution proved to be a lot faster than its predecessor (about 300 times faster). However, we
considered necessary to search for an enhanced solution. Finally, we discovered that the cycles nested
within the algorithm could be changed by using matrix algebra. Hence, this solution turned out to be
the best amongst the three performed for the present research and, consequently, the final selection.

The implemented solution was efficient; however, it was difficult to manipulate for inexperienced
or not savvy users in the area of computer programming. For instance, if an end- user wants to study
a particular data set, he must to modify that source code, which not all end- users are capable of
performing. Therefore, a graphical user interface environment that integrates the algorithm’s final
solution was developed. This approach allows end-user to manipulate the desired input values for
the application. In addition, this would address the mains software engineering requirements that
any software system must be easy to use, easy to understand and easy to learn. Therefore, both the
graphical interface and the algorithm would now work together under the same scheme and the result



would be a complete software system.
The development of the system for the present research was performed based on a software method-

ology known as Rapid Application Development (RAD), which allows perfectly to understand and
discover the requirements. Thus, developers are able to develop an ideal software solution.

After completing the development of the system, a set of tests we performed in order to under-
stand whether end-user requirements are really met. The tests were performed using a questionnaire
developed and tested in a previous research [56]. In addition to the questionnaire based on standards
by the International Standard Organization (ISO), which describes about the quality factors that any
software system must comply to. After the tests were completed, the results were interpreted to dis-
cover deficiencies in the software application, their possible causes and their corresponding corrective
actions. After completing the tests, a new and enhanced version was developed that addresses all issues
discovered during the testing phase. Finally, it is important to mention that the first implementation
demanded approximately 48 hours to process a case of 100,000 iterations; which was reduced to just
about 9 minutes in the second version; to finally, using about only 2 minutes for the final version.
In addition, of all the quality variables studied, it was found that the factors of understanding and
attractiveness had the minimum accepted quality (90%) value, and that the usability, operability and
learning factors needed to be modified to achieve get the minimum. With the results obtained, it
can be said that the solution is efficient at the moment, but perhaps in the future it could be further
improved and perhaps develop an optimal solution (if there is).

Finally, it is important to mention that the first implementation took approximately 48 hours to
process a case of 100,000 iterations; which was reduced to 9 minutes in the second version, to finally
require only 2 minutes. In addition, of all the quality variables studied, it was found that the factors
of understanding and attractivity had the minimum accepted quality (90%), and that the usability,
operability and learning factors needed to be modified to achieve get the minimum. With the results
obtained, it can be said that the solution is efficient at the moment, but perhaps in the future it could
be further improved and perhaps get an optimal solution (if any).

Aims and scope

The purpose of this thesis is to propose a parallel (and, thus, computationally economic [57]) method-
ology to investigate general coupled hyperbolic systems with Riesz space-fractional diffusion. In order
to generalize our physical model as much as possible, the system investigated in this thesis will consider
an arbitrary finite number p of spatial dimensions, as well as an arbitrary finite number q of depen-
dent variables. We will employ fractional centered differences to approximate the fractional partial
derivatives of the model in view of their mathematical and computational simplicity, and an explicit
four-step finite-difference discretization of our physical model will be proposed. Obviously, the explicit
nature of the scheme will is an advantage when considering a high number of spatial variables. We will
establish rigorously the main numerical features of our scheme, namely, its second-order consistency,
stability, boundedness and quadratic convergence. The computational implementation of the scheme
will be carried out using a convenient reformulation of the numerical method using vector algebra when
approximating the fractional derivatives. Various computer languages have efficient implementations
of vector algebra operations, including Fortran, C++ and Matlab. Our implementation is carried out
using Gfortran on a Linux operating system, and we will increase the speed of the calculations using
the multi-processing package OpenMP. As an illustrative application of our computer code, we will ex-
hibit the presence of Turing patterns in some two- and three-dimensional inhibitor-activator systems.
However, we will note that the methodology proposed in this thesis can be applied to a wide variety
of physical models.



• In Chapter 1, we consider a general multidimensional system of hyperbolic partial differential
equations with fractional diffusion of the Riesz type, constant damping and coupled nonlin-
ear reaction terms. The system generalizes many particular models from the physical sciences
(including inhibitor-activator models in chemistry, diffusive nonlinear systems in population dy-
namics and relativistic wave equations), and considers the presence of an arbitrary number of
both spatial dimensions and dependent variables. Motivated by the wide range of applications,
we propose an explicit four-step finite-difference methodology to approximate the solutions of
the continuous system. The properties of stability, boundedness and convergence of the scheme
are proved rigorously using a discrete form of the fractional energy method.

• Chapter 2 describes efficient computational implementations of the finite-difference scheme pre-
sented in Chapter 1. It is important to recall that algorithms for space-fractional systems are
computationally highly demanding. To alleviate this problem, a parallel implementation of our
scheme is proposed using a vector reformulation of the numerical method. We provide some
illustrative simulations of the formation of complex patterns in the two-dimensional scenario,
and even in the computationally intense three-dimensional case. For the sake of convenience, an
algorithmic presentation of our computational model is provided therein. Moreover, a simplified
form of the numerical method is proposed, and some simulations using that method are provided
in that stage.

• In Chapter 3, the first section presents an introduction to the types of existing software that can
be found nowadays, as an introduction for the software developed as a product of this thesis.
The following subtopics show the different versions of the algorithms used throughout this work,
explaining the significant differences of each of them and, in turn, proposing the best algorithm
due to its qualities in terms of the time of execution. In addition, these subtopics include
the programming approaches used for each algorithm, as well as their advantages in terms of
processing and runtime.

• Chapter 4 introduces the development of the software for the present research. First, the soft-
ware methodology used for system development is presented. After that, it is shown the work
performed for designing a set of the graphical user interfaces and how they and the algorithm
interact with each other to work under the same scope for the end-user. Finally, a set of screen-
shots are shown for the different interfaces included in the application as well as its corresponding
explanation of how it works are included.

• In the last chapter of the thesis, the performed evaluation of the developed application is pre-
sented. For this, a previously tested questionnaire based on ISO standards was used. The chapter
shows some tables with the statistical results obtained, as well as their interpretation and some
improvements included for the final version of the application developed. Finally, some screen-
shots are shown comparing the previous version with the final version of the application. In
addition, the improvements were made based on the obtained evaluation results.

11

Document organization

This thesis is sectioned as follows.



1. Mathematical models

This chapter is organized as follows. In Section 1.1, we provide the definition of Riesz
partial fractional partial derivative, and introduce the mathematical system of interest. We
note therein that various models from physics are particular cases of our model, and we close
that stage providing a vector form of the mathematical model, considering some parameter
simplifications. In Section 1.2, we introduce the discrete nomenclature and operators which
will be used throughout this manuscript, including the concept of fractional centered dif-
ferences, which is crucial in our investigation. An explicit four-step finite-difference scheme
to solve the continuous problem of interest is introduced in that stage. The discrete model
is then analyzed rigorously in Section 1.3. Concretely, we establish that the scheme is con-
sistent of the second order, and we use a discrete form of the fractional energy method to
show that the model is stable and quadratically convergent under appropriate parameter
conditions.

1.1 Mathematical model

Throughout this thesis, we will use the symbol In to represent the set of indexes {1, . . . , n}, and define
In = In ∪ {0}, for each n ∈ N. Moreover, if x ∈ R

p then we convey that x = (x1, . . . , xp), for any
p ∈ N. The present section is devoted to introduce the continuous nomenclature and the mathematical
model under investigation in this manuscript. In particular, the following concepts are standard in the
literature. They are the cornerstone to describe our continuous model, and they are recalled here for
the sake of convenience. Throughout, Γ denotes the usual Gamma function.

Definition 1.1 (Podlubny [58]). Let f : R→ R be a function, and let n ∈ N ∪ {0} and α ∈ R satisfy
n− 1 < α < n. The Riesz fractional derivative of f of order α at x ∈ R is defined (when it exists) as

dαf(x)

d|x|α =
−1

2 cos(πα
2 )Γ(n− α)

dn

dxn

∫ ∞

−∞

f(ξ)dξ

|x− ξ|α+1−n
. (1.1)

Definition 1.2 (Podlubny [58]). Assume that p ∈ N and i ∈ Ip. Let α ∈ R and n ∈ N satisfy
n− 1 < α < n, and suppose that u : Rp ×R→ R is a function. Then the left and the right Riemann–
Liouville fractional partial derivative of u of order α with respect to xi at the point (x, t) ∈ R

p × R

are defined, respectively, by

−∞D
α
xi
u(x, t) =

1

Γ(n− α)

∂n

∂xn
i

∫ x

−∞

(xi − ξ)n−1−αu(x1, . . . , xi−1, ξ, xi+1, . . . , xp, t)dξ, (1.2)

xi
Dα

∞u(x, t) =
(−1)n

Γ(n− α)

∂n

∂xn
i

∫ ∞

x

(ξ − xi)
n−1−αu(x1, . . . , xi−1, ξ, xi+1, . . . , xp, t)dξ, (1.3)

12



whenever they exist. For the remainder of this thesis, we will consider differentiation orders satisfying
1 < α < 2. In that case, we define the Riesz partial fractional derivative of u of order α with respect
to xi at the point (x, t) as

∂αu(x, t)

∂|xi|α
= − 1

2 cos(πα/2)

(
aD

α
xi
u(x, t) + xi

Dα
b u(x, t)

)
. (1.4)

Moreover, for convenience, we will agree that the Riesz partial fractional derivative of u of order 1 and
2 with respect to xi coincide with the usual first- and second-order partial derivative of u with respect
to xi, respectively. Finally, the Riesz fractional Laplacian of u of order α at (x, t) will be defined as

∆αu(x, t) =

p∑

i=1

∂αu(x, t)

∂|xi|α
. (1.5)

For the remainder of this paper, we let p ∈ N and assume that ai, bi ∈ R satisfy ai < bi, for each
i ∈ Ip. Let T ∈ R

+, and fix the spatial and the spatial-temporal domains

B =

p∏

i=1

(ai, bi), Ω = B × (0, T ), (1.6)

respectively. Obviously, the sets B and Ω are open in R
p+1, their respective closures will be denoted

by B and Ω, and we will use the notation ∂B to represent the boundary of B. Also, we will fix q ∈ N,
and we will suppose that uj : Ω → R is a function, for each j ∈ Iq. For convenience, we will extend
the definition of uj to all the space R

p× [0, T ], by letting uj(x, t) = 0 for each (x, t) ∈ (Rp \B)× [0, T ]
and j ∈ Iq.

Let Fj : Rq → R be a function for each j ∈ Iq, and u : Ω→ R
q by u(x, t) = (u1(x, t), . . . , uq(x, t)),

for each (x, t) ∈ Ω. Moreover, we will agree that γj is a nonnegative constant, τj and dj are positive,
αj ∈ (1, 2] and φj , ψj : B → R are smooth functions, for each j ∈ Iq. We will investigate computation-
ally the solution of the following problem governed by a system of hyperbolic space-fractional partial
differential equations with coupled nonlinear reaction terms:

τj

∂2uj(x, t)

∂t2
+ γj

∂uj(x, t)

∂t
= dj∆αjuj(x, t)− Fj(u(x, t)), ∀(x, t) ∈ Ω, ∀j ∈ Iq,

such that






uj(x, 0) = φj(x), ∀x ∈ B, ∀j ∈ Iq,
∂uj(x, 0)

∂t
= ψj(x), ∀x ∈ B, ∀j ∈ Iq,

uj(x, t) = 0, ∀(x, t) ∈ ∂B × [0, T ], ∀j ∈ Iq.

(1.7)

More precisely, the system of partial differential equations in (1.7) can be explicitly described as





τ1
∂2u1(x, t)

∂t2
+ γ1

∂u1(x, t)

∂t
= d1∆α1u1(x, t)− F1(u1(x, t), u2(x, t), . . . , uq(x, t)), ∀(x, t) ∈ Ω,

τ2
∂2u2(x, t)

∂t2
+ γ2

∂u2(x, t)

∂t
= d2∆α2u2(x, t)− F2(u1(x, t), u2(x, t), . . . , uq(x, t)), ∀(x, t) ∈ Ω,

...

τq

∂2uq(x, t)

∂t2
+ γq

∂uq(x, t)

∂t
= dq∆αquq(x, t)− Fq(u1(x, t), u2(x, t), . . . , uq(x, t)), ∀(x, t) ∈ Ω.

(1.8)
It is important to point out that (1.7) generalizes various mathematical models used in the physical

sciences. The following are some of examples where (1.7) finds interesting applications.

Example 1.3. Suppose that q = 1 in model (1.7), and let u = u1. In this case, the system consists of
a unique hyperbolic partial differential equation with fractional diffusion. If F1(u(x, t)) = sin(u(x, t))
then the resulting model is a fractional form of the damped sine-Gordon equation, which is a well-
known system of mathematical physics. Other forms of F1 readily lead to models like the (linear or
nonlinear) Klein–Gordon equation and the double sine-Gordon equation, which are systems appearing
in relativistic quantum mechanics.

13



Example 1.4. The system (1.7) is a hyperbolic and fractional generalization of the ratio-dependent
predator-prey system with Michaelis–Menten-type functional response [59]. In that model, q = 2, and
u1(x, t) and u2(x, t) represent the prey and the predator densities, respectively, as functions of the
spatial variable x and the time t. In the classical parabolic setting, α1 = α2 = 2, γ1 = γ2 = 1 and

F1(u1, u2) = ru1

(
1− u1

K

)
− αu1u2

u2 + αηu1
, ∀u1, u2 ∈ R

+, (1.9)

F2(u1, u2) =
γαu1u2

u2 + αηu1
− µu2, ∀u1, u2 ∈ R

+. (1.10)

Here, r represents the maximal growth rate of the prey, γ denotes the conversion efficiency, µ is the
predator death rate, K is the carrying capacity, α represents the capture rate and η is the handling time.
After a scaling analysis, the system (1.7) with reactions (1.9)-(1.10) may be expressed in dimensionless
form using the functions

F1(u1, u2) = Ru1

(
1− u1

S

)
− Su1u2

u2 + Su1
, ∀u1, u2 ∈ R

+, (1.11)

F2(u1, u2) =
Su1u2

u2 + Su1
−Qu2, ∀u1, u2 ∈ R

+, (1.12)

where the constants R, S and Q are positive.

Example 1.5. The model (1.7) is also a hyperbolic and fractional generalization of some systems which
describe the interaction between some activator and inhibitor substances in chemistry [1]. Such is the
case when q = 2 and

F1(u1, u2) = u1 − au2 + bu1u2 − u3
1, (1.13)

F2(u1, u2) = u1 − cu2. (1.14)

In that context, u1 and u2 represent the amounts of the activator and inhibitor substances, respectively.
All the parameters are positive, and the differentiation orders are equal to 2 in the original parabolic
models.

Like these examples, there are various other models in the physical sciences which are generalized by
(1.7) in various ways and, for that reason, its numerical investigation is an important topic of research.
For simplification purposes and for the remainder of this thesis, convey that τj = 1, γ = γj ∈ R

+∪{0},
d = dj ∈ R

+ and α = αj ∈ (1, 2], for each j ∈ Iq. It is worth pointing out that our analysis would
be similar for the general scenario, but we have chosen these simplifications for the sake of easiness.
Moreover, we will observe the vector notation

∂2u(x, t)

∂t2
=

(
∂2u1(x, t)

∂t2
,
∂2u2(x, t)

∂t2
, . . . ,

∂2uq(x, t)

∂t2

)
, ∀(x, t) ∈ Ω. (1.15)

∂u(x, t)

∂t
=

(
∂u1(x, t)

∂t
,
∂u2(x, t)

∂t
, . . . ,

∂uq(x, t)

∂t

)
, ∀(x, t) ∈ Ω. (1.16)

∆αu(x, t) = (∆αu1(x, t),∆αu2(x, t), . . . ,∆αuq(x, t)) , ∀(x, t) ∈ Ω, (1.17)

F (x, t) = (F1(u(x, t)), F2(u(x, t)), . . . , Fq(x, t)) , ∀(x, t) ∈ Ω. (1.18)

Also, let φ(x) = (φ1(x), φ2(x), . . . , φq(x)) and ψ(x) = (ψ1(x), ψ2(x), . . . , ψq(x)), for each x ∈ B. With
this notation and the simplifications proposed above, the mathematical model (1.7) can be expressed
alternatively in vector form as

∂2u(x, t)

∂t2
+ γ

∂u(x, t)

∂t
= d∆αu(x, t)− F (u(x, t)), ∀(x, t) ∈ Ω,

such that






u(x, 0) = φ(x), ∀x ∈ B,
∂u(x, 0)

∂t
= ψ(x), ∀x ∈ B,

u(x, t) = 0, ∀(x, t) ∈ ∂B × [0, T ].

(1.19)

Finally, we will observe the following assumption for the remainder of this thesis:

14



(H) There exists a smooth function G = (G1, . . . , Gq) : Rq → R
q with G1, . . . , Gq : Rq → R, such

that

Fj(u) =
∂Gj(u)

∂uj

, ∀j ∈ Iq, ∀u ∈ R
q. (1.20)

As we will note in Section 2.3, the models described in Examples 1.3–1.5 satisfy this hypothesis.
Moreover, it is also important to mention that a system (1.19) which satisfies this assumption need
not be Hamiltonian. This fact implies that the type of systems satisfying (H) is substantially large. As
expected, the finite-difference scheme proposed in the following section will be also general enough to
consider not necessarily Hamiltonian models, like those nonlinear systems in which complex patterns
appear.

1.2 Numerical model

The present section will be devoted to describe the numerical method to approximate the solutions of
(1.19). Agree that hi and τ are positive step-sizes, for each i ∈ Ip. Let N = T/τ and Mi = (bi−ai)/hi

be natural numbers, for each i ∈ Ip. Consider uniform partitions of [ai, bi] and [0, T ] given by

xi,ki
= ai + kihi, ∀i ∈ Ip, ∀ki ∈ IMi

, (1.21)

tn = nτ, ∀n ∈ IN , (1.22)

tn+ 1
2

= tn + τ/2, ∀n ∈ IN−1. (1.23)

We introduce the discrete sets

K =

p∏

i=1

IMi−1, K =

p∏

i=1

IMi
, (1.24)

and define xk = (x1,k1
, . . . , xp,kp

) for each multi-index k = (k1, . . . , kp) ∈ K. Let ∂K represent the

boundary of the mesh K, that is, let ∂K be the set of multi-indexes k ∈ K such that xk ∈ ∂B. In this
manuscript, we will convey that

h = (h1, . . . , hp), h∗ = h1 · · ·hp, (1.25)

and Rh will represent the spatial mesh {xk : k ∈ K}. Moreover, Vh will denote the vector space of all
real functions defined on Rh, which vanish at those points on the boundary of B. For simplification
purposes, we will agree that wk = w(xk), for each w ∈ Vh and k ∈ K.

For each j ∈ Iq and (k, n) ∈ K×IN , let un
j,k = uj(xk, tn), and let un

j,k represent an approximation
to the exact value of un

j,k. If w ∈ Vh then we will use the notation w = (wk)
k∈K

. As a consequence,
note that un

j ∈ Vh can be represented as (un
j,k)

k∈K
, for each j ∈ Iq. Moreover, we will use the

convention uj = (un
j )

n∈IN
for each j ∈ Iq, and we will set u = (u1,u2, . . . ,uq). Similarly, notice that

un
j ∈ Vh can be represented as un

j = (un
j,k)

k∈K
for each j ∈ Iq. Also, we let uj = (un

j )
n∈IN

for each
j ∈ Iq, and u = (u1, u2, . . . , uq).

Definition 1.6. Define the inner product 〈·, ·〉 : Vh × Vh → R and the norm ‖ · ‖1 : Vh → R by

〈u,v〉 = h∗

∑

k∈K

ukvk, ‖u‖1 = h∗

∑

k∈K

|uk|, ∀u,v ∈ Vh. (1.26)

The Euclidean norm induced by 〈·, ·〉 will be denoted by ‖ · ‖2. Meanwhile, ‖ · ‖∞ will be the usual
infinity norm in Vh.

Definition 1.7. For each sequence (vn)N
n=0 ⊆ Vh and (k, n) ∈ K × IN−1, we introduce the discrete

linear operators:





δtv
n
k =

vn+1
k − vn

k

τ
, δ

(1)
t vn

k =
vn+1

k − vn−1
k

2τ
,

δ
(2)
t vn

k =
vn+1

k − 2vn
k + vn−1

k

τ2
, µtv

n
k =

vn+1
k + vn

k

2
.

(1.27)

15



It is well known that these difference operators provide consistent approximations to some differential
operators under suitable analytical conditions. Moreover, we will set v̂n

k = µtv
n
k for briefness.

Definition 1.8 (Ortigueira [60]). For any function f : R→ R, any h > 0 and α > −1, the fractional
centered difference of order α of f at the point x is defined as

∆
(α)
h f(x) =

∞∑

k=−∞

g
(α)
k f(x− kh), ∀x ∈ R, (1.28)

whenever the double series at the right-hand side exists. Here,

g
(α)
k =

(−1)kΓ(α+ 1)

Γ(α
2 − k + 1)Γ(α

2 + k + 1)
, ∀k ∈ Z. (1.29)

Lemma 1.9 (Çelik and Duman [61]). If 1 < α ≤ 2 then the coefficients (g
(α)
k )∞

k=−∞ satisfy:

(a) g
(α)
0 > 0,

(b) g
(α)
k = g

(α)
−k ≤ 0 for all k 6= 0, and

(c)

∞∑

k=−∞

g
(α)
k = 0. As a consequence, it follows that g

(α)
0 = −

∞∑

k=−∞
k 6=0

g
(α)
k .

Lemma 1.10 (Çelik and Duman [61]). Let f ∈ C5(R) and assume that all its derivatives up to order
five are integrable. If 1 < α ≤ 2 then, for almost all x,

−∆α
hf(x)

hα
=
dαf(x)

d|x|α +O(h2). (1.30)

Definition 1.11. For each sequence (vn)N
n=0 ⊆ Vh, (k, n) ∈ K × IN−1 and i ∈ Ip, define the linear

operator

δ(α)
xi

vn
k = − 1

hα
i

Mi∑

l=0

g
(α)
ki−lv

n
k1,...,ki−1,l,ki+1,...,kp

. (1.31)

In light of Lemma 1.10, the operators (1.31) provide quadratically consistent approximations to the
Riesz partial derivative of u with respect to xi of order α at (x1,k1

, . . . , xi−1,ki−1
, xi,ki

, xi+1,ki+1
, . . . , xp,kp

)
and time tn. Meanwhile, the fractional Laplacian will be estimated with a quadratic order of consis-
tency, using the expression

δ(α)
x vn

k =

p∑

i=1

δ(α)
xi

vn
k . (1.32)

The following results will be needed in our study.

Lemma 1.12 (Maćıas-Dı́az [40]). For each i ∈ Ip and α ∈ (1, 2], there exists a unique positive self-

adjoint (square-root) linear operator Λ
(α)
xi : Vh → Vh, such that 〈−δ(α)

xi u,v〉 = 〈Λ(α)
xi u,Λ

(α)
xi v〉, for each

u,v ∈ Vh.

Lemma 1.13 (Maćıas-Dı́az [62]). Let v ∈ Vh and i ∈ Ip. Let α ∈ (1, 2] and define the constants

g
(α)
h = 2g

(α)
0 h∗

√√√√
p∑

i=1

h−2α
i , g

(α)
h = 2g

(α)
0 h∗

p∑

i=1

h−α
i . (1.33)

Then

16



(a) ‖Λ(α)
xi v‖2

2 ≤ 2g
(α)
0 h∗h

−α
i ‖v‖2

2.

(b) ‖δ(α)
xi v‖2

2 = ‖Λ(α)
xi Λ

(α)
xi v‖2

2.

(c) ‖δ(α)
xi v‖2

2 ≤ 4
(
g

(α)
0 h∗h

−α
i

)2

‖v‖2
2.

(d)
∑

i∈Ip

‖δ(α)
xi

v‖2
2 ≤

(
g

(α)
h ‖v‖2

)2

and
∑

i∈Ip

‖Λ(α)
xi

v‖2
2 ≤ g

(α)
h ‖v‖2

2.

Definition 1.14. Suppose that G : Rq → R is a differentiable function, and let uj = (un
j )

n∈IN
⊆ Vh,

for each j ∈ Iq. For each j ∈ Iq and (k, n) ∈ K × IN−1, we define the nonlinear operator

δt,uj
Gn

j,k(u) =
Gj

(
ûn

1,k, . . . , û
n
j−1,k,u

n+1
j,k , ûn

j+1,k, . . . , û
n
q,k

)
−Gj

(
ûn

1,k, . . . , û
n
j−1,k,u

n
j,k, û

n
j+1,k, . . . , û

n
q,k

)

un+1
j,k − un

j,k

,

(1.34)
if un+1

j,k 6= un
j,k. Otherwise,

δt,uj
Gn

j,k(u) =
∂G(u(xk, tn+ 1

2
))

∂uj

. (1.35)

Next, we extend dimensionally the operators of Definitions 1.7, 1.11 and 1.14

Definition 1.15. For each (k, n) ∈ K × IN , we let un
k = (un

1,k,u
n
2,k, . . . ,u

n
q,k). We define

δtu
n
k =

(
δtu

n
1,k, δtu

n
2,k . . . , δtu

n
q,k

)
, ∀(k, n) ∈ K × IN−1, (1.36)

δ
(1)
t un

k =
(
δ

(1)
t un

1,k, δ
(1)
t un

2,k . . . , δ
(1)
t un

q,k

)
, ∀(k, n) ∈ K × IN−1, (1.37)

δ
(2)
t un

k =
(
δ

(2)
t un

1,k, δ
(2)
t un

2,k . . . , δ
(2)
t un

q,k

)
, ∀(k, n) ∈ K × IN−1, (1.38)

µtu
n
k =

(
µtu

n
1,k, µtu

n
2,k, . . . , µtu

n
q,k

)
, ∀(k, n) ∈ K × IN−1, (1.39)

δ(α)
xi

un
k =

(
δ(α)

xi
un

1,k, δ
(α)
xi

un
2,k, . . . , δ

(α)
xi

un
q,k

)
, ∀(k, n) ∈ K × IN , ∀i ∈ Ip, (1.40)

δt,uG
n
k (u) =

(
δt,u1

Gn
1,k(u), δt,u2

Gn
2,k(u), . . . , δt,uq

Gn
q,k(u)

)
, ∀(k, n) ∈ K × IN−1. (1.41)

As expected, we will set

δ(α)
x un

k =

p∑

i=1

δ(α)
xi

un
k , ∀(k, n) ∈ K × IN . (1.42)

In an analogous fashion, we let un
k = (un

1,k, u
n
2,k, . . . , u

n
q,k) for each (k, n) ∈ K×IN , and we can readily

define the operators (1.36)–(1.42) for u as above.

Using the hypothesis (H) and the notation introduced in the present section, the finite-difference
scheme used in this thesis to solve (1.19) is the set of difference equations

µtδ
(2)
t un

k + γδtu
n
k = dµtδ

(α)
x un

k − δt,uG
n
k (u), ∀(k, n) ∈ K × IN−2,

subject to





u0
k = φ(xk), ∀k ∈ K,

u1
k = ψ(xk), ∀k ∈ K,

u2
k = χ(xk), ∀k ∈ K,

un
k = 0, ∀(k, n) ∈ ∂K× IN .

(1.43)

Note that we chose to define the initial data exactly by means of the functions φ, ψ, χ : Ω→ R
q. Also,

it is clear that this system is a fully explicit model, whence the existence and uniqueness of solutions
is an immediate consequence. Indeed, for each (k, n) ∈ K × IN−1, the difference equation of (1.43)
can be rewritten as

un+2
k = un+1

k + un
k − un−1

k + 2τ2
[
dµtδ

(α)
x un

k − δt,uG
n
k (u) − γδtu

n
k

]
(1.44)

The discrete model (1.43) is, thus, a four-step numerical scheme. For the sake of convenience, Figure
1.1 provides the forward-difference stencil of the discrete model in the case when p = q = 1.

17



✻
t

✲❡

❡

❡

❡

❡

❡

❡

❡

❡

❡

❡

❡

❡

❡

❡

❡

❡

❡

❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡ ❡

xk1

xk1−1

. . .. . .

xM1−2

xM1−1

xM1x0

x1

x2 xk1+1

tn−1

tn

tn+1

tn+2

✉ ✉✉

✉

✉ ✉✉ ✉ ✉ . . . . . . ✉ ✉ ✉

✉ ✉✉ ✉ ✉✉ ✉ ✉ . . . . . . ✉ ✉ ✉

×

Figure 1.1: Forward-difference stencil for the approximation to the exact solution of the one dimensional
form of (1.7) at the time tn, using the finite-difference scheme (1.43) when p = q = 1. The black
circles represent the known approximations at the times tn−1, tn and tn+1, while the cross denotes the
unknown approximation at the time tn+2.

1.3 Numerical properties

The properties of consistency, stability, boundedness and convergence of this scheme will be mathe-
matically established in this section. In a first stage, we wish to prove the quadratic consistency of the
scheme. To that end, we will consider the continuous operator L and the discrete operator L, which
are respectively defined as

Lu(u(x, t)) =
∂2u(x, t)

∂t2
+ γ

∂u(x, t)

∂t
− d∆αu(x, t) + F (u(x, t)), ∀(x, t) ∈ Ω, (1.45)

Lu(un
k ) = µtδ

(2)
t un

k + γδtu
n
k − dµtδ

(α)
x un

k + δt,uG
n
k (u), ∀(k, n) ∈ K × IN−2. (1.46)

Throughout, we will suppose that (H) is satisfied.

Theorem 1.16 (Consistency). If u ∈ C5,4
x,t (Ω) and F ∈ L∞(Rq) then there exists a constant C which

is independent of h and τ , such that ‖Lu(u(xk, tn+ 1
2
))− Lu(un

k )‖∞ ≤ C(τ2 + ‖h‖2
2), for each (k, n) ∈

K × IN−2.

Proof. Note that the smoothness of u and the essential boundedness of F imply that uj ∈ C5,4
x,t (Ω) and

Fj ∈ L∞(Rq), for each j ∈ Iq. The consistency of the discrete operators in Definitions 1.7, 1.11 and

1.14 along with Taylor’s theorem guarantee now that there exist constants Cj
1 , Cj

2 , Cj
3,i and Cj

4 which
are independent of h and τ , such that

∣∣∣∣∣
∂2uj(xk, tn+ 1

2
)

∂t2
− µtδ

(2)
t uj(xk, tn)

∣∣∣∣∣ ≤ C
j
1τ

2, ∀(k, n) ∈ K × IN−2, ∀j ∈ Iq, (1.47)

∣∣∣∣∣
∂uj(xk, tn+ 1

2
)

∂t
− δtuj(xk, tn)

∣∣∣∣∣ ≤ C
j
2τ

2, ∀(k, n) ∈ K × IN−1, ∀j ∈ Iq, (1.48)

∣∣∣∣∣
∂αuj(xk, tn+ 1

2
)

∂|xi|α
− µtδ

(α)
xi
uj(xk, tn)

∣∣∣∣∣ ≤ C
j
3,i(h

2
i + τ2), ∀(k, n) ∈ K × IN−1, ∀(i, j) ∈ Ip × Iq,

(1.49)
∣∣∣Fj(xk, tn+ 1

2
)− δt,uj

Gn
k (u)

∣∣∣ ≤ Cj
4τ

2, ∀(k, n) ∈ K × IN−1, ∀j ∈ Iq. (1.50)

18



Let Cl = max{Cj
l : j ∈ Iq} for each l = 1, 2, 4, and define C3 = max{Cj

3,i : (i, j) ∈ Iq × Iq}. Clearly,
these constants are independent of h and τ . Moreover, using the triangle inequality, it follows that

∥∥∥Lu(u(xk, tn+ 1
2
))− Lu(un

k )
∥∥∥

∞
≤
∥∥∥∥∥
∂2u(xk, tn+ 1

2
)

∂t2
− µtδ

(2)
t un

k

∥∥∥∥∥
∞

+ γ

∥∥∥∥∥
∂u(xk, tn+ 1

2
)

∂t
− δtu

n
k

∥∥∥∥∥
∞

+ d
∥∥∥∆αu(xk, tn+ 1

2
)− µtδ

(α)
x un

k

∥∥∥
∞

+
∥∥∥F (u(xk, tn+ 1

2
))− δt,uG

n
k (u)

∥∥∥
∞

≤ C1τ
2 + γC2τ

2 + dC3(‖h‖2
2 + τ2) + C4τ

2,
(1.51)

for each (k, n) ∈ K × IN−2. The conclusion readily follows with C = max{C1, γC2, dC3, C4}.

Lemma 1.17 (Maćıas-Dı́az [40]). Let G : Rq → R
q be such that G ∈ C2(Rq) and D2G ∈ L∞(R),

and let (un
j )N

n=0, (vn
j )N

n=0 and (Rn
j )N

n=0 be sequences in Vh, for each j ∈ Iq. Let en
j = vn

j − un
j and

G̃n
j = δvj ,tG

n(v) − δuj ,tG
n(u), for each n ∈ IN−1 and j ∈ Iq. There exist constants C1, C2, C3 ∈ R

+

which depend only on G, such that, for each j ∈ Iq

‖G̃n
j ‖2

2 ≤ C1(‖en+1
j ‖2

2 + ‖en
j ‖2

2), ∀n ∈ IN−1, (1.52)

2τ

m∑

n=1

∣∣∣〈Rn
j − G̃n

j , δte
n
j 〉
∣∣∣ ≤ 2τ

m∑

n=0

‖Rn
j ‖2

2 + C2‖e0
j‖2

2 + C3τ

m∑

n=0

‖δte
n
j ‖2

2, ∀m ∈ IN−1, (1.53)

mτ2
m∑

n=1

‖G̃n
j ‖2

2 ≤ 4C1T
2‖e0

j‖2
2 + 4C1T

3τ

m∑

n=0

‖δte
n
j ‖2

2, ∀m ∈ IN−1. (1.54)

Lemma 1.18 (Maćıas-Dı́az [40]). Let G, (un
j )N

n=0, (vn
j )N

n=0 and (Rn
j )N

n=0 be as in Lemma 1.17. Let

en
j = vn

j − un
j and G̃n

j = δvj ,tG
n(v)− δuj ,tG

n(u), for each n ∈ IN−1 and j ∈ Iq. If

µtδ
(2)
t en

j + γδte
n
j − dµtδ

(α)
x en

j + G̃n
j = Rn

j , ∀n ∈ IN−1, ∀j ∈ Iq, (1.55)

then for each m ∈ IN−1 and j ∈ Iq,

τ2‖δ(2)
t em+1

j ‖2
2 ≤ 160C1T

2‖e0
j‖2

2 + 20µt‖δte
0
j‖2

2 + 5pτ2g
(α)
h d2

p∑

i=1

[
‖Λ(α)

xi
e1

j‖2
2 + ‖Λ(α)

xi
em+1

j ‖2
2

]

+40Tτ

m∑

n=1

‖Rn
j ‖2

2 + 20(8C1T
2 + γ2)Tτ

m∑

n=0

‖δte
n
j ‖2

2.

(1.56)

The following discrete version of Gronwall’s inequality will be needed in the sequel.

Lemma 1.19 (Pen-Yu [63]). Let (ωn)N
n=0 and (ρn)N

n=0 be finite sequences of nonnegative mesh func-
tions, and suppose that there exists C ≥ 0 such that

ωk ≤ ρk + Cτ

k−1∑

n=0

ωk, ∀k ∈ IN−1. (1.57)

Then ωn ≤ ρneCnτ for each n ∈ IN .

Theorem 1.20 (Stability). Let G : R
q → R

q be such that G ∈ C2(Rq) and D2G ∈ L∞(R), and
suppose that u and v are solutions of (1.43) corresponding to the initial conditions (φu, ψu, χu) and

(φv, ψv, χv), respectively. Let e = u− v, and assume that 5
2pτ

2g
(α)
h < 1. Then there exists a constant

C0 ∈ R
+ which is independent of τ , h, u and v, and a constant 0 < η0 < 1 independent of u and v,

such that

1

2
‖δte

n
j ‖2

2+(1−η0)d

p∑

i=1

‖Λ(α)
xi

en
j ‖2

2 ≤ C0

(
‖e0

j‖2
2 + µt‖δte

0
j‖2

2 +

p∑

i=1

‖Λ(α)
xi

e1
j‖2

2

)
, ∀n ∈ IN−1, ∀j ∈ Iq.

(1.58)

19



Proof. Let η0 satisfy 5
2pτ

2g
(α)
h < η0 < 1. Note that the following discrete problem is satisfied:

µtδ
(2)
t en

k + γδte
n
k − dµtδ

(α)
x en

k + δt,uG
n
k (u) − δt,vG

n
k (v) = 0, ∀(k, n) ∈ K × IN−2,

subject to





e0
k = φu(xk)− φv(xk), ∀k ∈ K,

e1
k = ψu(xk)− ψv(xk), ∀k ∈ K,

e2
k = χu(xk)− χv(xk), ∀k ∈ K,

en
k = 0, ∀(k, n) ∈ ∂K × IN .

(1.59)

Following the nomenclature introduced at the beginning of this section, we identify the left-hand side
of the difference equation of (1.59) as Lu(un

k )− Lv(vn
k ). Moreover, for the sake of convenience, we let

G̃n
k = δt,uG

n
k (u)− δt,vG

n
k (v), for each (k, n) ∈ K×IN−1. For each j ∈ Iq and n ∈ IN−2, the following

identities are satisfied:

〈µtδ
(2)
t en

j , δte
n
j 〉 =

1

2
δtµt‖δte

n−1
j ‖2

2 −
τ2

4
δt‖δ(2)

t en
j ‖2

2, (1.60)

〈−µtδ
(α)
xi

en
j , δte

n
j 〉 =

1

2
δt‖Λ(α)

xi
en

j ‖2
2, ∀i ∈ Ip. (1.61)

Next, we calculate the inner product of δte
n
j with both sides of the difference equation Lu(un

j ) −
Lv(vn

k ) = 0, substitute then the identities above, and we obtain next the sum of the resulting identity
for all n ∈ Im. Multiply then by 2τ on both sides, apply Lemma 1.17 with Rn = 0 and simplify
algebraically to obtain that, for each m ∈ IN−1,

1

2
‖δte

m+1
j ‖2

2 + d

p∑

i=1

‖Λ(α)
xi

em+1
j ‖2

2 ≤ µt‖δte
m
j ‖2

2 + d

p∑

i=1

‖Λ(α)
xi

em+1
j ‖2

2

≤ µt‖δte
0
j‖2

2 + d

p∑

i=1

‖Λ(α)
xi

e1
j‖2

2 +
τ2

2
‖δ(2)

t em+1
j ‖2

2 + 2τ
m∑

n=1

∣∣∣〈G̃n
j , δte

n
j 〉
∣∣∣

≤ ρj +
5

2
pτ2g

(α)
h d2

p∑

i=1

‖Λ(α)
xi

em+1
j ‖2

2 + C5τ

m∑

n=0

‖δte
n
j ‖2

2

≤ ρj + dη0

p∑

i=1

‖Λ(α)
xi

em+1
j ‖2

2 + C5τ
m∑

n=0

ωn
j .

(1.62)

Here, C4 = max{C2 + 80C1T
2, 11}, C5 = 2C3 + 20(8C1T

2 + γ2)T and

ρj = C4

(
‖e0

j‖2
2 + µt‖δte

0
j‖2

2 + d

p∑

i=1

‖Λ(α)
xi

e1
j‖2

2

)
, (1.63)

ωn
j =

1

2
‖δte

n
j ‖2

2 + (1 − η0)d

p∑

i=1

‖Λ(α)
xi

en
j ‖2

2, ∀n ∈ IN−1. (1.64)

Subtracting the second term on the right-hand side of (1.62), we note that the hypotheses of Lemma
1.19 are readily satisfied with C = C5 and ρk = ρ for each k ∈ IN−2. The conclusion of this theorem
follows with C0 = C4e

C5T .

The following result is readily obtained using a proof similar to that of Theorem 1.20.

Corollary 1.21 (Boundedness). Let G : R
q → R

q satisfy G ∈ C2(Rq) and D2G ∈ L∞(R). If
u is the solution of (1.43) then there exists a constant C ∈ R

+ such that ‖un
k‖∞ ≤ C, for each

(k, n) ∈ K × IN .

Theorem 1.22 (Convergence). Let u ∈ C5,4
x,t (Ω) be a solution of (1.19), and suppose that G ∈ C2(R)

and D2G ∈ L∞(R). If 5
2pτ

2g
(α)
h d < 1 and (1.43) has exact initial data then the numerical solution

converges to that of the continuous problem with order O(τ2 + ‖h‖2
2) in the Euclidean norm.

20



Proof. The proof is similar to that of Theorem 1.20. Fix η0 as in that theorem, let Rn
k be the local

truncation error at (xk, tn), for each (k, n) ∈ K × IN , and define ǫn
j = un

j − un
j . Then the following

system is satisfied:

µtδ
(2)
t ǫn

k + γδtǫ
n
k − dµtδ

(α)
x ǫn

k + δt,uG
n
k (u) − δt,uG

n
k (u) = R

n

k , ∀(k, n) ∈ K × IN−2,

subject to

{
ǫ0

k = ǫ1
k = ǫ2k = 0, ∀k ∈ K,

ǫn
k = 0, ∀(k, n) ∈ ∂K × IN .

(1.65)

Mimicking the poof of Theorem 1.20, we let G̃n
k = δt,uG

n
k (u)− δt,uG

n
k (u), for each (k, n) ∈ K× IN−2.

Proceeding as in that proof of the previous result, we reach the inequality

1

2
‖δtǫ

m+1
j ‖2

2 + d

p∑

i=1

‖Λ(α)
xi
ǫm+1

j ‖2
2 ≤ ρm+1 +

5

2
pτ2g

(α)
h d

p∑

i=1

‖Λ(α)
xi
ǫm+1

j ‖2
2 + C5τ

m∑

n=0

ωn, ∀k ∈ IN−1,

(1.66)
where C4 = max{C2 + 80C0T

2, 11, 20T + 2}, the constant C5 is as in the proof of Theorem 1.20 and

ρm
j = C4

(
‖ǫ0

j‖2
2 + µt‖δtǫ

0
j‖2

2 + d

p∑

i=1

‖Λ(α)
xi
ǫ1

j‖2
2 + τ

m−1∑

n=0

‖Rn
j ‖2

2

)
, ∀m ∈ IN−1, (1.67)

ωm
j =

1

2
‖δtǫ

m
j ‖2

2 + (1 − η0)d

p∑

i=1

‖Λ(α)
xi
ǫm

j ‖2
2, ∀m ∈ IN−1. (1.68)

Move the second term on the right-hand side of (1.66) to the left-hand side and apply Lemma 1.19. Use
then the initial data of (1.65), and use Theorem 1.16 to see that there exists a constant A1 independent
of τ and h, such that

1

2
‖δǫn

j ‖2
2 ≤

1

2
‖δtǫ

n
j ‖2

2 + (1 − η0)d

p∑

i=1

‖Λ(α)
xi
ǫn

j ‖2
2 ≤ A1τ

m−1∑

n=0

‖Rn
j ‖2

2 ≤ A2(τ2 + ‖h‖2
2)2, (1.69)

for each n ∈ IN−1 and j ∈ Iq. Here, A2 = A1CT , and C is the constant provided by Theorem
1.16. Multiply both ends of (1.69) by 2 and use the reversed triangle inequality to obtain that
‖ǫn+1

j ‖2 − ‖ǫn
j ‖2 ≤

√
2A2τ(τ2 + ‖h‖2

2). Next, take the sum on both sides of this inequality for n
between 0 and m− 1, the formula for telescoping sums and the data at n = 0 to obtain

‖ǫm
j ‖2 ≤

√
2A2τ

m−1∑

n=0

(τ2 + ‖h‖2
2) ≤ A0(τ2 + ‖h‖2

2), ∀m ∈ IN , ∀j ∈ Iq, (1.70)

where A0 =
√

2A2T . The conclusion readily follows now.

Remarks 1.23. Before closing this section, it is important to point out that the stability and the
convergence of the finite-difference scheme has been established using a discrete and fractional form of
the well-known energy method. This approach has been followed in some previous papers in order to
analyze some Hamiltonian systems consisting of a single hyperbolic partial differential equation with
fractional diffusion [33, 40, 55]. However, most of the hyperbolic models in which complex patterns
appear, are non-Hamiltonian regimes consisting of two or more partial differential equations. In that
sense, previous efforts useless in the investigation of such systems. We have proved rigorously that the
present methodology is numerically efficient, and it has the advantage of being applicable to a wide
class of systems consisting of various hyperbolic fractional partial differential equations.

21



2. Computational models

In Section 2.1, we describe an efficient computational implementation of the finite-
difference method reported in the previous chapter. We show that the scheme can be
implemented using algorithms based on matrix algebra, and describe the implementation in
the two- and the three-dimensional cases. For convenience, Section 2.2 provides a simplified
numerical scheme and its efficient computational implementation. For convenience, both
computational techniques are described in the form of algorithms. Section 2.3 shows some
illustrative simulations in the two- and the three-dimensional scenarios. Concretely, we
exhibit the formation of Turing patterns in those systems.

2.1 Computational model

In this section, we will describe an efficient computational implementation of the finite-difference
method (1.43). To that end, we will focus our attention on the explicit equations (1.44), and we will
set p = 3 and q = 2. In order to simplify the notation, we will convey that x = x1, y = x2 and z = x3,
and that u = u1 and v = u2. Using these conventions and the hypothesis (H), the mathematical
model (1.7) can be rewritten as

∂2u(x, t)

∂t2
+ γ

∂u(x, t)

∂t
= d∆αu(x, t)− ∂G1(u(x, t), v(x, t))

∂u
, ∀(x, t) ∈ Ω,

∂2v(x, t)

∂t2
+ γ

∂v(x, t)

∂t
= d∆αv(x, t)− ∂G2(u(x, t), v(x, t))

∂v
, ∀(x, t) ∈ Ω,

such that





u(x, 0) = φ1(x) v(x, 0) = φ2(x), ∀x ∈ B,
∂u(x, 0)

∂t
= ψ1(x),

∂v(x, 0)

∂t
= ψ2(x), ∀x ∈ B,

u(x, t) = v(x, t) = 0, ∀(x, t) ∈ ∂B × [0, T ].

(2.1)

Let also k = k1, l = k2 and m = k3, let j = (k, l,m) and agree that xk = x1,k, yl = x2,l and zm = x3,m.
Under the new conventions, if (j, n) ∈ K × IN−2 then the recursive formulas (1.44) can be rewritten
equivalently as






un+2
j = un+1

j + un
j − un−1

j + r1

(
δ(α)

x un+1
j + δ(α)

x un
j

)
− r2

G1(un+1
j , µtv

n
j )−G1(un

j , µtv
n
j )

un+1
j − un

j

− r3

(
un+1

j − un
j

)
,

vn+2
j = vn+1

j + vn
j − vn−1

j + r1

(
δ(α)

x vn+1
j + δ(α)

x vn
j

)
− r2

G2(µtu
n
j ,v

n+1
j )−G2(µtu

n
j ,v

n
j )

vn+1
j − vn

j

− r3

(
vn+1

j − vn
j

)
,

(2.2)

22



where r1 = τ2d, r2 = 2τ2 and r3 = 2τγ. Meanwhile, the initial-boundary data will assume the form





u0
k = φu(xk), v0

k = φv(xk), ∀k ∈ K,
u1

k = ψu(xk), v1
k = ψv(xk), ∀k ∈ K,

u2
k = χu(xk), v2

k = χv(xk), ∀k ∈ K,
un

k = vn
k = 0, ∀(k, n) ∈ ∂K × IN .

(2.3)

Before we propose the computational implementation of the system (2.2), it is important to point
out that its extension to account for other values of q is straightforward. In what follows, for any
α ∈ (1, 2] and n ∈ N, we consider the real matrices of sizes (n+ 1)× (n+ 1) defined by

Hα
n =




g
(α)
0 g

(α)
−1 g

(α)
−2 g

(α)
−3 · · · g

(α)
−n

g
(α)
1 g

(α)
0 g

(α)
−1 g

(α)
−2 · · · g

(α)
1−n

g
(α)
2 g

(α)
1 g

(α)
0 g

(α)
−1 · · · g

(α)
2−n

...
...

...
...

. . .
...

g
(α)
n g

(α)
n−1 g

(α)
n−2 g

(α)
n−3 · · · g

(α)
0



. (2.4)

We will enumerate the rows and columns of matrices beginning from 0, and not from 1. It is easy to

see then that the component of Hα
n at the ith row and jth column is given by [Hα

n ]i,j = g
(α)
i−j , for all

(i, j) ∈ In × In. Moreover, the properties of the coefficients (g
(α)
k )∞

k=−∞ summarized in Lemma 1.9
assure that the matrix Hα

n is Hermitian.
Let w ∈ R

M1+1×R
M2+1×R

M3+1. If k ∈ IM1
then we agree that wk,·,· ∈ R

M2+1×R
M3+1 represent

the matrix

wk,·,· =




wk,0,0 wk,0,1 wk,0,2 · · · wk,0,M3

wk,1,0 wk,1,1 wk,1,2 · · · wk,1,M3

wk,2,0 wk,2,1 wk,2,2 · · · wk,2,M3

...
...

...
. . .

...
wk,M2,0 wk,M2,1 wk,M2,2 · · · wk,M2,M3



. (2.5)

In other words, wk,·,· is obtained from w by fixing the first component equal to k, and arranging
naturally the entries as an (M2 + 1) × (M3 + 1) matrix. In an entirely similar fashion, if l ∈ IM2

and m ∈ IM3
then w·,l,· ∈ R

M1+1 × R
M3+1 and w·,·,m ∈ R

M1+1 × R
M2+1 are the matrices of sizes

(M1 + 1)× (M3 + 1) and (M1 + 1)× (M2 + 1) given respectively by

w·,l,· =




w0,l,0 w0,l,1 w0,l,2 · · · w0,l,M3

w1,l,0 w1,l,1 w1,l,2 · · · w1,l,M3

w2,l,0 w2,l,1 w2,l,2 · · · w2,l,M3

...
...

...
. . .

...
wM1,l,0 wM1,l,1 wM1,l,2 · · · wM1,l,M3




(2.6)

and

w·,·,m =




w0,0,m w0,1,m w0,2,m · · · w0,M2,m

w1,0,m w1,1,m w1,2,m · · · w1,M2,m

w2,0,m w2,1,m w2,2,m · · · w2,M2,m

...
...

...
. . .

...
wM1,0,m wM1,1,m wM1,2,m · · · wM1,M2,m



. (2.7)

We will describe next the implementation of the calculations involving the terms with fractional
centered differences. To that end, we let w be any of u or v as before, and recall that (1.32) holds.
The first term on the right-hand side of that expression can be equivalently rewritten as

δ(α)
x wn

k,l,m = − 1

hα
1

M1∑

j=0

g
(α)
k−jwn

j,l,m = − 1

hα
1

M1∑

j=0

[Hα
M1

]kj [wn
·,·,m]jl = −h−α

1 [Hα
M1

w·,·,m]k,l. (2.8)

23



Obviously, the product inside of the parenthesis at the right-hand side of this expression is the

usual product of matrices. Similarly, it is easy to check that δ
(α)
y wn

k,l,m = −h−α
2 [Hα

M2
wn

k,·,·]l,m and

δ
(α)
z wn

k,l,m = −h−α
3 [wn

k,·,·H
α
M3

]l,m. Combining these expressions and representing the discrete frac-

tional Laplacian operator simply by δ(α), it follows that

δ(α)wn
k,l,m = −h−α

1 [Hα
M1

wn
·,·,m]k,l − h−α

2 [Hα
M2

wn
k,·,·]l,m − h−α

3 [wn
k,·,·H

α
M3

]l,m, (2.9)

for each (k, l,m) ∈ K.
We will require the matrices Hx = r1h

−α
1 Hα

M1
, Hy = r1h

−α
2 Hα

M2
and Hz = r1h

−α
3 Hα

M3
. Using this

nomenclature, the finite-difference system (2.2) may be rewritten equivalently as





un+2
k,l,m = un+1

k,l,m + un
k,l,m − un−1

k,l,m − r2

G1(un+1
k,l,m, µtv

n
k,l,m)−G1(un

k,l,m, µtv
n
k,l,m)

un+1
k,l,m − un

k,l,m

− r3

(
un+1

k,l,m − un
k,l,m

)
,

−
(

[Hxun+1
·,·,m]k,l + [Hyun+1

k,·,· ]l,m + [un+1
k,·,·Hz]l,m

)

−
(
[Hxun

·,·,m]k,l + [Hyun
k,·,·]l,m + [un

k,·,·Hz ]l,m
)
,

vn+2
k,l,m = vn+1

k,l,m + vn
k,l,m − vn−1

k,l,m − r2

G1(µtu
n
k,l,m,v

n+1
k,l,m)−G1(µtu

n
k,l,m,v

n
k,l,m)

vn+1
k,l,m − vn

k,l,m

− r3

(
vn+1

k,l,m − vn
k,l,m

)
,

−
(

[Hxvn+1
·,·,m]k,l + [Hyvn+1

k,·,· ]l,m + [vn+1
k,·,·Hz]l,m

)

−
(
[Hxvn

·,·,m]k,l + [Hyvn
k,·,·]l,m + [vn

k,·,·Hz ]l,m
)
,

(2.10)
for each (k, l,m, n) ∈ K × IN−2.

In what follows, we will describe the computer implementation when M = M1 = M2 = M3,
a = a1 = a2 = a3 and b = b1 = b2 = b3. In such case, we observe that h = h1 = h2 = h3 and
H = Hx = Hy = Hz. Let n ∈ IN−2 and w = u, v, and define the three-dimensional real arrays Rw,
Sw and Tw of sizes (M + 1)× (M + 1)× (M + 1), by

Rw
k,l,m = [Hwn

·,·,m]k,l, Sw
k,l,m = [Hwn

k,·,·]l,m, Tw
k,l,m = [wn

k,·,·H ]l,m, (2.11)

for all (k, l,m) ∈ K. For simplification purposes, we are obviating here the dependence of Rw, Sw and
Tw on k. From these set of identities, it readily follows that for each (k, l,m) ∈ K,

Rw
·,·,m = Hwn

·,·,m, Sw
k,·,· = Hwn

k,·,·, Tw
k,·,· = wn

k,·,·H. (2.12)

Under this circumstances, Algorithm 1 provides the description of our computational implementation
of (2.10).

Remarks 2.1. Some important remarks on the computer implementation of Algorithm 1 must be
mentioned.

1. Firstly, it is important to point out that our implementation was carried out having Fortran 95
in mind. However, the approach is also valid for other computer languages, like C++ or Matlab.
We opted to use Fortran in view that if is a free computer language, and our experience tells us
that it is usually faster than other languages.

2. Various code lines can be obviously executed in parallel. One example is the set of instructions
between lines 15–20 of Algorithm 1. Also, lines 22 and 23 can be realized in parallel, as well
as all the instruction in lines 24 and 25. All these facts have been exploited in our computer
implementation of Algorithm 1.

3. The algorithm was coded in Gfortran on a Linux Mint 18.3 “Sylvia” MATE distribution, and
the use of Fortran commands for matrix multiplication has been crucial to speed up our imple-
mentation. In turn, the parallelization was carried out naturally using the package OpenMP.

24



Algorithm 1: Iterative algorithm to solve the discrete problem (1.43).

1 Initialize parameters;
2 Define matrix H ;
3 Set u0

k,l,m ← φu
k,l,m; v0

k,l,m ← φv
k,l,m;

4 Set u1
k,l,m ← ψu

k,l,m; v1
k,l,m ← ψv

k,l,m;

5 Set u2
k,l,m ← χu

k,l,m; v2
k,l,m ← χv

k,l,m;

6 for j = 0 : M do
7 for w = u, v do
8 Set Rw

·,·,j = Hw1
·,·,j;

9 Set Sw
j,·,· = Hw1

j,·,·;

10 Set Tw
j,·,· = w1

j,·,·H ;

11 end

12 end
13 for n = 1 : N − 2 do

14 Set Wk,l,m ←
G1(un+1

k,l,m, µtv
n
k,l,m)−G1(un

k,l,m, µtv
n
k,l,m)

un+1
k,l,m − un

k,l,m

;

Zk,l,m ←
G2(µtu

n
k,l,m,v

n+1
k,l,m)−G2(µtu

n
k,l,m,v

n
k,l,m)

vn+1
k,l,m − vn

k,l,m

;

15 for j = 0 : M do
16 for w = u, v do
17 Set rw

·,·,j = Hwn+1
·,·,j ;

18 Set sw
j,·,· = Hwn+1

j,·,· ;

19 Set twj,·,· = wn+1
j,·,· H ;

20 end

21 end
22 Calculate un+2 = un+1 + un − un−1 − r3(un+1 − un)− r2W − ru − su − tu −Ru − Su − T u;
23 Calculate vn+2 = vn+1 + vn − vn−1 − r3(vn+1 − vn)− r2Z − rv − sv − tv −Rv − Sv − T v;
24 Set Ru ← ru; Su ← su; T u ← tu;
25 Set Rv ← rv ; Sv ← sv; T v ← tv;

26 end

4. In the calculation of the coefficients (g
(α)
k )∞

k=−∞, we employed the following recursive formula:





g
(α)
0 =

Γ(α+ 1)

Γ(α/2 + 1)2
,

g
(α)
k+1 =

(
1− α+ 1

α/2 + k + 1

)
g

(α)
k , ∀k ∈ N ∪ {0}.

(2.13)

2.2 Simplified model

The purpose of this section is to provide a simpler numerical model to solve the problem under
investigation. Using the discrete nomenclature, a simpler finite-difference method to approximate
the solutions of (1.7) is described by the following discrete system of algebraic equations, for each
(j, k) ∈ J × IK−1:

τuδ
(2)
t uk

j + δ
(1)
t uk

j = F (uk
j ,v

k
j ) + duδ

(α1)uk
j ,

τvδ
(2)
t vk

j + δ
(1)
t vk

j = G(uk
j ,v

k
j ) + dvδ

(α2)vk
j ,

such that

{
u0

j = φu
j , v0

j = φv
j , ∀j ∈ J ,

δ
(1)
t u0

j = ψu
j , δ

(1)
t v0

j = ψv
j , ∀j ∈ J .

(2.14)

25



Remark 2.2. Various facts must be noted.

1. Firstly, we must mention that an extension of the method (1.43) can be readily provided to
solve numerically the system (1.7). This task only requires of introducing suitable discrete
nomenclature. We do not tackle this problem in this thesis, in view that such extension is an
easy task.

2. Also, it is important to note that the general difference equations of (1.43) can be solved exactly
for uk+1

j and vk+1
j , for each j ∈ J and k ∈ IK−1. Indeed, after doing some algebraic calculations,

it is easy to check that

uk+1
j = ru

1 uk
j − ru

2 uk−1
j + ru

3

[
F (uk

j ,v
k
j ) + δ(α1)uk

j

]
, (2.15)

vk+1
j = rv

1vk
j − rv

2vk−1
j + rv

3

[
G(uk

j ,v
k
j ) + δ(α2)vk

j

]
, (2.16)

for each (j, k) ∈ J × IK−1. Here, for each w = u, v,

rw
1 =

4τw

2τw + τ
, rw

2 =
2τw − τ
2τw + τ

, rw
3 =

2τ2

2τw + τ
. (2.17)

3. In light of the previous remark, the discrete scheme (1.43) is uniquely solvable for any set of
initial conditions.

4. The consistency of the discrete operators employed in our discretization together with Lemma
1.10 show that the finite-difference scheme has a local truncation error of order O(τ2 + ‖h‖2

2) for
functions u, v ∈ C5,4

x,t (Ω). Here, the symbol ‖ · ‖2 represents the usual Euclidean norm.

5. Note that the method requires to know the approximations u−1 and v−1 at the time t−1 = −τ .
However, using the discrete initial velocities of (1.43), we readily obtain that u−1

j = u1
j − 2τψu

j

and v−1
j = v1

j − 2τψv
j . Letting k = 0 and substituting now into equations (2.15) and (2.16),

respectively, we obtain

u1
j =

ru
1 u0

j + 2ru
2 τψ

u
j + ru

3

[
F (u0

j ,v
0
j) + δ(α1)u0

j

]

1 + ru
2

, (2.18)

v1
j =

rv
1v0

j + 2rv
2τψ

v
j + rv

3

[
G(u0

j ,v
0
j) + δ(α2)v0

j

]

1 + rv
2

, (2.19)

for all j ∈ J .

Some computational simplifications are readily at hand if we define the matrices






Hu
x = ru

3h
−α1

1 Hα1

M , Hv
x = rv

3h
−α2

1 Hα2

M ,
Hu

y = ru
3h

−α1

2 Hα1

N , Hv
y = rv

3h
−α2

2 Hα2

N ,

Hu
z = ru

3h
−α1

3 Hα1

P , Hv
z = rv

3h
−α2

3 Hα2

P .

(2.20)

Using this nomenclature, the finite-difference equations (2.15)-(2.16) way be rewritten equivalently as





uk+1
m,n,p = ru

1 uk
m,n,p − ru

2 uk−1
m,n,p + ru

3F (uk
m,n,p,v

k
m,n,p)

− [Hu
x uk

·,·,p]m,n − [Hu
y uk

m,·,·]n,p − [uk
m,·,·H

u
z ]n,p,

vk+1
m,n,p = rv

1vk
m,n,p − rv

2vk−1
m,n,p + rv

3G(uk
m,n,p,v

k
m,n,p)

− [Hv
xvk

·,·,p]m,n − [Hv
y vk

m,·,·]n,p − [vk
m,·,·H

v
z ]n,p,

(2.21)

26



Algorithm 2: Iterative algorithm to solve problem (2.21)-(2.22).

1 Initialize parameters;
2 Define matrices Hu; Hv;
3 Set u0

m,n,p ← φu
m,n,p; v0

m,n,p ← φ0
m,n,p;

4 Set W ← F (u0,v0); Z ← G(u0,v0);
5 for l = 0 : M do
6 for w = u, v do
7 Set Rw

·,·,l = Hwwk
·,·,l;

8 Set Sw
l,·,· = Hwwk

l,·,·;

9 Set Tw
l,·,· = wk

l,·,·H
w;

10 end

11 end

12 Calculate u1 =
ru

1 u0 + 2ru
2 τψ

u + ru
3W −Ru − Su − T u

1 + ru
2

;

13 Calculate v1 =
rv

1v0 + 2rv
2τψ

v + rv
3Z −Rv − Sv − T v

1 + rv
2

;

14 for k = 1 : K − 1 do
15 Set W ← F (uk,vk); Z ← G(uk,vk);
16 for l = 0 : M do
17 for w = u, v do
18 Set Rw

·,·,l = Hwwk
·,·,l;

19 Set Sw
l,·,· = Hwwk

l,·,·;

20 Set Tw
l,·,· = wk

l,·,·H
w;

21 end

22 end

23 Calculate uk+1 = ru
1 uk − ru

2 uk−1 + ru
3W −Ru − Su − T u;

24 Calculate vk+1 = rv
1vk − rv

2vk−1 + rv
3W −Rv − Sv − T v;

25 end

for each (m,n, p, k) ∈ J × IK−1. Meanwhile, the initial data satisfy the following identities, for each
(m,n, p) ∈ J :





u1
m,n,p =

1

1 + ru
2

(
ru

1 u0
m,n,p + 2ru

2 τψ
u
m,n,p + ru

3F (u0
m,n,p,v

0
m,n,p)

−[Hu
x u0

·,·,p]m,n − [Hu
y u0

m,·,·]n,p − [u0
m,·,·H

u
z ]n,p

)
,

v1
m,n,p =

1

1 + rv
2

(
rv

1v0
m,n,p + 2rv

2τψ
v
m,n,p + rv

3G(u0
m,n,p,v

0
m,n,p)

−[Hv
xv0

·,·,p]m,n − [Hv
y v0

m,·,·]n,p − [v0
m,·,·H

v
z ]n,p

)
,

u0
m,n,p = φu

m,n,p,

v0
m,n,p = φv

m,n,p.

(2.22)

In what follows, we will describe the computer implementation for the case when M = N = P ,
a = a1 = a2 = a3 and b = b1 = b2 = b3. In such case, we observe that h = h1 = h2 = h3 and
Hw = Hw

x = Hw
y = Hw

z , for each w = u, v. Let k ∈ IK−1 and w = u, v, and define the three-
dimensional real arrays Rw, Sw and Tw of sizes (M + 1)× (M + 1)× (M + 1), by

Rw
m,n,p = [Hwwk

·,·,p]m,n, Sw
m,n,p = [Hwwk

m,·,·]n,p, Tw
m,n,p = [wk

m,·,·H
w]n,p, (2.23)

for all (m,n, p) ∈ J . For simplification purposes, we are obviating here the dependence of Rw, Sw and

27



Tw on k. From these set of identities, it readily follows that

Rw
·,·,p = Hwwk

·,·,p, Sw
m,·,· = Hwwk

m,·,·, Tw
m,·,· = wk

m,·,·H
w, (2.24)

for each (m,n, p) ∈ J .
Moreover, in our computational implementation, we will employ the matrices W and Z of sizes

(M + 1)× (M + 1)× (M + 1) defined component-wise by

Wm,n,p = F (uk
m,n,p,v

k
m,n,p), (2.25)

Zm,n,p = G(uk
m,n,p,v

k
m,n,p), (2.26)

for each (m,n, p) ∈ J . Under this circumstances, Algorithm 2 provides the algorithmic description
of the finite-difference method (2.21)-(2.22). It is important to point out that our implementation
was carried out having Fortran 95 in mind. However, the approach is also valid for other computer
languages, like C++ or Matlab. For convenience, Appendix A provides a rough implementation of
this algorithm in Fortran 95.

2.3 Computer simulations

The present section is devoted to provide some illustrative computer simulations of the methods pro-
posed in the previous sections. We will consider firstly the case of the non-variational scheme (1.43),
and provide some three-dimensional simulations to the investigation of Turing patterns in chemical
systems of inhibitor-activator substances. More concretely, consider the system

τu

∂2u(x, t)

∂t2
+
∂u(x, t)

∂t
= u(x, t)− av(x, t) + bu(x, t)v(x, t)− [u(x, t)]3 + du∇α1u(x, t), ∀(x, t) ∈ Ω,

τv

∂2v(x, t)

∂t2
+
∂v(x, t)

∂t
= u(x, t)− cv(x, t) + dv∇α2v(x, t), ∀(x, t) ∈ Ω,

such that

{
u(x, 0) = φu(x), v(x, 0) = φv(x), ∀x ∈ B,
∂u

∂t
(x, 0) = ψu(x),

∂v

∂t
(x, 0) = ψv(x), ∀x ∈ B.

(2.27)
It is clear that this is a particular form of (1.7), using q = 2, u = u1, v = u2, τu = τ1, τv = τ2,
γ1 = γ2 = 1, φu = φ1, φv = φ2, ψu = ψ1 and ψv = ψ2. Meanwhile, the functions F1 and F2 are
provided by (1.13) and (1.14), respectively. Clearly, the functions G1, G2 : R

2 → R defined below
satisfy the hypothesis (H):

G1(u, v) = 1
2u

2 − auv + 1
2bu

2v − 1
4u

4, ∀u, v ∈ R, (2.28)

G2(u, v) = uv − 1
2cv

2, ∀u, v ∈ R. (2.29)

In the following examples, we concentrate our attention on the solutions of the system (2.27). Our
examples are motivated by a set of results reported in [44] for the two-dimensional version of the
mathematical model considered here. Briefly, the authors of that work found out that, for any value
of α1, α2 ∈ (1, 2], Turing patterns appear in the system when the following parameter conditions are
satisfied:

1 < c < a < aT , d > 1, b <
√
c(a− c). (2.30)

Here, aT = 1
4 (d + c)2d−1. Motivated by this fact, we will fix the parameter values recorded in Table

2.1. We will only let b take on various values in R
+.

Example 2.3. Consider the system (2.27) with the parameter values of Table 2.1 and b = 0.5. As initial
profiles, we chose samples of a uniformly distributed random variable on the interval [−0.03, 0.03], and
used zero initial velocities. Figure 2.1 shows snapshots of the approximate solutions of the variable
u of (1.7) versus x and y for α = 1.5. The times (a) t = 0, (b) t = 100, (c) t = 400, (d) t = 750,
(e) t = 1500 and (f) t = 2500 were used in this example, and the graphs have been normalized with

28



Parameter p a c du dv τu τv α1 α2 Ω T h τ
Example 2.3 2

7.45 5 1 20 1 1 1.5 1.5
[0, 200]3 2500

1 0.01
Example 2.4 3 [0, 100]3 2000

Table 2.1: Set of fixed model and computational parameters employed in the simulations of Examples
2.3 and 2.4.

Parameter a c du dv τu τv α1 α2 Ω T h τ
Value 7.45 5 1 20 1 1 1.5 1.5 [0, 100]3 2000 1 0.01

Table 2.2: Set of fixed model and computational parameters employed in the simulations of Example
2.6.

respect to the absolute maximum of the solution at each time. It is clear that he results are in good
qualitative agreement with those obtained in [44]. Figures 2.2 and 2.3 provide similar results for the
cases when b = 1.5 and b = 2.5, respectively. Again, a good agreement with the theory and simulations
obtained in [44] is found in these graphs.

Our next example considers the three dimensional version of (2.27).

Example 2.4. Consider the problem (2.27) in three spatial dimensions, together with the set of model
and computational parameters in Table 2.1. Additionally, we let b = 0.5. Figure 2.4 shows snapshots
of the approximate solution obtained using the scheme (1.43) at various times, namely, (a) t = 50, (b)
t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. The results depict the presence of
complex patterns in this system. The results were obtained using a parallel implementation of our code
in Fortran 95, and the visualizations were obtained using standard routines in Matlab. In particular,
we employed the standard command isosurface with different values of the isovalue parameter to
that end. More precisely, we used values of the parameter isovalue equal to 0.01. Figure 2.5 shows
some x-, y- and z-cross sections of the solutions at each of those times. The solutions exhibit some
complex patterns in this case. Figures 2.6 and 2.7 are similar to Figures 2.4 and 2.5 using now b = 1.5.
Finally, Figures 2.8 and 2.9 show the same results for b = 2.5. In all cases, we note the presence of
complex patters in the three-dimensional medium.

Remarks 2.5. As we mentioned at the end of Section 1.2, Examples 1.3–1.5 satisfy (H). This fact was
observed at the beginning of the present section for the model of Example 1.5, and we will show next
that the other two examples satisfy this analytical condition.

• In the case of Example 1.3, a function satisfying the hypothesis is G1(u) = 1 − cos(u), for each
u ∈ R.

• For Example 1.4 with the scaled reaction functions (1.11)-(1.12) the functions

G1(u1, u2) =
1

S
u2

2 ln(u2 + Su1)− u1u2 +
R

2
u2

1 −
R

2S
u3

1, ∀u1, u2 ∈ R, (2.31)

G2(u1, u2) = Su1u2 − S2u2
1 ln(u2 + Su1)− Q

2
u2

2, ∀u1, u2 ∈ R, (2.32)

satisfy the hypothesis (H).

Also, we must mention that the simulations of Example 2.4 show the appearance of complex patterns.
However, it is important to point out that the analytical prediction of patterns in the three-dimensional
model (2.27) is still an open task of research. In that sense, the present computational model can be
a useful tool in the resolution of such problem.

We provide next some illustrative applications of the finite-difference method (2.14). In the follow-
ing examples, we concentrate our attention on the solutions of the system (1.7) with reaction functions

29



(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Snapshots of the approximate solutions of the variable u of (2.27) versus (x, y), using the
parameters of Table 2.1 for Example 2.3, and b = 0.5. The times (a) t = 100, (b) t = 400, (c) t = 1000
and (d) t = 2500 were used in these simulations. The graphs were normalized with respect to the
absolute maximum of the solution at each time.

30



(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Snapshots of the approximate solutions of the variable u of (2.27) versus (x, y), using the
parameters of Table 2.1 for Example 2.3, and b = 1.5. The times (a) t = 100, (b) t = 400, (c) t = 1000
and (d) t = 2500 were used in these simulations. The graphs were normalized with respect to the
absolute maximum of the solution at each time.

31



(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Snapshots of the approximate solutions of the variable u of (2.27) versus (x, y), using the
parameters of Table 2.1 for Example 2.3, and b = 2.5. The times (a) t = 100, (b) t = 400, (c) t = 1000
and (d) t = 2500 were used in these simulations. The graphs were normalized with respect to the
absolute maximum of the solution at each time.

32



(a) (b)

(b) (c)

(d) (e)

Figure 2.4: Approximation to the solutions of (2.27), using the finite-difference scheme (1.43) with the
model and computational parameters in Table 2.1 for Example 2.4, and b = 0.5. Various times were
considered, namely, (a) t = 50, (b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. The
graphing subroutines were based on the function isosurface with values of the isovalue parameter
equal to 0.01.

33



(a) (b)

(b) (c)

(d) (e)

Figure 2.5: Approximation to some x-, y- and z-cross sections of the solutions of (2.27), using the
finite-difference scheme (1.43) with the model and computational parameters in Table 2.1 for Example
2.4, and b = 0.5. Various times were considered, namely, (a) t = 50, (b) t = 100, (c) t = 250, (d)
t = 500, (e) t = 1000 and (f) t = 2000.

34



(a) (b)

(b) (c)

(d) (e)

Figure 2.6: Approximation to the solutions of (2.27), using the finite-difference scheme (1.43) with the
model and computational parameters in Table 2.1 for Example 2.4, and b = 1.5. Various times were
considered, namely, (a) t = 50, (b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. The
graphing subroutines were based on the function isosurface with values of the isovalue parameter
equal to 0.01.

35



(a) (b)

(b) (c)

(d) (e)

Figure 2.7: Approximation to some x-, y- and z-cross sections of the solutions of (2.27), using the
finite-difference scheme (1.43) with the model and computational parameters in Table 2.1 for Example
2.4, and b = 1.5. Various times were considered, namely, (a) t = 50, (b) t = 100, (c) t = 250, (d)
t = 500, (e) t = 1000 and (f) t = 2000.

36



(a) (b)

(b) (c)

(d) (e)

Figure 2.8: Approximation to the solutions of (2.27), using the finite-difference scheme (1.43) with the
model and computational parameters in Table 2.1 for Example 2.4, and b = 2.5. Various times were
considered, namely, (a) t = 50, (b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. The
graphing subroutines were based on the function isosurface with values of the isovalue parameter
equal to 0.01.

37



(a) (b)

(b) (c)

(d) (e)

Figure 2.9: Approximation to some x-, y- and z-cross sections of the solutions of (2.27), using the
finite-difference scheme (1.43) with the model and computational parameters in Table 2.1 for Example
2.4, and b = 2.5. Various times were considered, namely, (a) t = 50, (b) t = 100, (c) t = 250, (d)
t = 500, (e) t = 1000 and (f) t = 2000.

38



(a) (b)

(b) (c)

(d) (e)

Figure 2.10: Approximation to the solutions of (1.7) with reaction functions (2.33)-(2.34), using the
finite-difference scheme (2.14) with the model and computational parameters in Table 2.1, and b = 0.5.
Various times were considered, namely, (a) t = 0, (b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and
(f) t = 2000. The results were obtained using a parallel Fortran 95 implementation of the Algorithm
1. The graphing subroutines were based on the function isosurface with values of the isovalue

parameter equal to (a) 0.006, (b) 0.01 and (c)–(d) 0.1.

39



(a) (b)

(b) (c)

(d) (e)

Figure 2.11: Approximation to some x-, y- and z-cross sections of the solutions of (1.7) with reaction
functions (2.33)-(2.34), using the finite-difference scheme (2.14) with the model and computational
parameters in Table 2.1, and b = 0.5. Various times were considered, namely, (a) t = 0, (b) t = 100,
(c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. The results were obtained using a parallel
Fortran 95 implementation of the Algorithm 1.

40



(a) (b)

(b) (c)

(d) (e)

Figure 2.12: Approximation to the solutions of (1.7) with reaction functions (2.33)-(2.34), using the
finite-difference scheme (2.14) with the model and computational parameters in Table 2.1, and b = 1.5.
Various times were considered, namely, (a) t = 0, (b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and
(f) t = 2000. The results were obtained using a parallel Fortran 95 implementation of the Algorithm
1. The graphing subroutines were based on the function isosurface with values of the isovalue

parameter equal to (a) 0.006, (b) 0.01 and (c)–(d) 0.1.

41



(a) (b)

(b) (c)

(d) (e)

Figure 2.13: Approximation to some x-, y- and z-cross sections of the solutions of (1.7) with reaction
functions (2.33)-(2.34), using the finite-difference scheme (2.14) with the model and computational
parameters in Table 2.1, and b = 1.5. Various times were considered, namely, (a) t = 0, (b) t = 100,
(c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. The results were obtained using a parallel
Fortran 95 implementation of the Algorithm 1.

42



(a) (b)

(b) (c)

(d) (e)

Figure 2.14: Approximation to the solutions of (1.7) with reaction functions (2.33)-(2.34), using the
finite-difference scheme (2.14) with the model and computational parameters in Table 2.1, and b = 2.5.
Various times were considered, namely, (a) t = 0, (b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and
(f) t = 2000. The results were obtained using a parallel Fortran 95 implementation of the Algorithm
1. The graphing subroutines were based on the function isosurface with values of the isovalue

parameter equal to (a) 0.006, (b) 0.01 and (c)–(d) 0.1.

43



(a) (b)

(b) (c)

(d) (e)

Figure 2.15: Approximation to some x-, y- and z-cross sections of the solutions of (1.7) with reaction
functions (2.33)-(2.34), using the finite-difference scheme (2.14) with the model and computational
parameters in Table 2.1, and b = 2.5. Various times were considered, namely, (a) t = 0, (b) t = 100,
(c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. The results were obtained using a parallel
Fortran 95 implementation of the Algorithm 1.

44



given by

F (u, v) = u− av + buv − u3, ∀u, v ∈ R, (2.33)

G(u, v) = u− cv, ∀u, v ∈ R. (2.34)

Our examples are motivated by a set of results reported in [44] for the two-dimensional version of the
mathematical model considered here. Briefly, the authors of that work found out that, for any value of
α1, α2 ∈ (1, 2], Turing patterns appear in the system when (2.30) are satisfied. Here, aT = 1

4 (d+c)2d−1.
Motivated by this fact, we will fix the parameter values recorded in Table 2.1. We will only let b take
on various values in R

+.

Example 2.6. Consider the problem (1.7) with the reaction functions (2.33)-(2.34), together with the
set of model and computational parameters in Table 2.2. Additionally, we let b = 0.5. Figure 2.10
shows snapshots of the approximate solution obtained using the scheme (2.14) at various times, namely,
(a) t = 50, (b) t = 100, (c) t = 250, (d) t = 500, (e) t = 1000 and (f) t = 2000. The results depict the
presence of complex patterns in this system. The results were obtained using a parallel implementation
of our code in Fortran 95, and the visualizations were obtained using standard routines in Matlab,
In particular, we employed the standard command isosurface with different values of the isovalue

parameter to that end. More precisely, we used values of the parameter isovalue equal to (a) 0.006,
(b) 0.01 and (c)–(d) 0.1. Figure 2.11 shows some x-, y- and z-cross sections of the solutions at each
of those times. The solutions exhibit some complex patterns in this case. Figures 2.12 and 2.13 are
similar to Figures 2.10 and 2.11 using now b = 1.5. Finally, Figures 2.14 and 2.15 show the same
results for b = 2.5. In all cases, we note the presence of complex patters in the three-dimensional
medium.

Remark 2.7. Before closing this stage, we would like to mention that the simulations were carried out
using the Fortran 95 program in Appendix A. The advantages of the code are various:

1. On the one hand, the computer program is rather simple, and it is a straightforward imple-
mentation of the scheme (2.21)-(2.22). In that sense, the computational implementation of the
numerical method is an easy task for any scientist with modest knowledge on scientific program-
ming.

2. The computer program makes use of the Fortran 95 routine matmul, which is an efficient imple-
mentation of the multiplication of matrices that produces fast results.

3. The algorithm can be easily parallelized. Indeed, in our computer implementation we used the
package OpenMP to that end. Needless to mention that the performance of the program is
computationally faster using that package.

45



3. Computational method

Nowadays, because the available technology, a wide variety of problems can be solved.
The solutions for these problems are intended to help humans to perform their every-
day activities. These activities could be simple as turning on a TV set or complex such
as forecasting stock exchange. We could see the impact of technology by analyzing how
activities were perform in the past compared to today. Computers are an integral part
of such solutions because they are capable of performing very complex calculations at an
extremely short period of time. At doing so, allows humans to perform incredible feats
such as traveling to outer space, observe microorganisms, or performing tasks in highly
contaminated environments, among others. In the field of health care, computers and
Information and Communication Technologies are being used in order to develop new drugs,
new treatments, new devices for performing remote surgeries or brain surgeries. These
technologies allow humans to execute more precise tasks, and, by doing so, minimizing risks.
In the exact sciences field, technology is being used for solving very complex problems.
Technology such as computers, robots, Internet of Things, among others. While using
computers, software is an integral part of the implemented solutions. Software can be
used to perform calculations, and to solve statistical and mathematical problems, instead
of doing it manually. Thus, researchers could save a lot of time, reduce the costs by
using technology as a tool in their projects. Technological advances are possible by the
computer. It is necessary to have certain tools such as programs or software, which serve
as intermediaries between computers and people who use it. Each program is designed or
developed for a specific purpose, in order to facilitate the daily activity for each person.
This section lists and describes existing software categories.

3.1 Types of software

Nowadays, we can find different types of software that is being used in all kind of people’s activities for
performing their daily activities. Such software may run in a computer or be imbedded into a device
such as smart TV, smart phone, a washing machine, among others. Pressman [64] classifies that into 7
different groups, depending on the activity that is performed or their based on its purpose. However,
these seven broad categories of computer software present continuing challenges for software engineers.
These categories are as follow:

1. System software: a collection of programs written to service other pro-grams. Some software
systems (e.g., compilers, editors, and file management utilities) process complex (but specific)
information structures. Other systems applications (e.g., operating system components, drivers,
networking software, telecommunications processors) process largely indeterminate data. In ei-
ther case, the systems software area is characterized by heavy interaction with computer hard-
ware; heavy usage by multiple users; concurrent operation that requires scheduling, resource

46



sharing, and sophisticated process management; complex data structures; and multiple external
interfaces.

2. Application software: stand-alone programs that solve a specific business need. Applications
in this area process business or technical data in a way that facilitates business operations or
management/technical decision making. In addition to conventional data processing applica-
tions, application software is used to control business functions in real time (e.g., point-of-sale
transaction processing, real-time manufacturing process control).

3. Engineering/scientific software: Has been characterized by “number crunching” algorithms.
Applications range from astronomy to volcanology, from automotive stress analysis to space shut-
tle orbital dynamics, and from molecular biology to automated manufacturing. However, modern
applications within the engineering/scientific area are moving away from conventional numerical
algorithms. Computer-aided design, system simulation, and other interactive applications have
begun to take on real-time and even system software characteristics.

4. Embedded software: resides within a product or system and is used to implement and control
features and functions for the end user and for the system itself. Embedded software can perform
limited and esoteric functions (e.g., key pad control for a microwave oven) or provide significant
function and control capability (e.g., digital functions in an automobile such as fuel control,
dashboard displays, and braking systems).

5. Product-line software: designed to provide a specific capability for use by many different cus-
tomers. Product-line software can focus on a limited and esoteric marketplace (e.g., inventory
control products) or address mass consumer markets (e.g., word processing, spreadsheets, com-
puter graphics, multimedia, entertainment, database management, and personal and business
financial applications).

6. Web applications: called “WebApps,” this network-centric software cate-gory spans a wide
array of applications. In their simplest form, WebApps can be little more than a set of linked
hypertext files that present information using text and limited graphics. However, as Web 2.0
emerges, WebApps are evolving into sophisticated computing environments that not only provide
stand-alone features, computing functions, and content to the end user, but also are integrated
with corporate databases and business applications.

7. Artificial intelligence software: makes use of nonnumerical algorithms to solve complex
problems that are not amenable to computation or straight for-ward analysis. Applications
within this area include robotics, expert systems, pattern recognition (image and voice), artificial
neural networks, theorem proving, and game playing.

Therefore, it is important to understand each category because they outline the main attributes
for a specific solution. For the present thesis, a scientific software solution for was presented in section
3.2.

3.2 Software solutions

In previous sections, we presented a mathematical solution for a specific problem of. In this section,
we present an algorithm that is implemented using software for such solution. Our approach is codded
in Fortran programming language. Fortran was chosen because its simplicity and execution power for
implementing mathematical problems [65]. In addition, Fortran 95 has the capability of exploiting
modern processors because it can execute source code in sequential or parallel fashions.

Explanation
Once the algorithm, an initial solution was codded, which was tested by using hand-made tests.

Such tests showed that execution, grammar and semantic issues were not existing within the code.
Some hand-made runs were performed in order to prove that the algorithm was properly functioning.

47



Once the algorithm was obtained, it was moved to the coding stage. Coded was performed using
Fortran f95 because this the best language to implement the found solution. In order to test the
code, some sample runs were performed so that no syntax and/or grammar errors were existing within
the coded solution. As expected, the coded solution delivers the required results. Thus, we can
conclude that the implementation is an adequate solution or implementing the algorithm. The resulting
algorithm is shown in Figure 1.

By testing the coded solution by using the above algorithm, we noticed some important aspects
that we should take into consideration. There are two parameters that directly affect the response
time of the algorithm, these two parameters are: sample size and the number of iterations. The best
applications are when the algorithm uses large sample size and number of iterations are. However, the
response time used by the implemented solution in order to solve those applications was very poor.
The initial version was developed using a sequential approach. For now on, the coded solution will be
referred as TurPatts.

For example, TurPatts has a response tome approximately 48 hours to solve a problem under the
following conditions shown in Table 3.1

Table 3.1: Parameters that influence response time
Parameter Value

(units)
Number of itera-
tions

2500

Sample size 200

We can notice that the above parameters for obtaining the best results of the real ideal case,
TurPatts requires about two days to obtain the corresponding solution. Thus, it is required to develop
and enhanced solution for TurPatts that solves the problem using a minimal response time. In order
to prove what we argue in this paragraph, let us to calculate the corresponding complexity analysis of
the initial approach. We might notice that the degree of complexity of the algorithm is high, as can
be seen in the code snippet shown in Figure 3.2. Because it has four nested cycles, and since it is the
main part of code, we can estimate that the code has an order of complexity equivalent to O(n

4
).

do n=3, NumIt

do i=1,M

do j=1,M

do k=1:M

.

.

.

end do

end do

end do

end do

Figure 3.1: Sample Code

In conclusion, we need to develop enhanced solutions that deliver optimal outcomes. The following
sections described two additional approaches that were developed. These two deliver outcomes that
we believe are close to optimal.

Nowadays, there are several programming schemes or paradigms. Thus, depending on its purpose,
each software development must follow a special paradigm that suits better the expected outcomes.
For the present study, two different approaches were used trying to develop the best solution. Those

48



approaches are: sequential and parallel programming.
The classic view of sequential programming refers to the execution control. This type of program-

ming is one of the easiest to use, and the basic rule and to follow is that the instructions will be executed
in an orderly and successive fashion: one by one. This programming paradigm when it is executed, an
instruction is performed one at a time, and the following instruction cannot begin executed until the
current one is fully finished; for example, loops within the code. When a sequential program reaches a
loop-like instruction, the execution will remain in this statement indefinitely until all units in the loop
is completed.

One of the features of this type of programming is that it will only use a single processor core,
no matter the number of processors/cores the computer has. It is important to mention that current
computers possess processors that have more than one core. Thus, we can argue that this type of
programming does not make optimal of modern processors.

Figure 3.2 shows a graphical representation of how sequential programming works.

Figure 3.2: Graphical representation of sequential programming

Most programmers do not make use of parallel programming. This could be because the use of a
single processor core is seen as more than enough to satisfy the requirements by the software programs
they code. However, there are specific programing solutions in which the use of a single processor core
causes the program to run slowly and this is often because the capacity of the processor core has been
exceeded [66]

Writing a parallel software program must always start by identifying the parallelism inherent in
the algorithm at hand. Different variants of parallelism induce different methods of parallelization.

Many problems in scientific computing involve processing of large quantities of data stored on a
computer. If this manipulation can be performed in parallel, (i.e., by multiple processors working on
different parts of the data), we are referring to data parallelism [66]. Since we identified what we need to
perform, in order to improve the response time of our coded solution, we believe that developing codes
based on parallelism would enhance significantly the performance of TurPatts. Section 3.3 describes
briefly each approach used to implement TurPatts.

3.3 Final solution

In all, 3 different solutions were developed. Results from the first solution we found that it was necessary
to improve the response time by our implementation. The response time was about 48 hours. Based
on what we described in Section 3.2, we found that that it was possible to use a parallelization scheme,
and therefore, try to update our software program in order to attempt optimizing the response time
required for each solution.

The second approach parallelizes the source code as much as possible. In order to, we identified
the parts of the source code that this was possible (see Figure 3.2). For this approach, we applied the
parallelization on the cycles, so that all the processor’s cores were used; and by doing so this, decreased
the response time. Figure 3.3 shows a general outline of how cycle parallelization is achieved, using
[66]. Also, we can clearly see how the same cycle can be divided into two parts, this will be limited
depending on the number of cores available on the processor.

49



Figure 3.3: Division of cycles by parallelism.

Next, we compare the coded alternatives solutions. First, the original solution was programmed
under a sequential programming paradigm. This alternative was discarded for the analysis because
the time required to obtain each instance was extremely high. For example, for a data set shown in
Table 3.2 the solution demanded about 48 hours.

For the comparison of the other two solutions obtained, 2 tests were performed to measure the
performance of the algorithms. First, some executions were performed in order to confirm that the
results obtained were the same or, at least, very similar (with a very small margin of error, equivalent
to or less than 1∗10−20). Once it was found that both solutions are correctly developed then the second
test was carried out. In this proof it was necessary to perform 30 iterations with a set of parameters
in order to observe the behavior of the algorithms. Table 3.2 shows the mean of the 30 iterations that
were running for each instance of algorithm. We must remember that exists two important parameters
that directly affect the execution time of the algorithm. For each iteration, the parameter L was used
as a constant with a value of 200. The parameter T was changing in each iteration. It should be noted
on Table 3.2 that the parameter T is in hundreds, so actually in row one the number of iterations were
5000 instead of 50.

Something important that we expected was that algorithms have a linear trend, that is, by increas-
ing the number of iterations, the execution time is directly proportional.

Table 3.2: Times
Parameter (hun-
dreds)

Parallel cycles al-
gorithm (s)

Parallel matrix al-
gorithm (s)

T = 50 28.66244 5.3940862
T = 100 57.26734 10.549308
T = 250 142.6873 26.067167
T = 500 285.5651 51.756834
T = 1000 572.2379 103.85001

If Table 3.2 is observed, the matrix algorithm was almost 6 times faster than other one. So, this
algorithm drastically reduces the time required to get a response. As example, in the last row of Table
3.2, results of 100000 iterations were calculated. Instead of waiting approximately 10 minutes using
cycles algorithm, now matrix algorithm can reach the same result in 2 minutes.

Finally, everything that has been mentioned so far can be seen more easily in Figure 3.3.
With the results obtained now, we can say that, of the 3 algorithms obtained, the best is the last

one, since in the previous section we check the response times, and this turns out to be the fastest
and therefore will be our final algorithm. The next step is that we will implement our algorithm with

50



Figure 3.4: Comparation of execution time. The number of iterations is in hundreds.

a graphical environment, this with the aim of making the program more complete and easier for the
user to use it.

51



4. Application development

Nowadays, software is part important of almost all business operation, so new software
must be developed quickly to take advantage of new opportunities and to respond to com-
petitive pressure. This new chapter focuses on application development. This software
allows the end-user to use TurPatts algorithm using the main software principles: easy to
use, easy to understand, and easy to learn. The agile methodology known as Rapid Ap-
plication Development (RAD) was used for the final implementation. This methodology is
described in detail in following sections. Previous chapters describe that TurPatts requires
to input the necessary parameters to perform and generate a special scenario. Thus, it
is necessary to change the parameters directly in the source code, recompile and execute
for each time it is used, which deems to be very complex for people that is not savvy in
developing software. Hence, it was decided to develop an application with GUIs so that the
end-user can interact easily with the algorithm without having to change the parameters
from the source code. In fact, the GUIs will play a very important role so that any end-user
will be able to use the algorithm. GUI is a concept with various definitions accepted by
several experts in the area. In general, the end-user interface can be understood as the
component through which the end-user interacts and perceives the tasks executed by the
software application; that is, they serve as an intermediary between the end-user and the
hardware. Consequently, the GUI has the main objective of making computer applications
understandable, simple and usable for end-users. The fact that interfaces are needed im-
plies that there is a ”something different” between system and user. ”Something” that
needs to be solved for the end-user’s interaction with the system to be simple, fast and
smooth. Therefore, it is necessary to know what an interface is, because its quality, use-
fulness, usability and acceptance depends on the success of a system [67]. As mentioned,
previously, there is a wide repertoire on definitions of GUIs. One of the most accepted
is the definition by Landauer [68]: ”a graphical interface is the set of controls by which
end-users can make a system work”.

4.1 Methodology Selection

Existing literature [69] describe different software methodologies. For the proposed solution, two
compiting were analyzed. First, the cascade approach that demands that each stage should be fully
completed before initialing a new one. This methodology demands an extensive developing time as
well a very little interaction with end-user during the software coding stage. Because of these issues
are not well prepared for the present project it was rejected. The second considered methology is
an Agile approach. This approach demands an extensive and intense interaction with end-users and
usually requires less time for the overall project development. Hence, this is the best methodology
for the type of project developed. Agile methods universally rely on an incremental approach to

52



software specification, development, and delivery. They are best suited to application development
where the system requirements usually change rapidly during the development process. In the book of
Sommerville wrote down a philosophical idea. In addition, he argues that the philosophy behind agile
methods is reflected in the agile manifesto that was agreed on by many of the leading developers of
these methods. Somerville manifesto states:

We are uncovering better ways of developing software by doing it and helping others do it. Through
this work we have come to value:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on theleft more
Agile methodologies are widely used because of the high success rate in developing certain types of

software systems. However, Sommerville [69] argues that there are two conditions of using successfully
agile methodologies, which are:

1. Product development where a software company is developing a small ormedium-sized product

2. Custom system development within an organization, where there is a clear commitment from
the customer to become involved in the development process andwhere there are not a lot of
external rules and regulations that affect the software.

Agile methodologies have advantages and disadvantages. Sommerville list these two aspects as
follows.

1. Customer involvement. Customers should be closely involved throughout the development pro-
cess. Their role is providing and prioritize new system requirements and to evaluate the iterations
of the system.

2. Incremental delivery. The software is developed in increments with the customer specifying the
requirements to be included in each increment.

3. People not process. The skills of the development team should be recognized and exploited. Team
members should be left to develop their own ways of working without prescriptive processes.

4. Embrace change. Expect the system requirements to change and so design the system to accom-
modate these changes.

5. Maintain simplicity. Focus on simplicity in both the software being developed and in the devel-
opment process. Wherever possible, actively work to eliminate complexity from the system.

These advantages are most visible within system components. The iterative design allows the end-
user’s feedback to be at the forefront of the process. This is very important issue, because the end-user
will be responsible for using the application. Consequently, by including the end-user in the planning
and design stages, it helps deliver a better application and developing it faster. However, it is important
to remember that, as any other software development approach, there are some disadvantages by using
agile methodologies. Sommerville [69] lists 5 of the most important, which are:

1. Although the idea of customer involvement in the development process is anattractive one, its
success depends on having a customer who is willing and ableto spend time with the development
team and who can represent all systemstakeholders.

53



2. Individual team members may not have suitable personalities for the intenseinvolvement that is
typical of agile methods, and therefore not interact well withother team members.

3. Prioritizing changes can be extremely difficult, especially in systems for whichthere are many
stakeholders. Typically, each stakeholder gives different priorities to different changes.

4. Maintaining simplicity requires extra work. Under pressure from deliveryschedules, the team
members may not have time to carry out desirable systemsimplifications.

Because to the especial conditions, characteristics and requirements of the required application for
the present project, it was decided to use the agile methodology known as RAD (Rapid Application
Development). RAD processes are designed to produce useful software quickly. The software is not
developed as a single unit but as a series of increments, with each increment including new system
functionality. Figure 4.1 shows the steps for developing software development using this methodology,
adapted from [70].

Figure 4.1: Phases of RAD.

4.2 Interface design

The methodology to be used was chosen in the previous section 4.1 and now this section will continue
with the planned development of the system. Firstly, we take into consideration some very important
points, for the construction of the application. According to Pressman he considers four aspects im-
portant: ”system response time, user help tools, error handling and legends or user support messages”
[64]. Below are some of the aspects that were taken into account for the development of the application.

1. It must be a minimalist interface, that is, it does not consume many resources because the
algorithm requires the increased use of the processor. So, if a very complex and detaining
interface would develop, it will use a lot of computing resources. It will directly affect the
response time of our algorithm. This would have a significant negative impact, which is a point
to avoid.

2. The main algorithm was developed in the Fortran programming language. This allows the
algorithm to be cross-platform, that is, it can be executed on Windows and Linux operating
systems. For this reason, the application must also allow it to be run in any of these environments.
Therefore, you must opt for some programming language that meets these requirements.

Given the above considerations, it was chosen to use several programming languages due to the
features presented by the application. Languages and their functions are listed below:

1. Qt was the programming language used for the development of graphical interfaces. Because its
structure fits perfectly for the development of prototypes. Also, Qt generates an executable for
Windows and Linux.

54



Figure 4.2: Programming model

2. The Python programming language was responsible for making the graphs that were previously
drawled under the suite known as Matlab. This language was chosen because of its great perfor-
mance for making graphs, in addition to the high compatibility it has with Matlab and the set
of libraries they share.

3. Fortran continued its role of being the main algorithm. Its main feature was the parallelization
support as shown in the previous chapter.

Once the languages to be used are defined, the system will be a completely development environ-
ment, that is, now the application will perform the simplest tasks due to the addition of graphical
interfaces. In addition, the extra software used as Matlab will completely replace for the code devel-
oped in Python. Therefore, the same application will perform all the necessary functions so that the
end user can use the developed algorithm. Figure 4.2 shows a block diagram that summarizes all this
idea.

Figure 4.3: Main screen

The methodology chosen for the development of the application allows to carry out the outline
presented in Figure 4.2. This, because one of the characteristics of the RAD methodology is that it
allows to develop the system incrementally. Which is basically what we wanted to do.

One of the problems of working with different programming languages for tfhe same system is to
achieve the connection between them. That is, each of the algorithms must perform its function and

55



that the end user only perceives a unique scheme. As shown in Figure 4.2, each programming language
depends on the data sent.

Figure 4.4: About button

The solution proposal to this problem was simple, it relied on the same operating system so that
programming languages communicate through processes, that is, once the graphical interface captured
the data entered by the end user, it will make a call to our main algorithm under a created process.
Once the process of our TurPat is finished, it will now run a new process by calling the program
developed in Python to perform the graph. Finally, the result will be sent back to our graphical
interface and displayed to the end user.

4.3 Prototype

This section will show the final prototype that was developed using the RAD methodology. The next
chapter will measure the performance and approval that the application obtained.

Figure 4.2 shows the main screen of the system. On this main screen the title of the application
and to two buttons were shown. Starts button redirects to the work screen. About button shows a
very brief overview of the application. This action is shown in Figure 4.2.

Figure 4.2 shows an informative message about what the application can do, in addition to some
other details such as the names of the researchers. This message appears on the main screen and the
OK button return to the main screen. Once back on the main screen, the start button redirects to the
work screen which is shown in Figure 4.3.

Figure 4.3 contains all the functions necessary for our system to work. This particular screen is
divided into three parts. The first part is the taskbar, in which you can open or save the values in
the parameters area. The second part is the parameter area in which the desired values are entered
so that the TurPat algorithm can work. For this it is necessary to use the horizontal bar. In addition,
the parameter area contains buttons that allow to perform some actions which are listed below:

1. Ok: This button checks that no parameters are empty. Once this task is complete, it sends these
parameters to the TurPat algorithm and starts the progress bar at the top right.

2. Cancel: Ends with the currently running.

3. Reset: Returns all parameters to their initial state along with the progress bar and chart area.

4. Graph: Returns the last previously obtained graph to the screen.

Figure 4.3 shows the action that allows the end user to open a file with the previously saved values
and these are placed in their respective position in the parameter area. It also allows you to save the
values placed in the parameters in any location.

56



Figure 4.5: Complete Process

Once the parameters have been captured, and the accept button is clicked, the main process
begins. In turn, the progress bar on the top begins, indicating approximately the current progress of
the algorithm. When finished, the corresponding graph will be displayed in the graph area and this
also completes the whole process. Figure 4.3 shows this process.

57



5. Analysis

For the present research, ISO / IEC 25010 quality model was analyzed in order to
identify the attributes that are relevant to potential end-users. This standard was selected
because it is widely accepted as relevant for software quality measurement. There are other
factors in other models, but they are evaluable from the developer’s point of view, which
is beyond the present research.

5.1 Instrument Development

Based on the review of the literature and base theories on software quality standards analyzed (ISO
/ IEC 25010), the quality elements of a software product that can be perceived by end-users were
identified. Thus, an initial questionnaire was were created as well as the scale of possible answers, and
it was applied in a pilot study to 14 students of the subject of Software Engineering in the 9th semester
of Computer Systems Engineering. For this purpose, the students assessed the created instrument, the
quality of a software that was delivered to them. Potential issues in the instrument were identified and
corrected, resulting in the final instrument of quality evaluation of software products that was composed
by a total of 25 questions. All questions have a scale of 1 (Excellent Quality) to 7 (Extremely Poor
Quality).

This procedure delivered the final evaluation document that was used in the present research for
the evaluation of TurPath software.

5.2 Instrument Validity

Data Collection In order to perform the analyses, the questionnaire was applied to 56 students
in the Autonomous University of Aguascalientes registered in the Computer Systems bachelor degree
program. Participants could drop out of the process; however, none of them opted out. They used
the system following the instructions given by the lead researcher for about 30 minutes. After that,
they answered the provided questionnaire using an online application so that damaged data could be
avoided.

The following section presents a detailed data analysis.

Data Analysis For the data analysis, the present research uses a 90% acceptance value, which can
be calculated using the Mean as the principal component.

Table 5.1 shows the results of dispersion analysis. It can be observed that in the Understandability
factor the end-user acceptance is about 91.57%. Thus, this factor meets the requirement, and, therefore,
the system is Understandability enough so that end-users can understand how to use the system as
well as to understand all the interaction required to operate it. The calculated Learnability factor is

58



88.39%. This value is very close to the 90% required. However, still requires some upgrades. Further
analyses and proposed upgrades are described in Section 5.2.

The third factor corresponding to Usability compliance is about 88.52%, which like the previous
factor is very close to the minimum approval required but is not enough, so we will also go on to
perform a more detailed analysis to find the possible cause and therefore the solution that can be
proposed to improve. Further analyses and proposed upgrades are described in Section 5.2. Then,
the Attractiveness factor is 90.10%, which is enough to the required value, so this factor meets the
requirements so it will not be necessary to review it as previous factors. Finally, the Operability factor
is the lowest rated with 87.60%. Although the factor is not far from the required value, the detailed
analyses and proposed upgrades are described in Section 5.2.

Table 5.1: Factors
Understand-
ability

Learn-
ability

Usability
com-
pliance

Attrac-
tiveness

Opera-
bility

N 56 56 56 56 56 56
0 0 0 0 0 0

Mean 1.5060 1.6964 1.6888 1.5938 1.7440
Mean standard
error

.07244 .08738 .11203 .09353 .10778

Median 1.3333 1.5000 1.4286 1.5000 1.6667
Mode 1.17 1.00 1.00 1.00 1.00
Standard devia-
tion

.54213 .65393 .83837 .69994 .80652

Variance .294 .428 .703 .490 .650
Skewness 1.627 1.106 1.894 2.310 1.579
Skewness stan-
dard error

.319 .319 .319 .319 .319

Kurtosis 2.428 1.032 3.567 8.924 3.657
Kurtosis stan-
dard error

.628 .628 .628 .628 .628

Range 2.17 2.80 3.86 4.00 4.00
Minimum 1.00 1.00 1.00 1.00 1.00
Maximum 3.17 3.80 4.86 5.00 5.00
Percentage 91.57 88.39 88.52 90.10 87.60

Some factors did not meet the requirement value, so in the following sections a more detailed
analysis of these factors will be shown

Learnability Analysis Table 5.2 shows the estimated statistics for the Learnability factor, which is
formed by a total of 5 variables. Easiness to remember has an 86.61% acceptance value, which means
that, although it is close to the required value, it still needs to be enhanced. This variable refers to
how easy to remember are the components on the interface as well as to their corresponding actions.
Thus, we believe that changing the layout might solve this issue. The Easiness to understand variable
has an 88.39%. Therefore, we believe that by adding tags that are more descriptive would solve this
issue. Easiness to read variable has an 91.96%, which is above the acceptance value. We believe that
the TurPath does not need to change nothing regarding this aspect.

The fourth question tells about the order in which the information is presented, the Organized
content, it is 86.01% which the lowest percentage of the entire Learnability fact is, so more emphasis will
be placed and in the next version of the system. Finally, the Easiness to recognize has an 88.99% value.
We believe that changing the layout and the color contrast would enhance the end-user perception.

59



All these changes should be performed for a second version of TurPatt.

Table 5.2: Learnability Factor
Easiness
to re-
member

Easiness
to un-
der-
stand

Easiness
to read

Organized
content

Easiness
to rec-
ognize

N Valid 56 56 56 56 56
Lost 0 0 0 0 0

Mean 1.80 1.70 1.48 1.84 1.66
Mean standard
error

.145 .130 .095 .137 .109

Median 2.00 1.00 1.00 1.50 1.00
Mode 1 1 1 1 1
Standard devia-
tion

1.086 .971 .713 1.023 .815

Variance 1.179 .943 .509 1.046 .665
Skewness 2.086 1.768 1.780 .968 1.127
Skewness stan-
dard error

.319 .319 .319 .319 .319

Kurtosis 4.988 3.404 3.793 -.256 .730
Kurtosis stan-
dard error

.628 .628 .628 .628 .628

Range 5 4 3 3 3
Minimum 1 1 1 1 1
Maximum 6 5 4 4 4
Percentage 86.61 88.39 91.96 86.01 88.99

Usability compliance Analysis Table 5.3 shows the Usability compliance factor statics. This
factor is composed by a total of 7 variables. Each one is analyzed individually as follows:

Similarity variable refers to the tasks that are performed in the system. Its evaluation is 89.29%,
so for the next release we must find a way to make activities simpler. We believe that adding a value
entry the end-user interfaces would make them feel more comfortable and with that solve the issue.
Completeness variable refers to the tasks that can that application executes. Its value is about 90.18%
approval. We believe that in this variable we do not have do any modifications. Error Handling
variable has about 84.52% acceptance value. Although the scroll bar was used in the software to avoid
data-entering errors by end-users, maybe them would prefer a different data-entry option. Thus, in the
next version a data-entering option could be given to the end-user. They can select whether capture
data using sliders or by using a keyboard. In addition, for the keyboard data-entering option we should
add validation in order to avoid potential errors.

The Feedback variable has an 88.10% quality value. We believe that end-user would require more
messages about the task that the software is performing; thus, we will add more comprehensive dialog
messages for each variable in the Turing equations. For instance, a short description for each one would
help to address this issue. Help variable has an 83.93% approval ratio. We believe that adding context
help, which will indicate how the software works, a search help feature, and additional information
about each section would solve the issue. Finally, the last two variables (Navigation and Interaction)
are greater than 90%, (93.45% and 90.18% respectively); therefore, end-user believes that the software
meet these requirements.

60



Table 5.3: Usability compliance Factor
Similar-
ity

Complete-
ness

Error
Han-
dling

Feed-
back

Help Naviga-
tion

Interac-
tion

N 56 56 56 56 56 56 56 56
0 0 0 0 0 0 0 0

Mean 1.64 1.59 1.93 1.71 1.96 1.39 1.59
Mean standard
error

.126 .137 .139 .167 .184 .113 .134

Median 1.00 1.00 2.00 1.00 1.00 1.00 1.00
Mode 1 1 2 1 1 1 1
Standard devia-
tion

.943 1.023 1.042 1.246 1.375 .846 1.005

Variance .888 1.046 1.086 1.553 1.890 .716 1.010
Skewness 1.732 2.498 1.447 2.206 1.591 2.499 2.365
Skewness stan-
dard error

.319 .319 .319 .319 .319 .319 .319

Kurtosis 2.882 7.276 2.179 4.652 1.750 6.498 6.615
Kurtosis stan-
dard error

.628 .628 .628 .628 .628 .628 .628

Range 4 5 4 5 5 4 5
Minimum 1 1 1 1 1 1 1
Maximum 5 6 5 6 6 5 6
Percentage 89.29 90.18 84.52 88.10 83.93 93.45 90.18

Operability Analysis For the Operability factor the present study uses 3 different variables. Al-
though all the variables for this factor are very close to the 90% that we are looking for, we still
need to make some improvements for the next version. Interaction variable has an 88.39%. For the
next version a choice of two different data-entry ways that the end-user could select from would make
them more comfortable as well as on control of the application. Therefore, this solution would solve
the issue. Trust variable is 87.20%, which continues to refer to the design. We believe that adding
information, confirm and alert dialogs would resolve this situation. Finally, Completeness variable is
about 87.20%. We believe that adding the corresponding dialogs to the actions that the system does
would help to solve the problem.

Reliability analysis In Table 5.5 we can see the reliability analysis. It shows the calculated Cron-
bach Alpha of 0.922, which means that the instrument reliability is Excellent [71]. Therefore, the
internal validity is strong. In order to test whether each factor us realizable enough, a reliability
analysis for each one was performed. Table 5.6, shows such results. [71] suggests that the Cronbach
Alpha for an exploratory analysis should be at least 0.60. However, al factors exceed such cut off value.
Therefore, the internal validity is strong for each factor.

5.3 TurPatt Versions

In this last section, the modified software version will be displayed according to the results obtained in
the previous sections, in addition to the comments of the users who tested the system. Table 5.7 shows
how the starting interface was developed (see Figure 5.7.a) compared to the new developed version
(see Figure 5.7.b). The new visual design that was presented can be highlighted in the first instance.
This change was the only modification that had this first screen. The functions of the buttons were
maintained.

61



Table 5.4: Operability Factor
Interaction Trust Completeness

N 56 56 56 56
0 0 0 0

Mean 1.70 1.77 1.77
Mean standard
error

.125 .127 .130

Median 2.00 1.50 1.50
Mode 1a 1 1
Standard devia-
tion

.933 .953 .972

Variance .870 .909 .945
Skewness 2.606 1.273 1.352
Skewness stan-
dard error

.319 .319 .319

Kurtosis 9.540 1.421 1.533
Kurtosis stan-
dard error

.628 .628 .628

Range 5 4 4
Minimum 1 1 1
Maximum 6 5 5
Percentage 88.39 87.20 87.20

The next screen that corresponds to the workspace where a change in the layout is displayed.
Figure 5.8.a shows the previous working screen and the new interface developed corresponds to Figure
5.8.b. The new version contains several improvements, which correspond to the proposals in sections
5.2 - 5.2 , in addition to taking into account the comments of the users. The main changes are listed
below:

1. The buttons in each parameter display a message with data that provides information about
each parameter as shown in Figure 5.8.

Table 5.5: Reliability analysis
Cronbach’s
Alpha

Elements

.922 25

Table 5.6: Reliability statistics by factors
Factor Elements Cronbach’s

Alpha
Understandability4 .714
Learnability 5 .742
Usability com-
pliance

7 .889

Attractiveness 4 .887
Operability 3 .802

62



Table 5.7: Comparison of the starting interfaces.

a. Previous starting interface b. New starting interface

Table 5.8: Comparison of work screen interfaces.

a. Previous starting interface b. New starting interface

2. The interface now allows to use two shapes for manipulating parameters. Added that the user
can enter the data directly into the text box. This option is validated, so user will only be able
to enter the values requested by the program, also the horizontal bar still could used. With this,
the user can use the option which he prefers.

3. Finally, the OK, Cancel, Clean, and Graph buttons now display a message about the task that
is performed by just over them. Figure 5.3 shows this new characteristic.

4. All these features were implemented according to what was proposed in the previous sections
and taking into account the comments of the users.

63



Figure 5.1: User help message

64



6. Conclusions

In Chapters 1 and 2, we investigated numerically a system of hyperbolic partial differential equations
with fractional diffusion and coupled reaction terms. The mathematical model has various applications,
depending on the form of the reaction functions. Motivated by these facts, we proposed an explicit
finite-difference models to approximate the solutions of the continuous model. The discrete model is
a non-variational scheme for which the properties of consistency, stability, boundedness and quadratic
convergence are rigorously proved. To that end, an analytical constraint is imposed on the reaction
terms of the mathematical model, and a discrete fractional form of the energy method is employed in
order to establish rigorously the stability and the quadratic convergence of the scheme. The discretiza-
tion is based on the use of fractional centered differences, and the computational implementation is
carried out using parallel computing in Fortran 95. To that end, a convenient vector reformulation of
the numerical method is proposed. Some illustrative applications of our methodology were presented
in this work. Indeed, the finite-difference scheme was employed to solve some nonlinear systems which
present Turing patterns in the two-dimensional scenario. Our simulations reflect this fact. Moreover,
we used a three-dimensional implementation of our scheme to obtain Turing patterns in some three-
dimensional systems. It is well known that the resolution of fractional systems in three-dimensional
scenarios is computationally highly demanding. However, our computer implementation was able to
carry out this task, and exhibited the presence of complex patterns in the media considered herein.

The 3 developed solutions in order to implement the algorithm previously obtained through the
proposed numerical method are an attempt to bring computational solutions to users without them
needing to learn a programming language. This is important since a greater impact on the academic and
scientific community could be related to the use of Turing Patterns. This method represents a chemical
model of activating and inhibiting substances, which is solved using partial fractional equations. The
solutions were implemented under the Fortran programming language, each being significantly more
efficient than its predecessor. To achieve these advances, it was necessary to thoroughly investigate
the existing programming techniques that would help achieve the desired improvement. It should be
remembered that the first solution obtained through sequential programming was the least efficient
with respect to response time and with the multiprocessing technology present in today’s computers,
it was thought that it could be improved.

Once it was determined that the algorithm has the necessary characteristics to use parallelism,
the second version was developed and thus achieve quite noticeable advances in time. Finally, it was
observed that the algorithm could be further improved if instead of nested cycles, matrix algebra was
used. With this, the third version was developed where, in fact, the response time to calculate the
solution was further reduced. It is important to emphasize this point, since not all programming
languages allow the implementation of algebra or parallelization, in addition to the use of nested
cycles in the area of software systems. In addition to that programmers do not usually integrate this
type of solutions because it is easier to implement solutions with cycles, since matrix algebra requires

65



advanced knowledge in mathematics. It is also necessary to emphasize that not all problems can be
parallelized. For this thesis, the work done generates very good results, since the comparisons in times
are significantly better, so it was decided to use the third approach as the final solution. It is important
to mention that although this solution is excellent it is likely that it can be further improved.

About the software development methodology used, the different approaches to the application were
created. It was found that, for the development of the final solution, it is necessary to have a good
knowledge in the management of the computer equipment, especially in programming. This situation
led to find an alternative for the use of the algorithm, so it was decided to design an application
where the end user would use the application using graphical user interfaces. The use of graphical user
interfaces in any application potentially allows the user inexperienced in the use of the computer to
more easily use the application. Each application is different, so it is very important to consider the
requirements of the software to be developed since, based on these, you must choose the methodology
that best suits. Some of the key points to consider when choosing the methodology are the size and
complexity of the application, and all this can be taken when analyzing user requirements. Due to
this, an analysis of some methodologies that allow the easy and fast development of applications was
carried out, so that, of the candidates, it was decided to use the Rapid Application Development
(RAD) methodology. It is very important to emphasize that every system must be developed under
a quality standard, so our system should also be evaluated in this regard. Finally, for the design and
development of the system we knew that it had to have the ability to evolve in some future work, that
is, currently the system is only able to work with two-dimensional systems, but in the future, they
could be n dimensions.

Finally, the evaluation was carried out in order to determine if the software application developed
really meets the requirements of the users, as well as being easy to use, easy to understand and easy
to learn. The instrument used is based on ISO and has been previously tested and used in previous
investigations of other software systems, so it guarantees that the instrument is designed correctly.
In turn, the questionnaire was applied electronically given its multiple benefits. The purpose of the
evaluation being carried out in this way was that the users, when evaluating the system, made the least
possible errors, in addition to all the questions that had to be answered and. especially. the data will be
collected automatically, avoiding that each of the surveys had to be captured later, with the risk that, at
the time of this step, mistakes were made. The evaluation of the system was carried out with students
of the degree in Engineering in Computer Systems. The students of this degree were specifically
chosen, given that they are the best qualified in the use of computer equipment and in turn in the
use of systems, since within their curriculum they carry subjects about development methodologies,
standards of quality, software engineering, among others; that is, they would be more demanding when
evaluating the final version of the application. In this way, their evaluations and criticisms would better
support the work of the thesis. Once the evaluation was done, it was necessary to interpret the data
obtained to convert it into information. The information obtained was represented in tables in order
to better observe the results and in turn the interpretation would be easier. The results obtained
showed that of the 5 factors evaluated (Comprehension, Learning, Operation, Attractiveness and
Acceptance). The study sought a percentage of at least 90% for software quality. The comprehension
and attractiveness factor obtained an evaluation above the required value, while the remaining ones
remained very close to this value, so a more detailed study of each of these factors was carried out to
identify the possible causes and in turn grant them a solution. Each of the variables that comprised
each factor and all those that were below 90% of the quality were analyzed, solutions were proposed
that could improve the new version of the system. Once this part was finished, a new version of the
system was developed, following the suggested improvements and user comments. Finally, comparisons
of both versions of the systems were shown to highlight the improvements made.

The main objective of the present thesis was to develop an efficient solution for the proposed Turin
Pattern recognition algorithm, which has the capability of entering different potential scenarios for
representing a model of chemical substances. This objective was satisfactorily achieved by developing

66



three different approaches, which were tested got the best solution based on performance. The approach
that uses the multiprocessing technique was found as the best of them. This solution is significantly
better than the first version obtained (as shown in Chapter 3). Additionally to the developed solution,
a complete software application was developed that allows end-users to create desired scenarios easier
in order to find the solution for such scenario. In addition, the final solution was proved to be easy-to
use, easy-to- understand, and easy-to-learn, which was an additional objective of the present project.
This objective was proved by testing the software application by end-users. Thus, both objectives were
achieved. Finally, this application can be used in various types of operating systems such as Windows
and Linux operating systems.

67



A. Fortran code

In this appendix, we provide a Fortran code to solve system (1.7). The code is one of the first versions
employed to simulate the solutions of that system. However, it is easy to provide a more efficient
implementation of this software, and adapt it for different or more general problems.

program fhs3d

use omp_lib

implicit none

real , parameter :: a=7.45

real , parameter :: b=0.5

real , parameter :: c=5

real , parameter :: du=1

real , parameter :: dv=20

real , parameter :: tu=1

real , parameter :: tv=1

real , parameter :: alpha =1.6

real , parameter :: beta =1.6

real , parameter :: T=1

real , parameter :: Long =100

real , parameter :: tau=0.02

real , parameter :: h=1

integer , parameter :: M=floor(Long/h)+1

integer , parameter :: NumIt=floor(T/tau)+1

real , parameter :: ru1=4*tu /(2*tu+tau)

real , parameter :: ru2=(2*tu -tau)/(2* tu+tau)

real , parameter :: ru3=2*tau*tau/(2*tu+tau)

real , parameter :: rv1=4*tv /(2*tv+tau)

real , parameter :: rv2=(2*tv -tau)/(2* tv+tau)

real , parameter :: rv3=2*tau*tau/(2*tv+tau)

real , dimension(:) , allocatable :: ga ,gb

real , dimension(: ,:) , allocatable :: Ha ,Hb

real , dimension(: ,: ,:) , allocatable :: U1 ,U2 ,U3 ,V1 ,V2 ,V3 ,W,Z

real , dimension(: ,: ,:) , allocatable :: frac1x , frac2x

real , dimension(: ,: ,:) , allocatable :: frac1y , frac2y

68



real , dimension(: ,: ,:) , allocatable :: frac1z , frac2z

integer :: i,j,k,l,n

allocate(ga(M),gb(M))

allocate(Ha(M,M),Hb(M,M))

allocate(U1(M,M,M),U2(M,M,M),U3(M,M,M),W(M,M,M))

allocate(V1(M,M,M),V2(M,M,M),V3(M,M,M),Z(M,M,M))

allocate( frac1x(M,M,M),frac1y (M,M,M),frac2z (M,M,M))

allocate( frac2x(M,M,M),frac2y (M,M,M),frac1z (M,M,M))

do i=1,M

do j=1,M

do k=1,M

U1(i,j,k)=0.06*rand () -0.03

V2(i,j,k)=0.06*rand () -0.03

end do

end do

end do

U2=U1

V2=V1

ga (1)= ru3*du* gamma(alpha +1)/ gamma (0.5* alpha +1)**2/h** alpha

gb (1)= rv3*dv* gamma(beta +1)/ gamma (0.5* beta +1)**2/h** beta

do l=1,M -1

ga(l+1)=(1 -( alpha +1)/(0.5*alpha+l))*ga(l)

gb(l+1)=(1 -( beta +1)/(0.5*beta+l))*gb(l)

end do

do i=1,M

do j=1,M

Ha(i,j)=ga( abs(i-j)+1)

Hb(i,j)=gb( abs(i-j)+1)

end do

end do

do n=3, NumIt

!$omp parallel

!$omp do

do k=1,M

frac1x (:,:,k)= MATMUL (Ha ,U2(:,:,k))

frac2x (:,:,k)= MATMUL (Hb ,V2(:,:,k))

frac1y (k ,: ,:)=MATMUL (Ha ,U2(k ,: ,:))

frac2y (k ,: ,:)=MATMUL (Hb ,V2(k ,: ,:))

frac1z (k ,: ,:)=MATMUL (U2(k,: ,:) ,Ha)

frac2z (k ,: ,:)=MATMUL (V2(k,: ,:) ,Hb)

end do

!$omp end do

!$omp end parallel

!$omp parallel

!$omp sections

69



! $omp section

W=U2 -a*V2+b*U2*V2 -U2**3

U3=ru1*U2 -ru2*U1 -frac1x -frac1y - frac1z+ru3*W

U1=U2

U2=U3

! $omp section

Z=U2 -c*V2

V3=rv1*V2 -rv2*V1 -frac2x -frac2y - frac2z+rv3*Z

V1=V2

V2=V3

!$omp end sections

!$omp end parallel

end do

deallocate(ga ,gb ,Ha ,Hb)

deallocate(U1 ,U2 ,U3 ,V1 ,V2 ,V3 ,W,Z)

deallocate(frac1x ,frac2x ,frac1y ,frac2y ,frac1z , frac2z )

end program fhs3d

70



Bibliography

[1] V. Dufiet and J. Boissonade, “Dynamics of turing pattern monolayers close to onset,” Physical
Review E, vol. 53, no. 5, p. 4883, 1996.

[2] A. De Wit, “Spatial patterns and spatiotemporal dynamics in chemical systems,” Advances in
Chemical Physics, Volume 109, pp. 435–513, 2007.

[3] B. Rudovics, E. Barillot, P. Davies, E. Dulos, J. Boissonade, and P. De Kepper, “Experimental
studies and quantitative modeling of turing patterns in the (chlorine dioxide, iodine, malonic acid)
reaction,” The Journal of Physical Chemistry A, vol. 103, no. 12, pp. 1790–1800, 1999.

[4] B. Rudovics, E. Dulos, and P. De Kepper, “Standard and nonstandard turing patterns and waves
in the cima reaction,” Physica Scripta, vol. 1996, no. T67, p. 43, 1996.

[5] L. Yang and I. R. Epstein, “Oscillatory turing patterns in reaction-diffusion systems with two
coupled layers,” Physical Review Letters, vol. 90, no. 17, p. 178303, 2003.

[6] A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. M. Dudley, C. R. Menyuk, and Y. K.
Chembo, “Azimuthal turing patterns, bright and dark cavity solitons in kerr combs generated with
whispering-gallery-mode resonators,” IEEE Photonics Journal, vol. 5, no. 4, pp. 6100409–6100409,
2013.

[7] S. Kondo and T. Miura, “Reaction-diffusion model as a framework for understanding biological
pattern formation,” Science, vol. 329, no. 5999, pp. 1616–1620, 2010.

[8] J. H. Cartwright, “Labyrinthine turing pattern formation in the cerebral cortex,” Journal of
Theoretical Biology, vol. 217, no. 1, pp. 97–103, 2002.

[9] M. D. Morales-Hernández, I. E. Medina-Ramı́rez, F. Avelar-González, and J. E. Maćıas-Dı́az, “An
efficient recursive algorithm in the computational simulation of the bounded growth of biological
films,” International Journal of Computational Methods, vol. 9, no. 04, p. 1250050, 2012.

[10] B. Pena and C. Perez-Garcia, “Stability of turing patterns in the brusselator model,” Physical
Review E, vol. 64, no. 5, p. 056213, 2001.

[11] T. Biancalani, D. Fanelli, and F. Di Patti, “Stochastic turing patterns in the brusselator model,”
Physical Review E, vol. 81, no. 4, p. 046215, 2010.

[12] X. Tang and Y. Song, “Bifurcation analysis and turing instability in a diffusive predator-prey
model with herd behavior and hyperbolic mortality,” Chaos, Solitons & Fractals, vol. 81, pp. 303–
314, 2015.

71



[13] T. Zhang, Y. Xing, H. Zang, and M. Han, “Spatio-temporal dynamics of a reaction-diffusion
system for a predator–prey model with hyperbolic mortality,” Nonlinear Dynamics, vol. 78, no. 1,
pp. 265–277, 2014.

[14] F. Lutscher, A. Stevens, et al., “Emerging patterns in a hyperbolic model for locally interacting
cell systems,” Journal of Nonlinear Science, vol. 12, no. 6, pp. 619–640, 2002.

[15] O. B. Isaeva, A. S. Kuznetsov, and S. P. Kuznetsov, “Hyperbolic chaos of standing wave pat-
terns generated parametrically by a modulated pump source,” Physical Review E, vol. 87, no. 4,
p. 040901, 2013.

[16] E. Barbera, G. Consolo, and G. Valenti, “Spread of infectious diseases in a hyperbolic reaction-
diffusion susceptible-infected-removed model,” Physical Review E, vol. 88, no. 5, p. 052719, 2013.

[17] U.-I. Cho and B. C. Eu, “Hyperbolic reaction-diffusion equations and chemical oscillations in the
brusselator,” Physica D: Nonlinear Phenomena, vol. 68, no. 3-4, pp. 351–363, 1993.

[18] M. Al-Ghoul and B. C. Eu, “Hyperbolic reaction- diffusion equations, patterns, and phase speeds
for the Brusselator,” The Journal of Physical Chemistry, vol. 100, no. 49, pp. 18900–18910, 1996.

[19] R. Eftimie, “Hyperbolic and kinetic models for self-organized biological aggregations and move-
ment: a brief review,” Journal of Mathematical Biology, vol. 65, no. 1, pp. 35–75, 2012.

[20] M. Wolfrum, “The turing bifurcation in network systems: Collective patterns and single differen-
tiated nodes,” Physica D: Nonlinear Phenomena, vol. 241, no. 16, pp. 1351–1357, 2012.

[21] J. Xu, G. Yang, H. Xi, and J. Su, “Pattern dynamics of a predator–prey reaction–diffusion model
with spatiotemporal delay,” Nonlinear Dynamics, vol. 81, no. 4, pp. 2155–2163, 2015.

[22] G. Consolo, C. Currò, and G. Valenti, “Pattern formation and modulation in a hyperbolic vege-
tation model for semiarid environments,” Applied Mathematical Modelling, vol. 43, pp. 372–392,
2017.

[23] V. E. Tarasov, “Continuous limit of discrete systems with long-range interaction,” Journal of
Physics A: Mathematical and General, vol. 39, no. 48, p. 14895, 2006.

[24] V. E. Tarasov and G. M. Zaslavsky, “Conservation laws and hamilton’s equations for systems
with long-range interaction and memory,” Communications in Nonlinear Science and Numerical
Simulation, vol. 13, no. 9, pp. 1860–1878, 2008.

[25] R. Koeller, “Applications of fractional calculus to the theory of viscoelasticity,” ASME, Transac-
tions, Journal of Applied Mechanics(ISSN 0021-8936), vol. 51, pp. 299–307, 1984.

[26] Y. Povstenko, “Theory of thermoelasticity based on the space-time-fractional heat conduction
equation,” Physica Scripta, vol. 2009, no. T136, p. 014017, 2009.

[27] E. Scalas, R. Gorenflo, and F. Mainardi, “Fractional calculus and continuous-time finance,” Phys-
ica A: Statistical Mechanics and its Applications, vol. 284, no. 1, pp. 376–384, 2000.

[28] W. G. Glöckle and T. F. Nonnenmacher, “A fractional calculus approach to self-similar protein
dynamics,” Biophysical Journal, vol. 68, no. 1, pp. 46–53, 1995.

[29] V. Namias, “The fractional order fourier transform and its application to quantum mechanics,”
IMA Journal of Applied Mathematics, vol. 25, no. 3, pp. 241–265, 1980.

[30] N. Su, P. N. Nelson, and S. Connor, “The distributed-order fractional diffusion-wave equation
of groundwater flow: Theory and application to pumping and slug tests,” Journal of Hydrology,
vol. 529, Part 3, pp. 1262–1273, 2015.

72



[31] V. G. Pimenov, A. S. Hendy, and R. H. De Staelen, “On a class of non-linear delay distributed
order fractional diffusion equations,” Journal of Computational and Applied Mathematics, vol. 318,
pp. 433–443, 2017.

[32] J. E. Maćıas-Dı́az, “Sufficient conditions for the preservation of the boundedness in a numerical
method for a physical model with transport memory and nonlinear damping,” Computer Physics
Communications, vol. 182, no. 12, pp. 2471–2478, 2011.

[33] J. E. Maćıas-Dı́az, “An explicit dissipation-preserving method for riesz space-fractional nonlinear
wave equations in multiple dimensions,” Communications in Nonlinear Science and Numerical
Simulation, vol. 59, pp. 67–87, 2018.

[34] J. E. Maćıas-Dı́az, “On the solution of a riesz space-fractional nonlinear wave equation through an
efficient and energy-invariant scheme,” International Journal of Computer Mathematics, vol. ac-
cepted for publication, pp. 1–25, 2018.

[35] A. A. Alikhanov, “A new difference scheme for the time fractional diffusion equation,” Journal of
Computational Physics, vol. 280, pp. 424–438, 2015.

[36] A. H. Bhrawy and M. A. Abdelkawy, “A fully spectral collocation approximation for multi-
dimensional fractional schrödinger equations,” Journal of Computational Physics, vol. 294,
pp. 462–483, 2015.

[37] A. El-Ajou, O. A. Arqub, and S. Momani, “Approximate analytical solution of the nonlinear
fractional kdv–burgers equation: a new iterative algorithm,” Journal of Computational Physics,
vol. 293, pp. 81–95, 2015.

[38] F. Liu, P. Zhuang, I. Turner, V. Anh, and K. Burrage, “A semi-alternating direction method
for a 2-d fractional fitzhugh–nagumo monodomain model on an approximate irregular domain,”
Journal of Computational Physics, vol. 293, pp. 252–263, 2015.

[39] H. Ye, F. Liu, and V. Anh, “Compact difference scheme for distributed-order time-fractional
diffusion-wave equation on bounded domains,” Journal of Computational Physics, vol. 298,
pp. 652–660, 2015.

[40] J. E. Maćıas-Dı́az, “A structure-preserving method for a class of nonlinear dissipative wave equa-
tions with riesz space-fractional derivatives,” Journal of Computational Physics, vol. 351, pp. 40–
58, 2017.

[41] T. Langlands, B. Henry, and S. Wearne, “Turing pattern formation with fractional diffusion and
fractional reactions,” Journal of Physics: Condensed Matter, vol. 19, no. 6, p. 065115, 2007.

[42] V. Gafiychuk and B. Datsko, “Spatiotemporal pattern formation in fractional reaction-diffusion
systems with indices of different order,” Physical Review E, vol. 77, no. 6, p. 066210, 2008.

[43] B. Datsko, Y. Luchko, and V. Gafiychuk, “Pattern formation in fractional reaction–diffusion sys-
tems with multiple homogeneous states,” International Journal of Bifurcation and Chaos, vol. 22,
no. 04, p. 1250087, 2012.

[44] A. Mvogo, J. E. Maćıas-Dı́az, and T. C. Kofané, “Diffusive instabilities in a hyperbolic activator-
inhibitor system with superdiffusion,” Physical Review E, vol. 97, no. 3, p. 032129, 2018.

[45] B. I. Henry and S. L. Wearne, “Existence of turing instabilities in a two-species fractional reaction-
diffusion system,” SIAM Journal on Applied Mathematics, vol. 62, no. 3, pp. 870–887, 2002.

[46] Y. Nec and A. Nepomnyashchy, “Turing instability in sub-diffusive reaction–diffusion systems,”
Journal of Physics A: Mathematical and Theoretical, vol. 40, no. 49, p. 14687, 2007.

73



[47] D. Jeong, Y. Choi, and J. Kim, “Modeling and simulation of the hexagonal pattern formation
of honeycombs by the immersed boundary method,” Communications in Nonlinear Science and
Numerical Simulation, vol. 62, pp. 61–77, 2018.

[48] D. Lacitignola, B. Bozzini, M. Frittelli, and I. Sgura, “Turing pattern formation on the sphere for
a morphochemical reaction-diffusion model for electrodeposition,” Communications in Nonlinear
Science and Numerical Simulation, vol. 48, pp. 484–508, 2017.

[49] X. Wang, W. Wang, and G. Zhang, “Vegetation pattern formation of a water-biomass model,”
Communications in Nonlinear Science and Numerical Simulation, vol. 42, pp. 571–584, 2017.

[50] D. Prakasha, P. Veeresha, and H. M. Baskonus, “Two novel computational techniques for fractional
gardner and cahn-hilliard equations,” Computational and Mathematical Methods, vol. 1, no. 2,
p. e1021, 2019.

[51] A. Q. M. Khaliq, X. Liang, and K. M. Furati, “A fourth-order implicit-explicit scheme for the space
fractional nonlinear schrö dinger equations,” Numerical Algorithms, vol. 75, no. 1, pp. 147–172,
2017.

[52] X. Liang, A. Q. M. Khaliq, H. Bhatt, and K. M. Furati, “The locally extrapolated exponential
splitting scheme for multi-dimensional nonlinear space-fractional schrö dinger equations,” Numer-
ical Algorithms, vol. 76, no. 4, pp. 939–958, 2017.

[53] K. M. Furati, M. Yousuf, and A. Q. M. Khaliq, “Fourth-order methods for space fractional
reaction–diffusion equations with non-smooth data,” International Journal of Computer Math-
ematics, vol. 95, no. 6-7, pp. 1240–1256, 2018.

[54] Q.-J. Meng, D. Ding, and Q. Sheng, “Preconditioned iterative methods for fractional diffusion
models in finance,” Numerical Methods for Partial Differential Equations, vol. 31, no. 5, pp. 1382–
1395, 2015.

[55] J. E. Maćıas-Dı́az, A. S. Hendy, and R. H. De Staelen, “A pseudo energy-invariant method for
relativistic wave equations with riesz space-fractional derivatives,” Computer Physics Communi-
cations, vol. 224, pp. 98–107, 2018.

[56] J. E. Maćıas-Dı́az and J. M. G. Reynoso, “Utilizando el modelo de calidad de mccall y el estándar
iso-9126 para la evaluación de la calidad de sistemas de información por los usuarios,” 2010.

[57] H. Ramos, “Development of a new runge-kutta method and its economical implementation,”
Computational and Mathematical Methods, vol. 1, no. 2, p. e1016, 2019.

[58] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional
differential equations, to methods of their solution and some of their applications, vol. 198. Else-
vier, 1998.

[59] W. Wang, Q.-X. Liu, and Z. Jin, “Spatiotemporal complexity of a ratio-dependent predator-prey
system,” Physical Review E, vol. 75, no. 5, p. 051913, 2007.

[60] M. D. Ortigueira, “Riesz potential operators and inverses via fractional centred derivatives,”
International Journal of Mathematics and Mathematical Sciences, vol. 2006, 2006.

[61] C. Çelik and M. Duman, “Crank–nicolson method for the fractional diffusion equation with the
riesz fractional derivative,” Journal of Computational Physics, vol. 231, no. 4, pp. 1743–1750,
2012.

[62] J. E. Maćıas-Dı́az, “Numerical simulation of the nonlinear dynamics of harmonically driven riesz-
fractional extensions of the fermi–pasta–ulam chains,” Communications in Nonlinear Science and
Numerical Simulation, vol. 55, pp. 248–264, 2018.

74



[63] K. Pen-Yu, “Numerical methods for incompressible viscous flow,” Scientia Sinica, vol. 20, pp. 287–
304, 1977.

[64] R. S. Pressman, Software engineering : a practitioner’s approach. New York: McGraw-Hill Higher
Education, 7th ed., 2010.

[65] J. E. Moreira, S. P. Midkiff, and M. Gupta, “A comparison of java, c/c++, and fortran for
numerical computing,” IEEE Antennas and Propagation Magazine, vol. 40, no. 5, pp. 102–105,
1998.

[66] G. Hager and G. Wellein, Introduction to high performance computing for scientists and engineers.
CRC Press, 2010.

[67] R. M. Baecker, Readings in human-computer interaction : toward the year 2000. San Francisco,
Calif.: Morgan Kaufmann Publishers, 2nd ed., 1995.

[68] T. K. Landauer, The trouble with computers : usefulness, usability, and productivity. Cambridge,
Mass.: MIT Press, 1995.

[69] I. Sommerville, Software engineering. Boston: Pearson, tenth edition. ed., 2016.

[70] J. Martin, Rapid application development. New York Toronto: Macmillan Pub. Co. ; Collier
Macmillan Canada ; Maxwell Macmillan International, 1991.

[71] J. F. Hair, Multivariate data analysis. Upper Saddle River, NJ: Prentice Hall, 7th ed., 2010.

75


	Portada
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Resumen
	Abstract
	Introduction
	1  Mathematical models
	1.1 Mathematical model
	1.2 Numerical model
	1.3 Numerical properties

	2 Computational models
	2.1 Computational model
	2.2 Simplified model
	2.3 Computer simulations

	3 Computational method
	3.1 Types of software
	3.2 Software solutions
	3.3 Final solution

	4 Application development
	4.1 Methodology Selection
	4.2 Interface design
	4.3 Prototype

	5 Analysis
	5.1 Instrument Development
	5.2 Instrument Validity
	5.3 TurPatt Versions

	6 Conclusions
	Fortran code
	Bibliography

