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Departing from an initial-boundary-value problem governed by a Klein–Gordon–Zakarov 
system with fractional derivatives in the spatial variable, we provide an explicit finite-
difference scheme to approximate its solutions. In agreement with the continuous system, 
the method proposed in this work is also capable of preserving the energy of the 
system, and the energy quantities are nonnegative under flexible parameter conditions. The 
boundedness, the consistency, the stability and the convergence of the technique are also 
established rigorously. The method is easy to implement, and the computer simulations 
confirm the main analytical and numerical properties of the new model.

© 2019 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Let B = (xL, xR) be a nonempty interval in R, let T > 0 and define � = B × (0, T ). In this work, for each S ⊆ Rp , we 
will use the notation S to represent the closure of S with respect to the standard topology of Rp , for any p ∈ N . Assume 
that u and m are a complex- and a real-valued functions, respectively, whose domains are both equal to �. Moreover, let 
u0, u1 : B →C and m0, m1 : B →R be sufficiently smooth functions, and let v, w : � →R be such that

v(x, t) = −∂ w(x, t)

∂x
, (1.1)

∂2 w(x, t)

∂x2
= ∂m(x, t)

∂t
. (1.2)

Definition 1.1. Let f :R →R be a function, and let n ∈N∪{0} and α ∈R satisfy n −1 < α ≤ n. The Riesz fractional derivative
of f of order α at x ∈R is defined (when it exists) as
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a b s t r a c t 

In the article [Commun Nonlinear Sci Numer Simul 2019;71:22–37], the authors provided 

an erroneous proof for the existence of solutions of a finite-difference model for a frac- 

tional Klein–Gordon–Zakharov equation. This letter is intended to provide a correct proof 

of that theorem. 

© 2018 Elsevier B.V. All rights reserved. 

In the article [1] , the authors established a theorem on the existence of solutions of a finite-difference model for a 

fractional Klein–Gordon–Zakharov (KGZ) equation [2,3] . The proof made use of the Leray–Schauder fixed-point theorem. 

However, the authors committed an involuntary mistake in the proof, for which they sincerely apologize. The mistake were 

committed in Eqs. (5.6) and (5.7) of that work. Indeed, the second and third terms of the right-hand sides of those equations 

had to be multiplied by λ∈ [0, 1], and they were not. It turns out that the corrected proof becomes much harder, and we 

provide it in this letter. To that end, let us recall that the mathematical model under investigation in [1] is the space- 
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In this work, we consider a fractional extension of the Klein–Gordon–Zakharov system 
which describes the propagation of strong turbulences on the Langmuir wave in a high-
frequency plasma. Both components consider space-fractional derivatives of the Riesz type, 
and initial-boundary conditions are imposed on a closed and bounded interval of the 
real numbers. In a first stage, we show that the total energy of the system is conserved, 
and that the global solutions of the system are bounded. Motivated by these results, we 
propose a finite-difference scheme to approximate the solutions, and a discrete form of the 
energy functional. The advantage of the discretization proposed in this work lies in that the 
difference equations to solve the component equations are decoupled. This implies that the 
numerical schemes can be solved separately at each temporal step. We establish rigorously 
the existence of solutions, as well as the capability of the scheme to conserve the discrete 
energy. The method has a second-order consistency in both space and time. Moreover, 
using a discrete form of the energy method, we establish mathematically that the finite-
difference scheme is stable and quadratically convergent. We provide some simulations to 
show that the proposed methodology is quadratically convergent and that it preserves the 
total energy of the system.

© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The well-known Zakharov equations are partial differential equations that appear in the investigation of the propaga-
tion of Langmuir waves in plasma physics [53]. In his seminal work, V.E. Zakharov [65] showed that arbitrary Langmuir 
turbulences of sufficient intensity are unstable, and that the instability leads to the development of low density regions in 
plasma which collapse in finite time. These regions were called caverns, and they are the mechanism of energy dissipation of 
long-wave Langmuir oscillations. These conclusions were the result of the quantitative analysis on the equations describing 
the interaction between the fast-time scale component of an electric field and the deviation of ion density from equilib-
rium. This system was called the Zakharov system, and it motivated the development and analysis of further models that 
provided more realistic descriptions of similar physical phenomena [18,38], including the Klein–Gordon–Zakharov system 
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In this work, we propose an implicit finite-difference scheme to approximate the solutions 
of a generalization of the well-known Klein–Gordon–Zakharov system. More precisely, the 
system considered in this work is an extension to the spatially fractional case of the 
classical Klein–Gordon–Zakharov model, considering two different orders of differentiation 
and fractional derivatives of the Riesz type. The numerical model proposed in this 
work considers fractional-order centered differences to approximate the spatial fractional 
derivatives. The energy associated to this discrete system is a non-negative invariant, in 
agreement with the properties of the continuous fractional model. We establish rigorously 
the existence of solutions using fixed-point arguments and complex matrix properties. 
To that end, we use the fact that the two difference equations of the discretization 
are decoupled, which means that the computational implementation is easier than for
other numerical models available in the literature. We prove that the method has square 
consistency in both time and space. In addition, we prove rigorously the stability and 
the quadratic convergence of the numerical model. As a corollary of stability, we are 
able to prove the uniqueness of numerical solutions. Finally, we provide some illustrative 
simulations with a computer implementation of our scheme.

© 2021 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The field of fractional calculus has witnessed a vertiginous development in recent years, partly due to the vast amount 
of potential applications in the sciences [17]. It is worth pointing out that many different fractional derivatives and integrals 
have been proposed. For example, some of the first fractional derivatives introduced historically in mathematics were the 
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a b s t r a c t

This manuscript is devoted to studying approximations of a coupled Klein–Gordon–
Zakharov system where different orders of fractional spatial derivatives are utilized.
The fractional derivatives involved are in the Riesz sense. It is understood that such
a modeling system possesses an energy functional which is conserved throughout the
period of time considered, and that its solutions are uniformly bounded. Motivated by
these facts, we propose two numerical models to approximate the underlying continuous
system. While both approximations remain to be nonlinear, one of them is implicit
and the other is explicit. For each of the discretized models, we introduce a proper
discrete energy functional to estimate the total energy of the continuous system. We
prove that such a discrete energy is conserved in both cases. The existence of solutions
of the numerical models is established via fixed-point theorems. Continuing explorations
of intrinsic properties of the numerical solutions are carried out. More specifically,
we show rigorously that the two schemes constructed are capable of preserving the
boundedness of the approximations and that they yield consistent estimates of the true
solution. Numerical stability and convergence are likewise proved theoretically. As one
of the consequences, the uniqueness of numerical solutions is shown rigorously for both
discretized models. Finally, comparisons of the numerical solutions are provided, in order
to evaluate the capabilities of these discrete methods to preserve the discrete energy of
underlying systems.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The field of fractional calculus has witnessed a vertiginous development in recent years, partly due to the vast amount
of potential applications in the physical sciences [1]. To-day, many different fractional derivatives and integrals have
been proposed. For example, some of the first fractional derivatives introduced historically in mathematics were the
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Abstract

A system of two partial differential equations with fractional diffusion is considered in this study. The system extends the
conventional Zakharov system with unknowns being nonlinearly coupled complex- and real-valued functions. The diffusion is
understood in the Riesz sense, and suitable initial-boundary conditions are imposed on an open and bounded domain of the
real numbers. It is shown that the mass and Higgs’ free energy of the system are conserved. Moreover, the total energy is
proven to be dissipated, and that both the free and the total energy are non-negative. As a corollary from the conservation of
energy, we find that the solutions of the system are bounded throughout time. Motivated by these properties on the solutions
of the system, we propose a numerical model to approximate the fractional Zakharov system via finite-difference approaches.
Along with this numerical model for solving the continuous system, discrete analogues for the mass, the Higgs’ free energy
and the total energy are we provided. Furthermore, utilizing Browder’s fixed-point theorem, we establish the solubility of the
discrete model. It is shown that the discrete total mass and the discrete free energy are conserved, in agreement with the
continuous case. The discrete energy functionals (both the discrete free energy and the discrete total energy) are proven to be
non-negative functions of the discrete time thoroughly the boundedness of the numerical solutions. Properties of consistency,
stability and convergence of the scheme are also studied rigorously. Numerical simulations illustrate some of the anticipated
theoretical features of our finite-difference solution procedure.
© 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

Keywords: Fractional Zakharov systems; Conservation of Higgs’ free energy; Riesz space-fractional equations; Energy-conserving method;
Fractional-order central differences; Numerical efficiency analysis
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abuelo Romeo por quererme como nadie hasta el último momento de su vida, y a mi querida Tita
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Resumen

En esta tesis, investigamos una extensión fraccionaria del sistema Klein–Gordon-Zakharov donde
se utilizan diferentes órdenes de derivadas espaciales fraccionarias en el sentido de Riesz. De-
mostramos que la enerǵıa total del sistema se conserva y que las soluciones globales del sistema
están acotadas. Motivados por estos hechos, proponemos modelos numéricos para aproximar el
sistema continuo subyacente. Para cada uno de los modelos discretizados, introducimos un fun-
cional discreto de enerǵıa adecuado para estimar la enerǵıa total del sistema continuo. Probamos
que tal enerǵıa discreta se conserva en todos los casos. La existencia de soluciones de los modelos
numéricos se establece mediante teoremas de punto fijo. Mostramos rigurosamente que los es-
quemas construidos son capaces de preservar la acotación de las aproximaciones y que producen
estimaciones consistentes de la solución real. La estabilidad numérica y la convergencia también
se prueban teóricamente. Como una de las consecuencias, se muestra rigurosamente la unicidad
de las soluciones numéricas para todos modelos discretizados. Finalmente, se proporcionan com-
paraciones de las soluciones numéricas para evaluar las capacidades de estos métodos discretos
para preservar la enerǵıa discreta de sus sistemas.
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Abstract

In this thesis, we investigate a fractional extension of the Klein–Gordon–Zakharov system where
different orders of fractional spatial derivatives are utilized in the Riesz sense. We show that the
total energy of the system is conserved, and that the global solutions of the system are bounded.
Motivated by these facts, we propose numerical models to approximate the underlying continuous
system. For each of the discretized models, we introduce a proper discrete energy functional to
estimate the total energy of the continuous system. We prove that such a discrete energy is
conserved in all cases. The existence of solutions of the numerical models is established via
fixed-point theorems. We show rigorously that the schemes constructed are capable of preserving
the boundedness of the approximations and that they yield consistent estimates of the true
solution. Numerical stability and convergence are likewise proved theoretically. As one of the
consequences, the uniqueness of numerical solutions is shown rigorously for all discretized models.
Finally, comparisons of the numerical solutions are provided, in order to evaluate the capabilities
of these discrete methods to preserve the discrete energy of their systems.

7



Introduction

Background

The field of fractional calculus has witnessed a vertiginous development in recent years, partly
due to the vast amount of potential applications in the physical sciences [31]. To-day, many
different fractional derivatives and integrals have been proposed. For example, some of the
first fractional derivatives introduced historically in mathematics were the Riemann–Liouville
fractional derivatives [68], which generalized the classical integer-order derivatives with respect
to some specific analytical properties [77]. The fractional derivatives in the senses of Caputo,
Riesz and Grünwald–Letnikov are also extensions of the traditional derivatives of integer order.
It is worth pointing out here that these fractional operators are nonequivalent in general, and
various applications of all of them have been proposed to science and engineering [19, 87]. For
instance, some reports have provided theoretical foundations for the application of fractional
calculus to the theory of viscoelasticity [4], while others have proposed possible applications of
fractional calculus to dynamic problems of solid mechanics [80], financial economics [25, 83], Earth
system dynamics [104], mathematical modeling of biological phenomena [37] and the modeling of
two-phase gas/liquid flow systems [69], just to mention some potential applications. However, it is
important to recall that Riesz-type derivatives may be the only fractional derivatives which have
real physical applications [107]. This is due to a well-known result by Tarasov which establishes
that Riesz fractional derivatives result from systems with long-range interactions in a continuum-
limit case [88]. In turn, systems consisting of particles with long-range interactions are useful
nowadays in statistical mechanics, thermostatics [57, 17] and the theory of biological oscillator
networks [10].

From the mathematical point of view, many interesting avenues of investigation have been
opened by the progress in fractional calculus. Indeed, the different fractional derivatives have
found discrete analogues which have been extensively in the literature. As examples, Riesz
fractional derivatives have been discretized consistently in various fashions using fractional-order
centered differences [72, 73] and weighted-shifted Grünwald differences [33, 43]. Obviously, those
discrete approaches have been studied to determine their analytical properties, and they have been
used extensively to provide discrete models to solve Riesz space-fractional conservative/dissipative
space-fractional wave equations [34], a Hamiltonian fractional nonlinear elastic string equation
[56], an energy-preserving double fractional Klein–Gordon–Zakharov system [62] and even a Riesz
space-fractional generalization with generalized time-dependent diffusion coefficient and potential
of the Higgs boson equation in the de Sitter space-time [56], among other complex systems [51].
On the other hand, Caputo fractional derivatives have been discretized consistently using various
criteria. For instance, some high-order L2-compact difference approaches have used to that end
[99], as well as L1 formulas [23, 70] and L1-2 methodologies [29]. Using those approaches, various
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numerical schemes have been proposed to solve efficiently some Caputo time-fractional diffusive
and wave differential equations [101, 52, 66]. Also, various potential applications of these systems
have been reported in the sciences [47, 57].

From the analytical point of view, the literature offers a wide range of reports which focus on
the extension of integer-order methods and results to the fractional case. For example, there are
various articles which tackle the existence, uniqueness, regularity and asymptotic behavior of the
solution for the fractional porous medium equation [20], nonlinear fractional diffusion equations
[93], nonlinear fractional heat equations [9], the Fisher–Kolmogorov–Petrovskii–Piscounov equa-
tion with nonlinear fractional diffusion [85], fractional thin-film equations [84] and the fractional
Schrödinger equation with general nonnegative potentials [22]. From a more particular point of
view, the fractional generalization of the classical vector calculus operators (that is, the gradient,
divergence, curl and Laplacian operators) has been also an active topic of research which has
been developed from different approaches. Some of the first attempts to extend those opera-
tors to the fractional scenario were proposed in [1, 2] using the Nishimoto fractional derivative.
These operators were used later on in [64] to provide a physical interpretation for the fractional
advection-dispersion equation for flow in heterogeneous porous media (see [89] and references
therein for a historic account of the efforts to formulate a fractional form of vector calculus).
More recently, a new generalization of the Helmholtz decomposition theorem for both fractional
time and space was proposed in [71, 74] using the discrete Grünwald–Letnikov fractional deriva-
tive. The authors of those works consider different derivative orders, assuming non-homogeneous
models and non-isotropic spaces.

Aims and scope

In this work, we introduce two numerical schemes to solve a double-fractional Klein–Gordon–
Zakharov system of equations. We establish thoroughly the existence and the uniqueness of
solutions, prove the conservation of discrete energy and prove that the numerical schemes are
consistent, stable and convergent. It is worthwhile to recall that the well-known Zakharov equa-
tions are partial differential equations that appear in the investigation of the propagation of
Langmuir waves in plasma physics [90]. Zakharov [103] showed that arbitrary Langmuir turbu-
lences of sufficient intensity are unstable, and that the instability leads to the development of
low density regions in plasma which collapse in finite time. These regions were called caverns,
and they are the mechanism of energy dissipation of long-wave Langmuir oscillations. These con-
clusions were the result of the quantitative analysis on the equations describing the interaction
between the fast-time scale component of an electric field and the deviation of ion density from
equilibrium. This system was called the Zakharov system, and it motivated the development and
analysis of further models that provided more realistic descriptions of similar physical phenomena
[30, 59], including the Klein–Gordon–Zakharov system [91]. To this day, the Zakharov system is
still considered as one of the best systems to describe the coupling between high-frequency Lang-
muir waves and low-frequency ion-acoustic waves. Needless to mention that this model has been
applied to the description of shallow-water waves [11] and nonlinear optics [18], among other
physical applications. In the present work, we will consider a coupled Riesz space-fractioinal
Klein–Gordon–Zakharov system with two (not necessarily equal) fractional derivatives. The sys-
tem is capable of conserving the energy, whence the development of conservative schemes to
approximate the solutions of this system is numerically justified.
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Summary

The present thesis is organized as follows. In Chapter 1, we introduce an explicit method to ap-
proximate the solutions of Klein–Gordon–Zakharov system. In Chapter 2, we show the existence
of solutions for an implicit model. In Chapter 3, we introduce a method with double fractional
derivative. Later, we propose a semi-linear model in Chapter 4. In Chapter 5, we analyze two
different methods and discuss pros and cons of each one. Finally, in Chapter 6, we tackle a
rigorous study of Zakharov equation, both continuous and discrete case.
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1. An explicit method

1.1 Introduction

Let B = (xL, xR) be a nonempty interval in R, let T > 0 and define Ω = B× (0, T ). In this work,
for each S ⊆ Rp, we will use the notation S to represent the closure of S with respect to the
standard topology of Rp, for any p ∈ N. Assume that u and m are a complex- and a real-valued
functions, respectively, whose domains are both equal to Ω. Moreover, let u0, u1 : B → C and
m0,m1 : B → R be sufficiently smooth functions, and let v, w : Ω→ R be such that

v(x, t) = −∂w(x, t)
∂x

, (1.1)

∂2w(x, t)
∂x2 = ∂m(x, t)

∂t
. (1.2)

Definition 1.1.1. Let f : R → R be a function, and let n ∈ N ∪ {0} and α ∈ R satisfy
n−1 < α ≤ n. The Riesz fractional derivative of f of order α at x ∈ R is defined (when it exists)
as

dαf(x)
d|x|α

= −1
2 cos(πα2 )Γ(n− α)

dn

dxn

∫ ∞
−∞

f(ξ)dξ
|x− ξ|α+1−n . (1.3)

Here, Γ denotes the usual Gamma function. For the sake of briefness, we will sometimes use the
nomenclature dα|x|f(x) to represent the Riesz fractional derivative of f of order α at x.

In the present work, we will investigate an extension of the Klein–Gordon–Zakharov equations
which considers the presence of Riesz space-fractional derivatives [100]. In the following, all the
relevant functions will be defined on Ω. However, for the sake of simplicity, we will extend their
definitions to the set R × [0, T ], by letting them be equal to zero on (R \ [xL, xR]) × [0, T ]. For
the remainder of this work and unless we mention otherwise, we will fix α ∈ (1, 2]. Under these
circumstances, the problem investigated in this work is given by the following system, where
(x, t) ∈ Ω.

∂2u(x, t)
∂t2

− ∂αu(x, t)
∂|x|α

+ u(x, t) +m(x, t)u(x, t) + |u(x, t)|2u(x, t) = 0,

∂2m(x, t)
∂t2

− ∂2m(x, t)
∂x2 − ∂2 (|u(x, t)|2

)
∂x2 = 0,

such that


u(x, 0) = u0(x), m(x, 0) = m0(x), ∀x ∈ B,
∂u(x, 0)
∂t

= u1(x), ∂m(x, 0)
∂t

= m1(x), ∀x ∈ B,
u(xL, t) = u(xR, t) = 0,m(xL, t) = m(xR, t) = 0, ∀t ∈ [0, T ].

(1.4)
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It is important to recall that the Klein–Gordon–Zakharov equations appears in the inves-
tigation of the propagation of Langmuir waves in plasma physics [90, 12, 91]. In his seminal
work, V. E. Zakharov [103] showed that arbitrary Langmuir turbulences of sufficient intensity
are unstable, and that the instability leads to the development of low density regions in plasma
which collapse in finite time. These regions were called caverns, and they are the mechanism
of energy dissipation of long-wave Langmuir oscillations. These conclusions were the result of
the quantitative analysis on the equations describing the interaction between the fast-time scale
component of an electric field and the deviation of ion density from equilibrium. This system
was called the Zakharov system, and it motivated the development and analysis of further models
that provided more realistic descriptions of similar physical phenomena [30, 59, 11, 18, 32].
Example 1.1.2. The system of partial differential equations of (1.4) possess some known exact
traveling-wave solution defined on B = (−∞,∞) when α = 2, one solution being the following
system of functions (see [45, 44]):

u(x, t) =
√

10−
√

2
2 sech

√1 +
√

5
2 x− t

 exp
[
i

(√
2

1 +
√

5
x− t

)]
, (1.5)

m(x, t) = −2 sech2

√1 +
√

5
2 x− t

 , (1.6)

for every (x, t) ∈ R× R+.

Definition 1.1.3. Let p ∈ [1,∞), and let F = R,C. We let Lpx(Ω) denote the set of all functions
f : Ω → F such that f(·, t) ∈ Lp(B), for each t ∈ [0, T ]. For any function f ∈ Lpx(Ω), the norm
of f is the function of t ∈ [0, T ] given by

‖f‖x,p =
(∫

B
|f(x, t)|pdx

)1/p
, ∀t ∈ [0, T ]. (1.7)

Moreover, for each pair f, g ∈ L2
x(Ω), the inner product of f and g is the function of t defined by

〈f, g〉x =
∫
B
f(x, t)g(x, t)dx, ∀t ∈ [0, T ]. (1.8)

From the mathematical point of view, the model (1.4) is interesting in light of the fact that it
has conserved quantities. To show this fact, recall that the additive inverse of the Riesz fractional
derivative of order α has a unique square-root operators over the space of sufficiently integrable
functions with compact support. This unique square-root operator is denoted by ∂α/2/∂|x|α/2,
and it satisfies〈

u,− ∂αv

∂|x|α
〉
x

=
〈
− ∂αu

∂|x|α
, v

〉
x

=
〈
∂α/2u

∂|x|α/2
,
∂α/2v

∂|x|α/2

〉
x

, ∀t ∈ [0, T ], (1.9)

for any two functions u and v (see [27]).

Definition 1.1.4. Let u,m be a pair of functions satisfying the initial-boundary-value problem
(1.4). We define the Hamiltonian of that fractional system as

H(x, t) =
∣∣∣∣∂u∂t

∣∣∣∣2 − u ∂αu∂|x|α
+ |u|2 +m|u|2 + 1

2v
2 + 1

2m
2 + 1

2 |u|
4, (1.10)
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for each (x, t) ∈ Ω. Here, v satisfies (1.1) and (1.2), and we obviated again the dependence of all
the functions on the right-hand side of this identity with respect to (x, t). The associated total
energy of the system at the time t ∈ [0, T ] is given then by the function

E(t) =
∥∥∥∥∂u∂t

∥∥∥∥2

x,2
+
〈
u,− ∂αu

∂|x|α
〉
x

+ ‖u‖2x,2 + 〈m, |u|2〉x + 1
2‖v‖

2
x,2 + 1

2‖m‖
2
x,2 + 1

2‖u‖
4
x,4.

=
∥∥∥∥∂u∂t

∥∥∥∥2

x,2
+
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 + 〈m, |u|2〉x + 1

2‖v‖
2
x,2 + 1

2‖m‖
2
x,2 + 1

2‖u‖
4
x,4.

(1.11)

Theorem 1.1.5 (Hendy and Maćıas-Dı́az [35]). If u and m satisfy (1.4) then E is nonnegative
and constant.

The development of fractional calculus has opened new perspectives in sciences [39, 5, 3]. In
particular, the family of Zakharov equations has been extended to the fractional case, and the
solutions of those systems have been examined from the mathematical and numerical points of
view. Indeed, some studies report on fractional extensions of the (3 + 1)-dimensional Kurteweg-
de Vries–Zakharov–Kuznetsov equation [82], the (3 + 1)-dimensional time-fractional Zakharov–
Kuznetsov equation [41], the Zakharov–Kuznetsov–Benjamin–Bona–Mahony equation [6] and
the Klein–Gordon–Zakharov system [79]. Most of these fractional extensions of the Zakharov
equations also possess conserved quantities that resemble an energy functional, whence the need
to propose energy-conserving schemes for those models is an interesting topic of research in
numerical mathematics. There are various numerical methods in the literature that approximate
the solutions of fractional systems [7, 14, 21, 65]. For instance, some schemes have been proposed
to solve a time-space fractional Fokker–Planck equation with variable force field and diffusion [76],
nonlinear fractional-order Volterra integro-differential equations [106], variable-order fractional
Schrödinger equations [8] and the fractional two-dimensional heat equation [40]. However, there
are few reports on methods that preserve the energy of these fractional systems. Indeed, most of
them refer to the non-fractional case [96].

Inspired by previous successful energy-preserving discretizations for fractional wave equations
[49, 46, 58] and their physical applications [47, 50, 48, 57], we propose a nonlinear finite-difference
model to approximate the solutions of (1.4). The new numerical model is based on the use of
fractional-order centered differences to approximate the Riesz fractional derivatives [73]. The
scheme will have an associated discrete energy that resembles its continuous counterpart (1.11),
and which is preserved also at each temporal step. It is worth pointing out that the numerical
model proposed in this work has also many other interesting features. For example, we will
show here that the model is uniquely solvable, and we will show that the solutions are bounded.
The technique is an explicit technique and, as opposed to some implicit approaches reported
in the literature [35], its implementation is relatively simple [96]. The method is a consistent
technique with a second order of consistency under suitable assumptions on the smoothness of
the continuous solutions. Moreover, the technique is quadratically convergent.

The present manuscript is organized as follows. In Section 1.2, we present the discrete nomen-
clature, and recall the definition and properties of the fractional-order centered differences, which
are crucial in our investigation. The numerical method is provided therein, together with the
associated discrete energy quantities. Section 1.3 is devoted to establish the main physical prop-
erties of the method. More precisely, we show that, as the continuous counterparts, the discrete
energy quantities are preserved. Moreover, we establish the most important physical proper-
ties of the technique, namely, its capability to preserve the discrete energy and the positivity of
the energy functionals. The main numerical properties of the method will be proved in Section
1.4, namely, the consistency, the stability and the convergence of the numerical model. Some
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numerical simulations are provided afterwards, in order to confirm the energy and convergence
properties. Finally, we close this manuscript with a section of concluding remarks.

1.2 Numerical model

In this section, we will propose a numerical model to solve the initie-boundary-value problem
(1.4). The discretization will hinge on the use of fractional-order centered differences which are
defined below.
Definition 1.2.1 (Ortigueira [73]). For any function f : R → R, h > 0 and α > −1, we define
the fractional-order centered difference of order α of f at the point x as

∆α
hf(x) =

∞∑
k=−∞

g
(α)
k f(x− kh), ∀x ∈ R, (1.12)

whenever the right-hand side of this expression converges. The coefficients of the sequence
(g(α)
k )∞k=−∞ are defined by

g
(α)
k = (−1)kΓ(α+ 1)

Γ(α2 − k + 1)Γ(α2 + k + 1) , ∀k ∈ N ∪ {0}. (1.13)

When α ∈ (0, 1)∪ (1, 2], h > 0 and f ∈ C5(R) has its derivatives up to order five which belong to
L1(R) then [97]

− 1
hα

∆α
hf(x) = dαf(x)

d|x|α
+O(h2), ∀x ∈ R. (1.14)

Let Iq = {1, . . . , q} and Iq = Iq ∪ {0}, for each q ∈ N. Throughout, we let J,N ∈ N, and
define h = (xR − xL)/J and τ = T/N . We consider uniform partitions of the intervals [xL, xR]
and [0, T ], of the forms

xL = x0 < x1 < . . . < xj < . . . < xJ = xR, ∀j ∈ IJ , (1.15)
0 = t0 < t1 < . . . < tn < . . . < tN = T, ∀n ∈ IN , (1.16)

respectively. For convenience, let I = IJ−1 × IN−1 and I = IJ × IN . For each (j, n) ∈ I, we
will use Unj and Mn

j to represent numerical approximations to the values of unj = u(xj , tn) and
mn
j = m(xj , tn), respectively. In this manuscript, we let Rh = {xj : j ∈ IJ}, and represent the

set of all complex functions on Rh by Vh. If V ∈ Vh then we set Vj = V (xj) for each j ∈ IJ . Let
Un = (Unj )j∈IJ and Mn = (Mn

j )j∈IJ , and set U = (Un)n∈IN and M = (Mn)n∈IN .
Let V represent any of the functions U or M . In our work, we will employ the first-order

difference operators

δxV
n
j =

V n
j+1 − V n

j

h
, ∀(j, n) ∈ IJ−1 × IN , (1.17)

δtV
n
j =

V n+1
j − V n

j

τ
, ∀(j, n) ∈ IJ × IN−1, (1.18)

the second-order difference operators

δ
(1)
t V n

j =
V n+1
j − V n−1

j

2τ , ∀(j, n) ∈ IJ × IN−1, (1.19)

δ(2)
x V n

j =
V n
j+1 − 2V n

j + V n
j−1

h2 , ∀(j, n) ∈ IJ−1 × IN , (1.20)

δ
(2)
t V n

j =
V n+1
j − 2V n

j + V n−1
j

τ2 , ∀(j, n) ∈ IJ × IN−1, (1.21)
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and the average operators

µtV
n
j =

V n+1
j + V n

j

2 , ∀(j, n) ∈ IJ × IN−1, (1.22)

µ
(1)
t V n

j =
V n+1
j + V n−1

j

2 , ∀(j, n) ∈ IJ × IN−1, (1.23)

It is well known that all of these quantities provide consistent estimations of suitable functions
under appropriate smoothness conditions. Moreover, using the notation introduced in Definition
1.2.1, we consider the following consistent estimate of the fractional partial derivative of order α
of u with respect to x at (xj , tn):

δ(α)
x Unj = − 1

hα

∑
k∈IJ

g
(α)
j−kU

n
k . (1.24)

Definition 1.2.2. Let p ∈ [1,∞). The inner product 〈·, ·〉 : Vh × Vh → C and the norms
‖ · ‖p, ‖ · ‖∞ : Vh → R are defined, respectively, by

〈U, V 〉 = h
∑
j∈IJ

UjVj , ∀U, V ∈ Vh, (1.25)

‖U‖pp = h
∑
j∈IJ

|Uj |p, ∀U ∈ Vh (1.26)

‖U‖∞ = max
{
|Uj | : j ∈ IJ

}
, ∀U ∈ Vh. (1.27)

Moreover, for each V = (V n)n∈IN ⊆ Vh, we define

|‖V ‖|∞ = sup{‖V n‖∞ : n ∈ IN}. (1.28)

It is useful to note that the following identity holds for any U, V ∈ Vh:

〈U, δ(2)
x V 〉 = −〈δxU, δxV 〉 − U0δxV0 + UJδxVJ−1. (1.29)

A convenient reduction is obtained when U0 = UJ = 0, in which case 〈U, δ(2)
x V 〉 = −〈δxU, δxV 〉.

Under these circumstances, the discrete function δx is called the square-root operator of δ(2)
x .

Moreover, the existence of square roots has been extended to account for fractional-order centered
differences. Indeed, let V̊h be the subspace of Vh consisting of those grid functions V such that
V0 = VJ = 0.

Lemma 1.2.3 (Wang and Huang [95], Maćıas-Dı́az [49]). For each α ∈ (1, 2] there exists is
a unique, self-adjoint, positive, linear operator Λ(α)

x : V̊h → V̊h such that, if u, v ∈ V̊h then
〈−δ(α)

x u, v〉 = 〈Λ(α)
x u,Λ(α)

x v〉.

Using the nomenclature of this section, the finite-difference model employed in this work
to approximate the solutions of (1.4) is described by the following algebraic system, for each
∀(j, n) ∈ I:

δ
(2)
t Unj − δ(α)

x Unj + µ
(1)
t Unj +Mn

j µ
(1)
t Unj +

(
µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)
= 0,

δ
(2)
t Mn

j − δ(2)
x Mn

j − δ(2)
x |Unj |2 = 0,

such that


U0
j = u0(xj), M0

j = m0(xj), ∀j ∈ IJ ,
δ

(1)
t U0

j = u1(xj) δ
(1)
t M0

j = m1(xj), ∀j ∈ IJ−1,

Un0 = UnJ = 0, Mn
0 = Mn

J = 0, ∀n ∈ IN .

(1.30)
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Note that the numerical model (1.30) is a three-step explicit technique. Indeed, note that the first
equation of that system yields an expression with complex parameters in which the only unknown
is Un+1

j . On the other hand, the second equation of (1.30) is a fully explicit difference equation
which can be easily solved for Mn+1

j , for each (j, n) ∈ I. Obviously, this explicit character of the
method has computational advantages over the implicit schemes [35]

Note that the initial conditions of the numerical model (1.30) requires the knowledge of the
fictitious U−1 and M−1. In order to eliminate them, we require for the difference equations of
(1.30) to hold also for n = 0. Using then the initial data, we readily obtain that for each j ∈ IJ−1,
the following identities hold:

2U1
j − 2u0(xj)− 2τu1(xj)

τ2 =δ(α)
x U0

j − (U1
j − τu1(xj))

[
1 +M0

j + 1
2
(
|U1
j |2 + |U1

j − 2τu1(xj)|2
)]
,

(1.31)

M1
j =m0(xj) + τm1(xj) + τ2

2 δ
(2)
x

(
M0
j + |U0

j |2
)
. (1.32)

In what follows, we will let (V n)n∈IN be a sequence in V̊h such that

δ(2)
x V n

j = δtM
n
j , ∀(j, n) ∈ IJ−1 × IN−1, (1.33)

Under these circumstances, (U,M) will denote a solution of (1.30), and V = (V n)n∈IN will satisfy
(1.33).

Definition 1.2.4. Let (U,M) be a solution of (1.30). The discrete energy density at the time tn
is given by

Hn
j = |δUnj |2 − Unj δ(α)

x Un+1
j + µt|Unj |2 + 1

2 |δxV
n
j |2

+ 1
2M

n+1
j Mn

j + 1
2µt|U

n
j |4 + 1

2
[
Mn
j |Un+1

j |2 +Mn+1
j |Unj |2

]
, ∀j ∈ IJ−1.

(1.34)

The total discrete energy at the time tn is defined, for each n ∈ IN−1, by

En = ‖δtUn‖22 + Re〈−δ(α)
x Un+1, Un〉+ µt‖Un‖22 + 1

2‖δxV
n‖22

+ 1
2〈M

n+1,Mn〉+ 1
2µt‖U

n‖44 + 1
2
[
〈Mn, |Un+1|2〉+ 〈Mn+1, |Un|2〉

]
= ‖δtUn‖22 + Re〈Λ(α)

x Un+1,Λ(α)
x Un〉+ µt‖Un‖22 + 1

2‖δxV
n‖22

+ 1
2〈M

n+1,Mn〉+ 1
2µt‖U

n‖44 + 1
2
[
〈Mn, |Un+1|2〉+ 〈Mn+1, |Un|2〉

]
,

(1.35)

Here, we employ the notation |Un|2 = (|Unj |2)j∈IJ , for each n ∈ IN .

1.3 Physical properties

In this section we prove the main physical properties of the finite-difference method, namely, its
capability to conserve both the energy and the positive character of the energy functionals.

Definition 1.3.1. Given any U, V ∈ V̊h, we define their product point-wisely, that is, UV =
(UjVj)j∈IJ . Moreover, if F = R,C and if U ∈ V̊h is a function which takes on values in F , then
f(U) = (f(Uj))j∈IJ , for any function f : F → F .
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Lemma 1.3.2 (Hendy and Maćıas-Dı́az [35]). The following are satisfied for each n ∈ IN−1,

(a) 2 Re〈δ2
tU

n, δ
(1)
t Un〉 = δt‖δtUn−1‖22,

(b) 2 Re〈−δ(α)
x Un, δ

(1)
t Un〉 = δt Re〈Λ(α)

x Un,Λ(α)
x Un−1〉,

(c) 2 Re〈µ(1)
t Un, δ

(1)
t Un〉 = δtµt‖Un−1‖22,

(d) 2 Re〈Mnµ
(1)
t Un, δ

(1)
t Un〉 = 〈Mn, δ

(1)
t |Un|2〉,

(e) 4 Re〈(µ(1)
t |Un|2)(µ(1)

t Un), δ(1)
t Un〉 = δtµt‖Un−1‖44,

(f) 2〈Mn, δ
(1)
t |Un|2〉+ 2〈|Un|2, δ(1)

t Mn〉 = δt
[
〈Mn−1, |Un|2〉+ 〈Mn, |Un−1|2〉

]
,

(g) Re〈Un+1, Un〉 = µt‖Un‖22 − 1
2τ

2‖δtUn‖22, ∀n ∈ IN−1,

(h) |〈Mn, |Un+1|2〉+ 〈Mn+1, |Un|2〉| ≤ µt‖Mn‖22 + µt‖Un‖44.

(i) −2〈δ(2)
t Mn, µtV

n−1〉 = δt‖δxV n−1‖22,

(j) 2〈δ(2)
x Mn, µtV

n−1〉 = δt〈Mn,Mn−1〉,

(k) 〈δ(2)
x |Un|2, µtV n−1〉 = 〈|Un|2, δ(1)

t Mn〉.

Proof. The identities (a)–(c) can be established following arguments similar to those in [49]. On
the other hand, (d) and (e) make use of the product defined in 1.3.1, though the proofs are
also straightforward. The identity (f) is also easy. Meanwhile, (g) readily follows after rewriting
the left-hand side as a sum of conjugates, adding and subtracting the quantity µt‖Un‖22, and
performing some algebraic simplifications, namely,

Re〈Un+1, Un〉 =1
2
[
〈Un+1, Un〉+ 〈Un, Un+1〉

]
+ µt‖Un‖22 −

1
2
[
〈Un+1, Un+1〉+ 〈Un, Un〉

]
=µt‖Un‖22 −

1
2〈U

n+1 − Un, Un+1 − Un〉 = µt‖Un‖22 −
1
2τ

2‖δtUn‖22, ∀n ∈ IN−1.

(1.36)

To prove (h), first note that two applications of Young’s inequality yields |〈Mn, |Un+1|2〉| ≤
1
2‖M

n‖22 + 1
2‖U

n+1‖22 and |〈Mn+1, |Un|2〉| ≤ 1
2‖M

n+1‖22 + 1
2‖U

n‖22, whence the inequality follows.
To establish now (i) and (j), assume that (V n)n∈IN satisfies condition (1.33), and note that

〈δ(2)
t Mn, µtV

n−1〉 = 〈δtδ(2)
x V n−1, µtV

n−1〉 = 〈δ(2)
x δtV

n−1, µtV
n−1〉 = − 1

2τ
[
‖δxV n‖22 − ‖δxV n−1‖22

]
,

(1.37)
and

〈δ(2)
x Mn, µtV

n−1〉 = 〈Mn, δ(2)
x µtV

n−1〉 = 〈Mn, δtµtM
n〉 = 1

2τ
[
〈Mn,Mn+1〉 − 〈Mn,Mn−1〉

]
.

(1.38)
The identity (k) is finally proved in a similar fashion.

An alternative expression of the energy constants is already available if the identity (g) of
Lemma 1.3.2 is applied to the sequences (Λ(α)

x Un)n∈IN and (Mn)n∈IN . Indeed, it is easy to check
that

En =‖δtUn‖22 + µt‖Λ(α)
x Un‖22 −

1
2τ

2‖Λ(α)
x δtU

n‖22 + µt‖Un‖22 + 1
2‖δxV

n‖22 −
1
4τ

2‖δtMn‖22

+ 1
2µt‖M

n‖22 + 1
2µt‖U

n‖44 + 1
2
[
〈Mn, |Un+1|2〉+ 〈Mn+1, |Un|2〉

]
, ∀n ∈ IN−1.

(1.39)
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Theorem 1.3.3 (Energy conservation). If (U,M) is solution of (1.30) then the quantities (1.35)
are constant. Moreover, if g(α)

0 τ2h1−α < 1 then the constants (1.30) are nonnegative.

Proof. Let n ∈ IN−1. Compute the inner product of the left- and the right-hand sides of the
first vector equation of (1.30) with δ

(1)
t Un. Take then the real part, multiply by 2 and use the

identities (a)–(e) of Lemma 1.3.2 to obtain

0 = δt‖δtUn−1‖22 + δt Re〈Λ(α)
x Un,Λ(α)

x Un−1〉+ δtµt‖Un−1‖22 + 〈Mn, δ
(1)
t |Un|2〉+ 1

2δtµt‖U
n−1‖44.

(1.40)
On the other hand, take the inner product of the left- and the right-hand sides of the second
vector equation of (1.30) with µtV n−1 and use the last three identities of Lemma 1.3.2 to obtain
that

1
2δt‖δxV

n−1‖22 + 1
2δt〈M

n,Mn−1〉+ 〈|Un|2, δ(1)
t Mn〉 = 0. (1.41)

We add then these last two identities and use Lemma 1.3.2(j) to simplify algebraically the
resulting expression, obtaining thus that δtEn−1 = 0 for each n ∈ IN−1. The first part of
this result follows now by induction. To show that the quantities En are nonnegative un-
der the condition g

(α)
0 τ2h1−α < 1, note firstly that ‖Λ(α)

x δtU
n‖22 ≤ 2g(α)

0 h1−α‖δtUn‖22 and that
‖δtMn‖22 = ‖δxδxV n‖22 ≤ 2g(α)

0 h1−α‖δxV n‖22. Using these inequalities, Lemma 1.3.2(g), the iden-
tity (1.39) and simplifying algebraically, we obtain that

En ≥
(

1− g
(α)
0 τ2

hα−1

)
‖δtUn‖22 + µt‖Λ(α)

x Un‖22 + µt‖Un‖22 + 1
2

(
1− g

(α)
0 τ2

hα−1

)
‖δxV n‖22, ∀n ∈ IN−1.

(1.42)
We conclude that En ≥ 0 for each n ∈ IN−1, as desired.

1.4 Numerical properties

The aim of this section is to establish the most important numerical properties of the finite-
difference model (1.30). More precisely, we will prove that the model is second-order consistent,
stable and quadratically convergent.

Let (Un)n∈IN−1 , (Mn)n∈IN−1 ⊆ V̊h. For convenience, we define L = LU × LM : V̊h × V̊h →
V̊h × V̊h by

LU (Unj ,Mn
j ) =δ(2)

t Unj − δ(α)
x Unj + µ

(1)
t Unj +Mn

j µ
(1)
t Unj +

(
µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)
, ∀(j, n) ∈ I,

(1.43)

LM (Unj ,Mn
j ) =δ(2)

t Mn
j − δ(2)

x Mn
j − δ(2)

x |Unj |2, ∀(j, n) ∈ I.
(1.44)

We define L(Un,Mn) = (L(Unj ,Mn
j ))j∈IJ for each n ∈ IN−1, and let L(U,M) = (L(Un,Mn))n∈IN−1 .

Let us introduce also the continuous operator L = Lu × Lm, defined for each (u,m) by

Lu(u(x, t),m(x, t)) =∂2u(x, t)
∂t2

− ∂αu(x, t)
∂|x|α

+ u(x, t) +m(x, t)u(x, t) + |u(x, t)|2u(x, t), (1.45)

Lm(u(x, t),m(x, t)) =∂2m(x, t)
∂t2

− ∂2m(x, t)
∂x2 − ∂2 (|u(x, t)|2

)
∂x2 , (1.46)

for each (x, t) ∈ Ω. Also, for each x ∈ {xL, xR} and t ∈ [0, T ], we let L(u(x, t),m(x, t)) = 0.
Let L(un,mn) = (L(unj ,mn

j ))j∈IJ for each n ∈ IN−1, and define L(u, v) = (L(un,mn))n∈IN−1 .
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Similarly, consider L(un,mn) = (L(unj ,mn
j ))j∈IJ ∈ V̊h for each n ∈ IN−1, and introduce L(u,m) =

(L(un,mn))n∈IN−1 .

Theorem 1.4.1 (Consistency). Suppose that u,m ∈ C5,4
x,t (Ω). Then there exists a constant

C which is independent of τ and h, such that |‖(L − L)(u,m)‖|∞ ≤ C(τ2 + h2) and |‖(H −
H)(u,m)‖|∞ ≤ C(τ + h2).

Proof. The proof uses the classical argument based on Taylor approximations, the mean value
theorem and the smoothness of u. Indeed, note that there exists constants Ci ∈ R+ for each
i ∈ I5, such that ∣∣∣∣∣∂2u(xj , tn)

∂t2
− δ(2)

t unj

∣∣∣∣∣ ≤ C1τ
2, (1.47)

∣∣∣∣∂αu(xj , tn)
∂|x|α

− δ(α)
x unj

∣∣∣∣ ≤ C2h
2, (1.48)∣∣∣u(xj , tn)− µ(1)

t unj

∣∣∣ ≤ C3τ
2, (1.49)∣∣∣m(xj , tn)u(xj , tn)−mn

j µ
(1)
t unj

∣∣∣ ≤ C4τ
2, (1.50)∣∣∣|u(xj , tn)|2u(xj , tn)−

(
µ

(1)
t |unj |

) (
µ

(1)
t unj

)∣∣∣ ≤ C5τ
2, (1.51)

for (j, n) ∈ IJ × IN−1. Using the triangle inequality and algebraic simplifications, it follows that
|‖(Lu−LU )(u,m)‖|∞ ≤ C ′1(τ2 +h2), where C ′1 = max{Ci : i ∈ I5}. Similarly, it is readily verified
that there exist C6, C7, C8 ∈ R+ such that∣∣∣∣∣∂2m(xj , tn)

∂t2
− δ(2)

t mn
j

∣∣∣∣∣ ≤ C6τ
2, (1.52)

∣∣∣∣∣∂2m(x, t)
∂x2 − δ(2)

x mn
j

∣∣∣∣∣ ≤ C7h
2, (1.53)

∣∣∣∣∣∂2 (|u(x, t)|2
)

∂x2 − δ(2)
x |unj |2

∣∣∣∣∣ ≤ C8h
2, (1.54)

for (j, n) ∈ IJ × IN−1. Again, using the triangle inequality, it is easy to see that |‖(Lm −
LM )(u,m)‖|∞ ≤ C ′2(τ2 + h2), with C ′2 = max{C6, C7, C8}. The first inequality of the theorem is
reached when we let C = max{C ′1, C ′2}. The second is obtained analogously.

Definition 1.4.2. Let σ ∈ [0, 1]. Define the fractional Sobolev norm and semi-norm ‖·‖Hσ , |·|Hσ :
V̊h → R by

‖U‖2Hσ =
∫ π/h

−π/h
(1 + |k|2σ)|Û(k)|2dk, ∀U ∈ V̊h, (1.55)

|U |2Hσ =
∫ π/h

−π/h
|k|2σ|Û(k)|2dk, ∀U ∈ V̊h, (1.56)

respectively. Alternatively, ‖U‖2Hσ = ‖U‖22 + |U |2Hσ and |U |2H0 = ‖U‖22, for each U ∈ V̊h. The
fractional Sobolev space Hσ is the set of all U ∈ V̊h such that ‖U‖Hσ <∞.

The following lemmas will be employed to establish the boundedness, the stability and the
convergence of (1.30). For the sake of convenience, we will let γ = τ/h, and we will assume that
θ is a number in [0, 1

2 ].
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Lemma 1.4.3. Let γ
√

1− 2θ < 1 and β = (1+γ2(1−2θ))/(1−γ2(1−2θ)) > 1. If (Un)Nn=0 ⊆ V̊h
is a sequence of complex functions then Rn ≤ βQn, for each n ∈ IN−1. Here, for each n ∈ IN−1,

Qn = ‖δtUn‖22 + (1− 2θ) Re〈Λ(α)
x Un,Λ(α)

x Un+1〉, (1.57)

Rn = ‖δtUn‖22 + 1
2(1− 2θ)

(
‖Λ(α)

x Un+1‖22 + ‖Λ(α)
x Un‖22

)
. (1.58)

Proof. Note beforehand that β > 1. Using this fact, it is easy to check that

Qn =(1− 2θ)
[
〈Re(Λ(α)

x Un),Re(Λ(α)
x Un+1)〉+ 〈Im(Λ(α)

x Un), Im(Λ(α)
x Un+1)〉

]
+ ‖Re(δtUn)‖22 + ‖ Im(δtUn)‖22

≥β−1
[

1
2(1− 2θ)

(
‖Re(Λ(α)

x Un)‖22 + ‖ Im(Λ(α)
x Un)‖22

)
+ ‖Re(δtUn)‖22

+‖ Im(δtUn)‖22 + ‖Re(Λ(α)
x Un+1)‖22 + ‖ Im(Λ(α)

x Un+1)‖22
]

= β−1Rn,

(1.59)

for each n ∈ IN−1, which is what we wanted to prove.

Lemma 1.4.4 (Chang et al. [15, 16]). Suppose that γ
√

1− 2θ < 1 and β = (1 +γ2(1−2θ))/(1−
γ2(1 − 2θ)) > 1. If (Mn)n∈IN , (V

n)n∈IN ⊆ V̊h are real sequences then R̃n ≤ βQ̃n, for each
n ∈ IN−1. Here,

Q̃n = ‖δtV n‖22 + (1− 2θ)〈Mn,Mn+1〉, ∀n ∈ IN−1, (1.60)

R̃n = ‖δtV n‖22 + 1
2(1− 2θ)

(
‖Mn+1‖22 + ‖Mn‖22

)
, ∀n ∈ IN−1. (1.61)

Lemma 1.4.5 (Wang et al. [94]).

(a) For each 1
2 < σ ≤ 1, there exists Cσ > 0 independent of h such that if U ∈ Hσ then

‖U‖∞ ≤ Cσ‖U‖Hσ .

(b) For each 1
4 < σ0 ≤ 1, there is Cσ0 > 0 independent of h such that ‖U‖∞ ≤ Cσ0‖U‖

σ0
σ
Hσ‖U‖

1−σ0
σ

2
if σ0 ≤ σ ≤ 1 and U ∈ Hσ.

(c) For each α ∈ (1, 2) there exists a constant C > 0 such that C|U |2
Hα/2 ≤ |〈δ

(α)
x U,U〉| ≤

|U |2
Hα/2, for each U ∈ Hα.

(d) For each α ∈ (1, 2) and U, V ∈ Hα, there exists C > 0 such that C|U |Hα/2 |V |Hα/2 ≤
|〈δ(α)

x U, V 〉| ≤ |U |Hα/2 |V |Hα/2.

Lemma 1.4.6 (Gronwall’s inequality [105]). Assume that N ∈ N with N > 1. Let (ωn)n∈IN and
(Cn)n∈IN be sequences of nonnegative numbers, and let A, B and Cn be nonnegative, for each
n ∈ IN . Suppose that τ ∈ R+, and that

ωn − ωn−1 ≤ Aτωn +Bτωn−1 + Cnτ, ∀n ∈ IN . (1.62)

If (A+B)τ ≤ (N − 1)/(2N) then

max
n∈IN

|ωn| ≤

ω0 + τ
∑
k∈IN

Ck

 e2(A+B)Nτ . (1.63)

Theorem 1.4.7 (Boundedness). Let u0,m0 ∈ H1 and u1,m1 ∈ L2(B), and suppose that (U,M)
is the solution of (1.30) corresponding to the initial data u0, m0, u1 and m1. If g(α)

0 τ2h1−α < 1
and γ < 1 then there is a common bound C ∈ R+ for (‖δtUn‖2)n∈IN−1

, (‖Λ(α)
x Un‖2)n∈IN−1

,
(‖Un‖2)n∈IN−1

, (‖Un‖∞)n∈IN−1
, (‖δxV n‖2)n∈IN−1

, (‖Mn‖2)n∈IN−1
and (‖Un‖4)n∈IN−1

.
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Proof. Let n ∈ IN−1. The quantities (1.35) are equal to some C0 ≥ 0 by Theorem 1.3.3. Young’s
inequality yield

|〈Mn, |Un+1|2〉| ≤ ‖Mn‖22 + 1
4‖U

n+1‖44, (1.64)
|〈Mn+1, |Un|2〉| ≤ 1

4β‖M
n+1‖22 + β‖Un‖44, (1.65)

for each n ∈ IN−1. Let Cn0 ≥ 0 be a common bound of ‖Mn‖22 and ‖Un‖44. Using (1.35), letting
Cn1 = C0 + 1

2(β + 1)Cn0 and using Lemma 1.4.4 with θ = 0,

Cn1 ≥ 1
β

[
‖δtUn‖22 + µt‖Λ(α)

x Un‖22
]

+ µt‖Un‖22 + 1
4µt‖U

n‖44

− 1
8β‖M

n+1‖22 + 1
2

[
‖δxV n‖22 + 〈Mn,Mn+1〉

]
≥ 1
β

[
‖δtUn‖22 + µt‖Λ(α)

x Un‖22
]

+ µt‖Un‖22 + 1
4µt‖U

n‖44

+ 1
2β

[
‖δxV n‖22 + 1

2µt‖M
n‖22

]
,

(1.66)

for each n ∈ IN−1. As a consequence, there exists Cn2 ≥ 0 such that

‖δtUn‖22, ‖Λ(α)
x Un+1‖22, ‖Un+1‖22, ‖δxV n‖22, ‖Mn+1‖22, ‖Un+1‖44 ≤ Cn2 , (1.67)

for each n ∈ IN−1. Moreover, using an argument similar to that in [35], there exists Cn3 ≥ 0 such
that ‖Un+1‖∞ ≤ Cn3 . Note now that the hypotheses assure that there exists a common bound
C0

0 ≥ 0 for ‖δtU−1‖22, ‖Λ(α)
x U0‖22, ‖U0‖22, ‖δxV −1‖22, ‖M0‖22, ‖U0‖44 and ‖U0‖22. Let n ∈ IN−1 and

suppose that

‖δtUn−1‖22, ‖Λ(α)
x Un‖22, ‖Un‖22, ‖δxV n−1‖22, ‖Mn‖22, ‖Un‖44, ‖Un‖22 ≤ Cn0 , (1.68)

for some Cn0 ≥ 0. It follows that

‖δtUn‖22, ‖Λ(α)
x Un+1‖22, ‖Un+1‖22, ‖δxV n‖22, ‖Mn+1‖22, ‖Un+1‖44, ‖Un+1‖22 ≤ Cn+1

0 , (1.69)

where Cn+1
0 = max{Cn2 , Cn3 }. The proof follows by induction using C = CN0 .

Next, we wish to prove the stability and convergence properties of (1.4). In the following,
(u0, u1,m0,m1) and (ũ0, ũ1, m̃0, m̃1) will represent two sets of initial conditions of (1.4), and we
will assume that the initial data for (1.30) are provided exactly. Moreover, if f : F → F and
V ∈ V̊h then we define δ̃(f(Vj)) = f(Ṽj) − f(Vj), for each j ∈ IJ−1 and F = R,C. In the next
result, we will use the identities of Lemma 1.3.2 without mentioning them explicitly. Some of the
arguments will be similar to those in the proof of Theorem 1.3.3.

Theorem 1.4.8 (Stability). The method (1.30) is stable under the hypotheses of Theorem 1.4.7.

Proof. Let (u0, u1,m0,m1) and (ũ0, ũ1, m̃0, m̃1) be sets of initial data of (1.4), and observe that
the assumptions of Theorem 1.4.7 hold for both (U, V ) and (Ũ , Ṽ ). On the other hand, note that
(ε, ζ) satisfies the following with (j, n) ∈ I:

δ
(2)
t εnj − δ

(α)
x εnj + µ

(1)
t εnj + δ̃

[
Mn
j

(
µ

(1)
t Unj

)
+
(
µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)]
= 0,

δ
(2)
t ξnj − δ

(2)
x µ

(1)
t ξnj − δ̃

(
δ

(2)
x |Unj |2

)
= 0,

subject to εn0 = εnJ = 0 and ξn0 = ξnJ = 0, ∀n ∈ IN .
(1.70)

Using the discrete inequalities for Sobolev spaces, there exists C ∈ R+ with the property that,
for all n ∈ IN−1:∣∣∣〈δ̃ [Mn

(
µ

(1)
t Un

)]
, δ

(1)
t εn

〉∣∣∣ ≤ C (µ(1)
t ‖ξn‖22 + µ

(1)
t ‖Λ(α)

x εn‖22 + µ
(1)
t ‖εn‖22 + µt‖δtεn−1‖22

)
,

(1.71)
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T = 5 T = 10
τ h ετ,h ρxτ,h ετ,h ρxτ,h

0.04

1× 2−1 3.1259× 10−2 − 3.3702× 10−2 −
1× 2−2 9.3107× 10−3 1.7473 1.0490× 10−2 1.6837
1× 2−3 2.7017× 10−3 1.7850 3.1681× 10−3 1.7274
1× 2−4 7.5927× 10−4 1.8312 9.0755× 10−4 1.8036
1× 2−5 2.0884× 10−4 1.8622 2.5309× 10−4 1.8423

0.02

1× 2−1 8.6470× 10−3 − 9.4516× 10−3 −
1× 2−2 2.4595× 10−3 1.8138 2.7793× 10−3 1.7658
1× 2−3 6.6965× 10−4 1.8769 7.8130× 10−4 1.8308
1× 2−4 1.7416× 10−4 1.9430 2.0982× 10−4 1.8967
1× 2−5 4.4584× 10−5 1.9658 5.5110× 10−5 1.9288

0.01

1× 2−1 2.3217× 10−3 − 2.5746× 10−3 −
1× 2−2 6.3033× 10−4 1.8810 7.0669× 10−4 1.8652
1× 2−3 1.6345× 10−4 1.9472 1.8529× 10−4 1.9313
1× 2−4 4.1435× 10−5 1.9800 4.7430× 10−5 1.9659
1× 2−5 1.0557× 10−5 1.9726 1.2104× 10−5 1.9703

Table 1.1: Table of absolute errors and standard convergence rates in space when approximating
the solution m of (1.4) with α = 2, using the method (1.30). We employed the spatial domain
B = (−20, 20) and two periods of time, namely, T = 5 and T = 10. The initial conditions
were prescribed by the functions (1.76)–(1.79). Various sets of computational parameters were
employed.

∣∣∣〈δ̃ [(µ(1)
t |Un|2

) (
µ

(1)
t Un

)]
, δ

(1)
t εn

〉∣∣∣ ≤ C (µ(1)
t ‖εn‖22 + µt‖δtεn−1‖22

)
, (1.72)

and ∣∣∣〈δ̃ (δ(2)
x |Unj |2

)
, µtζ

n−1
〉∣∣∣ ≤ C (µt‖δxξn−1‖22 + ‖Λ(α)

x εn‖22 + ‖εn‖22
)
. (1.73)

These inequalities are obtained in the same way that they were calculated in reference [35].
The details are omitted to avoid redundancy. It suffices to mention that the only difference in
the proofs lies in the calculation of the terms Re〈Λ(α)

x εn,Λ(α
x εn+1〉x and 〈ξn, ξn+1〉x, which are

performed using Lemmas 1.4.3 and 1.4.4, respectively. Let δ(2)
x ζn = δtξ

n, for each n ∈ IN−1.
Multiply now the first difference equation of (1.70) by 2δ(1)

t εn, take the real part and then the
absolute value, use the inequalities (1.71)–(1.72) and simplify algebraically. At the same time,
multiply the second difference equation of (1.70) by 2µtζn−1, take the absolute value, use the
inequality (1.73) and simplify algebraically. The argument to obtain the conclusion uses then the
discrete Gronwall’s inequality.

The argument of the proof of our next proposition is similar to that of stability.

Theorem 1.4.9 (Convergence). If u,m ∈ C5,4
x,t (Ω) solves (1.4) then the solution of (1.30) con-

verges to that of the continuous problem with order O(τ2 + h2) in L∞ for (Un)n∈IN , and in L2

for (Mn)n∈IN .

1.5 Simulations

The purpose of this section is to provide some examples to illustrate the performance of the
numerical model (1.30). The simulations were obtained using an implementation of our method in
c©Matlab 8.5.0.197613 (R2015a) on a c©Hewlett-Packard 6005 Pro Microtower desktop computer
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T = 5 T = 10
h τ ετ,h ρtτ,h ετ,h ρtτ,h

0.04

0.01× 2−1 2.7837× 10−5 − 2.9019× 10−5 −
0.01× 2−2 7.7555× 10−6 1.8437 8.1926× 10−6 1.8246
0.01× 2−3 2.1145× 10−6 1.8749 2.2669× 10−6 1.8536
0.01× 2−4 5.6512× 10−7 1.9037 6.1158× 10−7 1.8901
0.01× 2−5 1.4921× 10−7 1.9212 1.6078× 10−7 1.9274

0.02

0.01× 2−1 7.4758× 10−6 − 8.0692× 10−6 −
0.01× 2−2 1.9994× 10−6 1.9026 2.1747× 10−6 1.8916
0.01× 2−3 5.1832× 10−7 1.9477 5.7915× 10−7 1.9088
0.01× 2−4 1.3275× 10−7 1.9651 1.4997× 10−6 1.9492
0.01× 2−5 3.3568× 10−8 1.9836 3.8139× 10−8 1.9754

0.01

0.01× 2−1 1.9615× 10−6 − 2.1985× 10−6 −
0.01× 2−2 5.1037× 10−7 1.9424 5.7903× 10−7 1.9248
0.01× 2−3 1.2875× 10−7 1.9869 1.4963× 10−7 1.9522
0.01× 2−4 3.2084× 10−8 2.0047 3.8187× 10−8 1.9703
0.01× 2−5 8.0506× 10−9 1.9947 9.6558× 10−9 1.9836

Table 1.2: Table of absolute errors and standard convergence rates in time when approximating
the solution m of (1.4) with α = 2, using the method (1.30). We employed the spatial domain
B = (−20, 20) and two periods of time, namely, T = 5 and T = 10. The initial conditions
were prescribed by the functions (1.76)–(1.79). Various sets of computational parameters were
employed.

with Linux Mint 18 “Sylvia” Cinnamon edition. The purpose of the next example is to verify
the rate of convergence of (1.30). To that end, we will consider the absolute error at the time T
between the exact solution u of (1.4) and the corresponding approximations U , which is given by

ετ,h = |‖u− U‖|∞, (1.74)

and consider the standard rates

ρtτ,h = log2

(
ε2τ,h
ετ,h

)
, ρxτ,h = log2

(
ετ,2h
ετ,h

)
. (1.75)

In our first example, we provide an analysis of convergence of the finite-difference method
(1.30) using the exact solution (1.5)–(1.6). It is important to point out that the literature lacks
reports of exact solutions for the fully fractional form of (1.30). For that reason, the present
example considers the non-fractional form of the mathematical model. To that end, we will
consider a bounded open interval B and impose homogeneous Dirichlet boundary data, as required
by the problem (1.4). Clearly, the exact solution does not satisfy the boundary conditions of
problem (1.4), which means that the numerical comparisons will yield only upper bounds for
the actual error committed by our numerical methodology. Unfortunately, these are some of
the inherent shortcomings of not having at hand an exact analytical solution satisfying the fully
fractional problem (1.4).
Example 1.5.1. Consider (1.4) with α = 2, let B = (−200, 200) and define the functions u0, m0,
u1 and m1 by

u0(x) =
√

10−
√

2
2 sech

√1 +
√

5
2 x

 exp
(
i

√
2

1 +
√

5
x

)
, (1.76)
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(a) (b)

Figure 1.1: Approximate solution of the problem (1.4) versus x and t, using Ω = (−20, 20)×(0, 10)
and α = 2. The graphs correspond to (a) |u(x, t)| and (b) m(x, t), and they were obtained using
the initial data (1.76)–(1.79). Computationally, we used h = 0.05 and τ = 0.1.

m0(x) = −2 sech2

√1 +
√

5
2 x

 , (1.77)

u1(x) =
√

10−
√

2
2 (tanh x− 1) sech

√1 +
√

5
2 x

 exp
(
i

√
2

1 +
√

5
x

)
, (1.78)

m1(x) = −4 sech2

√1 +
√

5
2 x

 tanh

√1 +
√

5
2 x

 , (1.79)

where i2 = −1 and x ∈ B. The corresponding solution of the initial-value problem (1.4) is given
by the functions (1.5)–(1.6). For comparison purposes, consider the discrete model (1.30) with
initial data (1.76)–(1.79). Under these circumstances, Tables 1.1 and 1.2 provide a numerical
study of the convergence of the method. The results confirm the quadratic order of convergence
of the scheme (1.30), agreeing with Theorem 1.4.9. For illustration purposes, Figure 1.1 provides
graphs of the approximate solutions for |u| and m as functions of x and t.

In our second example, we will consider the fully fractional form of (1.4).
Example 1.5.2. Consider now B = (−200, 200), along with the initial conditions used in Example
1.5.1, and set T = 200.

(a) Figure 1.2 shows a graph of the dynamics of the total energy for various values of α ∈ (1, 2],
using h = 0.05 and τ = 0.1. The results show that the total energy of the system is
approximately conserved with respect to time, but that it depends on the value of α. This
remark is in agreement with the theoretical results of this work.

(b) Next, we investigate the numerical accuracy of the finite-difference method (1.4) for different
values of α. To that end, we will follow the methodology and notation used by [98]. More
precisely, let Φ(h, τ) and Ψ(h, τ) be, respectively, the numerical solutions U and M at the
final time T , obtained using the method (1.30) with the parameters h and τ . We will employ
also the notations

RαΦ(τ) = ‖Φ(h, τ)− Φ(h, τ/2)‖∞, FαΦ (h) = ‖Φ(h, τ)− Φ(h/2, τ)‖∞, (1.80)
RαΨ(τ) = ‖Ψ(h, τ)−Ψ(h, τ/2)‖2, FΨ(h)α = ‖Ψ(h, τ)−Ψ(h/2, τ)‖2. (1.81)
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Figure 1.2: Dynamics of the total energy of the approximate solution of system (1.4), using
Ω = (−200, 200)× (0, 200), and the values of α indicated in the legend. We employed the initial
data (1.76)–(1.79). Computationally, we used h = 0.05 and τ = 0.1.

With this notation, Figures 1.3(a) and (b) show the graphs of RΦ and FΦ as functions of
τ and h, respectively. The graphs are plotted in log-log scale, fixing h = 0.2 and τ = 0.01,
respectively. The results indicate that the scheme is convergent, with second-order accuracy
in both time and space. The values of α = 1.2, 1.4, 1.6 and 1.8 were employed. In turn,
Figures 1.3(c) and (d) provide the graphs of RΨ and FΨ as functions of τ and h, respectively.
The results again confirm the quadratic order of temporal and spatial convergence of the
numerical scheme (1.30).

In this work, we investigated the numerical solution of a fractional extension of the Klein–
Gordon–Zakharov equations from plasma physics. The model considers the presence of space-
fractional derivatives of the Riesz type, together with homogeneous Dirichlet data at the boundary
and initial conditions. The fractional model has an invariant energy functional, and we propose an
explicit numerical model to approximate the solutions using fractional-order centered differences.
A discrete energy functional is also proposed in this work and we prove rigorously that, as its
continuous counterpart, it is preserved at each iteration and, in that sense, the present work
reports on a conservative finite-difference scheme to approximate the solutions of hyperbolic
systems [36, 42, 38]. Among the most important numerical properties established in this work,
we show that the model is a consistent, stable and convergent technique. Additionally, we propose
some bounds for the numerical solutions, and provide some computer simulations which illustrate
the fact that the numerical model is quadratically convergent.
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Figure 1.3: Errors committed when approximating the exact solution of (1.4) using the finite-
difference method (1.30), using B = (−200, 200) and T = 200. We used the initial approximations
(1.76)–(1.79), and we fixed h = 0.2 for the results of the left column, and τ = 0.01 for the right
column. Various values of α were used (see the legends). The error quantities used in these
experiments are provided by equations (1.80) and (1.81).
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2. Existence of solutions for an implicit
method

2.1 Introduction

In the published article [35], the authors established a theorem on the existence of solutions of a
finite-difference model for a space-fractional Klein–Gordon–Zakharov (KGZ) equation [103, 86].
The proof made use of the well-known Leray–Schauder fixed-point theorem. However, the authors
committed an involuntary mistake in the proof, for which they sincerely apologize. Concretely,
the mistakes were committed in Equations (5.6) and (5.7) of that work. Indeed, the second and
third terms of the right-hand sides of those equations had to be multiplied by λ ∈ [0, 1], and they
were not. It turns out that the corrected proof becomes much harder, and we provide it in this
short note. To that end, let us recall that the mathematical model under investigation in [35] is
the space-fractional KGZ system

∂2u(x, t)
∂t2

− ∂αu(x, t)
∂|x|α

+ u(x, t) +m(x, t)u(x, t) + |u(x, t)|2u(x, t) = 0, ∀(x, t) ∈ Ω,

∂2m(x, t)
∂t2

− ∂2m(x, t)
∂x2 = ∂2 (|u(x, t)|2

)
∂x2 , ∀(x, t) ∈ Ω,

subject to


u(x, 0) = u0(x), m(x, 0) = m0(x), ∀x ∈ B,
∂u(x, 0)
∂t

= u1(x), ∂m(x, 0)
∂t

= m1(x), ∀x ∈ B,
u(xL, t) = u(xR, t) = 0, m(xL, t) = m(xR, t) = 0, ∀t ∈ [0, T ].

(2.1)

In model (2.1), the fractional derivatives are understood in the Riesz sense [76, 47, 50]. More-
over, the authors of [35] proposed the following finite-difference model to solve the continuous
problem:

δ
(2)
t Unj − δ

(α)
x µ

(1)
t Unj + µ

(1)
t Unj +

(
µ

(1)
t Mn

j

) (
µ

(1)
t Unj

)
+
(
µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)
= 0, ∀(j, n) ∈ I,

δ
(2)
t Mn

j − δ
(2)
x µ

(1)
t Mn

j = δ
(2)
x µ

(1)
t |Unj |2, ∀(j, n) ∈ I,

subject to


U0
j = u0(xj), M0

j = m0(xj), ∀j ∈ IJ ,
δtU

0
j = u1(xj) δtM

0
j = m1(xj), ∀j ∈ IJ−1,

Un0 = UnJ = 0, Mn
0 = Mn

J = 0, ∀n ∈ IN .
(2.2)

For the definitions of the discrete notations, we refer to that article. In the following stage, we
will provide the correct proof of Theorem 5.3 of that manuscript. Additionally, we will consider
an explicit and inequivalent reformulation of the finite-difference model (2.2). In agreement with
the purpose of the present study, Section 2.3 provides a theorem on the existence of solutions for
the numerical model proposed therein.

27



2.2 Corrigendum

Throughout this section, we will employ extensively the discrete nomenclature introduced in [35,
Section 3]. In the way, we will also employ Lemma 4.1 of that paper. For the sake of convenience,
recall that

µ
(1)
t,ΥV

n = Υ + V n−1

2 , for any Υ ∈ V̊h and V = U,M. (2.3)

Lemma 2.2.1 (Young’s inequality). Let a, b ∈ R+ ∪ {0}, and let p, q ∈ (1,∞) be such that
1
p + 1

q = 1. For each ε > 0, the following inequality holds:

ab ≤ |a|
p

pε
+ ε|b|q

q
. (2.4)

In the proof of the next lemma, we will occasionally use the following elementary facts:

i. If V,W ∈ V̊h then ‖V ±W‖22 ≤ 2‖V ‖22 + 2‖W‖22.

ii. It is also well known that ‖δxW‖22 ≤ 4
h‖W‖

2
2 for each V̊h (see [49]).

Lemma 2.2.2. Let U = (Un)n∈IN and M = (Mn)n∈IN be sequences in V̊h, and assume that U
is a sequence of complex functions while the functions of M are real. The following identities are
satisfied, for each n ∈ IN−1 and Φ,Ψ ∈ V̊h:

(a) 4 Re
〈

(µ(1)
t,Φ|U

n|2)(µ(1)
t,ΦU

n),Φ− Un−1
〉

= ‖Φ‖44 − ‖Un−1‖44.

(b) 4 Re
〈

(µ(1)
t,ΨM

n)(µ(1)
t,ΦU

n),Φ− Un−1
〉

= 〈Ψ +Mn−1, |Φ|2 − |Un−1|2〉.

(c) 2 Re
〈
µ

(1)
t,ΦU

n,Φ− Un−1
〉

= ‖Φ‖22 − ‖Un−1‖22.

(d) 2 Re
〈
−δ(α)

x µ
(1)
t,ΦU

n,Φ− Un−1
〉

= ‖δ(α/2)
x Φ‖22 − ‖δ(α/2)

x Un−1‖22.

(e) 2
〈
−δ(2)

x µ
(1)
t,ΨM

n,Ψ−Mn−1
〉

= ‖δxΨ‖22 − ‖δxMn−1‖22.

Additionally, the following inequalities are satisfied for each λ ∈ [0, 1]:

(f) Re〈−2λUn,Φ− Un−1〉 ≥ −λ
3‖Φ‖

2
2 − C1.

(g) Re〈Φ + λUn−1,Φ− Un−1〉 ≥
(
1− λ+1

6

)
‖Φ‖22 − C2.

(h) 〈Ψ− 2λMn + λMn−1,Ψ−Mn−1〉 ≥
[
1− 1

20(3λ+ 1)
]
‖Ψ‖22 − C3.

(i) λτ2〈−δ(2)
x µ

(1)
t,Φ|Un|2,Ψ−Mn−1〉 ≥ −2λτ2

ε1h
‖Φ‖44 − 2λτ2ε1

h ‖Ψ‖22 − C4, for each ε1 > 0.

(j) λτ2 Re〈(µ(1)
t,ΨM

n)(µ(1)
t,ΦU

n),Φ − Un−1〉 ≥ −λτ2

8

(
1 + 1

ε2

)
‖Ψ‖22 − λτ2

8

(
ε2 + 1

2

)
‖Φ‖44 − C5, for

each ε2 > 0.

Here, the constants C1, . . . , C5 ∈ R+ depend only on Un, Un−1, Mn and Mn−1. Additionally, C4
depends on ε1, and C5 depends on ε2.
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Proof. The proofs of the identities (a)–(e) are similar to some of those in [35, Lemma 4.3]. To
prove (f), we use Young’s inequality with p = q = 2 and ε = 3. Using the fact that λ ∈ [0, 1], we
obtain

Re
〈
−2λUn,Φ− Un−1

〉
≥ −2λ |〈Φ, Un〉|−2λ

∣∣∣〈Un, Un−1〉
∣∣∣ ≥ −λ3 ‖Φ‖22−3‖Un‖22−2

∣∣∣〈Un, Un−1〉
∣∣∣ ,

(2.5)
and the inequality follows with C1 = 3‖Un‖22+2|〈Un, Un−1〉|. Inequality (g) was obtained similarly
using Lemma 2.2.1 with ε = 3 and C2 = 4‖Un−1‖22. Meanwhile, a double application of Young’s
inequality with ε = 10 was needed to reach (h). Concretely, note that the following are satisfied:

〈Ψ− 2λMn + λMn−1,Ψ−Mn−1〉 ≥ ‖Ψ‖22 − (λ+ 1)
∣∣∣〈Ψ,Mn−1〉

∣∣∣− λ‖Mn−1‖22

− 2λ |〈Mn,Ψ〉| − 2λ
∣∣∣〈Mn,Mn−1〉

∣∣∣
≥ ‖Ψ‖22 −

λ+ 1
20 ‖Ψ‖

2
2 − 5(λ+ 1)‖Mn−1‖22 − λ‖Mn−1‖22

− λ

10‖Ψ‖
2
2 − 10λ‖Mn‖22 − 2λ

∣∣∣〈Mn,Mn−1〉
∣∣∣ .

(2.6)
The inequality (h) is obtained then recalling that λ ∈ [0, 1], bounding from below the third,
fourth, sixth and seventh terms at the right-hand side of these inequalities, regrouping and letting
C3 = 11‖Mn−1‖22 + 10‖Mn‖22 + 2

∣∣〈Mn,Mn−1〉
∣∣. In turn, the relation (i) was obtained using the

elementary facts that precede this lemma, Young’s inequality, and bounding from below for
λ ∈ [0, 1], namely,

λτ2〈−δ(2)
x µ

(1)
t,Φ|U

n|2,Ψ−Mn−1〉 ≥ −λτ2

2

∣∣∣〈δx(|Φ|2 + |Un−1|2), δx(Ψ−Mn−1)〉
∣∣∣

≥ −λτ2

4ε1 ‖δx(|Φ|2 + |Un−1|2)‖22 − λτ2ε1
4 ‖δx(Ψ−Mn−1)〉‖22

≥ −λτ2

2

[
‖δx|Φ|2‖22 + ‖δx|Un−1|2‖22

ε1
+ ε1

(
‖δxΨ‖22 + ‖δxMn−1‖22

)]
≥ −2λτ2

ε1h
‖Φ‖44 − 2λτ2ε1

h ‖Ψn−1‖44 − C4,

(2.7)
where C4 = 2τ2

ε1h
‖Un−1‖44 + 2τ2ε1

h ‖M
n−1‖22. Finally, using (b), Young’s inequality with ε2 > 0,

ε3 = 1 and ε4 = 2, and regrouping terms, we obtain

λτ2 Re〈(µ(1)
t,ΨM

n)(µ(1)
t,ΦU

n),Φ− Un−1〉 ≥ −λτ
2

4
(∣∣∣〈Ψ, |Φ|2〉∣∣∣+ ∣∣∣〈Ψ, |Un−1|2〉

∣∣∣
+
∣∣∣〈Mn−1, |Φ|2〉

∣∣∣+ ∣∣∣〈Mn−1, |Un−1|2〉
∣∣∣)

≥ −λτ
2

8

(
‖Ψ‖22
ε2

+ ε2‖Φ‖44 + ‖Ψ‖
2
2

ε3
+ ε3‖Un−1‖44

+‖Φ‖
4
4

ε4
+ ε4‖Mn−1‖22

)
− τ2

4

∣∣∣〈Mn−1, |Un−1|2〉
∣∣∣

≥ −λτ
2

8

(
1 + 1

ε2

)
‖Ψ‖22 −

λτ2

8

(
ε2 + 1

2

)
‖Φ‖44

− τ2

8 ‖U
n−1‖44 −

τ2

4 ‖M
n−1‖44 −

τ2

4

∣∣∣〈Mn−1, |Un−1|2〉
∣∣∣ .

(2.8)
The inequality follows now with C5 being the term in parenthesis at the right end of these
inequalities.
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Lemma 2.2.3 (Leray–Schauder fixed-point theorem). Let X be a Banach space, and let F :
X → X be continuous and compact. If the set S = {x ∈ X : λF (x) = x for some λ ∈ [0, 1]} is
bounded then F has a fixed point.

The following is the correct statement of [35, Theorem 5.3], and its corresponding corrected
proof.

Theorem 2.2.4 (Solubility). The numerical model (2.2) is solvable for any set of initial condi-
tions whenever

τ2 < min
{

4
5 ,

h2

320

}
. (2.9)

Proof. The approximations (U0,M0) and (U1,M1) are defined through the initial data, so assume
that (Un−1,Mn−1) and (Un,Mn) have been already obtained, for some n ∈ IN−1. Let X =
V̊h × V̊h and define the function F : X → X as F = G×H, where G,H : X → V̊h. In turn, for
each j ∈ IJ−1 and Φ,Ψ ∈ V̊h, we let

Gj(Φ,Ψ) = 2Unj − Un−1
j + τ2δ(α)

x µ
(1)
t,ΦU

n
j − τ2µ

(1)
t,ΦU

n
j − τ2

(
µ

(1)
t,ΦU

n
j

) [
µ

(1)
t,ΨM

n
j + µ

(1)
t,Φ|U

n
j |2
]
,

(2.10)

Hj(Φ,Ψ) = 2Mn
j −Mn−1

j + τ2δ(2)
x µ

(1)
t,ΨM

n
j + τ2δ(2)

x µ
(1)
t,Φ|U

n
j |2. (2.11)

In the case when j ∈ {0, J}, we let Gj(Φ,Ψ) = Hj(Φ,Ψ) = 0. It is obvious that F is a continuous
and compact map from the Banach space X into itself. We will prove next that S of Lemma 2.2.3
is a bounded subset of X. Let (Φ,Ψ) ∈ X and λ ∈ [0, 1] satisfy λF (Φ,Ψ) = (Φ,Ψ). Equivalently,
the following identities hold for each n ∈ IN−1:

0 = Φ− 2λUn + λUn−1 − λτ2δ(α)
x µ

(1)
t,ΦU

n + λτ2µ
(1)
t,ΦU

n + λτ2
(
µ

(1)
t,ΦU

n
) [
µ

(1)
t,ΨM

n + µ
(1)
t,Φ|U

n|2
]
,

(2.12)

0 = Ψ− 2λMn + λMn−1 − λτ2δ(2)
x µ

(1)
t,ΨM

n − λτ2δ(2)
x µ

(1)
t,Φ|U

n|2, (2.13)

Note now that (2.9) assures that 32
h < h

10τ2 and 5τ2

8 < 1
2 . Take the real part of the inner product

of both sides of the equation 0 = Φ−λG(Φ,Ψ) with Φ−Un−1. At the same time, take the inner
product of both sides of the equation 0 = Ψ− λH(Φ,Ψ) with Ψ−Mn−1. Add both results, use
the identities and inequalities of Lemma 2.2.2 with ε1 ∈

(
32
h ,

h
10τ2

)
and ε2 ∈

(
5τ2

8 , 1
2

)
, rearrange

terms and simplify to obtain

0 ≥ λτ2

4
(
‖Φ‖44 − ‖Un−1‖44

)
+ λτ2

2
(
‖Φ‖22 − ‖Un−1‖22

)
+ λτ2

2
(
‖δ(α/2)
x Φ‖22 − ‖δ(α/2)

x Un−1‖22
)

+ λτ2

2
(
‖δxΨ‖22 − ‖δxMn−1‖22

)
− λτ2

8

( 1
ε2

+ 1
)
‖Ψ‖22 −

λτ2

8

(
ε2 + 1

2

)
‖Φ‖44 −

λ

3 ‖Φ‖
2
2

+
(

1− λ+ 1
6

)
‖Φ‖22 +

(
1− 3λ+ 1

20

)
‖Ψ‖22 −

2λτ2

ε1h
‖Φ‖44 −

2λτ2ε1
h
‖Ψ‖22 − C6,

(2.14)
where C6 = C1 + C2 + C3 + C4 + C5, and the constants C1, . . . , C5 ∈ R+ are those of Lemma
2.2.2. Rearranging terms and using the fact that λ ∈ [0, 1], we obtain that

K1‖Φ‖22 +K2‖Φ‖44 +K3‖Ψ‖22 ≤ C, (2.15)
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with

K1 = 1 + λτ2

2 − 3λ+ 1
6 ≥ 1

3 , (2.16)

K2 = λτ2

4

[
1− 8

ε1h
− 1

2

(
ε2 + 1

2

)]
>
λτ2

4

(
1− 1

4 −
1
2

)
= λτ2

16 , (2.17)

K3 = 1− λτ2
(2ε1
h

+ 1
8ε2

+ 1
8

)
− 3λ+ 1

20 ≥ 1− τ2
( 1

5τ2 + 1
5τ2 + 1

8

)
− 1

5 >
3
10 , (2.18)

C = C6 + τ2

2

(1
2‖U

n−1‖44 + ‖Un−1‖22 + ‖δ(α/2)
x Un−1‖22 + ‖δxMn−1‖22

)
. (2.19)

The inequalities were obtained using the ranges of ε1 and ε2, and that λ ∈ [0, 1]. It follows that
K1, K2 and K3 are positive and, moreover, that 1

3‖Φ‖
2
2 + 3

10‖Ψ‖
2
2 ≤ C. As a consequence, the set

S is bounded, and the Leray–Schauder theorem guarantees that the system (2.2) has a solution
(Un+1,Mn+1). The result follows now by induction.

2.3 Addendum

Throughout this stage, we will observe the discrete nomenclature of the previous section. An
alternative finite-difference model to solve (2.1) is described by the following algebraic system:

δ
(2)
t Unj − δ(α)

x Unj + µ
(1)
t Unj +Mn

j µ
(1)
t Unj +

(
µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)
= 0, ∀(j, n) ∈ I

δ
(2)
t Mn

j − δ(2)
x Mn

j − δ(2)
x |Unj |2 = 0, ∀(j, n) ∈ I

such that


U0
j = u0(xj), M0

j = m0(xj), ∀j ∈ IJ ,
δ

(1)
t U0

j = u1(xj) δ
(1)
t M0

j = m1(xj), ∀j ∈ IJ−1,

Un0 = UnJ = 0, Mn
0 = Mn

J = 0, ∀n ∈ IN .

(2.20)

Note that the numerical model (2.20) is a three-step explicit technique. Indeed, notice that the
first equation of that system yields an expression with complex parameters in which the only
unknown is Un+1

j . On the other hand, the second equation of (2.20) is a fully explicit difference
equation which can be easily solved for Mn+1

j , for each (j, n) ∈ I. Obviously, this explicit
character of the method has computational advantages over the implicit scheme in [35].

Observe that the initial conditions of the numerical model (2.20) require the knowledge of
U−1 and M−1. In order to eliminate them, we require for the difference equations of (2.20) to
hold also for n = 0. Using then the initial data, we readily obtain that for each j ∈ IJ−1, the
following identities hold:

2U1
j − 2u0(xj)− 2τu1(xj)

τ2 = δ(α)
x U0

j − (U1
j − τu1(xj))

[
1 +M0

j + 1
2
(
|U1
j |2 + |U1

j − 2τu1(xj)|2
)]
,

(2.21)

M1
j = m0(xj) + τm1(xj) + τ2

2 δ
(2)
x

(
M0
j + |U0

j |2
)
. (2.22)

We will require the following lemma.

Lemma 2.3.1. Let U = (Un)n∈IN and M = (Mn)n∈IN be sequences in V̊h, and assume that U
is a sequence of complex functions while the functions of V are real. The following hold, for each
n ∈ IN−1 and Φ,Ψ ∈ V̊h:

(a) 2 Re〈µ(1)
t,ΦU

n,Φ− Un−1〉 = ‖Φ‖22 − ‖Un−1‖22.
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(b) 4 Re〈(µ(1)
t,Φ|Un|2)(µ(1)

t,ΦU
n),Φ− Un−1〉 = ‖Φ‖44 − ‖Un−1‖44.

In addition, the following inequalities hold for each λ ∈ [0, 1]:

(c) λτ2 Re〈Mnµ
(1)
t,ΦU

n,Φ− Un−1〉 ≥ − 1
12λτ

2‖Φ‖44 − C1.

(d) Re〈Φ− 2λUn + λUn−1,Φ− Un−1〉 ≥
[
1− 1

6(3λ+ 1)
]
‖Φ‖22 − C2.

(e) Re〈−λτ2δ
(α)
x Un,Φ− Un−1〉 ≥ −1

6λτ
2‖Φ‖22 − C3.

Here, the constants C1 and C2 depend only on Un−1 and Un.

Proof. The proofs of these relations are similar to those in Lemma 2.2.2. We need only men-
tion that, to reach the inequalities, we applied Young’s theorem with ε = 3, and the con-
stants are C1 = 3τ2

4 ‖M
n‖22 + τ2

2 |〈M
n, |Un−1|2〉|, C2 = 4‖Un−1‖22 + 3‖Un‖22 + 2|〈Un, Un−1〉| and

C3 = 3
2τ

2‖δ(α)
x Un‖22 + τ2|〈δ(α)

x Un, Un−1〉|.

Theorem 2.3.2 (Solubility). The numerical model (2.20) is solvable for any set of initial con-
ditions

Proof. The proof is similar to that of Theorem 2.2.4, and we provide a shortened proof for that
reason. Beforehand, note that Mn+1 is defined explicitly in terms of Mn, Mn−1, Un and Un−1,
for each n ∈ IN−1, so we only need to establish the solubility of U . Let n ∈ IN−1, and suppose
that Mn, Mn−1, Un and Un−1 have been calculated. Following the nomenclature of Theorem
2.2.4, we note in this case that

Gj(Φ,Ψ) = 2Unj − Un−1
j + τ2δ(α)

x Unj − τ2µ
(1)
t,ΦU

n
j − τ2Mnµ

(1)
t,ΦU

n
j − τ2

(
µ

(1)
t,Φ|U

n
j |2
) (
µ

(1)
t,ΦU

n
j

)
,

(2.23)
Hj(Φ,Ψ) = 2Mn

j −Mn−1
j + τ2δ(2)

x Mn
j + τ2δ(2)

x |Unj |2. (2.24)

We take the real part of the inner product of both sides of the equation 0 = Φ− λG(Φ,Ψ) with
Φ−Un−1, use the results of Lemma 2.3.1, combine terms, simplify algebraically and bound from
below using that λ ∈ [0, 1] to obtain

1
6‖Φ‖

2
2−C ≤

(
1 + λτ2

2 − 4λ+ 1
6

)
‖Φ‖22+λτ2

6 ‖Φ‖
4
4−C1−C2−C3−

τ2

2 ‖U
n−1‖22−

τ2

4 ‖U
n−1‖44 ≤ 0,

(2.25)
where C = C1 + C2 + C3 + 1

2τ
2‖Un−1‖22 + 1

4τ
2‖Un−1‖44. As a consequence, the set S of Lemma

2.2.3 is bounded, whence it follows that F has a fixed point. In this way, the existence of Un+1

is established. The existence of the approximation U1 is carried out in similar fashion. The
conclusion of the theorem follows now using induction.
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3. An implicit method for
double-fractional system

3.1 Preliminaries

Let B = (xL, xR) be a nonempty and bounded interval in R, let T > 0 and define Ω = B× (0, T ).
In this work, we will use the notation S to represent the closure of S with respect to the standard
topology of R2, for each S ⊆ R2. Assume that u and m are a complex- and a real-valued
functions, respectively, whose domains are both equal to Ω. Moreover, let u0, u1 : B → C and
m0,m1 : B → R be sufficiently smooth functions. In the following, all the relevant functions will
be defined on Ω. However, for the sake of simplicity, we will extend their definitions to the set
R× [0, T ], by letting them be equal to zero on (R \ [xL, xR])× [0, T ].

Definition 3.1.1 (Podlubny [78]). Let f : R→ R be a function, and let n ∈ N ∪ {0} and α ∈ R
satisfy n− 1 < α ≤ n. The Riesz fractional derivative of f of order α at x ∈ R is defined (when
it exists) as

dαf(x)
d|x|α

= −1
2 cos(πα2 )Γ(n− α)

dn

dxn

∫ ∞
−∞

f(ξ)dξ
|x− ξ|α+1−n . (3.1)

Here, Γ denotes the usual Gamma function. In the case that u : R × [0, T ] → R, and n and
α are as above, then the Riesz fractional partial derivative of u of order α with respect to x at
(x, t) ∈ R× [0, T ] is given (if it exists) by

∂αu(x, t)
∂|x|α

= −1
2 cos(πα2 )Γ(n− α)

∂n

∂xn

∫ ∞
−∞

u(ξ, t)dξ
|x− ξ|α+1−n . (3.2)

The Riesz fractional partial derivative of u of order α with respect to x is also denoted by ∂α|x|u
in this work.

Definition 3.1.2. If z ∈ C then we will represent its complex conjugate by z. We will use F to rep-
resent the fields R or C. Let us define the set Lx,p(Ω) = {f : Ω→ F : f(·, t) ∈ Lp(B), for each t ∈
[0, T ]}, where p ∈ [1,∞]. If p ∈ [1,∞) and f ∈ Lx,p(Ω) then we convey that

‖f‖x,p =
(∫

B
|f(x, t)|pdx

)1/p
, ∀t ∈ [0, T ]. (3.3)

In the case when p = ∞, we set ‖f‖x,∞ = inf{C ≥ 0 : |f(x, t)| ≤ C for almost all x ∈ B}.
Obviously, ‖f‖x,p is a function of t ∈ [0, T ] in any case. Moreover, for each pair f, g ∈ Lx,2(Ω),
define the following function of t:

〈f, g〉x =
∫
B
f(x, t)g(x, t)dx, ∀t ∈ [0, T ]. (3.4)
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For the remainder of this work and unless we mention otherwise, we will fix α, β ∈ (1, 2]. Under
these circumstances, the fractional extension of the Klein–Gordon–Zakharov problem investigated
in this work is given the coupled system of fractional differential equations with initial-boundary
data

∂2u(x, t)
∂t2

− ∂αu(x, t)
∂|x|α

+ u(x, t) +m(x, t)u(x, t) + |u(x, t)|2u(x, t) = 0, ∀(x, t) ∈ Ω,

∂2m(x, t)
∂t2

− ∂βm(x, t)
∂|x|β

− ∂β
(
|u(x, t)|2

)
∂|x|β

= 0, ∀(x, t) ∈ Ω,

subject to


u(x, 0) = u0(x), m(x, 0) = m0(x), ∀x ∈ B,
∂u(x, 0)
∂t

= u1(x), ∂m(x, 0)
∂t

= m1(x), ∀x ∈ B,
u(xL, t) = u(xR, t) = 0, m(xL, t) = m(xR, t) = 0, ∀t ∈ [0, T ].

(3.5)

Note that the system of partial differential equations of (3.5) reduces to the well-known Klein–
Gordon–Zakharov system when α = β = 2. It is worth recalling that the system of Klein–Gordon–
Zakharov equations describes the propagation of strong turbulences of the Langmuir wave in a
high-frequency plasma [91, 12], and that various other potential applications of this system have
been proposed in the literature. Within the context of physics of high-frequency plasma, the
function u denotes the fast time-scale component of an electric field raised by electrons, and m
denotes the deviation of ion density from its equilibrium.

For the remainder of this work, we will let v, w : Ω→ R be functions satisfying

w(x, t) = −∂
β/2v(x, t)
∂|x|β/2

, ∀(x, t) ∈ Ω, (3.6)

∂βv(x, t)
∂|x|β

= ∂m(x, t)
∂t

, ∀(x, t) ∈ Ω. (3.7)

Using these identities and the product rule, it is easy to check that

m(x, t) ∂
∂t

(
|u(x, t)|2

)
= ∂

∂t

(
m(x, t)|u(x, t)|2

)
+ |u(x, t)|2∂

β/2w(x, t)
∂|x|β/2

, ∀(x, t) ∈ Ω. (3.8)

Definition 3.1.3. Let u,m be a pair of functions satisfying the initial-boundary-value problem
(3.5). We define the Hamiltonian of that fractional system as H(u(x, t),m(x, t)) = H(x, t), where

H(x, t) =
∣∣∣∣∂u∂t

∣∣∣∣2 +
∣∣∣∣∣ ∂α/2u∂|x|α/2

∣∣∣∣∣
2

+ |u|2 +m|u|2 + 1
2w

2 + 1
2m

2 + 1
2 |u|

4,

=
∣∣∣∣∂u∂t

∣∣∣∣2 +
∣∣∣∣∣ ∂α/2u∂|x|α/2

∣∣∣∣∣
2

+ |u|2 +m|u|2 + 1
2

∣∣∣∣∣ ∂β/2v∂|x|β/2

∣∣∣∣∣
2

+ 1
2m

2 + 1
2 |u|

4, ∀(x, t) ∈ Ω.

(3.9)

Here, v and w satisfy (3.6) and (3.7). Notice that we obviated the dependence of all the functions
on the right-hand side of this identity with respect to (x, t). The associated energy of the system
at the time t ∈ [0, T ] is given then by

E(t) =
∥∥∥∥∂u∂t

∥∥∥∥2

x,2
+
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 + 〈m, |u|2〉x + 1

2‖w‖
2
x,2 + 1

2‖m‖
2
x,2 + 1

2‖u‖
4
x,4

=
∥∥∥∥∂u∂t

∥∥∥∥2

x,2
+
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 + 〈m, |u|2〉x + 1

2

∥∥∥∥∥ ∂β/2v∂|x|β/2

∥∥∥∥∥
2

x,2
+ 1

2‖m‖
2
x,2 + 1

2‖u‖
4
x,4.

(3.10)
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To establish our next result, recall that the additive inverse of the Riesz fractional derivative
of order α has a unique square-root operators over the space of sufficiently integrable functions
with compact support [46]. This unique operator is actually ∂

α/2
|x| , and it satisfies the following,

for any two functions u and v (see [27]):〈
u,− ∂αv

∂|x|α
〉
x

=
〈
− ∂αu

∂|x|α
, v

〉
x

=
〈
∂α/2u

∂|x|α/2
,
∂α/2v

∂|x|α/2

〉
x

, ∀t ∈ [0, T ], (3.11)

Theorem 3.1.4 (Energy conservation). If u and m satisfy the problem (3.5) then the function
E is constant.

Proof. Beforehand, note that the following identities are readily satisfied:

d

dt

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
= 2 Re

〈
∂2u

∂t2
,
∂u

∂t

〉
x

, ∀t ∈ (0, T ), (3.12)

d

dt

∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
= 2 Re

〈
∂α/2u

∂|x|α/2
,
∂α/2

∂|x|α/2
∂u

∂t

〉
= 2 Re

〈
− ∂αu

∂|x|α
,
∂u

∂t

〉
, ∀t ∈ (0, T ), (3.13)

d

dt
‖u‖2x,2 = 2 Re

〈
u,
∂u

∂t

〉
x
, ∀t ∈ (0, T ), (3.14)

1
2
d

dt
‖u‖4x,4 = 2 Re

〈
|u|2u, ∂u

∂t

〉
, ∀t ∈ (0, T ). (3.15)

On the other hand, using the identity (3.8) and the second partial differential equation of (3.5),
standard integration arguments, the formula for integration by parts and the boundary conditions
of problem (3.5), we obtain , ∀t ∈ (0, T ),

2 Re
〈
mu,

∂u

∂t

〉
x

=
∫ ∞
−∞

m

[
2 Re

(
u · ∂u

∂t

)]
dx =

∫ ∞
−∞

(
m · ∂

(
|u|2

)
∂t

)
dx

=
∫ ∞
−∞

[
∂

∂t

(
m|u|2

)
− |u|2∂m

∂t

]
dx = d

dt

〈
m, |u|2

〉
x
−
〈
|u|2, ∂

βv

∂|x|β

〉
x

.

(3.16)

We estimate now the second term on the right-hand side of these identities using the second partial
differential equation of (3.5). More precisely, notice that the following identities are satisfied, for
each t ∈ (0, T ):

−
〈
|u|2, ∂

βv

∂|x|β

〉
x

= −
〈
∂2m

∂t2
, v

〉
x

+
〈
∂βm

∂|x|β
, v

〉
x

= −
〈
∂

∂t

∂m

∂t
, v

〉
x

+
〈
m,

∂βv

∂|x|β

〉
x

=
〈
− ∂β

∂|x|β
∂v

∂t
, v

〉
x

+
〈
m,

∂m

∂t

〉
x

=
〈
∂

∂t

∂β/2v

∂|x|β/2
,−w

〉
x

+
〈
m,

∂m

∂t

〉
x

=
〈
w,
∂w

∂t

〉
x

+
〈
m,

∂m

∂t

〉
x
.

(3.17)

Using the last two sets of inequalities, we readily obtain that

2 Re
〈
mu,

∂u

∂t

〉
x

= d

dt

[〈
m, |u|2

〉
x

+ 1
2‖w‖

2
x,2 + 1

2‖m‖
2
x,2

]
, ∀t ∈ (0, T ). (3.18)

Now, take the derivative of E with respect to t. Employing the first differential equation of (3.5),
all the identities above and simplifying, we reach that E ′(t) = 0 for all t ∈ (0, T ), whence the
conclusion of this result readily follows.

35



Lemma 3.1.5 (Gagliardo-Nirenberg inequality [67]). Let m ∈ N, q ≥ 1 and 0 < r ≤ ∞. Suppose
that f : B → R satisfies f ∈ Lq(B) and f (m) ∈ Lr(B). Let j ∈ Z satisfy 0 ≤ j ≤ m, and suppose
that j

m ≤ a ≤ 1 and 1 ≤ p ≤ ∞. If

1
p

= j

2 + a

(1
r
− m

2

)
+ (1− a)1

q
, (3.19)

then there exists C ∈ R+ such that ‖f (j)‖p ≤ C‖f (m)‖ar‖f‖1−aq .

Theorem 3.1.6 (Boundedness). Let u and m satisfy the initial-boundary-value problem (3.5),
and let u, ∂u/∂x ∈ Lx,2(Ω). Then there exist a constant C such that

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
+
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 + ‖w‖2x,2 + ‖m‖2x,2 ≤ C, ∀t ∈ [0, T ]. (3.20)

Moreover, the constant function (3.10) is nonnegative.

Proof. From Theorem 3.1.4, there exists C0 ∈ R such that E(t) = C0, for each t ∈ [0, T ]. On the
other hand, note that |〈m, |u|2〉| ≤ 1

2(‖m‖22+‖u‖44) is satisfied for all ∀t ∈ [0, T ]. As a consequence,
we obtain that, ∀t ∈ [0, T ],

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
+
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+‖u‖2x,2+‖w‖2x,2 ≤ 2

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
+
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 + 1

2‖w‖
2
x,2

 ≤ 2C0.

(3.21)
An application of Lemma 3.1.5 with p = 4, j = 0, m = 1, r = q = 2 and a = 1

2 , and the fact itself
that u, ∂u/∂x ∈ Lx,2(Ω) yield that there exist constants C1, C2 ∈ R+ with the property that

‖u‖44 ≤ C1‖u‖2x,2
∥∥∥∥∂u∂x

∥∥∥∥2

x,2
≤ C2, ∀t ∈ [0, T ]. (3.22)

The conclusion of the theorem is reached now using then the bounds (3.21) and (3.22), and letting
C = 2C0 + C2.

The cornerstone in the design of our finite-difference scheme is the concept of fractional
centered differences, which will be employed to discretize the Riesz fractional derivatives. We
must point out that different approaches can be employed to provide such discretizations, like
the weighted and shifted Grünwald differences [92]. We have opted to use fractional centered
differences in view of the convenience of their computational implementations.

Definition 3.1.7 (Ortigueira [73]). Let (g(α)
k )∞k=−∞ be the real sequence defined by

g
(α)
k = (−1)kΓ(α+ 1)

Γ(α2 − k + 1)Γ(α2 + k + 1) , ∀k ∈ N ∪ {0}, (3.23)

and assume that f : R → R is any function. If h > 0 and α > −1 then the fractional-order
centered difference of order α of f at the point x is defined as

∆α
hf(x) =

∞∑
k=−∞

g
(α)
k f(x− kh), ∀x ∈ R, (3.24)

if the double series at the right-hand of (3.24) converges.

The following result provides some useful properties of the sequences (g(α)
k )∞k=−∞.
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Lemma 3.1.8 (Wang et al. [97]). If 0 < α ≤ 2 and α 6= 1 then

(i) g
(α)
0 ≥ 0,

(ii) g
(α)
k = g

(α)
−k < 0 for all k ≥ 1, and

(iii)
∞∑

k=−∞
g

(α)
k = 0. As a consequence, it follows that g(α)

0 = −
∞∑

k=−∞
k 6=0

g
(α)
k =

∞∑
k=−∞
k 6=0

|g(α)
k |.

For each nonnegative integer m, let Cm(R) denote the space of all the functions f : R → R
which have continuous derivatives up to the mth order. As a consequence of Lemma 3.1.8, the
series at the right-hand side of (3.24) converges absolutely for any bounded function f ∈ L1(R).
This implies in particular that the function ∆α

hf : R→ R is well defined when f ∈ L1(R)∩L∞(R)
and α ∈ (1, 2].

Theorem 3.1.9 (Wang et al. [97]). Let α ∈ (1, 2] and h > 0, and suppose that f ∈ C5(R). If all
the derivatives of f up to order five belong to L1(R) then

− 1
hα

∆α
hf(x) = dαf(x)

d|x|α
+O(h2), ∀x ∈ R. (3.25)

3.2 Numerical approach

For the remainder of this work, we let Iq = {1, . . . , q} and Iq = Iq ∪ {0}, for each q ∈ N.
Throughout this manuscript, we let J,N ∈ N satisfy J ≥ 2 and N ≥ 2, and define the positive
step-sizes h = (xR−xL)/J and τ = T/N . We consider uniform partitions of the intervals [xL, xR]
and [0, T ], respectively, of the forms

xL = x0 < x1 < . . . < xj < . . . < xJ = xR, ∀j ∈ IJ , (3.26)

and
0 = t0 < t1 < . . . < tn < . . . < tN = T, ∀n ∈ IN . (3.27)

For each (j, n) ∈ IJ×IN , we let Unj and Mn
j represent numerical approximations to unj = u(xj , tn)

and mn
j = m(xj , tn), respectively. In this manuscript, we let Rh = {xj : j ∈ IJ}, and represent

by Vh the vector space over F of all F-valued functions on the grid space Rh which vanish at x0
and xJ . If V ∈ Vh then we set Vj = V (xj), for each j ∈ IJ . Moreover, in this work we will let
Un = (Unj )j∈IJ ∈ Vh and Mn = (Mn

j )j∈IJ ∈ Vh, and set U = (Un)n∈IN and M = (Mn)n∈IN .

Definition 3.2.1. Let p be any number satisfying 1 ≤ p <∞. The inner product 〈·, ·〉 : Vh×Vh →
C and the norms ‖ · ‖p, ‖ · ‖∞ : Vh → R are defined, respectively, by

〈U, V 〉 = h
∑
j∈IJ

UjVj , ∀U, V ∈ Vh, (3.28)

‖U‖pp = h
∑
j∈IJ

|Uj |p, ∀U ∈ Vh, (3.29)

‖U‖∞ = max
{
|Uj | : j ∈ IJ

}
, U ∈ Vh. (3.30)

Additionally, we let |‖V ‖|∞ = sup{‖V n‖∞ : n ∈ IN}, for each V = (V n)n∈IN ⊆ Vh.
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Definition 3.2.2. Let V represent any of the functions U or M , and suppose that α ∈ (1, 2]. In
the present manuscript, we will employ the linear difference operators

δxV
n
j =

V n
j+1 − V n

j

h
, ∀(j, n) ∈ IJ−1 × IN , (3.31)

δtV
n
j =

V n+1
j − V n

j

τ
, ∀(j, n) ∈ IJ × IN−1, (3.32)

µtV
n
j =

V n+1
j + V n

j

2 , ∀(j, n) ∈ IJ × IN−1, (3.33)

µ
(1)
t V n

j =
V n+1
j + V n−1

j

2 , ∀(j, n) ∈ IJ × IN−1. (3.34)

We agree that δ(2)
x V n

j = (δx ◦ δx)V n
j−1, for each (j, n) ∈ IJ−1 × IN . Here, the symbol ◦ represents

composition of operators, and it will be obviated in the future for the sake of simplicity. Using
this convention, let δ(1)

t V n
j = µtδtV

n−1
j , δ(2)

t V n
j = δtδtV

n−1
j and µ

(2)
t V n

j = µtµtV
n−1
j , for each

(j, n) ∈ IJ × IN−1. Moreover, using the notation in Definition 3.1.7, we define the discrete linear
operator

δ(α)
x V n

j = − 1
hα

∑
k∈IJ

g
(α)
j−kV

n
k , ∀(j, n) ∈ IJ−1 × IN . (3.35)

Lemma 3.2.3 (Maćıas-Dı́az [49]). If α ∈ (1, 2] and U, V ∈ Vh then 〈−δ(α)
x U, V 〉 = 〈δ(α/2)

x U, δ
(α/2)
x V 〉.

Using the nomenclature of this section, the finite-difference model employed in this work to
approximate the solutions of (3.5) is described by the algebraic system of difference equations

δ
(2)
t Unj − δ(α)

x µ
(1)
t Unj + µ

(1)
t Unj +Mn

j µ
(1)
t Unj +

(
µ

(2)
t |Unj |2

) (
µ

(1)
t Unj

)
= 0, ∀(j, n) ∈ IJ−1 × IN−1,

δ
(2)
t Mn

j − δ(β)
x µ

(1)
t Mn

j − δ(β)
x |Unj |2 = 0, ∀(j, n) ∈ IJ−1 × IN−1,

subject to


U0
j = u0(xj), M0

j = m0(xj), ∀j ∈ IJ−1,

δ
(1)
t U0

j = u1(xj) δ
(1)
t M0

j = m1(xj), ∀j ∈ IJ−1,

Un0 = UnJ = 0, Mn
0 = Mn

J = 0, ∀n ∈ IN .
(3.36)

It is worth pointing out that the discrete system (3.36) requires to consider fictitious approxi-
mations at the time t−1. Notice also that the initial conditions on the discrete velocities yield
U−1
j = U1

j −2τu1(xj) and M−1
j = M1

j −2τm1(xj), for each j ∈ IJ−1. Substituting these identities
into the difference equations of (3.36) when n = 0, we readily obtain

2[U1
j − τu1(xj)− u0(xj)] = τ2

(
τu1(xj)− U1

j

) [
1 +
|U1
j |2 + 2|u0(xj)|2 + |U1

j − 2τu1(xj)|2

4

]
τ2
(
τu1(xj)− U1

j

)
m0(xj) + τ2δ(α)

x (U1
j − τu1(xj)), ∀j ∈ IJ−1,

(3.37)
and

2[M1
j − τm1(xj)−m0(xj)] = 2τ2δ(β)

x |u0(xj)|2 + τ2δ(β)
x (M1

j − τm1(xj)), ∀j ∈ IJ−1. (3.38)

Note that the numerical model (3.36) is a three-step implicit nonlinear technique. Indeed, if
the approximations at the times tn−1 and tn are known, then the difference equations of (3.36)
have the vectors Un+1 and Mn+1 as unknowns. Moreover, it is easy to check that the first
difference equation of (3.36) contains Un+1 as the only unknown vector, while the only unknown
of the second equation is Mn+1. In that sense, the discrete model (3.36) is a decoupled nonlinear
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system. In the following and for the sake of convenience, we will let {V n
j : (j, n) ∈ IJ × IN} be

such that

δ(β)
x V n

j = δtM
n
j , ∀(j, n) ∈ IJ−1 × IN−1, (3.39)

V n
0 = V n

J = 0, ∀n ∈ IN . (3.40)

Under these circumstances, (U,M) will denote a solution of (3.36), and V = (V n)n∈IN will satisfy
(3.39) and (3.40).

Definition 3.2.4. Let (U,M) be a solution of (3.36). We define the associated discrete energy
density of the system at the point xj and time tn as H(Unj ,Mn

j ) = Hn
j , where

Hn
j = |δtUnj |2 + µt|δ(α/2)

x Unj |2 + µt|Unj |2 + 1
4µt|U

n
j |4 + 1

2µt|M
n
j |2 + 1

2 |δ
(β/2)
x V n

j |2 + 1
4 |U

n+1
j |2|Unj |2

+ 1
2
[
Mn
j |Un+1

j |2 +Mn+1
j |Unj |2

]
, (j, n) ∈ IJ−1 × IN−1.

(3.41)

Meanwhile, the discrete energy of the system (3.36) at the time tn is defined by

En = ‖δtUn‖22 + µt‖δ(α/2)
x Un‖22 + µt‖Un‖22 + 1

4µt‖U
n‖44 + 1

2µt‖M
n‖22 + 1

2‖δ
(β/2)
x V n‖22

+ 1
4〈|U

n+1|2, |Un|2〉+ 1
2
[
〈Mn, |Un+1|2〉+ 〈Mn+1, |Un|2〉

]
, ∀n ∈ IN−1.

(3.42)

Here, we employ the notation |Un|2 = (|Unj |2)j∈IJ . Also, we will set the computational parameter
R = τ2h−β.

Lemma 3.2.5 (Young’s inequality). Let a, b ∈ R+ ∪ {0}, and let p, q ∈ (1,∞) be such that
1
p + 1

q = 1. For each ε > 0, the following inequality holds:

ab ≤ |a|
p

pε
+ ε|b|q

q
. (3.43)

Definition 3.2.6. Let (Un)n∈IN be any sequence in Vh, let Φ ∈ Vh and assume that g : R→ R
is a function. We define

µ
(1)
t,Φ[g(Unj )] = 1

2

[
g(Φj) + g(Un−1

j )
]
, ∀(j, n) ∈ IJ × IN−1, (3.44)

µ
(2)
t,Φ[g(Unj )] = 1

4

[
g(Φj) + 2g(Unj ) + g(Un−1

j )
]
, ∀(j, n) ∈ IJ × IN . (3.45)

Lemma 3.2.7. Let U = (Un)n∈IN and M = (Mn)n∈IN be sequences in Vh. More precisely,
assume that U is a sequence of complex functions while the functions of M are real. The following
identities hold, for each n ∈ IN−1 and Φ ∈ Vh:

(a) 8 Re
〈

(µ(2)
t,Φ|U

n|2)(µ(1)
t,ΦU

n),Φ− Un−1
〉

= ‖Φ‖44 − ‖Un−1‖44 + 2〈|Un|2, |Φ|2 − |Un−1|2〉,

(b) 2 Re
〈
Mn(µ(1)

t,ΦU
n),Φ− Un−1

〉
= 〈Mn, |Φ|2 − |Un−1|2〉,

(c) 2 Re
〈
µ

(1)
t,ΦU

n,Φ− Un−1
〉

= ‖Φ‖22 − ‖Un−1‖22, and

(d) 2 Re
〈
−δ(α)

x µ
(1)
t,ΦU

n,Φ− Un−1
〉

= ‖δ(α/2)
x Φ‖22 − ‖δ(α/2)

x Un−1‖22.

Additionally, the following inequalities are satisfied for each λ ∈ [0, 1] and ε > 0:
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(e) Re〈−2λUn,Φ− Un−1〉 ≥ −λ
3‖Φ‖

2
2 − C1,

(f) Re〈Φ + λUn−1,Φ− Un−1〉 ≥
(
1− λ+1

6

)
‖Φ‖22 − C2, and

(g) 〈2Mn, |Φ|2 − |Un−1|2〉+ 〈|Un|2, |Φ|2 − |Un−1|2〉 ≥ −3ε
2 ‖Φ‖

4
4 − C3.

Here, the constants C1, C2 ∈ R+ depend only on Un, Un−1, Mn and Mn−1. Additionally, C3
depends also on ε.

Proof. The proofs of the identities (a)–(d) are straightforward. To prove (e), notice that

−2λRe〈Un,Φ〉+ 2λRe〈Un, Un−1〉 ≥ −2λ |〈Φ, Un〉| − 2λ
∣∣∣〈Un, Un−1〉

∣∣∣ . (3.46)

Applying Young’s inequality to |〈Φ, Un〉| with p = q = 2 and ε = 3, and using the fact that
λ ∈ [0, 1], we obtain that

Re
〈
−2λUn,Φ− Un−1

〉
≥ −λ3 ‖Φ‖

2
2 − 3λ‖Un‖22 − 2λ

∣∣∣〈Un, Un−1〉
∣∣∣

≥ −λ3 ‖Φ‖
2
2 − 3‖Un‖22 − 2

∣∣∣〈Un, Un−1〉
∣∣∣ . (3.47)

The inequality (e) follows now with C1 = 3‖Un‖22 + 2|〈Un, Un−1〉|. It is worth pointing out that
the inequality (f) is obtained similarly using Lemma 3.2.5 with ε = 3 and C2 = 4‖Un−1‖22. Indeed,
notice that

Re〈Φ + λUn−1,Φ− Un−1〉 ≥ ‖Φ‖22 − (λ+ 1)
∣∣∣〈Φ, Un−1〉

∣∣∣− λ‖Un−1‖22

≥ ‖Φ‖22 −
λ+ 1

6 ‖Φ‖22 − 3‖Un−1‖22 − ‖Un−1‖22

=
(

1− λ+ 1
6

)
‖Φ‖22 − C2.

(3.48)

Finally, expanding the inner product of (g) and applying Young’s inequality, we have

〈2Mn + |Un|2, |Φ|2 − |Un−1|2〉 ≥ −2|〈Mn, |Φ|2〉| − 2|〈Mn, |Un−1|2〉|
− |〈|Un|2, |Φ|2〉| − |〈|Un|2, |Un−1|2〉|

≥ −1
ε
‖Mn‖22 − ε‖Φ‖44 −

1
2ε‖U

n‖44 −
ε

2‖Φ‖
4
4

− 2|〈Mn, |Un−1|2〉| − |〈|Un|2, |Un−1|2〉|

≥ −3ε
2 ‖Φ‖

4
4 − C3,

(3.49)

where the constant C3 obviously depends on Mn, Un, Un−1 and ε. The conclusion of this lemma
readily follows.

For the remainder of this work, we will employ the real matrix A = C+D(β) of size (J + 1)×
(J + 1), where

C = 1
τ2



τ2 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 τ2


(3.50)
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and

D(β) = 1
2hβ



0 0 0 0 · · · 0 0 0 0
g

(β)
1 g

(β)
0 g

(β)
1 g

(β)
2 · · · g

(β)
J−4 g

(β)
J−3 g

(β)
J−2 g

(β)
J−1

g
(β)
2 g

(β)
1 g

(β)
0 g

(β)
1 · · · g

(β)
J−5 g

(β)
J−4 g

(β)
J−3 g

(β)
J−2

...
...

...
... . . . ...

...
...

...
g

(β)
J−2 g

(β)
J−3 g

(β)
J−4 g

(β)
J−5 · · · g

(β)
1 g

(β)
0 g

(β)
1 g

(β)
2

g
(β)
J−1 g

(β)
J−2 g

(β)
J−3 g

(β)
J−4 · · · g

(β)
2 g

(β)
1 g

(β)
0 g

(β)
1

0 0 0 0 · · · 0 0 0 0


. (3.51)

Lemma 3.2.8. The real matrix A is strictly diagonally dominant.

Proof. Using Lemma 3.1.8, we readily check that the following inequalities and identity hold, for
each i ∈ {2, . . . , J}:

J∑
j=1
j 6=i

|aij | ≤
∞∑

l=−∞
l 6=0

|g(β)
l |

2hβ <
1
τ2 + g

(β)
0

2hβ = |aii|. (3.52)

Obviously, the first and the last rows of the matrix A also satisfy this condition, whence we
readily conclude that A is strictly diagonally dominant, as desired.

Being strictly diagonally dominant, the matrix A is nonsingular. In addition, the off-diagonal
entries of A are non-positive, while the diagonal components are all positive numbers. This means
that A is an M -matrix, whence it follows that the entries of A−1 are positive real numbers [28].
We will not exploit this feature of A in this work.

3.3 Physical properties

The purpose of the present section is to establish the main physical properties of the discrete
model (3.36). More precisely, we establish the existence of solutions of the discrete model and
prove that the quantities (3.42) are invariant. Moreover, we prove rigorously the boundedness of
the solutions of (3.36). Obviously, these results will be in perfect qualitative agreement with the
properties established in the continuous-case scenario (see Section 3.1).

The following result will be the cornerstone to establish the existence of solutions of (3.36).

Lemma 3.3.1 (Leray–Schauder fixed-point theorem). Let X be a Banach space, and let F :
X → X be continuous and compact. If the set S = {x ∈ X : λF (x) = x for some λ ∈ [0, 1]} is
bounded then F has a fixed point.

Theorem 3.3.2 (Solubility). The numerical model (3.36) is solvable for any set of initial con-
ditions.

Proof. Observe that the approximation (U0,M0) is defined by the initial conditions of (3.36).
Let us assume firstly that (Un−1,Mn−1) and (Un,Mn) have been already obtained, for some
n ∈ IN−1. Consider the function F : Vh → Vh given by F = (Fj)j∈IJ , where each Fj : Vh → C is
a function. More precisely, let Φ ∈ Vh and set Fj(Φ) = 0 if j ∈ {0, J}. In the case when j ∈ IJ−1,
we define ∀Φ ∈ Vh,

Fj(Φ) = 2Unj − Un−1
j + τ2δ(α)

x µ
(1)
t,ΦU

n
j − τ2µ

(1)
t,ΦU

n
j − τ2Mn

j

(
µ

(1)
t,ΦU

n
j

)
− τ2

(
µ

(2)
t,Φ|U

n
j |2
) (
µ

(1)
t,ΦU

n
j

)
.

(3.53)
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It is obvious that F is a continuous and compact map from the Banach space Vh into itself. We
will prove next that the set S of Lemma 3.3.1 is a bounded subset of Vh. To that end, let Φ ∈ Vh
and λ ∈ [0, 1] satisfy λF (Φ) = Φ. Equivalently, the following identity holds, for each j ∈ IJ−1:

0 = Φj − 2λUnj + λUn−1
j − λτ2δ(α)

x µ
(1)
t,ΦU

n
j + λτ2µ

(1)
t,ΦU

n
j + λτ2

(
µ

(1)
t,ΦU

n
j

) [
Mn
j + µ

(2)
t,Φ|U

n
j |2
]
.

(3.54)

Take the real part of the inner product of both sides of the equation 0 = Φ−λF (Φ) with Φ−Un−1

and use the identities and inequalities of Lemma 3.2.7 with ε < 1
12 . Then rearrange terms and

simplify to obtain

0 ≥ λτ2

8
(
‖Φ‖44 − ‖Un−1‖44

)
+ λτ2

2
(
‖Φ‖22 − ‖Un−1‖22 + ‖δ(α/2)

x Φ‖22 − ‖δ(α/2)
x Un−1‖22

)
− λ

3 ‖Φ‖
2
2

+
(

1− λ+ 1
6

)
‖Φ‖22 + λτ2

4
[
〈2Mn, |Φ|2 − |Un−1|2〉+ 〈|Un|2, |Φ|2 − |Un−1|2〉

]
− C1 − C2

≥
(

1 + λτ2

2 − 3λ+ 1
6

)
‖Φ‖22 + λτ2

(1
8 −

3ε
2

)
‖Φ‖44 − C.

(3.55)
Here, the constants C1, C2, C3 ∈ R+ are those of Lemma 3.2.7, and C is given by

C = C1 + C2 + C3 + λτ2

8
(
4‖δ(α/2)

x Un−1‖22 + 4‖Un−1‖22 + ‖Un−1‖44
)
. (3.56)

Using the fact that λ ∈ [0, 1] and letting ε < 1
12 , we obtain that

K1 = 1 + λτ2

2 − 3λ+ 1
6 ≥ 1

3 , and K2 = 1
8 −

3ε
2 > 0. (3.57)

It follows that 1
3‖Φ‖

2
2 ≤ C. As a consequence, the set S is bounded, and the Leray–Schauder

theorem guarantees that the system consisting of all the first difference equations of (3.36) at
time tn has a solution Un+1. It only remains to prove that the system consisting of the second
equations is likewise solvable. To that end, observe that those identities can be expressed in
vector form as AΨ = b, where Ψ is the unknown vector of approximations at the time tn+1.
Additionally, the vector b ∈ RJ+1 is given by

b =



0
δ

(β)
x |Un1 |2 + 1

2δ
(β)
x Mn−1

1 + 1
τ2

(
2Mn

1 −Mn−1
1

)
δ

(β)
x |Un2 |2 + 1

2δ
(β)
x Mn−1

2 + 1
τ2

(
2Mn

2 −Mn−1
2

)
...

δ
(β)
x |UnJ−1|2 + 1

2δ
(β)
x Mn−1

J−1 + 1
τ2

(
2Mn

J−1 −M
n−1
J−1

)
0


. (3.58)

Observe now that A is strictly diagonally dominant by Lemma 3.2.8, so nonsingular. As a
consequence, there exists a vector Mn+1 which satisfies the system consisting of all the second
difference equations of (3.36) at time tn. Finally, if n = 0 then the solubility of the identities
(3.37)-(3.38) can be established in a similar fashion. The conclusion of the theorem readily follows
now by induction.

Definition 3.3.3. Given any arbitrary U, V ∈ Vh, we define their product point-wisely, that is,
UV = (UjVj)j∈IJ .
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Lemma 3.3.4. Let U = (Un)n∈IN and M = (Mn)n∈IN be sequences in Vh, and assume that
U is a sequence of complex functions while the functions of V are real. Then the following are
satisfied for each n ∈ IN−1:

(a) 2 Re〈δ(2)
t Un, δ

(1)
t Un〉 = δt‖δtUn−1‖22,

(b) 2 Re〈−δ(α)
x µ

(1)
t Un, δ

(1)
t Un〉 = δtµt‖δ(α/2)

x Un−1‖22,

(c) 2 Re〈µ(1)
t Un, δ

(1)
t Un〉 = δtµt‖Un−1‖22,

(d) 2 Re〈Mnµ
(1)
t Un, δ

(1)
t Un〉 = 〈Mn, δ

(1)
t |Un|2〉, and

(e) 8 Re
〈

(µ(2)
t |Un|2)(µ(1)

t Un), δ(1)
t Un

〉
= δt

[
µt‖Un−1‖44 + 〈|Un|2, |Un−1|2〉

]
.

Suppose additionally that there exists (V n)n∈IN ⊆ Vh such that (3.39) holds. Then for each
n ∈ IN−1,

(f) 2〈δ(β)
x µ

(1)
t Mn, µtV

n−1〉 = δtµt‖Mn−1‖22,

(g) 〈δ(β)
x |Un|2, µtV n−1〉 = 〈|Un|2, δ(1)

t Mn〉, and

(h) −2〈δ(2)
t Mn, µtV

n−1〉 = δt‖δ(β/2)
x V n−1‖22.

Proof. The identities (a)–(c) can be established following arguments similar to those in [49]. On
the other hand, the formulas (d) and (e) make use of the product introduced in Definition 3.3.3.
Indeed, notice that ∀n ∈ IN−1,

2 Re〈Mnµ
(1)
t Un, δ

(1)
t Un〉 = 1

2τ Re
〈
Mn(Un+1 + Un−1), (Un+1 − Un−1)

〉
= 〈Mn, δ

(1)
t |Un|

2〉,
(3.59)

and computing 8 Re
〈(
µ

(2)
t |Un|

2
) (
µ

(1)
t Un

)
, δ

(1)
t Un

〉
, we obtain

1
2τ Re

〈(∣∣∣Un+1
∣∣∣2 + 2|Un|2 +

∣∣∣Un−1
∣∣∣2)(Un+1 + Un−1

)
,
(
Un+1 − Un−1

)〉

= 1
2τ

h∑
j

(∣∣∣Un+1
j

∣∣∣4 + 2|Un+1
j |2|Unj |2 − 2|Unj |2|Un−1

j |2 −
∣∣∣Un−1
j

∣∣∣4)


= δt
[
µt‖Un−1‖44 + 〈|Un|2, |Un−1|2〉

]
, ∀n ∈ IN−1.

(3.60)

To establish now (f) and (g), we assume that (V n)n∈IN satisfies condition (3.39). Observe then
that ∀n ∈ IN−1,

2〈δ(β)
t µ

(1)
t Mn, µtV

n−1〉 = 2〈µ(1)
t Mn, µtδ

(β)
x V n−1〉 = 2〈µ(1)

t Mn, δ
(1)
t Mn〉 = δtµt‖Mn−1‖22, (3.61)

and

〈δ(β)
x |Un|2, µtV n−1〉 = 〈|Un|2, µtδ(β)

x V n−1〉 = 〈|Un|2, µtδtMn−1〉 = 〈|Un|2, δ(1)
t Mn〉. (3.62)

In similar fashion, it is easy to establish the validity of identity (h) using Lemma 3.2.3 and the
formula (3.39).
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Let (Un)n∈IN−1 , (Mn)n∈IN−1 ⊆ Vh. We define L = LU × LM : Vh × Vh → Vh × Vh by

LU (Unj ,Mn
j ) = δ

(2)
t Unj − δ(α)

x µ
(1)
t Unj + µ

(1)
t Unj

[
1 +Mn

j + µ
(2)
t |Unj |2

]
, ∀(j, n) ∈ IJ × IN , (3.63)

and
LM (Unj ,Mn

j ) = δ
(2)
t Mn

j − δ(β)
x µ

(1)
t Mn

j − δ(β)
x |Unj |2, ∀(j, n) ∈ IJ × IN . (3.64)

Then, L(Un,Mn) = (L(Unj ,Mn
j ))j∈IJ for each n ∈ IN−1, and let L(U,M) = (L(Un,Mn))n∈IN−1

.
On the other hand, we will let un = (unj )j∈IJ and mn = (mn

j )j∈IJ . Moreover, we agree that
u = (un)n∈IN and m = (mn)n∈IN . Let us introduce also the continuous operator L = Lu × Lm,
defined for each (u,m) and ∀(x, t) ∈ Ω, by

Lu(u(x, t),m(x, t)) = ∂2u(x, t)
∂t2

− ∂αu(x, t)
∂|x|α

+ u(x, t) +m(x, t)u(x, t) + |u(x, t)|2u(x, t), (3.65)

Lm(u(x, t),m(x, t)) = ∂2m(x, t)
∂t2

− ∂βm(x, t)
∂|x|β

− ∂β
(
|u(x, t)|2

)
∂|x|β

. (3.66)

Also, for each x ∈ {xL, xR} and t ∈ [0, T ], we let L(u(x, t),m(x, t)) = 0. Let L(un,mn) =
(L(unj ,mn

j ))j∈IJ for each n ∈ IN−1, and define L(u, v) = (L(un,mn))n∈IN−1 . Similarly, let
L(un,mn) = (L(unj ,mn

j ))j∈IJ ∈ Vh for each n ∈ IN−1, and introduce L(u,m) = (L(un,mn))n∈IN−1 .

Theorem 3.3.5 (Energy conservation). If (U,M) is a solution of (3.5) then the quantities (3.42)
are constant.

Proof. Suppose that (U,M) is a solution of the finite-difference scheme (3.36), and let n ∈ IN−1.
Notice beforehand that Re〈LU (Un,Mn), δ(1)

t Un〉 = 〈LM (Un,Mn), µtV n−1〉 = 0. As a conse-
quence of this and the identities in Lemma 3.3.4, we obtain the system of algebraic equations

0 = 1
2δt

[
‖δtUn−1‖22 + µt

(
‖δ(α/2)
x Un−1‖22 + ‖Un−1‖22 + 1

4‖U
n−1‖44

)
+ 1

4〈|U
n|2, |Un−1|2〉

]
+ 1

2〈M
n, δ

(1)
t |Un|2〉, (3.67)

0 = 1
2δt

[
‖δ(β/2)
x V n−1‖22 + µt‖Mn−1‖22

]
+ 〈|Un|2, δ(1)

t Mn〉. (3.68)

Multiply both ends of (3.67) by 2, and notice that

〈Mn, δ
(1)
t |Un|2〉+ 〈|Un|2, δ(1)

t Mn〉 = 1
2δt

[
〈Mn−1, |Un|2〉+ 〈Mn, |Un−1|2〉

]
. (3.69)

Finally, add the result to (3.68) to obtain that δtEn−1 = 0. As a consequence, En = En−1 for all
n ∈ IN−1. The fact that the quantities (3.42) are constant follows now by induction.

Definition 3.3.6. Let σ ∈ [0, 1]. Define the fractional Sobolev norm and semi-norm ‖·‖Hσ , |·|Hσ :
Vh → R by

‖U‖2Hσ =
∫ π/h

−π/h
(1 + |k|2σ)|Û(k)|2dk, ∀U ∈ Vh, (3.70)

|U |2Hσ =
∫ π/h

−π/h
|k|2σ|Û(k)|2dk, ∀U ∈ Vh, (3.71)

respectively. Alternatively, ‖U‖2Hσ = ‖U‖22 + |U |2Hσ and |U |2H0 = ‖U‖22, for each U ∈ Vh. The
fractional Sobolev space Hσ is the set of all U ∈ Vh such that ‖U‖Hσ <∞.
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Lemma 3.3.7 (Wang et al. [94]).

(a) For each 1
2 < σ ≤ 1, there exists a constant Cσ > 0 independent of h such that if U ∈ Hσ

then ‖U‖∞ ≤ Cσ‖U‖Hσ .

(b) For each 1
4 < σ0 ≤ 1, there exists a constant Cσ0 > 0 independent of h such that if

σ0 ≤ σ ≤ 1 and U ∈ Hσ then ‖U‖∞ ≤ Cσ0‖U‖
σ0/σ
Hσ ‖U‖1−σ0/σ

2 .

(c) For each α ∈ (1, 2) there is a constant C > 0 such that C|U |2
Hα/2 ≤ |〈δ

(α)
x U,U〉| ≤ |U |2

Hα/2,
for each U ∈ Hα.

(d) For each α ∈ (1, 2) and U, V ∈ Hα, there exists C > 0 such that C|U |Hα/2 |V |Hα/2 ≤
|〈δ(α)

x U, V 〉| ≤ |U |Hα/2 |V |Hα/2.

Theorem 3.3.8 (Boundedness). Let u0,m0 ∈ H1 and u1,m1 ∈ L2, and suppose that (U,M) is
the corresponding solution of (3.36). Then there exists C ≥ 0 such that

max
{
‖δtUn−1‖22, ‖δ(α/2)

x Un‖22, ‖Un‖22, ‖Un‖∞, ‖δ(β/2)
x V n−1‖22, ‖Mn‖22, ‖Un‖44

}
≤ C, ∀n ∈ IN .

(3.72)

Proof. The conclusion of the theorem will be reached using mathematical induction. Note before-
hand that Theorem 3.3.2 assures that the numerical model (3.36) has a solution. Moreover, in
light of Theorem 3.3.5, the quantities En are all equal to a constant C0 ≥ 0. On the other hand,
some applications of Young’s inequality readily show that the following relations are satisfied:

1
2

∣∣∣〈Mn, |Un+1|2〉
∣∣∣ ≤ ‖Mn‖22 + 1

16‖U
n+1‖44, ∀n ∈ IN−1, (3.73)

1
2

∣∣∣〈Mn+1, |Un|2〉
∣∣∣ ≤ 1

8‖M
n+1‖22 + 1

2‖U
n‖44, ∀n ∈ IN−1. (3.74)

In addition, note that 〈|Un+1|2, |Un|2〉 is nonnegative, for each n ∈ IN−1. Using all these inequali-
ties and the expression of the discrete energy quantities (3.42), rearranging terms and simplifying,
we obtain that, for each n ∈ IN−1,

C0 + 3
4‖M

n‖22 + 3
8‖U

n‖44 ≥ ‖δtUn‖22 + µt‖δ(α/2)
x Un‖22 + µt‖Un‖22 + 1

2‖δ
(β/2)
x V n‖22

+ 1
16‖U

n+1‖44 + 1
8‖M

n+1‖22

≥ ‖δtUn‖22 + 1
2‖δ

(α/2)
x Un+1‖22 + 1

2‖U
n+1‖22 + 1

2‖δ
(β/2)
x V n‖22

+ 1
16‖U

n+1‖44 + 1
8‖M

n+1‖22.

(3.75)

Note that there exists Cn ≥ 0 such that

max
{
‖δtUn−1‖22, ‖δ(α/2)

x Un‖22, ‖Un‖22, ‖Un‖∞, ‖δ(β/2)
x V n−1‖22, ‖Mn‖22, ‖Un‖44

}
≤ Cn

when n = 0. Proceeding by induction, suppose now that this assertion is satisfied for some
n ∈ IN−1. This assumption and the inequality (3.75) show that

‖δtUn‖22 + ‖δ(α/2)
x Un+1‖22 + ‖Un+1‖22 + ‖δ(β/2)

x V n‖22 + ‖Un+1‖44 + ‖Mn+1‖22 ≤ Cn+1
1 , (3.76)

where Cn+1
1 = 16(C0 + 9

8C
n) ≥ 0. On the other hand, an application of Lemma 3.3.7(c) shows

that there exists a constant C2 ∈ R+ independent of Un, such that C2|Un|2Hα/2 ≤ ‖δ
(α/2)
x Un‖22.
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This together with Lemma 3.3.7(a) and the properties of fractional Sobolev norms show then
that there exists a constant C3 ∈ R+ independent of Un, such that

‖Un‖2∞ ≤ C2
3‖Un‖2Hα/2 = C2

3

(
‖Un‖22 + |Un|2Hα/2

)
≤ (Cn+1

2 )2, ∀n ∈ IN−1, (3.77)

where Cn+1
2 = C1C3

√
1 + C2/

√
C2. Let Cn+1 = Cn+1

1 ∨ Cn+1
2 . The conclusion follows now by

induction when we define the nonnegative constant C = max{Cn : n ∈ IN}.

3.4 Numerical properties

The purpose of the present section is to provide the most important numerical properties of the
finite-difference scheme (3.5), namely, its consistency, stability and convergence. As a consequence
of the stability and the existence of solutions of the discrete model, the uniqueness of solutions
will be readily derived as a corollary. In a first stage, we will establish the consistency properties
of the numerical model (3.36) and its associated discrete energy density.

Theorem 3.4.1 (Consistency). If u,m ∈ C5,4
x,t (Ω) then there exist constants C,C ′ ∈ R+ which

are independent of h and τ , such that |‖L(u,m) − L(u,m)‖|∞ ≤ C(τ2 + h2) and |‖H(u,m) −
H(u,m)‖|∞ ≤ C(τ + h)

Proof. Using the regularity of the functions u and m along with Theorem 3.1.9 and Taylor’s
theorem, there exist constants C1,i ≥ 0 which are independent of h and τ for each i ∈ I5, such
that the following inequalities are satisfied:∣∣∣∣∣∂2u(xj , tn)

∂t2
− δ(2)

t unj

∣∣∣∣∣ ≤ Cu1 τ2, ∀(j, n) ∈ IJ−1 × IN−1, (3.78)∣∣∣∣∂αu(xj , tn)
∂|x|α

− δ(α)
x µ

(1)
t unj

∣∣∣∣ ≤ Cu2 (h2 + τ2), ∀(j, n) ∈ IJ−1 × IN−1, (3.79)∣∣∣u(xj , tn)− µ(1)
t unj

∣∣∣ ≤ Cu3 τ2, ∀(j, n) ∈ IJ−1 × IN−1, (3.80)∣∣∣m(xj , tn)u(xj , tn)−mn
j µ

(1)
t unj

∣∣∣ ≤ Cu4 τ2, ∀(j, n) ∈ IJ−1 × IN−1, (3.81)∣∣∣|u(xj , tn)|2u(xj , tn)−
(
µ

(2)
t |unj |2

) (
µ

(1)
t unj

)∣∣∣ ≤ Cu5 τ2, ∀(j, n) ∈ IJ−1 × IN−1. (3.82)

It is obvious that |‖Lu(u,m) − Lu(u,m)‖|∞ ≤ Cu(τ2 + h2) if we let Cu = max{Cui : i ∈ I5}.
Similarly, it is easy to see that there exist constants Cmi ≥ 0 which are independent of h and τ
for each i ∈ I3, with the property that∣∣∣∣∣∂2m(xj , tn)

∂t2
− δ(2)

t mn
j

∣∣∣∣∣ ≤ Cm1 τ2, ∀(j, n) ∈ IJ−1 × IN−1, (3.83)∣∣∣∣∣∂βm(xj , tn)
∂|x|β

− δ(β)
x µ

(1)
t mn

j

∣∣∣∣∣ ≤ Cm2 (h2 + τ2), ∀(j, n) ∈ IJ−1 × IN−1, (3.84)∣∣∣∣∣∂β
(
|u(xj , tn)|2

)
∂|x|β

− δ(β)
x |unj |2

∣∣∣∣∣ ≤ Cm3 τ2, ∀(j, n) ∈ IJ−1 × IN−1. (3.85)

Defining Cm = max{Cmi : i ∈ I3} and using the triangle inequality, it is possible to establish
that the inequality |‖Lm(u,m)− Lm(u,m)‖|∞ ≤ Cm(τ2 + h2) holds. As a consequence, the first
inequality of the conclusions is reached when C = Cu∨Cm. The second inequality of this theorem
may be readily reached using similar arguments.
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We turn our attention to the properties of stability and convergence of the discrete model
(3.36). The following technical results will be important tools to establish those properties.

Lemma 3.4.2 (Maćıas-Dı́az [49]). If V ∈ Vh and α ∈ (1, 2] then

(a) ‖δ(α/2)
x V ‖22 ≤ 2g(α)

0 h1−α‖V ‖22,

(b) ‖δ(α)
x V ‖22 = ‖δ(α/2)

x δ
(α/2)
x V ‖22, and

(c) ‖δ(α)
x V ‖22 ≤ 2g(α)

0 h1−α‖δ(α/2)
x V ‖22 ≤ 4

(
g

(α)
0 h1−α

)2
‖V ‖22.

Lemma 3.4.3 (Pen-Yu [75]). Let (ωn)Nn=0 and (ρn)Nn=0 be finite sequences of nonnegative real
numbers, assume that τ > 0 and suppose that there exists C ≥ 0 such that

ωk ≤ ρk + Cτ
k∑

n=0
ωn, ∀k ∈ IN . (3.86)

If τ is sufficiently small then ωn ≤ ρneCnτ for each n ∈ IN .

In the following theorem, we will consider two sets of initial conditions (u0, u1,m0,m1) and
(ũ0, ũ1, m̃0, m̃1) for the discrete problem (3.36). The functions will satisfy the conditions of
Theorem 3.3.2, whence the solutions corresponding to these two sets will exist, and will be
denoted by (U,M) and (Ũ , M̃), respectively. More precisely, the pair (U,M) satisfies (3.36),
while (Ũ , M̃) satisfies the discrete initial-boundary-value problem

δ
(2)
t Ũnj − δ(α)

x µ
(1)
t Ũnj + µ

(1)
t Ũnj + M̃n

j µ
(1)
t Ũnj +

(
µ

(2)
t |Ũnj |2

) (
µ

(1)
t Ũnj

)
= 0, ∀(j, n) ∈ IJ−1 × IN−1,

δ
(2)
t M̃n

j − δ(β)
x µ

(1)
t M̃n

j − δ(β)
x |Ũnj |2 = 0, ∀(j, n) ∈ IJ−1 × IN−1,

subject to


Ũ0
j = ũ0(xj), M̃0

j = m̃0(xj), ∀j ∈ IJ−1,

δ
(1)
t Ũ0

j = ũ1(xj) δ
(1)
t M̃0

j = m̃1(xj), ∀j ∈ IJ−1,

Ũn0 = ŨnJ = 0, M̃n
0 = M̃n

J = 0, ∀n ∈ IN .
(3.87)

Definition 3.4.4. Suppose that (U,M) and Ũ , M̃) are two solutions of (3.36) corresponding to
the initial conditions (u0, u1,m0,m1) and (ũ0, ũ1, m̃0, m̃1), respectively. If g : R2 → R is any
function then we define δ̃ : Vh × Vh → Vh for each (j, n) ∈ IJ × IN , through δ̃[g(Unj ,Mn

j )] =
g(Unj ,Mn

j )− g(Ũnj , M̃n
j ).

Lemma 3.4.5. Let u0, ũ0,m0, m̃0 ∈ H1 and u1, ũ1,m1, m̃1 ∈ L2, and suppose that (u0, u1,m0,m1)
and (ũ0, ũ1, m̃0, m̃1) are sets of initial conditions, and let (U,M) and Ũ , M̃) be the respective so-
lutions obtained by (3.36). Let εn = Un − Ũn and ζn = Mn − M̃n, for each n ∈ IN , and define
the constants

ρ = 2
(
‖δtε−1‖22 + µt‖δ(α/2)

x ε−1‖22 + µt‖ε−1‖22 + ‖δ(β/2)
x υ−1‖22 + µt‖ζ−1‖22

)
, (3.88)

ωk = ‖δtεk−1‖22 + ‖δ(α/2)
x εk‖22 + ‖εk‖22 + ‖δtζk−1‖22 + ‖ζk‖22, ∀k ∈ IN−1. (3.89)

There exists a constant C ≥ 0 such that, if τ is sufficiently small, then ωk ≤ Cρ for each
k ∈ IN−1.

Proof. Beforehand, notice that Theorems 3.3.2 and 3.3.8 guarantee that the solutions (U,M) and
(Ũ , M̃) exist and are bounded. This implies in particular that the set {‖Un‖p, ‖Ũn‖p, ‖Mn‖p, ‖M̃n‖p :
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n ∈ IN , p = 2,∞} is bounded. On the other hand, note that the pair (ε, ζ) satisfies the algebraic
system

δ
(2)
t εnj − δ(α)

x µ
(1)
t εnj + µ

(1)
t εnj + δ̃

[
Mn
j µ

(1)
t Unj +

(
µ

(2)
t |Unj |2

) (
µ

(1)
t Unj

)]
= 0, ∀(j, n) ∈ IJ−1 × IN−1,

δ
(2)
t ζnj − δ(β)

x µ
(1)
t ζnj − δ̃

(
δ(β)
x |Unj |2

)
= 0, ∀(j, n) ∈ IJ−1 × IN−1,

subject to


ε0j = u0(xj)− ũ0(xj), ζ0

j = m0(xj)− m̃0(xj), ∀j ∈ IJ−1,

δ
(1)
t ε0j = u1(xj)− ũ1(xj) δ

(1)
t ζ0

j = m1(xj)− m̃1(xj), ∀j ∈ IJ−1,

εn0 = εnJ = 0, ζn0 = ζnJ = 0, ∀n ∈ IN .
(3.90)

For the sake of convenience, we agree that υn = V n − Ṽ n, for each n ∈ IN . In light of (3.39), it
is clear that δ(β)

x υn = δtζ
n, for each n ∈ IN−1. Observe that Lemma 3.3.4 guarantees that the

identities (a)–(c) are satisfied when U is replaced by ε. Additionally, the identities (f) and (h) of
that lemma are also satisfied with ζ and υ instead of M and V , respectively. More precisely, the
following relations hold for each n ∈ IN−1:

(i) 2 Re〈δ(2)
t εn, δ

(1)
t εn〉 = δt‖δtεn−1‖22,

(ii) 2 Re〈−δ(α)
x µ

(1)
t εn, δ

(1)
t εn〉 = δtµt‖δ(α/2)

x εn−1‖22,

(iii) 2 Re〈µ(1)
t εn, δ

(1)
t εn〉 = δtµt‖εn−1‖22,

(iv) −2〈δ(2)
t ζn, µtυ

n−1〉 = δt‖δ(β/2)
x υn−1‖22, and

(v) 2〈δ(β)
x µ

(1)
t ζn, µtυ

n−1〉 = δtµt‖ζn−1‖22.

In addition, some applications of Young’s inequality and the boundedness of the numerical solu-
tions show that there exists a constant C1 ≥ 0 such that

Re
〈
δ̃
[
Mnµ

(1)
t Un

]
, δ

(1)
t εn

〉
=
∣∣∣〈ζnµ(1)

t Un, µtδtε
n−1

〉∣∣∣+ ∣∣∣〈M̃nµ
(1)
t εn, µtδtε

n−1
〉∣∣∣

≤ C1
(
‖ζn‖22 + µ

(1)
t ‖εn‖22 + µt‖δtεn−1‖22

)
, ∀n ∈ IN−1.

(3.91)

Similarly, using again Young’s inequality and some straightforward algebraic arguments, it is easy
to check that there exist nonnegative constants C2 and C3, such that

Re
〈
δ̃
[(
µ

(2)
t |Unj |2

) (
µ

(1)
t Unj

)]
, δ

(1)
t εn

〉
≤ C2

(
µ

(1)
t ‖εn‖22 + µt‖δtεn−1‖22

)
, ∀n ∈ IN−1, (3.92)〈

δ̃
(
δ(β)
x |Un|2

)
, µtυ

n−1
〉
≤ C3

(
‖εn‖22 + µt‖δtζn−1‖22

)
, ∀n ∈ IN−1. (3.93)

Now, take the inner product of δ(1)
t εn with the vector system consisting of the first equations of

(3.90) at the time tn, take then the real part and rearrange terms. At the same time, take the
inner product of µtυn−1 with the vector of the second difference equations of (3.90) at the time
tn. Next, use the identities of Lemma 3.3.4 and the inequalities above to show that there exist
nonnegative constants C4 and C5, such that the following inequalities hold for each n ∈ IN−1:

δt‖δtεn−1‖22 + δtµt‖δ(α/2)
x εn−1‖22 + δtµt‖εn−1‖22 ≤ C4

(
‖ζn‖22 + µ

(1)
t ‖εn‖22 + µt‖δtεn−1‖22

)
, (3.94)

δt‖δ(β/2)
x υn−1‖22 + δtµt‖ζn−1‖22 ≤ C5

(
‖εn‖22 + µt‖δtζn−1‖22

)
. (3.95)

Fix k ∈ IN−1, add the last two inequalities, multiply the result by τ and calculate the sum over all
indexes n ∈ Ik on both sides of the resulting expression. After using the formula for telescoping
sums, using the properties of Lemma 3.4.2, rearranging terms and simplifying algebraically, it is
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possible to check that there exist nonnegative constants C6, C7 and C8, such that the following
inequalities are satisfied for each k ∈ IN−1:

ωk+1 ≤ C6
(
‖δtεk‖22 + µt‖δ(α/2)

x εk‖22 + µt‖εk‖22 + ‖δ(β/2)
x υk‖22 + µt‖ζk‖22

)
≤ C6ρ+ C7τ

k∑
n=0

(
‖ζn‖22 + µ

(1)
t ‖εn‖22 + µt‖δtεn−1‖22 + ‖εn‖22 + µt‖δtζn−1‖22

)

≤ C6ρ+ C8τ
k+1∑
n=−1

ωn.

(3.96)

It is worth pointing out here that the first inequality was obtained using the fact that

‖δtζn‖22 ≤ 2g(β)
0 h1−β‖δ(β/2)

x υn‖22.

It is obvious that the conclusion of this theorem readily follows from Lemma 3.4.3, letting C =
C6e

C8T .

The following results are straightforward consequences of Lemma 3.4.5.

Theorem 3.4.6 (Stability). Let (u0, u1,m0,m1) and (ũ0, ũ1, m̃0, m̃1) be sets of initial conditions
with u0, ũ0,m0, m̃0 ∈ H1 and u1, ũ1,m1, m̃1 ∈ L2, and let (U,M) and (Ũ , M̃) be the respective
numerical solutions. If ρ, εn and ζn are as in Lemma 3.4.5 for each n ∈ IN , then there exists a
constant C ≥ 0 such that max{‖εk‖22, ‖ζk‖22} ≤ Cρ, for each k ∈ IN .

Theorem 3.4.7 (Uniqueness). Let (u0, u1,m0,m1) be a set of initial conditions satisfying u1, ũ1 ∈
L2 and u0, ũ0,m0 ∈ H1. For sufficiently small values of τ , the finite-difference scheme (3.36) is
uniquely solvable.

Theorem 3.4.8 (Convergence). Let u0,m0 ∈ H1 and u1,m1 ∈ L2, and assume that there exists
a unique solution (u,m) of (3.5) which satisfies u,m ∈ C5,4

x,t (Ω). If τ is sufficiently small then
the solutions of (3.36) converge to the exact solution with order of convergence O(h2 + τ2) in the
norm ‖ · ‖2.

Finally, we tackle the problem of establishing the convergence of the finite-difference scheme
(3.36). More precisely, we will show that the numerical model converges to the exact solution
of the continuous system (3.5) with quadratic order in both space and time. To that end, we
will consider a fixed (though arbitrary) set of initial conditions (u0, u1,m0,m1) which is common
to the continuous problem (3.5) and the discrete model (3.36). Recall that the solution of the
former problem is denoted by (u,m), while the solution of the latter is represented by (U,M).
Moreover, the pair (u,m) satisfies the discrete system

δ
(2)
t unj − δ(α)

x µ
(1)
t unj + µ

(1)
t unj +mn

j µ
(1)
t unj +

(
µ

(2)
t |unj |2

) (
µ

(1)
t unj

)
= ρnj , ∀(j, n) ∈ IJ−1 × IN ,

δ
(2)
t mn

j − δ(β)
x µ

(1)
t mn

j − δ(β)
x |unj |2 = σnj , ∀(j, n) ∈ IJ−1 × IN ,

subject to


u0
j = u0(xj), m0

j = m0(xj), ∀j ∈ IJ−1,

δ
(1)
t u0

j = u1(xj) δ
(1)
t m0

j = m1(xj), ∀j ∈ IJ−1,

un0 = unJ = 0, mn
0 = mn

J = 0, ∀n ∈ IN .
(3.97)

Here, ρnj and σnj represent the respective local truncation errors. Notice that, under the assump-
tions of Theorem 3.4.1, there is a constant C independent of h and t, such that |‖ρ‖|∞ ≤ C(τ2+h2)
and |‖σ‖|∞ ≤ C(τ2 + h2). In the following, if g : R2 → R then we let δ̂ : Vh × Vh → Vh be given
by δ̂[g(unj ,mn

j )] = g(unj ,mn
j )− g(Unj ,Mn

j ), for each (j, n) ∈ IJ × IN .
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(a) (b)

(c) (d)

Figure 3.1: Approximate solution of the problem (3.5) versus x and t, using Ω = (−20, 20)×(0, 10)
and α = 2. The graphs correspond to (a) Reu, (a) Im u, (c) |u(x, t)| and (d) m(x, t), and they were
obtained using the initial data (3.105)–(3.108). Computationally, we used the finite-difference
method (3.36) with h = 0.05 and τ = 0.1.

Proof. To start with, let εn = un − Un and ζn = mn −Mn, for each n ∈ IN . Again, notice that
Theorems 3.1.6 and 3.3.8 guarantee that the boundedness of {‖un‖x,p, ‖mn‖x,p, ‖Un‖p, ‖Mn‖p :
n ∈ IN , p = 2,∞}. Moreover, it is easy to check that the following discrete problem is satisfied
by (ε, ζ):

δ
(2)
t εnj − δ(α)

x µ
(1)
t εnj + µ

(1)
t εnj + δ̂

[
mn
j µ

(1)
t unj +

(
µ

(2)
t |unj |2

) (
µ

(1)
t unj

)]
= ρnj , ∀(j, n) ∈ I,

δ
(2)
t ζnj − δ(β)

x µ
(1)
t ζnj − δ̂

(
δ(β)
x |unj |2

)
= σnj , ∀(j, n) ∈ I,

subject to


ε0j = 0, ζ0

j = 0, ∀j ∈ IJ ,
δ

(1)
t ε0j = 0 δ

(1)
t ζ0

j = 0, ∀j ∈ IJ−1,

εn0 = εnJ = 0, ζn0 = ζnJ = 0, ∀n ∈ IN .

(3.98)

Proceeding now as in the proof of Lemma 3.4.5, we let (υn)n∈IN be a sequence in Vh which
satisfies δ(β/2)

x υn = δtζ
n, for each n ∈ IN−1. It is easy to check then that the identities (i)–(v) of

the proof of that lemma are also satisfied in the present case, along with the inequalities (3.91)–
(3.93). Now, take the inner product of δ(1)

t εn with the vector the first equations of (3.98) at the
time tn, take then the real part and rearrange terms. Also, take the inner product of µtυn−1 with
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Figure 3.2: Graphs of the total energy of the system (3.5) versus t, using Ω = (−20, 20)× (0, 10)
and various values of α (see the values in the legend for the correspondence with the colors of the
graphs). The graphs were obtained using the initial data (3.105)–(3.108). Computationally, we
used the finite-difference method (3.36) with h = 0.05 and τ = 0.1.

the vector of the second difference equations of (3.98) at the time tn. It is possible to heck then
that there exist nonnegative constants C4 and C5, such that the following inequalities hold, for
each n ∈ IN−1:

δt‖δtεn−1‖22 + δtµt‖δ(α/2)
x εn−1‖22 + δtµt‖εn−1‖22 ≤ C4

(
‖ρn‖22 + ‖ζn‖22 + µ

(1)
t ‖εn‖22 + µt‖δtεn−1‖22

)
,

(3.99)

δt‖δ(β/2)
x υn−1‖22 + δtµt‖ζn−1‖22 ≤ C5

(
‖σn‖22 + ‖εn‖22 + µt‖δtζn−1‖22

)
. (3.100)

Let C6 = C4 +C5, define the constants ωk as in Lemma 3.4.5, for each k ∈ IN , and let ∀k ∈ IN ,

ρk

2 = ‖δtε−1‖22 +µt‖δ(α/2)
x ε−1‖22 +µt‖ε−1‖22 +‖δ(β/2)

x υ−1‖22 +µt‖ζ−1‖22 +C6τ
k∑

n=0

(
‖ρn‖22 + ‖σn‖22

)
.

(3.101)
Using arguments similar to those in Lemma 3.4.5 and employing Lemma 3.4.3, one may readily
check that, for sufficiently small values of τ , there exists constant C ≥ 0 such that ωk ≤ Cρk, for
each k ∈ IN−1. As a consequence of this inequality, the initial conditions of the problem (3.98)
and the local truncation errors at the initial times, there exists C0 ≥ 0 such that

1
τ

(
‖εk‖2 − ‖εk−1‖2

)
≤ ‖δtεk−1‖2 ≤

√
ωk ≤ C0

√
T (h2 + τ2), ∀k ∈ IN . (3.102)

Observe that this inequality readily implies that ‖εk‖2 − ‖εk−1‖2 ≤ C0
√
Tτ(h2 + τ2) is satisfied,

for each k ∈ IN . If we let n ∈ IN , take the sum over all indexes k ∈ In on both sides of the last
inequality and use the initial conditions, we obtain ‖εn‖2 ≤ C0

√
Tτn(h2 + τ2) ≤ C0T (h2 + τ2).

We conclude that ‖εn‖2 ≤ C0T (h2 + τ2), for each n ∈ IN , and the fact that this inequality is also
satisfied when we replace ε by ζ is proved in a similar fashion. We conclude that the solutions of
(3.36) converge quadratically to those of the continuous problem (3.5) for sufficiently small τ .
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T = 5 T = 10
τ h ετ,h ρxτ,h ετ,h ρxτ,h

0.04

1× 2−1 1.0736× 10−2 − 1.1948× 10−2 −
1× 2−2 2.8810× 10−3 1.8978 3.2964× 10−3 1.8578
1× 2−3 7.6005× 10−4 1.9224 8.8160× 10−4 1.9027
1× 2−4 1.9709× 10−4 1.9472 2.3164× 10−4 1.9282
1× 2−5 5.0803× 10−5 1.9559 6.0467× 10−5 1.9377

0.02

1× 2−1 2.7124× 10−3 − 3.0867× 10−3 −
1× 2−2 7.2136× 10−4 1.9108 8.2296× 10−4 1.9072
1× 2−3 1.8815× 10−4 1.9388 2.1795× 10−4 1.9168
1× 2−4 4.7891× 10−5 1.9741 5.6496× 10−5 1.9478
1× 2−5 1.2118× 10−5 1.9826 1.4496× 10−5 1.9624

0.01

1× 2−1 6.4674× 10−4 − 7.7247× 10−4 −
1× 2−2 1.6895× 10−4 1.9366 2.0413× 10−4 1.9200
1× 2−3 4.2952× 10−5 1.9758 5.2912× 10−5 1.9478
1× 2−4 1.0793× 10−5 1.9926 1.3522× 10−5 1.9683
1× 2−5 2.6296× 10−6 2.0372 3.4087× 10−6 1.9880

Table 3.1: Table of absolute errors and standard convergence rates in space when approximating
the solution m of (3.5) with α = 2, using the method (3.36). We employed the spatial domain
B = (−20, 20) and two periods of time, namely, T = 5 and T = 10. The initial conditions
were prescribed by the functions (3.105)–(3.108). Various sets of computational parameters were
employed.

We have implemented computationally the discrete model (3.36) and performed some exper-
iments. Before closing this section, we will provide some examples on the performance of our
computer implementation of the finite-difference scheme. In particular, our computational ex-
periments will assess the capability of the numerical method to conserve the total energy of the
system at each discrete temporal step. To that end, we will consider the absolute error at the
time T between the exact solution u of (3.5) and the corresponding approximations U , which is
given by

ετ,h = |‖u− U‖|∞, (3.103)

and consider the standard rates

ρtτ,h = log2

(
ε2τ,h
ετ,h

)
, ρxτ,h = log2

(
ετ,2h
ετ,h

)
. (3.104)

Example 3.4.9. Consider (3.5) with α = 2, let B = (−20, 20) and define the functions u0, m0, u1
and m1 by

u0(x) =
√

10−
√

2
2 sech

√1 +
√

5
2 x

 exp
(
i

√
2

1 +
√

5
x

)
, ∀x ∈ B, (3.105)

m0(x) = −2 sech2

√1 +
√

5
2 x

 , ∀x ∈ B, (3.106)
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T = 5 T = 10
h τ ετ,h ρtτ,h ετ,h ρtτ,h

0.04

0.02× 2−1 3.4982× 10−6 − 3.5705× 10−6 −
0.02× 2−2 9.0677× 10−7 1.9478 9.3887× 10−7 1.9271
0.02× 2−3 2.2950× 10−7 1.9822 2.4178× 10−7 1.9572
0.02× 2−4 5.7756× 10−8 1.9905 6.1700× 10−8 1.9704
0.02× 2−5 1.3973× 10−8 2.0473 1.5496× 10−8 1.9933

0.02

0.02× 2−1 8.8095× 10−7 − 9.2985× 10−7 −
0.02× 2−2 2.2297× 10−7 1.9822 2.3772× 10−7 1.9677
0.02× 2−3 5.4637× 10−8 2.0289 5.9873× 10−8 1.9893
0.02× 2−4 1.2880× 10−8 2.0847 1.4658× 10−8 2.0302
0.02× 2−5 3.0678× 10−9 2.0699 3.6476× 10−9 2.0067

0.01

0.02× 2−1 2.2696× 10−7 − 2.3860× 10−7 −
0.02× 2−2 5.5263× 10−8 2.0381 5.9940× 10−8 1.9930
0.02× 2−3 1.3172× 10−8 2.0688 1.4790× 10−8 2.0189
0.02× 2−4 3.1629× 10−9 2.0582 3.7237× 10−9 1.9898
0.02× 2−5 7.9589× 10−10 1.9906 9.5684× 10−10 1.9604

Table 3.2: Table of absolute errors and standard convergence rates in time when approximating
the solution m of (3.5) with α = 2, using the method (3.36). We employed the spatial domain
B = (−20, 20) and two periods of time, namely, T = 5 and T = 10. The initial conditions
were prescribed by the functions (3.105)–(3.108). Various sets of computational parameters were
employed.

u1(x) =
√

10−
√

2
2 (tanh x− 1) sech

√1 +
√

5
2 x

 exp
(
i

√
2

1 +
√

5
x

)
, ∀x ∈ B, (3.107)

m1(x) = −4 sech2

√1 +
√

5
2 x

 tanh

√1 +
√

5
2 x

 , ∀x ∈ B, (3.108)

where i2 = −1. With these data, the corresponding continuous initial-value problem (3.5) has
the following exact traveling-wave solution on R× R+ (see [45, 44]):

u(x, t) =
√

10−
√

2
2 sech

√1 +
√

5
2 x− t

 exp
[
i

(√
2

1 +
√

5
x− t

)]
, ∀(x, t) ∈ R× R+,

(3.109)

m(x, t) = −2 sech2

√1 +
√

5
2 x− t

 , ∀(x, t) ∈ R× R+. (3.110)

For comparison purposes, consider the discrete model (3.36) with initial data (3.105)–(3.108). For
illustration purposes, Figure 3.1 shows the numerical solutions using h = 0.05 and τ = 0.1. It is
easy to check that the computational results are in qualitative agreement with the exact solutions
(3.109) and (3.110). Moreover, Tables 3.1 and 3.2 provide a numerical study of the convergence
of the method. The results confirm the quadratic order of convergence of the scheme (3.36), in
agreement with Theorem 3.4.8.Finally, we considered various orders of differentiation and checked
the dynamics of the total energy of the problem under investigation. The differentiation orders
considered here are α = 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0. The results of our simulations are presented
in Figure 3.2. It is obvious that the total energy is a constant function of time for each of the
values of α used in this example. This is in agreement with Theorem 3.1.4.
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It is worth pointing out that, in addition to the illustrative example provided in this section,
we have carried out more computational experiments with different initial data and considering
various values of the computational parameters. The results are not included in this work in
order to avoid redundancy, but they invariably confirm both the capability of the numerical
model (3.36) to preserve the total energy of the system and the quadratic order of convergence
of the scheme. Obviously, these remarks are in perfect qualitative agreement with the theoretical
results derived in this work. In particular, they confirm the validity of Theorems 3.1.4 and 3.4.8.
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4. An implicit semi-linear method

4.1 Preliminaries

Throughout, we fix a nonempty, open and bounded interval B = (xL, xR) of R. Let T > 0,
and define the set Ω = B × (0, T ). In general, for each S ⊆ R2, we let S be the closure of S
with respect to the standard topology of R2. In particular, this means that Ω = B × [0, T ]. Let
u : Ω→ C, m : Ω→ R, u0, u1 : B → C and m0,m1 : B → R be sufficiently smooth functions. In
this report, functions defined on Ω will be extended to all R× [0, T ] by letting them be equal to
zero on (R \ [xL, xR])× [0, T ].

Definition 4.1.1 (Podlubny [77]). Let f : R→ R be a function, and let n ∈ N ∪ {0} and α ∈ R
satisfy n− 1 < α ≤ n. The Riesz fractional derivative of f of order α at x ∈ R is defined (when
it exists) as

dαf(x)
d|x|α

= −1
2 cos(πα2 )Γ(n− α)

dn

dxn

∫ ∞
−∞

f(ξ)dξ
|x− ξ|α+1−n . (4.1)

Here, Γ is the usual Gamma function. In the case that u : R×[0, T ]→ R, and n and α are as above,
then the Riesz fractional partial derivative of u of order α with respect to x at (x, t) ∈ R× [0, T ]
is given (if it exists) by

∂αu(x, t)
∂|x|α

= −1
2 cos(πα2 )Γ(n− α)

∂n

∂xn

∫ ∞
−∞

u(ξ, t)dξ
|x− ξ|α+1−n . (4.2)

Definition 4.1.2. If z ∈ C, then z will represent its complex conjugate. We will use F to denote
the fields R or C. Let us introduce the set Lx,p(Ω) = {f : Ω → F : f(·, t) ∈ Lp(B), for each t ∈
[0, T ]} and p ∈ [1,∞]. If p ∈ [1,∞) and f ∈ Lx,p(Ω), then we convey that

‖f‖x,p =
(∫

B
|f(x, t)|pdx

)1/p
, ∀t ∈ [0, T ]. (4.3)

In the case when p = ∞, we set ‖f‖x,∞ = inf{C ≥ 0 : |f(x, t)| ≤ C for almost all x ∈ B}.
Obviously, ‖f‖x,p is a function of t ∈ [0, T ] in any case. Moreover, for each pair f, g ∈ Lx,2(Ω),
define the following function of t:

〈f, g〉x =
∫
B
f(x, t)g(x, t)dx, ∀t ∈ [0, T ]. (4.4)

In this work, we will fix α, β ∈ (1, 2], and consider the bi-fractional extension of the Klein–
Gordon–Zakharov model given by the following coupled system of fractional-order differential
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equations with initial-boundary data:

∂2u(x, t)
∂t2

− ∂αu(x, t)
∂|x|α

+ u(x, t) +m(x, t)u(x, t) + |u(x, t)|2u(x, t) = 0, ∀(x, t) ∈ Ω,

∂2m(x, t)
∂t2

− ∂βm(x, t)
∂|x|β

− ∂β
(
|u(x, t)|2

)
∂|x|β

= 0, ∀(x, t) ∈ Ω,

subject to


u(x, 0) = u0(x), m(x, 0) = m0(x), ∀x ∈ B,
∂u(x, 0)
∂t

= u1(x), ∂m(x, 0)
∂t

= m1(x), ∀x ∈ B,
u(xL, t) = u(xR, t) = 0, m(xL, t) = m(xR, t) = 0, ∀t ∈ [0, T ].

(4.5)

It is important to point out here that the case α = β = 2 in (4.5) is precisely the well-known
Klein–Gordon–Zakharov system. Moreover, as we mentioned before, the Klein–Gordon–Zakharov
system describes physical phenomena, specifically the interaction between Langmuir waves in a
high-frequency plasma. Under this context, the function u represents the fast time-scale compo-
nent of an electric field raised by electrons, and the function m is the deviation of ion density
from its equilibrium.

In the sequel and for convenience, we will suppose that the function v : Ω → R satisfies the
following property:

∂βv(x, t)
∂|x|β

= ∂m(x, t)
∂t

, ∀(x, t) ∈ Ω. (4.6)

It is worth pointing out that the existence of the function v is guaranteed, for example, in the case
that the right-hand side of (4.6) is a Lebesgue-integrable function or, more particularly, when it
is a continuous function [81, Ch. 6].

Definition 4.1.3. Let u and m satisfy the problem (4.5). For the sake of convenience, let us
agree that u = u(x, t) and m = m(x, t). Define the Hamiltonian or energy density functional
H(x, t) = H(u(x, t),m(x, t)) as

H(x, t) =
∣∣∣∣∂u∂t

∣∣∣∣2 +
∣∣∣∣∣ ∂α/2u∂|x|α/2

∣∣∣∣∣
2

+ |u|2 +m|u|2 + 1
2

∣∣∣∣∣ ∂β/2v∂|x|β/2

∣∣∣∣∣
2

+ 1
2m

2 + 1
2 |u|

4, ∀(x, t) ∈ Ω.

(4.7)
In turn, the associated total energy of the system at the time t ∈ [0, T ] is given by

E(t) =
∥∥∥∥∂u∂t

∥∥∥∥2

x,2
+
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 + 〈m, |u|2〉x + 1

2

∥∥∥∥∥ ∂β/2v∂|x|β/2

∥∥∥∥∥
2

x,2
+ 1

2‖m‖
2
x,2 + 1

2‖u‖
4
x,4.

(4.8)

Using these conventions, the following results were proved in [62].

Theorem 4.1.4 (Energy conservation). If u and m satisfy the problem (4.5), then the function
E is a constant.

Theorem 4.1.5 (Boundedness). Let u and m satisfy the initial-boundary-value problem (4.5),
and let u, ∂u/∂x ∈ Lx,2(Ω). Then there exist a constant C such that

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
+
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 +

∥∥∥∥∥ ∂β/2v∂|x|β/2

∥∥∥∥∥
2

x,2
+ ‖m‖2x,2 ≤ C, ∀t ∈ [0, T ]. (4.9)

Moreover, the constant function (4.8) is non-negative.
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4.2 Discrete model

The first aim of this section is to provide the necessary discrete nomenclature which will be
required later on in this work. To give a fresh start, we will focus firstly on the concept of
fractional-order centered differences, which will allow us to obtain a discretization of Riesz space-
fractional derivatives. We must point out that we opted to use fractional centered differences for
computational implementation reasons. However, there are various other alternative approaches
to provide such discretizations, like the well-known weighted-and-shifted Grünwald differences
[92].

Definition 4.2.1 (Ortigueira [73]). Define the real sequence (g(α)
k )∞k=−∞ by

g
(α)
k = (−1)kΓ(α+ 1)

Γ(α2 − k + 1)Γ(α2 + k + 1) , ∀k ∈ N ∪ {0}. (4.10)

Let f : R→ R be a function, and assume that h, α ∈ R satisfy h > 0 and α > −1. The fractional
centered difference of f of order α and spatial step h at the point x is given as

∆α
hf(x) =

∞∑
k=−∞

g
(α)
k f(x− kh), ∀x ∈ R, (4.11)

whenever the double series at the right-hand side of (4.11) converges.

The following results provide important analytical properties on fractional-order centered
differences.

Lemma 4.2.2 (Wang et al. [97]). If 1 < α ≤ 2, then

(i) g
(α)
0 ≥ 0,

(ii) g
(α)
k = g

(α)
−k < 0, for all k ≥ 1, and

(iii)
∞∑

k=−∞
g

(α)
k = 0.

Lemma 4.2.3 (Wang et al. [97]). Suppose that 1 < α ≤ 2, let h > 0, and assume that f ∈ C5(R)
has all its derivatives up to order five in L1(R). Then

− 1
hα

∆α
hf(x) = dαf(x)

d|x|α
+O(h2), ∀x ∈ R. (4.12)

In the sequel, we agree that In = {1, . . . , n} and In = In ∪ {0}, for each n ∈ N. We will let
J,N ∈ N be such that J ≥ 2 and N ≥ 2, and introduce the positive constants h = (xR − xL)/J
and τ = T/N . We employ uniform partitions of [xL, xR] and [0, T ], respectively, of the forms

xL = x0 < x1 < . . . < xj < . . . < xJ = xR, ∀j ∈ IJ , (4.13)

and
0 = t0 < t1 < . . . < tn < . . . < tN = T, ∀n ∈ IN . (4.14)

For each (j, n) ∈ IJ × IN , agree that Unj and Mn
j denote numerical estimates of unj = u(xj , tn)

and mn
j = m(xj , tn), respectively. Set Rh = {xj : j ∈ IJ}, and use the nomenclature Vh to

represent the vector space over F of all F-valued functions on the grid space Rh, which vanish
at the endpoints x0 and xJ . In general, if V ∈ Vh, then let Vj = V (xj), for each j ∈ IJ .
Additionally, we agree that Un = (Unj )j∈IJ ∈ Vh and Mn = (Mn

j )j∈IJ ∈ Vh. Moreover, for the
sake of convenience, we will let U = (Un)n∈IN and M = (Mn)n∈IN .
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Definition 4.2.4. Let p ∈ R be such that 1 ≤ p <∞. Then the inner product 〈·, ·〉 : Vh×Vh → C
and the norms ‖ · ‖p, ‖ · ‖∞ : Vh → R will be respectively defined as

〈U, V 〉 = h
∑
j∈IJ

UjVj , ∀U, V ∈ Vh, (4.15)

‖U‖pp = h
∑
j∈IJ

|Uj |p, ∀U ∈ Vh, (4.16)

‖U‖∞ = max
{
|Uj | : j ∈ IJ

}
, U ∈ Vh. (4.17)

Moreover, let us set |‖V ‖|∞ = sup{‖V n‖∞ : n ∈ IN}, for each V = (V n)n∈IN ⊆ Vh.

Definition 4.2.5. Let V represent any of the functions U or M . We will employ the linear
difference operators

δxV
n
j =

V n
j+1 − V n

j

h
, ∀(j, n) ∈ IJ−1 × IN , (4.18)

δtV
n
j =

V n+1
j − V n

j

τ
, ∀(j, n) ∈ IJ × IN−1, (4.19)

µtV
n
j =

V n+1
j + V n

j

2 , ∀(j, n) ∈ IJ × IN−1, (4.20)

µ
(1)
t V n

j =
V n+1
j + V n−1

j

2 , ∀(j, n) ∈ IJ × IN−1. (4.21)

If we omit the composition symbol for simplicity, we have the operators δ(2)
x V n

j = δxδxV
n
j−1,

δ
(1)
t V n

j = µtδtV
n−1
j , δ(2)

t V n
j = δtδtV

n−1
j , µ(2)

t V n
j = µtµtV

n−1
j and δxtV

n
j = δxδtV

n
j , for each

(j, n) ∈ IJ−1× IN . Moreover, if f : R→ R, we define the difference operator Ax of f at the point
x ∈ R as

Axf(x) = 1
12f(x− h) + 10

12f(x) + 1
12f(x+ h), ∀x ∈ R. (4.22)

Definition 4.2.6. Let V = U (respectively, V = M) and v = u (respectively, v = m). Using
the nomenclature of Definition 4.2.1 and motivated by the lemmas afterwards, we introduce the
following consistent estimate operator of the fractional partial derivative of order α of v with
respect to x at the point (xj , tn):

δ(α)
x V n

j = − 1
hα

∑
k∈IJ

g
(α)
j−kV

n
k , ∀(j, n) ∈ IJ × IN . (4.23)

Obviously, this discrete operator is a second-order consistent approximation for the Riesz space-
fractional partial derivative of v of order α at the point (xj , tn). Moreover, we define the discrete
operator

AxV n
j = 1

12V
n
j+1 + 10

12V
n
j + 1

12V
n
j−1 ∀(j, n) ∈ IJ × IN−1. (4.24)

The following lemma will be frequently required in the sequel. This result summarizes some
important properties of fractional-order centered differences.

Lemma 4.2.7 (Maćıas-Dı́az [49]). If α ∈ (1, 2] and U, V ∈ Vh, then 〈−δ(α)
x U, V 〉 = 〈δ(α/2)

x U, δ
(α/2)
x V 〉.

Moreover,

(a) ‖δ(α/2)
x V ‖22 ≤ 2g(α)

0 h1−α‖V ‖22, for each V ∈ Vh,

58



(b) ‖δ(α)
x V ‖22 = ‖δ(α/2)

x δ
(α/2)
x V ‖22, for each V ∈ Vh, and

(c) ‖δ(α)
x V ‖22 ≤ 2g(α)

0 h1−α‖δ(α/2)
x V ‖22 ≤ 4

(
g

(α)
0 h1−α

)2
‖V ‖22, for each V ∈ Vh.

Using the nomenclature introduced above, we will employ the following fully discrete initial-
boundary-value problem to approximate the solutions of the continuous fractional system (4.5):

δ
(2)
t AxUnj − δ(α)

x µ
(1)
t Unj + µ

(1)
t Unj

[
1 +Mn

j + µ
(1)
t |Unj |2

]
= 0, ∀(j, n) ∈ IJ−1 × IN−1,

δ
(2)
t AxMn

j − δ(β)
x µ

(1)
t Mn

j − δ(β)
x |Unj |2 = 0, ∀(j, n) ∈ IJ−1 × IN−1,

subject to


U0
j = u0(xj), M0

j = m0(xj), ∀j ∈ IJ−1,

δ
(1)
t U0

j = u1(xj) δ
(1)
t M0

j = m1(xj), ∀j ∈ IJ−1,

Un0 = UnJ = 0, Mn
0 = Mn

J = 0, ∀n ∈ IN .

(4.25)

Notice that the scheme (4.25) requires to employ approximations at the time t−1. However,
it is worth noting that the initial conditions yield the identities U−1

j = U1
j − 2τu1(xj) and

M−1
j = M1

j − 2τm1(xj), for each j ∈ IJ−1. Moreover, letting n = 0 in the recursive equation of
(4.25) and substituting the initial conditions, we readily obtain that

2
τ2Ax[U1

j − u0(xj)− τu1(xj)] = −
(
U1
j − τu1(xj)

) [
1 +m0(xj)− 1

2

(
|U1
j |2 + |U1

j − 2τu1(xj)|2
)]

+ δ(α)
x

(
U1
j − τu1(xj)

)
, ∀j ∈ IJ−1,

(4.26)
and

2
τ2Ax[M1

j −m0(xj)− τm1(xj)] = δ(β)
x

(
M1
j − τm1(xj) + |u0(xj)|2

)
, ∀j ∈ IJ−1. (4.27)

Observe that the discrete model (4.25) is a three-step implicit nonlinear technique. This
means in particular that, if the estimations at the times tn−1 and tn are known in that model,
then the approximations Un+1 and Mn+1 will be the only unknowns. In fact, the scheme (4.25) is
a decoupled nonlinear system since the only unknown in the first equation of (4.25) is the vector
Un+1. Meanwhile, the only unknown of the second equation is the vector Mn+1. In the following
and for the sake of convenience, we will let {V n

j : (j, n) ∈ IJ × IN} be such that

δ(β)
x V n

j = δtM
n
j , ∀(j, n) ∈ IJ−1 × IN−1, (4.28)

V n
0 = V n

J = 0, ∀n ∈ IN . (4.29)

Under these circumstances, (U,M) will denote a solution of (4.25), and V = (V n)n∈IN will satisfy
(4.28) and (4.29).

Definition 4.2.8. Suppose that (U,M) solves the discrete system (4.25). The discrete Hamil-
tonian or discrete energy density of the system at the point xj and time tn is the quantity
Hn
j = H(Unj ,Mn

j ), which is defined through

Hn
j = |δtUnj |2 −

h2

12 |δxtU
n
j |2 + µt|δ(α/2)

x Unj |2 + µt|Unj |2 + 1
2
[
Mn
j |Un+1

j |2 +Mn+1
j |Unj |2

]
+ 1

2 |δ
(β/2)
x V n

j |2 + 1
2µt|U

n
j |4 −

h2

24 |δxδ
(β/2)
x V n

j |2 + 1
2µt|M

n
j |2, ∀(j, n) ∈ IJ−1 × IN−1.

(4.30)
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Agree that |Un|2 = (|Unj |2)j∈IJ , for each n ∈ IN . The total discrete energy of the model (4.25)
at the time tn is given by

En = ‖δtUn‖22 −
h2

12‖δxtU
n‖22 + µt‖δ(α/2)

x Un‖22 + µt‖Un‖22 + 1
2〈M

n, |Un+1|2〉+ 1
2µt‖M

n‖22

+ 1
2〈M

n+1, |Un|2〉+ 1
2‖δ

(β/2)
x V n‖22 + 1

2µt‖U
n‖44 −

h2

24‖δxδ
(β/2)
x V n‖22, ∀n ∈ IN−1.

(4.31)

4.3 Structural properties

The present section is devoted to establishing the main structural properties of the discrete
model (4.25). More precisely, we will prove herein that the discrete model is solvable, and that
the quantities (4.31) are non-negative temporal invariants of the scheme (4.25). Firstly, we prove
and state some crucial results in our analysis.

Definition 4.3.1. If U, V ∈ Vh, then we define the product of U and V point-wisely. More
precisely, UV = (UjVj)j∈IJ .

Lemma 4.3.2. Let U = (Un)n∈IN and M = (Mn)n∈IN be sequences in Vh. Assume that U is a
sequence of complex functions while the functions of M are real. Suppose additionally that there
exists (V n)n∈IN ⊆ Vh such that (4.28) holds. Then the following are satisfied, for each n ∈ IN−1:

(a) 2 Re〈δ(2)
t AxUn, δ

(1)
t Un〉 = δt

[
‖δtUn−1‖22 − 1

12h
2‖δxtUn−1‖22

]
,

(b) 2 Re〈−δ(α)
x µ

(1)
t Un, δ

(1)
t Un〉 = δtµt‖δ(α/2)

x Un−1‖22,

(c) 2 Re〈µ(1)
t Un, δ

(1)
t Un〉 = δtµt‖Un−1‖22,

(d) 2 Re〈Mnµ
(1)
t Un, δ

(1)
t Un〉 = 〈Mn, δ

(1)
t |Un|2〉,

(e) 4 Re〈(µ(1)
t |Un|2)(µ(1)

t Un), δ(1)
t Un〉 = δtµt‖Un−1‖44,

(f) −2〈δ(2)
t AxMn, µtV

n−1〉 = δt
[
‖δ(β/2)
x V n−1‖22 − 1

12h
2‖δxδ(β/2)

x V n−1‖22
]
,

(g) 2〈δ(β)
x µ

(1)
t Mn, µtV

n−1〉 = δtµt‖Mn−1‖22, and

(h) 〈δ(β)
x |Un|2, µtV n−1〉 = 〈|Un|2, δ(1)

t Mn〉.

Proof. Beforehand, we must point out that most of the identities have been proved already in
[62]. We only give here the proofs of the new identities (a) and (f). To that end, notice that
Lemma 4.2.7 implies that

−2〈δ(2)
t AxMn, µtV

n−1〉 = −2〈δ(2)
t Mn, µtV

n−1〉 − 2
12
〈
δ

(2)
t

(
Mn
j−1 − 2Mn

j +Mn
j+1

)
, µtV

n−1
〉

= −2〈δtδ(β)
x V n−1, µtV

n−1〉 − 2
12h

2〈δ(2)
t δ(2)

x Mn, µtV
n−1〉

= 2〈δtδ(β/2)
x V n−1, µtδ

(β/2)
x V n−1〉 − 2

12h
2〈δtδxδ(β/2)

x V n−1, µtδxδ
(β/2)
x V n−1〉

= δt
[
‖δ(β/2)
x V n−1‖22 − 1

12h
2‖δxδ(β/2)

x V n−1‖22
]
,

(4.32)
which establishes the validity of (f). Finally, we just mention that the proof of (a) is similar to
(f).
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The following result is the well-known Young’s inequality, which will be crucial in the present
report.

Lemma 4.3.3. Let a, b ∈ R+ ∪{0}, and let p, q ∈ (1,∞) be such that 1
p + 1

q = 1. For each ε > 0,
the following holds:

ab ≤ |a|
p

pε
+ ε|b|q

q
. (4.33)

Next, we prove that the quantities (4.31) are non-negative, and that they are conserved
throughout time.

Theorem 4.3.4 (Energy conservation). Suppose that (U,M) is a solution of (4.5). Then the
quantities (4.31) are non-negative and constant with respect to time.

Proof. Take the real part of the inner product of the first equation of the scheme (4.25) with
δ

(1)
t Un, and compute the inner product between the second equation in (4.25) and µtV

n−1, for
each n ∈ IN−1. Then add both equations and apply Lemma 4.3.2 to confirm that δtEn−1 = 0.
This identity and induction establish the temporal invariance of the quantities (4.31). To prove
now the non-negativity of these quantities, notice that

h2‖δxδ(β/2)
x V n‖22 = h

J−1∑
j=1

(
δ(β/2)
x V n

j − δ(β/2)
x V n

j−1

)2

≤ 2h
J−1∑
j=1

(
|δ(β/2)
x V n

j |2 + |δ(β/2)
x V n

j−1|2
)

= 4‖δ(β/2)
x V n

j ‖22,
(4.34)

holds for each n ∈ IN−1. In similar fashion, we can obtain that h2‖δxtUn‖22 ≤ 4‖δtUn‖22, for each
∀n ∈ IN−1. On the other hand, using Cauchy–Schwarz inequality, it follows that

|〈Mn, |Un+1|2〉+ 〈Mn+1, |Un|2〉| ≤ µt‖Mn‖22 + µt‖Un‖44, ∀n ∈ IN−1. (4.35)

Finally, applying all of these estimates to (4.31) yields

En ≥ 2
3‖δtU

n‖22 + µt‖δ(α/2)
x Un‖22 + µt‖Un‖22 + 1

6‖δ
(β/2)
x V n‖22 ≥ 0, ∀n ∈ IN−1, (4.36)

whence the non-negativity of the quantities (4.31) readily follows.

The next result proves the boundedness of the solutions of (4.25). To establish this property,
the non-negativity and temporal invariance of the quantities (4.31) will be of utmost importance.

Theorem 4.3.5 (Boundedness). Let u0,m0 ∈ H1 and u1,m1 ∈ L2, and suppose that (U,M) is
a solution corresponding to the problem (4.25). Then there exists a constant C∗ ∈ R+ with the
property that

max
{
‖δtUn‖2, µt‖δ(α/2)

x Un‖2, µt‖Un‖2, µt‖Mn‖2, µt‖Un‖4, ‖δ(β/2)
x V n‖2

}
≤ C∗, ∀n ∈ IN .

(4.37)

Proof. Note that Theorem 4.3.4 guarantees that the quantities En are equal to a constant C0 ∈ R,
for each n ∈ IN−1. Proceeding as in Theorem and simplifying, we obtain that

C0 ≥
2
3‖δtU

n‖22 + µt‖δ(α/2)
x Un‖22 + µt‖Un‖22 + 1

2µt‖U
n‖44 + 1

6‖δ
(β/2)
x V n‖22

+ 1
2µt‖M

n‖22 −
1
2

∣∣∣〈Mn, |Un+1|2〉
∣∣∣− 1

2

∣∣∣〈Mn+1, |Un|2〉
∣∣∣ , ∀n ∈ IN−1.

(4.38)
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On the other hand, applying Young’s inequality twice, we observe that
1
2

∣∣∣〈Mn, |Un+1|2〉
∣∣∣+ 1

2

∣∣∣〈Mn+1, |Un|2〉
∣∣∣ ≤ 1

2µt‖M
n‖22 + 1

2µt‖U
n+1‖44, ∀n ∈ IN−1, (4.39)

1
2

∣∣∣〈Mn, |Un+1|2〉
∣∣∣+ 1

2

∣∣∣〈Mn+1, |Un|2〉
∣∣∣ ≤ 1

4µt‖M
n‖22 + µt‖Un+1‖44, ∀n ∈ IN−1. (4.40)

Using now the inequality (4.39) to bound (5.51) from below, we obtain that

C0 ≥
2
3‖δtU

n‖22 + µt‖δ(α/2)
x Un‖22 + µt‖Un‖22 + 1

6‖δ
(β/2)
x V n‖22, ∀n ∈ IN−1. (4.41)

Since µt‖Un‖2 is bounded, it follows that µt‖Un‖4 is also bounded. In fact, the last inequality and
the properties of the discrete norms show that ‖Un‖44 ≤ ‖Un‖42 ≤ 4C2

0 . Similarly, ‖Un+1‖44 ≤ 4C2
0

holds. Using these facts, keeping the last three quantities of inequality (5.51) and employing the
bound (4.40), we have that

1
4µt‖M

n‖22 ≤ C0 + µt‖Un‖44 ≤ C0 + 2C2
0 , ∀n ∈ IN−1. (4.42)

This means that the norms ‖Mn‖2 (and, thus, also the norms ‖Mn‖∞) are uniformly bounded
by the non-negative constant 2

√
2(C0 + 2C2

0 )1/2 ≥ C0. It is easy to see now that the quantities
‖δtUn‖2, µt‖δ(α/2)

x Un‖2, µt‖Un‖2, µt‖Mn‖2, µt‖Un‖4 and ‖δ(β/2)
x V n‖2 can be uniformly bounded

by a single constant C∗ ≥ 0, valid for all n ∈ IN .

For the remainder of this manuscript, we will employ the real matrix A = C − D(β) of size
(J + 1)× (J + 1), where

C = 1
12



12 0 0 0 · · · 0 0 0 0
1 10 1 0 · · · 0 0 0 0
0 1 10 1 · · · 0 0 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 0 · · · 1 10 1 0
0 0 0 0 · · · 0 1 10 1
0 0 0 0 · · · 0 0 0 12


(4.43)

and

D(β) = − τ2

2hβ



0 0 0 0 · · · 0 0 0 0
g

(β)
1 g

(β)
0 g

(β)
1 g

(β)
2 · · · g

(β)
J−4 g

(β)
J−3 g

(β)
J−2 g

(β)
J−1

g
(β)
2 g

(β)
1 g

(β)
0 g

(β)
1 · · · g

(β)
J−5 g

(β)
J−4 g

(β)
J−3 g

(β)
J−2

...
...

...
... . . . ...

...
...

...
g

(β)
J−2 g

(β)
J−3 g

(β)
J−4 g

(β)
J−5 · · · g

(β)
1 g

(β)
0 g

(β)
1 g

(β)
2

g
(β)
J−1 g

(β)
J−2 g

(β)
J−3 g

(β)
J−4 · · · g

(β)
2 g

(β)
1 g

(β)
0 g

(β)
1

0 0 0 0 · · · 0 0 0 0


. (4.44)

Lemma 4.3.6. The real matrix A is strictly diagonally dominant.

Proof. Using Lemma 4.2.2, we readily check that the following inequalities and identity hold, for
each i ∈ {2, . . . , J}:

J∑
j=1
j 6=i

|aij | ≤
1
6 +

∞∑
l=−∞
l 6=0

τ2|g(β)
l |

2hβ <
5
6 + τ2g

(β)
0

2hβ = |aii|. (4.45)

Obviously, the first and the last rows of the matrix A also satisfy this condition, whence we
readily conclude that A is strictly diagonally dominant, as desired.
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Definition 4.3.7. Let (Un)n∈IN be any sequence in Vh, let Φ ∈ Vh and assume that g : R→ R
is a function. We define

µ
(1)
t,Φ[g(Unj )] = 1

2

[
g(Φj) + g(Un−1

j )
]
, ∀(j, n) ∈ IJ × IN−1. (4.46)

Notice in particular that µ(1)
t Unj = µt,Un+1Unj and µ

(1)
t |Unj |2 = µt,Un+1 |Unj |2, for each (j, n) ∈

IJ × IN−1. On the other hand, if Φ ∈ Vh, then we agree that

Φ+ = (Φ1,Φ2,Φ3, . . . ,ΦJ−1,ΦJ , 0), (4.47)
Φ− = (0,Φ0,Φ1, . . . ,ΦJ−2,ΦJ−1). (4.48)

Lemma 4.3.8. Let U = (Un)n∈IN and M = (Mn)n∈IN be sequences in Vh, and assume that U
is a sequence of complex functions, while the functions of M are real. The following identities
are satisfied, for each n ∈ IN−1 and Φ ∈ Vh:

(a) Re
〈

(µ(1)
t,Φ|Un|2)(µ(1)

t,ΦU
n),Φ− Un−1

〉
= 1

4(‖Φ‖44 − ‖Un−1‖44).

(b) Re
〈
Mn(µ(1)

t,ΦU
n),Φ− Un−1

〉
= 1

4〈M
n, |Φ|2 − |Un−1|2〉.

(c) Re
〈
µ

(1)
t,ΦU

n,Φ− Un−1
〉

= 1
2(‖Φ‖22 − ‖Un−1‖22).

(d) Re
〈
−δ(α)

x µ
(1)
t,ΦU

n,Φ− Un−1
〉

= 1
2(‖δ(α/2)

x Φ‖22 − ‖δ
(α/2)
x Un−1‖22).

Additionally, the following inequalities are satisfied for each λ ∈ [0, 1]:

(e) |Re〈AxUn,Φ− Un−1〉| ≤ 1
24‖Φ‖

2
2 + C1.

(f) |Re〈AxUn−1,Φ− Un−1〉| ≤ 1
12‖Φ‖

2
2 + C2.

(g) If C∗ ≥ 0 satisfies ‖Mn‖∞ ≤ C∗, then
∣∣〈Mn, |Φ|2 − |Un−1|〉

∣∣ ≤ C∗‖Φ‖22 + C3.

(h) Re〈Φ,Φ− Un−1〉 ≥ 1
2(‖Φ‖22 − ‖Un−1‖22).

(i) |Re〈Φ+ + Φ−,Φ− Un−1〉| ≤ 5
2‖Φ‖

2
2 + 2‖Un−1‖22.

Here, the constants C1, C2, C3 ∈ R are non-negative and depend only on Un, Un−1 and Mn.

Proof. The proofs of the identities (a)–(d) can be found in [61]. To establish (e), we employ the
triangle inequality and Lemma 4.3.3 (with a suitable ε > 0) to obtain that∣∣∣〈AxUn,Φ− Un−1〉

∣∣∣ ≤ |〈AxUn,Φ〉|+ ∣∣∣〈AxUn, Un−1〉
∣∣∣

≤ 1
24‖Φ‖

2
2 + 6‖AxUn‖22 + 1

2
(
‖AxUn‖22 + ‖Un−1‖22

)
.

(4.49)

The inequality (e) follows now letting C1 = 13
2 ‖AxU

n‖22+ 1
2‖U

n−1‖22, which obviously is a constant
that depends only on the vectors Un and Un−1. Part (f) is proved in similar fashion. On the
other hand, to prove the inequality (g) we use the triangle inequality and Hölder’s inequality to
obtain that ∣∣∣〈Mn, |Φ|2 − |Un−1|〉

∣∣∣ ≤ ∣∣∣〈Mn, |Φ|2〉
∣∣∣+ ∣∣∣〈Mn, |Un−1|〉

∣∣∣ ≤ C∗‖Φ‖22 + C3, (4.50)
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where C3 =
∣∣〈Mn, |Un−1|〉

∣∣. The inequality (h) is straightforward, so it only remains to prove (i).
To that end, we need to point out firstly that the identities ‖Φ+‖2 = ‖Φ−‖2 = ‖Φ‖2 are satisfied.
Observe now that the triangle inequality, Cauchy’s inequality and Young’s inequality yield

|Re〈Φ+ + Φ−,Φ− Un−1〉| ≤ |〈Φ+,Φ〉|+ |〈Φ−,Φ〉|+ |〈Φ+, Un−1〉|+ |〈Φ−, Un−1〉|

≤ 5‖Φ‖22
2 + 2‖Un−1‖22,

(4.51)

which is what we wanted to proof.

Lemma 4.3.9 (Leray–Schauder fixed-point theorem). Let X be a Banach space, and let F :
X → X be continuous and compact. If the set S = {x ∈ X : λF (x) = x for some λ ∈ [0, 1]} is
bounded then F has a fixed point.

We establish next the existence of solutions for the finite-difference model (4.25). In the proof,
we will require to use the non-negative constant C∗∗ = 2C∗, where C∗ is the same constant as in
Theorem 4.3.5.

Theorem 4.3.10 (Solubility). The numerical model (4.25) is solvable for any set of initial con-
ditions if 12τ2C∗∗ < 1.

Proof. The proof will make use of mathematical induction.

• Notice firstly that the approximations (U0,M0) are explicitly defined through the initial
conditions in the discrete initial-boundary-value problem (4.25).

• Suppose now that n ∈ IJ−1, and that the approximations (Um,Mm) have been obtained
already, for each m ∈ In. Following an argument similar to that in Theorem 4.3.5 yields
that ∀m ∈ In−1,

max
{
‖δtUm‖2, µt‖δ(α/2)

x Um‖2, µt‖Um‖2, µt‖Mm‖2, µt‖Um‖4, ‖δ(β/2)
x V m‖2

}
≤ C∗. (4.52)

Using the properties of discrete norms, it follows that ‖Mm‖∞ ≤ C∗∗, for each m ∈ In. On
the one hand, notice that the second equation of (4.25) can be rewritten in matrix form
as AΨ = b, where Ψ is the unknown vector of approximations of the functions M at time
tn+1, and b ∈ RJ+1 is given by

b =



0
1
2τ

2δ
(β)
x Mn−1

1 + τ2δ
(β)
x |Un1 |2 + 2AxMn

1 − AxMn−1
1

1
2τ

2δ
(β)
x Mn−1

2 + τ2δ
(β)
x |Un2 |2 + 2AxMn

2 − AxMn−1
2

...
1
2τ

2δ
(β)
x Mn−1

J−1 + τ2δ
(β)
x |UnJ−1|2 + 2AxMn

J−1 − AxMn−1
J−1

0


(4.53)

From Lemma 4.3.6, the matrix A is strictly diagonally dominant, so non-singular. It follows
that there exists a (unique) vector Mn+1 which satisfies the second difference equation of
(4.25). To establish now the existence of Un+1, we will employ the Leray–Schauder fixed-
point theorem. Let F : Vh → Vh be the function whose jth component is represented by
Fj : Vh → C, and defined, for each Φ ∈ Vh and j ∈ IJ−1, as

Fj(Φ) = −12
10

[ 1
12(Φj+1 + Φj−1)− 2AxUnj + AxUn−1

j − τ2δ(α)
x µ

(1)
t,ΦU

n
j

+τ2
(
1 +Mn

j + µ
(1)
t,Φ|U

n
j |2
) (
µ

(1)
t,ΦU

n
j

)]
.

(4.54)
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Let F0 and FJ be identically equal to zero. It is obvious that Vh is a Banach space with
the Euclidean norm induced by the inner product in Vh, and that F is a continuous and
compact map. Take now a function Φ ∈ Vj such that Φ = λF (Φ), for some λ ∈ [0, 1]. From
this and the identity (4.54), it follows that

0 = 10
12Φ + λ

[ 1
12(Φ+ + Φ−)− 2AxUn + AxUn−1 − τ2δ(α)

x µ
(1)
t,ΦU

n
]

+ λ
[
τ2
(
1 +Mn + µ

(1)
t,Φ|U

n|2
) (
µ

(1)
t,ΦU

n
)]
.

(4.55)

We take now the inner product of both sides of (4.55) with Φ − Un−1, and calculate then
the real parts on both sides. Using then the identities and inequalities in Lemma 4.3.8, it
follows that

0 ≥ 5
12
(
‖Φ‖22 − ‖Un−1‖22

)
− 5λ

24 ‖Φ‖
2
2 −

λ‖Un−1‖22
6 − λ

12‖Φ‖
2
2 − 2λC1 −

λ

12‖Φ‖
2
2 − λC2

+ λτ2

2
(
‖δ(α/2)
x Φ‖22 − ‖δ(α/2)

x Un−1‖22 + ‖Φ‖22 − ‖Un−1‖22
)

+ λτ2

4
(
‖Φ‖44 − C∗‖Φ‖22 − C3 − ‖Un−1‖44

)
≥ 1

24(1− 12τ2C∗∗)‖Φ‖22 − C4,

(4.56)
where

C4 = 2C1 +C2 + 7
12‖U

n−1‖22 + τ2

4
(
C3 + 2‖δ(α/2)

x Un−1‖22 + 2‖Un−1‖22 + ‖Un−1‖44
)
. (4.57)

Notice firstly that the hypothesis guarantees that 1− 12τ2C∗∗ > 0. Moreover, observe that

‖Φ‖22 ≤
24C4

1− 12τ2C∗∗
, (4.58)

and that the constant C4 only depends on the approximations Un, Un−1 and Mn. The
Leray–Schauder theorem and the uniform boundedness of the elements of the set S in that
theorem imply now that there exists a Φ ∈ Vh with the property that Φ = F (Φ). In other
words, the solution Un+1 of the finite-difference method (4.25) exists. Following now an
argument similar to the proof of Theorem 4.3.5, it is easy to show that ‖Mn+1‖∞ ≤ C∗.

• Finally, the existence of the approximations (U1,M1) can be established similarly, by apply-
ing complex matrix properties and the Leray–Schauder theorem to the system (4.26)–(4.27).
In fact, M1 is the solution of the system AΨ = b̃, where A is as before, and the (J + 1)-
dimensional vector b is defined now as

b =



0
Axm0(x1) + τAxm1(x1)− 1

2τ
3δ

(β)
x m1(x1) + 1

2τ
2|u0(x1)|2

Axm0(x2) + τAxm1(x2)− 1
2τ

3δ
(β)
x m1(x2) + 1

2τ
2|u0(x2)|2

...
Axm0(xJ−1) + τAxm1(xJ−1)− 1

2τ
3δ

(β)
x m1(xJ−1) + 1

2τ
2|u0(xJ−1)|2

0


. (4.59)

The non-singularity of A guarantees that the approximation Mn exists and satisfies the
second recursive equation of (4.25). In similar fashion, the existence of U1 will follow using
the same arguments as in the general case. We just need to point out in this case that the
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function Fj : Vh → C is defined for each Φ ∈ Vh and ∀j ∈ IJ−1, by

Fj(Φ) = −12
10

[1
2(Φj+1 + Φj−1)− Axu0(xj)− τAxu1(xj)−

1
2τ

2δ(α)
x (Φj − τu1(xj))

+1
2τ

2 (Φj − τu1(xj))
(

1 +m0(xj)−
1
2
(
|Φj |2 + |Φj − 2τu1(xj)|2

))]
.

(4.60)

The conclusion follows from mathematical induction.

4.4 Numerical properties

The present section will be devoted to prove rigorously the main numerical properties of the
scheme (4.25). More precisely, we will show that the numerical approximations are second-order
consistent estimates of the solutions of the continuous model (4.5). Moreover, we will establish
the stability and the second-order convergence of the scheme using a suitable discrete Gronwall
inequality. As a corollary of the stability property of our scheme, we will prove that the solutions
of the finite-difference method are unique for sufficiently small values of τ .

Our first result will establish the quadratic consistency property of the discrete model (4.25).
To that end, consider sequences (Un)n∈IN−1 , (Mn)n∈IN−1 ⊆ Vh. Under these circumstances, define
L = LU × LM : Vh × Vh → Vh × Vh by

LU (Unj ,Mn
j ) = δ

(2)
t AxUnj − δ(α)

x µ
(1)
t Unj + µ

(1)
t Unj

[
1 +Mn

j + µ
(1)
t |Unj |2

]
, ∀(j, n) ∈ I, (4.61)

LM (Unj ,Mn
j ) = δ

(2)
t AxMn

j − δ(β)
x µ

(1)
t Mn

j − δ(β)
x |Unj |2, ∀(j, n) ∈ I. (4.62)

in turn, let us convey that L(Un,Mn) = (L(Unj ,Mn
j ))j∈IJ for each n ∈ IN−1, and agree that

L(U,M) = (L(Un,Mn))n∈IN−1 . We also consider the differential operator L = Lu ×Lm, defined
for each pair (u,m) of functions and ∀(x, t) ∈ Ω, by

Lu(u(x, t),m(x, t)) = ∂2u(x, t)
∂t2

− ∂αu(x, t)
∂|x|α

+ u(x, t) +m(x, t)u(x, t) + |u(x, t)|2u(x, t), (4.63)

Lm(u(x, t),m(x, t)) = ∂2m(x, t)
∂t2

− ∂βm(x, t)
∂|x|β

− ∂β
(
|u(x, t)|2

)
∂|x|β

. (4.64)

If x ∈ {xL, xR} and t ∈ [0, T ], then we let L(u(x, t),m(x, t)) = 0. Let L(un,mn) = (L(unj ,mn
j ))j∈IJ

for each n ∈ IN−1, and define L(u,m) = (L(un,mn))n∈IN−1 . In similar fashion, define L(un,mn) =
(L(unj ,mn

j ))j∈IJ ∈ Vh for each n ∈ IN−1, and introduce L(u,m) = (L(un,mn))n∈IN−1 .

Theorem 4.4.1 (Consistency). Suppose that u,m ∈ C5,4
x,t (Ω), and let h < 1. Then there exist

constants C and C ′ which are independent of τ and h, such that |‖(L−L)(u,m)‖|∞ ≤ C(τ2 +h2)
and |‖(H−H)(u,m)‖|∞ ≤ C ′(τ + h2).

Proof. To establish this result, we use the traditional approach using Taylor’s theorem, the mean
value theorem and the regularity of the functions u and m. Under those circumstances, it is
possible to prove that there exists constants Ci ∈ R+ independent of τ and h, for each i ∈ I5,
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with the property that ∣∣∣∣∣∂2u(xj , tn)
∂t2

− δ(2)
t Axunj

∣∣∣∣∣ ≤ C1(τ2 + h2), ∀(j, n) ∈ I, (4.65)∣∣∣∣∂αu(xj , tn)
∂|x|α

− δ(α)
x µ

(1)
t unj

∣∣∣∣ ≤ C2(τ2 + h2), ∀(j, n) ∈ I, (4.66)∣∣∣u(xj , tn)− µ(1)
t unj

∣∣∣ ≤ C3τ
2, ∀(j, n) ∈ I, (4.67)∣∣∣m(xj , tn)u(xj , tn)−mn

j µ
(1)
t unj

∣∣∣ ≤ C4τ
2, ∀(j, n) ∈ I, (4.68)∣∣∣|u(xj , tn)|2u(xj , tn)−

(
µ

(1)
t |unj |2

) (
µ

(1)
t unj

)∣∣∣ ≤ C5τ
2, ∀(j, n) ∈ I. (4.69)

Using the triangle inequality, we verify that there exists a constant C∗ ∈ R+ which is independent
of τ and h, such that |‖(LU−LU )(u,m)‖|∞ < C∗(τ2+h2). Also, there exist constants C6, C7, C8 ∈
R+ independent of τ and h, for which∣∣∣∣∣∂2m(xj , tn)

∂t2
− δ(2)

t Axmn
j

∣∣∣∣∣ ≤ C6(τ2 + h2), ∀(j, n) ∈ I, (4.70)∣∣∣∣∣∂βm(xj , tn)
∂|x|β

− δ(β)
x µ

(1)
t mn

j

∣∣∣∣∣ ≤ C7(τ2 + h2), ∀(j, n) ∈ I, (4.71)∣∣∣∣∣∂β
(
|u(xj , tn)|2

)
∂|x|β

− δ(β)
x |unj |2

∣∣∣∣∣ ≤ C8h
2, ∀(j, n) ∈ I, (4.72)

are satisfied. Using the triangle inequality, we can readily check that there exists a constant
C∗∗ ∈ R+ which is independent of τ and h, with the property that |‖(LM − LM )(u,m)‖|∞ <
C∗∗(τ2 +h2). Then the constant C of the conclusion is the maximum of C∗ and C∗∗. The second
inequality of this result can be obtained in similar fashion.

It is important to point out that the existence and uniqueness of solutions satisfying the
regularity conditions in the hypotheses of Theorem 4.4.1 have been established in the completion
of C5,4

x,t (Ω). This fact was thoroughly proved in reference [32] for the non-fractional scenario
α = β = 2. However, to the best of our knowledge, the existence and uniqueness of sufficiently
smooth solutions for the fully fractional case is still an open problem of investigation.

Definition 4.4.2. If f : F → F and V ∈ Vh then we define δ̃(f(Vj)) = f(Ṽj) − f(Vj), for each
j ∈ IJ−1 and F = R,C.

The next objective is to prove the stability and convergence properties of (4.5). For that
reason and in the following, (u0, u1,m0,m1) and (ũ0, ũ1, m̃0, m̃1) will represent two sets of initial
conditions of (4.5). We will assume also that the initial data for (4.25) are provided exactly.

Lemma 4.4.3 (Gronwall’s inequality [105]). Assume that N ∈ N with N > 1. Let (ωn)n∈IN and
(Cn)n∈IN be sequences of real numbers, and let A, B and Cn be non-negative numbers, for each
n ∈ IN . Suppose that τ ∈ R+ is such that

ωn − ωn−1 ≤ Aτωn +Bτωn−1 + Cnτ, ∀n ∈ IN . (4.73)

If (A+B)τ ≤ (N − 1)/(2N), then

max
n∈IN

|ωn| ≤

ω0 + τ
∑
k∈IN

Ck

 e2(A+B)Nτ . (4.74)
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Lemma 4.4.4. Let u0,m0, ũ0, m̃0 ∈ H1(B) and u1,m1, ũ1, m̃1 ∈ L2(B). Suppose that (U,M)
and (Ũ , M̃) are the solutions of (4.25) corresponding to (u0, u1,m0,m1) and (ũ0, ũ1, m̃0, m̃1),
respectively. Let εn = Ũn −Un, ζn = M̃n −Mn and υn = Ṽ n − V n, for each n ∈ IN , and define
∀n ∈ IN−1,

ωn = ‖δtεn‖22 − h2

12‖δxtε
n‖22 + µt‖δ(α/2)

x εn‖22 + µt‖εn‖22 + ‖δ(β/2)
x υn‖22 − h2

12‖δxδ
(β/2)
x υn‖22 + µt‖ζn‖22.

(4.75)
For τ sufficiently small, there exists C ∈ R+ independent of h and τ , such that ωn ≤ ω0 exp(CT ),
for each n ∈ IN−1.

Proof. Notice that the sequence (ε, ζ) satisfies the system

δ
(2)
t Axεnj − δ(α)

x µ
(1)
t εnj + µ

(1)
t εnj + δ̃

[
Mn
j µ

(1)
t Unj

]
+ δ̃

[(
µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)]
= 0, ∀(j, n) ∈ I,

δ
(2)
t Axζnj − δ(β)

x µ
(1)
t ζnj − δ̃

(
δ(β)
x |Unj |2

)
= 0, ∀(j, n) ∈ I,

subject to εn0 = εnJ = 0 and ζn0 = ζnJ = 0, ∀n ∈ IN .
(4.76)

Proceeding as in Lemma 4.3.2, we can readily obtain the following identities:

(i) 2 Re〈δ(2)
t Axεn, δ

(1)
t εn〉 = δt

[
‖δtεn−1‖22 − 1

12h
2‖δxtεn−1‖22

]
,

(ii) 2 Re〈−δ(α)
x µ

(1)
t εn, δ

(1)
t εn〉 = δtµt‖δ(α/2)

x εn−1‖22,

(iii) 2 Re〈µ(1)
t εn, δ

(1)
t εn〉 = δtµt‖εn−1‖22,

(iv) −2〈δ(2)
t Axζn, µtυn−1〉 = δt

[
‖δ(β/2)
x υn−1‖22 − 1

12h
2‖δxδ(β/2)

x υn−1‖22
]
, and

(v) 2〈δ(β)
x µ

(1)
t ζn, µtυ

n−1〉 = δtµt‖ζn−1‖22.

Using the fact δ(β)
x υn = δtζ

n and Theorem 4.3.5, it is easy to show that there exist C1, C2, C3 ∈ R+,
such that

Re
〈
δ̃
[
Mnµ

(1)
t Un

]
, δ

(1)
t εn

〉
≤ C1

(
µt‖δtεn−1‖22 + µ

(1)
t

[
‖ζn‖22 + ‖εn‖22 + ‖δ(α/2)

x εn‖22
])

(4.77)

Re
〈
δ̃
[(
µ

(1)
t |Un|2

) (
µ

(1)
t Un

)]
, δ

(1)
t εn

〉
≤ C2

(
µ

(1)
t ‖εn‖22 + µt‖δtεn−1‖22

)
, (4.78)∣∣∣〈δ̃ (δ(β)

x |Un|2
)
, µtυ

n−1
〉∣∣∣ ≤ C3

(
‖εn‖22 + µt‖δ(β/2)

x υn−1‖22 + ‖δ(α/2)
x εn‖22

)
. (4.79)

Take the real part of the inner product of first equation in (4.76) with 2δ(1)
t εn, and calculate

the product between the second equation and 2δtζn−1. Use then the identities (i)–(v) and the
inequalities (4.77)–(4.79) to show that there exists C4 ∈ R+, such that the following inequalities
are satisfied for each n ∈ IN−1:

δt
[
‖δtεn−1‖22 − h2

12‖δxtε
n−1‖22 + µt

(
‖δ(α/2)
x εn−1‖22 + ‖εn−1‖22

)]
≤ C4

[
µ

(1)
t ‖ζn‖22 + µ

(1)
t ‖δ(α/2)

x εn‖22
(4.80)

+ µ
(1)
t ‖εn‖22 + µt‖δtεn−1‖22

]
,

δt
[
‖δ(β/2)
x υn−1‖22 − h2

12‖δxδ
(β/2)
x υn−1‖22 + µt‖ζn−1‖22

]
≤ C4

[
‖εn‖22 + µt‖δ(β/2)

x υn−1‖22
(4.81)

+ ‖δ(α/2)
x εn‖22

]
.

68



Adding these last inequalities, we obtain that for each n ∈ IN ,

ωn − ωn−1 ≤ C5τ
[

4
3µt

(
‖δtεn−1‖22 + ‖δ(β/2)

x υn−1‖22
)

+ µ
(1)
t

(
‖δ(α/2)
x εn‖22 + ‖εn‖22 + ‖ζn‖22

)
+‖δ(α/2)

x εn‖22 + ‖εn‖22 + ‖ζn‖22
]

≤ C5τ
(
ωn + ωn−1

)
.

(4.82)
If τ is sufficiently small (namely, if C5τ ≤ (N − 1)/(4N)), then Gronwall’s inequality readily
establishes the conclusion of this lemma with C = 4C5.

The following results are immediate consequences of Lemma 4.4.4.

Theorem 4.4.5 (Stability). If the initial data satisfy u0,m0 ∈ H1(B) and u1,m1 ∈ L2(B) then
the solutions of the numerical model (4.25) are stable for sufficiently small values of τ .

Corollary 4.4.6 (Uniqueness). Assume that the hypotheses of Theorem 4.4.5 are satisfied. If τ
is sufficiently small then the numerical model (4.25) is uniquely solvable.

Before closing this section, we would like to prove that the discrete model proposed in this
manuscript has quadratic order of convergence in both, space and time. To that end, we con-
sider the local truncation errors of the finite-difference system (4.25) at the node (xj , tn). More
precisely, we will let

ρnj = δ
(2)
t Axunj − δ(α)

x µ
(1)
t unj + µ

(1)
t unj +mn

j µ
(1)
t unj +

(
µ

(1)
t |unj |2

) (
µ

(1)
t unj

)
, ∀(j, n) ∈ I, (4.83)

σnj = δ
(2)
t Axmn

j − δ(β)
x µ

(1)
t mn

j − δ(β)
x |unj |2, ∀(j, n) ∈ I. (4.84)

According to the theorem on the consistency of the finite-difference scheme (4.25), |ρnj |+ |σnj | =
O(τ2 + h2). In the sequel, we will use (u,m) to represent a solution of the differential model
(4.5), while (U,M) denotes a solution of the discrete system (4.25) corresponding to the same set
of initial data. Under these circumstances, let εnj = unj − Unj , ηnj = mn

j −Mn
j and δ

(β)
x θnj = δtη

n
j ,

for each (j, n) ∈ I.

Definition 4.4.7. If f : F→ F is a function and V ∈ Vh, then δ̂(f(vj)) = f(vj)− f(Vj), for each
j ∈ IJ−1 and F = R,C.

Theorem 4.4.8 (Convergence). Suppose that u,m ∈ C5,4
x,t (Ω). If τ is sufficiently small, then the

solution of the problem (4.25) converges to that of (4.5) with order O(τ2 + h2) in the L2-norm.

Proof. Throughout this proof, we will follow the notation and conventions mentioned in the
paragraph preceding Definition 4.4.7. As a consequence, observe that the ordered pair (ε, η)
satisfies the discrete system

δ
(2)
t Axεnj − δ

(α)
x µ

(1)
t εnj + µ

(1)
t εnj + δ̂

[
mn
j

(
µ

(1)
t unj

)]
+ δ̂

[(
µ

(1)
t |unj |2

) (
µ

(1)
t unj

)]
= ρnj , ∀(j, n) ∈ I,

δ
(2)
t Axηnj − δ

(β)
x µ

(1)
t ηnj − δ̂

(
δ

(β)
x |unj |2

)
= σnj , ∀(j, n) ∈ I,

subject to
{
ε0 = η0 = ε1 = η1 = 0,
εn0 = εnJ = ζn0 = ζnJ = 0, ∀n ∈ IN .

(4.85)
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Proceeding as in the proof of Lemma 4.4.4, it is easy to show that there exists a common C1 ∈ R+

such that

Re〈ρn, δ(1)
t εn〉 ≤ C1

(
‖ρn‖22 + µt‖δtεn−1‖22

)
, (4.86)

Re
〈
δ̂
[
mn

(
µ

(1)
t un

)]
, δ

(1)
t εn

〉
≤ C1

(
µt‖δtεn−1‖22 + µ

(1)
t

[
‖ηn‖22 + ‖εn‖22 + ‖δ(α/2)

x εn‖22
])
,

(4.87)

Re
〈
δ̂
[(
µ

(1)
t |un|2

) (
µ

(1)
t un

)]
, δ

(1)
t εn

〉
≤ C1

(
µ

(1)
t ‖εn‖22 + µt‖δtεn−1‖22

)
, (4.88)

〈σn, µtθn−1〉 ≤ C1
(
‖σn‖22 + µt‖θn−1‖22

)
, (4.89)

〈δ̂
(
δ(β)
x |unj |2

)
, µtθ

n−1〉 ≤ C1
(
‖εn‖22 + µt‖δ(β/2)

x θn−1‖22 + ‖δ(α/2)
x εn‖22

)
. (4.90)

Firstly, take the inner product between the first vector equation of (4.85) and 2δ(1)
t εn, and employ

next the inequalities (4.86)–(4.88). At the same time, we take the inner product of the second
vector equation with 2µtθn−1, and use (4.89) and (4.90). It follows that there exists a constant
C2 ∈ R+, with the property that

δt
[
‖δtεn−1‖22 − h2

12‖δxtε
n−1‖22 + µt

(
‖δ(α/2)
x εn−1‖22 + ‖εn−1‖22

)]
≤ C2

[
µt‖δtεn−1‖22 + µ

(1)
t ‖ηn‖22

+µ(1)
t

(
‖δ(α/2)
x εn‖22 + ‖εn‖22

)]
+ ‖ρn‖22

]
,

(4.91)
and

δt

[
‖δ(β/2)
x θn−1‖22 −

h2

12‖δxδ
(β/2)
x θn−1‖22 + µt‖ηn−1‖22

]
≤ C2

[
‖σn‖22 + ‖εn‖22 + µt‖δ(β/2)

x θn−1‖22

+‖δ(α/2)
x εn‖22 + µt‖θn−1‖22

]
.

(4.92)
Adding the inequalities (4.91) and (4.92), we can show that there exists C3 ∈ R+ such that, for
each n ∈ IN−1, the following inequality holds: ξn− ξn−1 ≤ C3τ(‖ρn‖22 +‖σn‖22) +C3τ(ξn+ ξn−1).
Here, ∀n ∈ IN−1, we have

ξn = ‖δtεn‖22 − h2

12

(
‖δxtεn‖22 + ‖δxδ(β/2)

x θn‖22
)

+ µt
(
‖δ(α/2)
x εn‖22 + ‖εn‖22 + ‖ηn‖22

)
+ ‖δ(β/2)

x θn‖22.
(4.93)

Finally, by Lemma 4.4.3, we know that there exists C ∈ R+ such that ξn ≤ C(τ2 + h2). In
particular, it is easy to establish now that ‖εn‖2, ‖ηn‖2 ≤ C(τ2 + h2), for each n ∈ IN−1, as
desired.

4.5 Computer implementation

We describe now the computational implementation of the scheme (4.25) and provide some illus-
trative simulations. About the computational implementation, it is important to point out that
the left-hand side of the first recursive equation of (4.25) is a function of the unknown complex
vector Un+1. That function considers the presence of |Un+1| which, unfortunately, is not analytic
in the variable Un+1. As a consequence, the use of numerical methods to approximate the roots
of complex functions which consider derivatives of the functions of interest (including Newton–
Raphson techniques) is discarded. To avoid using such methods, we will employ an iterative
approach. More precisely, in the following discussion, we will assume that τ is sufficiently small
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Figure 4.1: Results of approximating numerically the solution of the model (4.5) on the set
Ω = (−10, 20) × (0, 15), with initial data (4.99)–(4.102). In our numerical implementation, we
used h = 0.1, τ = 0.05, a tolerance of 1×10−8, and a maximum number of iterations equal to 20.
In this simulations, we employed α = β = 2. The graphs provide the approximate behavior of
(a) Re(u(x, t)), (b) Im(u(x, t)), (c) |u(x, t)|, (d) m(x, t) and (e) H(x, t) as functions of (x, t) ∈ Ω.
Meanwhile, (f) is the approximation to the total energy E(t) with respect to time t ∈ [0, 15].
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(a) (b)

(c) (d)

Figure 4.2: Results of approximating numerically the solution of the model (4.5) on the set
Ω = (−10, 20) × (0, 15), with initial data (4.99)–(4.102). In our numerical implementation, we
used h = 0.1, τ = 0.05, a tolerance of 1 × 10−8, and a maximum number of iterations equal to
20. In this simulations, we employed α = β = 1.7. The graphs provide the approximate behavior
of (a) Re(u(x, t)), (b) Im(u(x, t)), (c) m(x, t) and (f) H(x, t) as functions of (x, t) ∈ Ω.

to guarantee the existence and the uniqueness of solutions, and we will employ the approach
followed in the proof of the theorem on the existence of solutions of our discrete model, namely,
Theorem 4.3.10.

Beforehand, notice that the initial approximations U0 and M0 are provided explicitly through
the initial conditions. In the general step, suppose that the approximations Un−1, Mn−1, Un and
Mn have been constructed. As we pointed out in the proof of Theorem 4.3.10, the approximation
Mn+1 solves the linear system AΦ = b, where A = C − D(β), and C, D(β) and b are given
respectively by (4.43), (4.44) and (4.53). This solution exists by virtue of the fact that A is
strictly diagonally dominant, so non-singular. To calculate the approximation Un+1, notice that
the first difference equation of the model (4.25) can be alternatively expressed, for each j ∈ IJ−1,
as

AxUn+1
j − τ2

2

(
δ(α)
x Un+1

j − (1 +Mn
j )Un+1

j

)
= 2AxUnj − AxUn−1

j + τ2

2

[
δ(α)
x Un−1

j − (1 +Mn
j )Un−1

j

]
− τ2

4

(
|Un+1
j |2 + |Un−1

j |2
) (
Un+1
j + Un−1

j

)
.

(4.94)
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Figure 4.3: Results of approximating numerically the solution of the model (4.5) on the set
Ω = (−10, 20) × (0, 15), with initial data (4.99)–(4.102). In our numerical implementation, we
used h = 0.1, τ = 0.05, a tolerance of 1 × 10−8, and a maximum number of iterations equal to
20. In this simulations, we employed α = β = 1.4. The graphs provide the approximate behavior
of (a) Re(u(x, t)), (b) Im(u(x, t)), (c) m(x, t) and (f) H(x, t) as functions of (x, t) ∈ Ω.

For convenience, let us define now the matrix F = C −D(α) + E, where D(α) is given as in
(4.44) and E is the matrix of size (J + 1)× (J + 1) defined by

E = τ2

2



0 0 0 0 · · · 0 0
0 1 +Mn

1 0 0 · · · 0 0
0 0 1 +Mn

2 0 · · · 0 0
0 0 0 1 +Mn

3 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 1 +Mn
J−1 0

0 0 0 0 · · · 0 0


. (4.95)

In turn, let c : Vh → Vh be the function whose jth component is defined, for each Φ ∈ Vh, by

cj(Φ) = 2AxUnj − AxUn−1
j + τ2

2

[
δ(α)
x Un−1

j − (1 +Mn
j )Un−1

j

]
− τ2

(
µ

(1)
t,Φ|U

n
j |2
) (
µ

(1)
t,ΦU

n
j

)
, (4.96)

whenever j ∈ IJ−1, and cj(Φ) = 0 when j = 0, J . The fact that Un+1 satisfies the system of
equations (4.94) can be equivalently written in vector form as FUn+1 = c(Un+1). Motivated
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Figure 4.4: Results of approximating numerically the solution of the model (4.5) on the set
Ω = (−10, 20) × (0, 15), with initial data (4.99)–(4.102). In our numerical implementation, we
used h = 0.1, τ = 0.05, a tolerance of 1 × 10−8, and a maximum number of iterations equal to
20. In this simulations, we employed α = β = 1.1. The graphs provide the approximate behavior
of (a) Re(u(x, t)), (b) Im(u(x, t)), (c) m(x, t) and (f) H(x, t) as functions of (x, t) ∈ Ω.

by the proof of Theorem 4.3.10, we will solve this problem recursively. Suppose that an initial
approximation (Un+1)(0) to the vector Un+1 has been provided. Inductively, assume that an
approximation (Un+1)(m) to the vector Un+1 has been calculated, for some m ∈ N ∪ {0}. Then
(Un+1)(m+1) is the vector satisfying the linear system F ((Un+1)(m+1)) = c((Un+1)(m)). The pro-
cedure will continue until a stopping criterion is satisfied, say, when ‖(Un+1)(m+1)− (Un+1)(m)‖2
is smaller than some tolerance, or when m reaches the maximum number of iterations.

Finally, our implementation of the numerical model (4.25) will make use of the following
recursive relation to calculate the values of the coefficients of the sequence (g(α)

k )∞k=−∞, for each
α ∈ (1, 2].

Lemma 4.5.1 (Çelik and Duman [13]). If 1 < α ≤ 2, then the following recursive identities hold:

g
(α)
0 = Γ(α+ 1)

Γ(α/2 + 1)2 , (4.97)

g
(α)
k+1 =

(
1− α+ 1

α/2 + k + 1

)
g

(α)
k , ∀k ∈ N ∪ {0}. (4.98)
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Before closing this section, we wish to provide some illustrative simulations in the fractional
and non-fractional scenarios. To that end, we will let B = (−15, 20) and T = 15, and define the
functions u0, m0, u1 and m1 by

u0(x) =
√

10−
√

2
2 sech

√1 +
√

5
2 x

 exp
(
i

√
2

1 +
√

5
x

)
, ∀x ∈ B, (4.99)

m0(x) = −2 sech2

√1 +
√

5
2 x

 , ∀x ∈ B, (4.100)

and

u1(x) =
√

10−
√

2
2 (tanh x− 1) sech

√1 +
√

5
2 x

 exp
(
i

√
2

1 +
√

5
x

)
, ∀x ∈ B, (4.101)

m1(x) = −4 sech2

√1 +
√

5
2 x

 tanh

√1 +
√

5
2 x

 , ∀x ∈ B. (4.102)

This functions will be employed next as initial data in our simulations. It is worth noting that
the exact solution of the model (4.5) on the set R × R+, initial conditions (4.99)–(4.102) and
α = β = 2, is given by the system of functions

u(x, t) =
√

10−
√

2
2 sech

√1 +
√

5
2 x− t

 exp
[
i

(√
2

1 +
√

5
x− t

)]
, ∀(x, t) ∈ R× R+,

(4.103)

and

m(x, t) = −2 sech2

√1 +
√

5
2 x− t

 , ∀(x, t) ∈ R× R+. (4.104)

Let us consider the system (4.5) defined on the set Ω = (−10, 20)× (0, 15), with initial data
(4.99)–(4.102). We approximate the solutions of this model using our computer implementation
of the finite-difference scheme (4.25), letting h = 0.1 and τ = 0.05, using a tolerance of 1× 10−8

and a maximum number of iterations equal to 20. Figure 4.1 shows the results of our simulations
for the non-fractional case α = β = 2. More precisely, the first five graphs provide surface plots
of the numerical solutions of (a) Re(u(x, t)), (b) Im(u(x, t)), (c) |u(x, t)|, (d) m(x, t) and (e)
H(x, t) as functions of (x, t) ∈ Ω. Meanwhile, (f) provides the graph of total energy E(t) with
respect to time t ∈ [0, 15]. It is worth pointing out that the numerical approximations are in
good agreement with the exact solutions (4.103)–(4.104). Moreover, notice that the total energy
of the system is approximately constant, in agreement with the theoretical results derived in this
work. Finally, Figures 4.2, 4.3 and 4.4 provided illustrative simulations for the same experiment,
using α = β = 1.7, α = β = 1.4 and α = β = 1.1, respectively.
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5. Two energy-preserving numerical
models

5.1 Preliminaries

This manuscript considers a nonempty and bounded spatial interval of R of the form B = (xL, xR),
where xL, xR ∈ R satisfy xL < xR. Let T > 0 represent a finite period of time, and define
Ω = B × (0, T ). In general, for each S ⊆ R2, we let S be the closure of S with respect to the
standard topology of R2. Throughout, we will let u : Ω→ C and m : Ω→ R be sufficiently regular
functions, and let u0, u1 : B → C and m0,m1 : B → R be smooth functions. We will define all
the relevant functions on Ω and, for the sake of convenience, we will extend their definitions to
the set R× [0, T ], assuming them to be equal to zero on (R \ [xL, xR])× [0, T ].

Definition 5.1.1 (Podlubny [78]). Let f : R→ R be a function, and let n ∈ N ∪ {0} and α ∈ R
satisfy n− 1 < α ≤ n. The Riesz fractional derivative of f of order α at x ∈ R is defined (when
it exists) as

dαf(x)
d|x|α

= −1
2 cos(πα2 )Γ(n− α)

dn

dxn

∫ ∞
−∞

f(ξ)dξ
|x− ξ|α+1−n , (5.1)

where Γ is the usual Gamma function. In the case that u : R × [0, T ] → R, and n and α are as
above, then the Riesz fractional partial derivative of u of order α with respect to x at the point
(x, t) ∈ R× [0, T ] is given (if it exists) by

∂αu(x, t)
∂|x|α

= −1
2 cos(πα2 )Γ(n− α)

∂n

∂xn

∫ ∞
−∞

u(ξ, t)dξ
|x− ξ|α+1−n . (5.2)

The Riesz fractional partial derivative of u of order α with respect to x is also denoted by ∂α|x|u
in this work. In case that α = n ∈ N ∪ {0}, then we agree that ∂α|x|u denotes the usual nth-order
partial derivative operator with respect to x.

Definition 5.1.2. If z ∈ C, then we will represent its complex conjugate by z. Depending on
the circumstances, we will use F to represent the fields R or C. Let us define the set Lx,p(Ω) =
{f : Ω→ F : f(·, t) ∈ Lp(B), for each t ∈ [0, T ]}, where p ∈ [1,∞]. If p ∈ [1,∞) and f ∈ Lx,p(Ω),
then we convey that

‖f‖x,p =
(∫

B
|f(x, t)|pdx

)1/p
, ∀t ∈ [0, T ]. (5.3)

In the case when p = ∞, we set ‖f‖x,∞ = inf{C ≥ 0 : |f(x, t)| ≤ C for almost all x ∈ B}.
Obviously, ‖f‖x,p is a function of t ∈ [0, T ] in any case. Moreover, for each pair f, g ∈ Lx,2(Ω),
define the following function of t:

〈f, g〉x =
∫
B
f(x, t)g(x, t)dx, ∀t ∈ [0, T ]. (5.4)
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In this work, we fix α, β ∈ (1, 2], and work with the fractional extension of the Klein–Gordon–
Zakharov model given by the following coupled system of fractional differential equations with
initial-boundary data:

∂2u(x, t)
∂t2

− ∂αu(x, t)
∂|x|α

+ u(x, t) +m(x, t)u(x, t) + |u(x, t)|2u(x, t) = 0, ∀(x, t) ∈ Ω,

∂2m(x, t)
∂t2

− ∂βm(x, t)
∂|x|β

− ∂β
(
|u(x, t)|2

)
∂|x|β

= 0, ∀(x, t) ∈ Ω,

subject to


u(x, 0) = u0(x), m(x, 0) = m0(x), ∀x ∈ B,
∂u(x, 0)
∂t

= u1(x), ∂m(x, 0)
∂t

= m1(x), ∀x ∈ B,
u(xL, t) = u(xR, t) = 0, m(xL, t) = m(xR, t) = 0, ∀t ∈ [0, T ].

(5.5)

It is important to point out that the case α = β = 2 in (5.5) yields precisely the well-known Klein–
Gordon–Zakharov system. Moreover, as we mention before, the Klein–Gordon–Zakharov system
describes physical phenomena, specifically the interaction between Langmuir waves in a high-
frequency plasma. Under this context, the function u represents the fast time-scale component
of an electric field raised by electrons, and the function m is the deviation of ion density from its
equilibrium. The model is given here in dimensionless form for the sake of convenience.

It is well known that the additive inverse of the Riesz fractional derivative of order α has a
unique square-root operator over the space of sufficiently regular functions with compact support
[46]. In fact, this unique operator is ∂α/2|x| , and satisfies the following, for any two such functions
u and v (see [27]):〈

u,− ∂αv

∂|x|α
〉
x

=
〈
− ∂αu

∂|x|α
, v

〉
x

=
〈
∂α/2u

∂|x|α/2
,
∂α/2v

∂|x|α/2

〉
x

, ∀t ∈ [0, T ]. (5.6)

For convenience, we will employ the function v : Ω→ R defined as

∂βv(x, t)
∂|x|β

= ∂m(x, t)
∂t

, ∀(x, t) ∈ Ω. (5.7)

Definition 5.1.3. Let u,m be a pair of functions satisfying the initial-boundary-value problem
(5.5). We define the Hamiltonian of that fractional system as H(u(x, t),m(x, t)) = H(x, t), where

H(x, t) =
∣∣∣∣∂u∂t

∣∣∣∣2 +
∣∣∣∣∣ ∂α/2u∂|x|α/2

∣∣∣∣∣
2

+ |u|2 +m|u|2 + 1
2

∣∣∣∣∣ ∂β/2v∂|x|β/2

∣∣∣∣∣
2

+ 1
2m

2 + 1
2 |u|

4, ∀(x, t) ∈ Ω.

(5.8)
For simplicity, we obviated here the dependence of all the functions on the right-hand side of this
identity with respect to (x, t). Then, the associated energy of the system at the time t ∈ [0, T ] is
given by

E(t) =
∥∥∥∥∂u∂t

∥∥∥∥2

x,2
+
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 + 〈m, |u|2〉x + 1

2

∥∥∥∥∥ ∂β/2v∂|x|β/2

∥∥∥∥∥
2

x,2
+ 1

2‖m‖
2
x,2 + 1

2‖u‖
4
x,4.

(5.9)

Under this circumstances, we have the next results which were proved in [62].

Theorem 5.1.4 (Energy conservation). If u and m satisfy the problem (5.5), then the function
E is constant.
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Theorem 5.1.5 (Boundedness). Let u and m satisfy the initial-boundary-value problem (5.5),
and let u, ∂u/∂x ∈ Lx,2(Ω). Then there exist a constant C such that∥∥∥∥∂u∂t

∥∥∥∥2

x,2
+
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 +

∥∥∥∥∥ ∂β/2v∂|x|β/2

∥∥∥∥∥
2

x,2
+ ‖m‖2x,2 ≤ C, ∀t ∈ [0, T ]. (5.10)

Moreover, the constant function (5.9) is nonnegative.

We provide next the numerical nomenclature to build the some discretizations of (5.5). In
particular, we will focus on the concept of fractional centered differences, which allows us to
discretize Riesz fractional derivatives. We have opted to use fractional centered differences for
computational reasons. However, we must point out that there are other different numerical
approaches that can be followed, like the the use of weighted-shifted Grünwald differences [92].

Definition 5.1.6 (Ortigueira [73]). Let (g(α)
k )∞k=−∞ be the real sequence defined by

g
(α)
k = (−1)kΓ(α+ 1)

Γ(α2 − k + 1)Γ(α2 + k + 1) , ∀k ∈ N ∪ {0}, (5.11)

and assume that f : R → R is any function. If h > 0 and α > −1, then the fractional-order
centered difference of order α of f at the point x is defined as

∆α
hf(x) =

∞∑
k=−∞

g
(α)
k f(x− kh), ∀x ∈ R, (5.12)

if the double series at the right-hand side of (5.12) converges.

Lemma 5.1.7 (Wang et al. [97]). If 0 < α ≤ 2 and α 6= 1, then

(i) g
(α)
0 ≥ 0,

(ii) g
(α)
k = g

(α)
−k < 0 for all k ≥ 1, and

(iii)
∞∑

k=−∞
g

(α)
k = 0. As a consequence, it follows that g(α)

0 = −
∞∑

k=−∞
k 6=0

g
(α)
k =

∞∑
k=−∞
k 6=0

|g(α)
k |.

Theorem 5.1.8 (Wang et al. [97]). Let α ∈ (1, 2] and h > 0, and suppose that f ∈ C5(R). If all
the derivatives of f up to order five belong to L1(R), then

− 1
hα

∆α
hf(x) = dαf(x)

d|x|α
+O(h2), ∀x ∈ R. (5.13)

For the remainder, we let Iq = {1, . . . , q} and Iq = Iq ∪ {0}, for each q ∈ N. Throughout, we
let J,N ∈ N satisfy J ≥ 2 and N ≥ 2, and define the positive step-sizes h = (xR − xL)/J and
τ = T/N . We consider uniform partitions of the intervals [xL, xR] and [0, T ], respectively, of the
forms

xL = x0 < x1 < . . . < xj < . . . < xJ = xR, ∀j ∈ IJ , (5.14)
and

0 = t0 < t1 < . . . < tn < . . . < tN = T, ∀n ∈ IN . (5.15)
For each (j, n) ∈ IJ×IN , we let Unj and Mn

j represent numerical approximations to unj = u(xj , tn)
and mn

j = m(xj , tn), respectively. Also, we let Rh = {xj : j ∈ IJ}, and represent by V̊h the vector
space over F of all F-valued functions on the grid space Rh which vanish at x0 and xJ . If V ∈ V̊h,
then we set Vj = V (xj), for each j ∈ IJ . Moreover, we will let Un = (Unj )j∈IJ ∈ V̊h and
Mn = (Mn

j )j∈IJ ∈ V̊h, and set U = (Un)n∈IN and M = (Mn)n∈IN .
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Definition 5.1.9. Let p be any number satisfying 1 ≤ p <∞. The inner product 〈·, ·〉 : V̊h×V̊h →
C and the norms ‖ · ‖p, ‖ · ‖∞ : V̊h → R are defined, respectively, by

〈U, V 〉 = h
∑
j∈IJ

UjVj , ∀U, V ∈ V̊h, (5.16)

‖U‖pp = h
∑
j∈IJ

|Uj |p, ∀U ∈ V̊h, (5.17)

‖U‖∞ = max
{
|Uj | : j ∈ IJ

}
, U ∈ V̊h. (5.18)

Additionally, we let |‖V ‖|∞ = sup{‖V n‖∞ : n ∈ IN}, for each V = (V n)n∈IN ⊆ V̊h.

Definition 5.1.10. Let V represent any of the functions U or M , and suppose that α ∈ (1, 2].
We will employ the linear difference operators

δxV
n
j =

V n
j+1 − V n

j

h
, ∀(j, n) ∈ IJ−1 × IN , (5.19)

δtV
n
j =

V n+1
j − V n

j

τ
, ∀(j, n) ∈ IJ × IN−1, (5.20)

and the linear average operators

µtV
n
j =

V n+1
j + V n

j

2 , ∀(j, n) ∈ IJ × IN−1, (5.21)

µ
(1)
t V n

j =
V n+1
j + V n−1

j

2 , ∀(j, n) ∈ IJ × IN−1. (5.22)

If we omit the composition symbol for simplicity, we have the operators δ(2)
x V n

j = δxδxV
n
j−1,

δ
(1)
t V n

j = µtδtV
n−1
j , δ(2)

t V n
j = δtδtV

n−1
j and µ

(2)
t V n

j = µtµtV
n−1
j , for each (j, n) ∈ IJ−1 × IN .

Moreover, using the notation in Definition 5.1.6, we define the discrete linear operator

δ(α)
x V n

j = − 1
hα

∑
k∈IJ

g
(α)
j−kV

n
k , ∀(j, n) ∈ IJ−1 × IN . (5.23)

Lemma 5.1.11 (Maćıas-Dı́az [49]). If α ∈ (1, 2] and U, V ∈ V̊h, then the identity 〈−δ(α)
x U, V 〉 =

〈δ(α/2)
x U, δ

(α/2)
x V 〉 holds.

5.2 An implicit model

Using the nomenclature of the previous section, we have the following implicit model to approx-
imate the solutions of (5.5), which is described by the algebraic system of difference equations:

δ
(2)
t Unj − δ(α)

x µ
(1)
t Unj + µ

(1)
t Unj

[
1 + µ

(1)
t Mn

j + µ
(1)
t |Unj |2

]
= 0, ∀(j, n) ∈ IJ−1 × IN−1,

δ
(2)
t Mn

j − δ(β)
x µ

(1)
t Mn

j − δ(β)
x µ

(1)
t |Unj |2 = 0, ∀(j, n) ∈ IJ−1 × IN−1,

subject to


U0
j = u0(xj), M0

j = m0(xj), ∀j ∈ IJ−1,

δ
(1)
t U0

j = u1(xj) δ
(1)
t M0

j = m1(xj), ∀j ∈ IJ−1,

Un0 = UnJ = 0, Mn
0 = Mn

J = 0, ∀n ∈ IN .

(5.24)

Note that the numerical model (5.24) is a three-step implicit nonlinear technique. Indeed, if the
approximations at the times tn−1 and tn are known, then the difference equations of (5.24) have
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the vectors Un+1 and Mn+1 as unknowns. In the following and for the sake of convenience, we
will let {V n

j : (j, n) ∈ IJ × IN} be such that

δ(β)
x V n

j = δtM
n
j , ∀(j, n) ∈ IJ−1 × IN−1, (5.25)

V n
0 = V n

J = 0, ∀n ∈ IN . (5.26)

Under these circumstances, (U,M) will denote a solution of (5.24), and V = (V n)n∈IN will satisfy
(5.25) and (5.26).

Definition 5.2.1. Let (U,M) be a solution of (5.24). We define the associated discrete energy
density of the system at the point xj and time tn as H(Unj ,Mn

j ) = Hn
j , where

Hn
j = |δtUnj |2 + µt|δ(α/2)

x Unj |2 + µt|Unj |2 + 1
2µt|U

n
j |4 + 1

2µt|M
n
j |2 + 1

2 |δ
(β/2)
x V n

j |2 + µtM
n
j |Unj |2,

(5.27)

where (j, n) ∈ IJ−1 × IN−1. Meanwhile, the discrete energy of the system (5.24) at the time tn
and ∀n ∈ IN−1, is defined by

En = ‖δtUn‖22 + µt
(
‖δ(α/2)
x Un‖22 + ‖Un‖22 + 1

2‖U
n‖44 + 1

2‖M
n‖22 + 〈Mn, |Un|2〉

)
+ 1

2‖δ
(β/2)
x V n‖22.

(5.28)

Here, we employ the notation |Un|2 = (|Unj |2)j∈IJ .

Definition 5.2.2. Given any arbitrary U, V ∈ V̊h, we define their product point-wisely, that is,
UV = (UjVj)j∈IJ .

Lemma 5.2.3. Let U = (Un)n∈IN and M = (Mn)n∈IN be sequences in V̊h, and assume that U is
a sequence of complex functions while the functions of V are real. Suppose additionally that there
exists (V n)n∈IN ⊆ V̊h such that (5.25) holds. Then the following are satisfied for each n ∈ IN−1:

(a) 2 Re〈δ(2)
t Un, δ

(1)
t Un〉 = δt‖δtUn−1‖22,

(b) 2 Re〈−δ(α)
x µ

(1)
t Un, δ

(1)
t Un〉 = δtµt‖δ(α/2)

x Un−1‖22,

(c) 2 Re〈µ(1)
t Un, δ

(1)
t Un〉 = δtµt‖Un−1‖22,

(d) 2 Re〈(µ(1)
t Mn)(µ(1)

t Un), δ(1)
t Un〉 = 〈µ(1)

t Mn, δ
(1)
t |Un|2〉,

(e) 4 Re〈(µ(1)
t |Un|2)(µ(1)

t Un), δ(1)
t Un〉 = δtµt‖Un−1‖44,

(f) −2〈δ(2)
t Mn, µtV

n−1〉 = δt‖δ(β/2)
x V n−1‖22,

(g) 2〈δ(β)
x µ

(1)
t Mn, µtV

n−1〉 = δtµt‖Mn−1‖22,

(h) 〈δ(β)
x µ

(1)
t |Un|2, µtV n−1〉 = 〈µ(1)

t |Un|2, δ
(1)
t Mn〉.

Proof. The first five identities are trivial. For the remaining identities, notice that Lemma 5.1.11
and (5.25) imply that

−2〈δ(2)
t Mn, µtV

n−1〉 = 2〈δtδ(β/2)
x V n−1, µtδ

(β/2)
x V n−1〉 = δt‖δ(β/2)

x V n−1‖22 (5.29)

〈δ(β)
x µ

(1)
t Mn, µtV

n−1〉 = 〈µ(1)
t Mn, µtδ

(β)
x V n−1〉 = 〈µ(1)

t Mn, δ
(1)
t Mn〉 = 1

2δtµt‖M
n−1‖22, (5.30)

〈δ(β)
x µ

(1)
t |Un|2, µtV n−1〉 = 〈µ(1)

t |Un|2, µtδtMn−1〉 = 〈µ(1)
t |Un|2, δ

(1)
t Mn〉. (5.31)

This completes the proof of this result.

80



Let (Un)n∈IN−1 , (Mn)n∈IN−1 ⊆ V̊h. For convenience, we define L = LU × LM : V̊h × V̊h →
V̊h × V̊h by

LU (Unj ,Mn
j ) = δ

(2)
t Unj − δ(α)

x µ
(1)
t Unj + µ

(1)
t Unj

[
1 + µ

(1)
t Mn

j + µ
(1)
t |Unj |2

]
, ∀(j, n) ∈ I, (5.32)

LM (Unj ,Mn
j ) = δ

(2)
t Mn

j − δ(β)
x µ

(1)
t Mn

j − δ(β)
x µ

(1)
t |Unj |2, ∀(j, n) ∈ I. (5.33)

As expected, we define L(Un,Mn) = (L(Unj ,Mn
j ))j∈IJ for each n ∈ IN−1, and let L(U,M) =

(L(Un,Mn))n∈IN−1 . Let us introduce also the continuous operator L = Lu×Lm, defined for each
(u,m) and ∀(x, t) ∈ Ω, by

Lu(u(x, t),m(x, t)) = ∂2u(x, t)
∂t2

− ∂αu(x, t)
∂|x|α

+ u(x, t) +m(x, t)u(x, t) + |u(x, t)|2u(x, t), (5.34)

Lm(u(x, t),m(x, t)) = ∂2m(x, t)
∂t2

− ∂βm(x, t)
∂|x|β

− ∂β
(
|u(x, t)|2

)
∂|x|β

. (5.35)

Also, for each x ∈ {xL, xR} and t ∈ [0, T ], we let L(u(x, t),m(x, t)) = 0. Let L(un,mn) =
(L(unj ,mn

j ))j∈IJ for each n ∈ IN−1, and define L(u,m) = (L(un,mn))n∈IN−1 . Similarly, let
L(un,mn) = (L(unj ,mn

j ))j∈IJ ∈ V̊h for each n ∈ IN−1, and L(u,m) = (L(un,mn))n∈IN−1 .

Theorem 5.2.4 (Energy conservation). If (U,M) is a solution of (5.5), then the quantities (5.28)
are constant.

Proof. We only need to apply Lemma 5.2.3 to obtain δtE
n−1 = 0. The conclusion follows by

induction.

Lemma 5.2.5 (Young’s inequality). Let a, b ∈ R+ ∪ {0}, and let p, q ∈ (1,∞) be such that
1
p + 1

q = 1. For each ε > 0, the following inequality holds:

ab ≤ |a|
p

pε
+ ε|b|q

q
. (5.36)

Definition 5.2.6. Let (Un)n∈IN be any sequence in Vh, let Φ ∈ Vh and assume that g : R→ R
is a function. We define

µ
(1)
t,Φ[g(Unj )] = 1

2

[
g(Φj) + g(Un−1

j )
]
, ∀(j, n) ∈ IJ × IN−1. (5.37)

Lemma 5.2.7. Let U = (Un)n∈IN and M = (Mn)n∈IN be sequences in V̊h, and assume that U
is a sequence of complex functions while the functions of M are real. The following identities are
satisfied, for each n ∈ IN−1 and Φ,Ψ ∈ V̊h:

(a) 4 Re
〈

(µ(1)
t,Φ|U

n|2)(µ(1)
t,ΦU

n),Φ− Un−1
〉

= ‖Φ‖44 − ‖Un−1‖44.

(b) 4 Re
〈

(µ(1)
t,ΨM

n)(µ(1)
t,ΦU

n),Φ− Un−1
〉

= 〈Ψ +Mn−1, |Φ|2 − |Un−1|2〉.

(c) 2 Re
〈
µ

(1)
t,ΦU

n,Φ− Un−1
〉

= ‖Φ‖22 − ‖Un−1‖22.

(d) 2 Re
〈
−δ(α)

x µ
(1)
t,ΦU

n,Φ− Un−1
〉

= ‖δ(α/2)
x Φ‖22 − ‖δ(α/2)

x Un−1‖22.

(e) 2
〈
−δ(β)

x µ
(1)
t,ΨM

n,Ψ−Mn−1
〉

= ‖δ(β/2)
x Ψ‖22 − ‖δ(β/2)

x Mn−1‖22.

Additionally, the following inequalities are satisfied for each λ ∈ [0, 1]:
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(f) Re〈−2λUn,Φ− Un−1〉 ≥ −λ
3‖Φ‖

2
2 − C1.

(g) Re〈Φ + λUn−1,Φ− Un−1〉 ≥
(
1− λ+1

6

)
‖Φ‖22 − C2.

(h) 〈Ψ− 2λMn + λMn−1,Ψ−Mn−1〉 ≥
[
1− 1

20(3λ+ 1)
]
‖Ψ‖22 − C3.

(i) λτ2〈−δ(β)
x µ

(1)
t,Φ|Un|2,Ψ−Mn−1〉 ≥ −λτ2g

(β)
0

ε1hβ−1 ‖Φ‖44 −
λτ2ε1g

(β)
0

hβ−1 ‖Ψ‖22 − C4, for each ε1 > 0.

(j) λτ2 Re〈(µ(1)
t,ΨM

n)(µ(1)
t,ΦU

n),Φ − Un−1〉 ≥ −λτ2

8

(
1 + 1

ε2

)
‖Ψ‖22 − λτ2

8

(
ε2 + 1

2

)
‖Φ‖44 − C5, for

each ε2 > 0.

Here, the constants C1, . . . , C5 ∈ R+ depend only on Un, Un−1, Mn and Mn−1. Additionally, C4
depends on ε1, and C5 depends on ε2.

Proof. The proofs of most of these relations are straightforward. To prove (i), notice that

λτ2〈−δ(2)
x µ

(1)
t,Φ|U

n|2,Ψ−Mn−1〉 ≥ −λτ
2

2

∣∣∣〈δ(β/2)
x (|Φ|2 + |Un−1|2), δ(β/2)

x (Ψ−Mn−1)〉
∣∣∣

≥ −λτ
2

4ε1
‖δ(β/2)
x (|Φ|2 + |Un−1|2)‖22 −

λτ2ε1
4 ‖δ(β/2)

x (Ψ−Mn−1)〉‖22

≥ −λτ
2

2ε1

[
‖δ(β/2)
x |Φ|2‖22 − ‖δ(β/2)

x |Un−1|2‖22
]

− λτ2ε1
2

[
‖δ(β/2)
x Ψ‖22 − ‖δ(β/2)

x Mn−1‖22
]

≥ −λτ
2g

(β)
0

ε1hβ−1 ‖Φ‖
4
4 −

λτ2ε1g
(β)
0

hβ−1 ‖Ψ‖22 − C4,

(5.38)
where C4 = λτ2g

(β)
0

hβ−1

(
1
ε1
‖Un−1‖44 + ε1‖Mn−1‖22

)
.

Lemma 5.2.8 (Leray–Schauder fixed-point theorem). Let X be a Banach space, and let F :
X → X be continuous and compact. If the set S = {x ∈ X : λF (x) = x for some λ ∈ [0, 1]} is
bounded, then F has a fixed point.

Theorem 5.2.9 (Solubility). The numerical model (5.24) is solvable for any set of initial con-
ditions whenever

τ2 < min

4
5 ,

1
5

(
hβ−1

4g(β)
0

)2
 . (5.39)

Proof. The approximations (U0,M0) and (U1,M1) are defined through the initial data, so assume
that (Un−1,Mn−1) and (Un,Mn) have been already obtained, for some n ∈ IN−1. Let X =
V̊h × V̊h and define the function F : X → X as F = G×H, where G,H : X → V̊h. In turn, for
each j ∈ IJ−1 and Φ,Ψ ∈ V̊h, we let

Gj(Φ,Ψ) = 2Unj − Un−1
j + τ2δ(α)

x µ
(1)
t,ΦU

n
j − τ2µ

(1)
t,ΦU

n
j

[
1 + µ

(1)
t,ΨM

n
j + µ

(1)
t,Φ|U

n
j |2
]
, (5.40)

Hj(Φ,Ψ) = 2Mn
j −Mn−1

j + τ2δ(β)
x µ

(1)
t,ΨM

n
j + τ2δ(β)

x µ
(1)
t,Φ|U

n
j |2. (5.41)

In the case when j ∈ {0, J}, we let Gj(Φ,Ψ) = Hj(Φ,Ψ) = 0. It is obvious that F is a continuous
and compact map from the Banach space X into itself. We will prove next that S of Lemma 5.2.8
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is a bounded subset of X. Let (Φ,Ψ) ∈ X and λ ∈ [0, 1] satisfy λF (Φ,Ψ) = (Φ,Ψ). Equivalently,
the following identities hold for each n ∈ IN−1:

0 = Φ− 2λUn + λUn−1 − λτ2δ(α)
x µ

(1)
t,ΦU

n + λτ2µ
(1)
t,ΦU

n + λτ2
(
µ

(1)
t,ΦU

n
) [
µ

(1)
t,ΨM

n + µ
(1)
t,Φ|U

n|2
]
,

(5.42)

0 = Ψ− 2λMn + λMn−1 − λτ2δ(β)
x µ

(1)
t,ΨM

n − λτ2δ(β)
x µ

(1)
t,Φ|U

n|2, (5.43)

Note now that (5.39) assures that 16g(β)
0

hβ−1 < hβ−1

5τ2g
(β)
0

and 5τ2

8 < 1
2 . Take the real part of the inner

product of both sides of the equation 0 = Φ − λG(Φ,Ψ) with Φ − Un−1. At the same time,
take the inner product of both sides of the equation 0 = Ψ − λH(Φ,Ψ) with Ψ −Mn−1. Add
both results, use the identities and inequalities of Lemma 5.2.7 with ε1 ∈

(
16g(β)

0
hβ−1 ,

hβ−1

5τ2g
(β)
0

)
and

ε2 ∈
(

5τ2

8 , 1
2

)
, rearrange terms and simplify to obtain

0 ≥ λτ2

4
(
‖Φ‖44 − ‖Un−1‖44

)
+ λτ2

2
(
‖Φ‖22 − ‖Un−1‖22

)
+ λτ2

2
(
‖δ(α/2)
x Φ‖22 − ‖δ(α/2)

x Un−1‖22
)

+ λτ2

2
(
‖δ(β/2)
x Ψ‖22 − ‖δ(β/2)

x Mn−1‖22
)
− λτ2

8

( 1
ε2

+ 1
)
‖Ψ‖22 −

λτ2

8

(
ε2 + 1

2

)
‖Φ‖44

+
(

1− λ+ 1
6

)
‖Φ‖22 −

λ

3 ‖Φ‖
2
2 +

(
1− 3λ+ 1

20

)
‖Ψ‖22 −

λτ2g
(β)
0

ε1hβ−1 ‖Φ‖
4
4 −

λτ2ε1g
(β)
0

hβ−1 ‖Ψ‖22 − C6,

(5.44)
where C6 = C1 + C2 + C3 + C4 + C5, and the constants C1, . . . , C5 ∈ R+ are those of Lemma
5.2.7. Rearranging terms and using the fact that λ ∈ [0, 1], we obtain that

K1‖Φ‖22 +K2‖Φ‖44 +K3‖Ψ‖22 ≤ C, (5.45)

with

K1 = 1 + λτ2

2 − 3λ+ 1
6 ≥ 1

3 , (5.46)

K2 = λτ2

4

[
1− 4g(β)

0
ε1hβ−1 −

1
2

(
ε2 + 1

2

)]
>
λτ2

4

(
1− 1

4 −
1
2

)
= λτ2

16 , (5.47)

K3 = 1− λτ2
(
ε1g

(β)
0

hβ−1 + 1
8ε2

+ 1
8

)
− 3λ+ 1

20 ≥ 1− τ2
( 1

5τ2 + 1
5τ2 + 1

8

)
− 1

5 >
3
10 , (5.48)

C = C6 + τ2

2

(1
2‖U

n−1‖44 + ‖Un−1‖22 + ‖δ(α/2)
x Un−1‖22 + ‖δ(β/2)

x Mn−1‖22
)
. (5.49)

The inequalities were obtained using the ranges of ε1 and ε2, and that λ ∈ [0, 1]. It follows that
K1, K2 and K3 are positive and, moreover, that 1

3‖Φ‖
2
2 + 3

10‖Ψ‖
2
2 ≤ C. As a consequence, the set

S is bounded, and the Leray–Schauder theorem guarantees that the system (5.24) has a solution
(Un+1,Mn+1). The result follows now by induction.

Theorem 5.2.10 (Boundedness). Let u0,m0 ∈ H1 and u1,m1 ∈ L2, and suppose that (U,M) is
the corresponding solution of (5.24). Then there exists C ∈ R+ such that

max
{
‖δtUn‖2, ‖δ(α/2)

x Un‖2, ‖Un‖2, ‖Mn‖2, ‖Un‖4, ‖δ(β/2)
x V n‖2

}
≤ C, ∀n ∈ IN . (5.50)
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Proof. By Theorem 5.2.4, for each n ∈ IN−1, the quantities En are all equal to a constant C0 ∈ R.
Notice that

C0 ≥ ‖δtUn‖22+µt‖δ(α/2)
x Un‖22+µt‖Un‖22+1

2µt‖U
n‖44+1

2µt‖M
n‖22+1

2‖δ
(β/2)
x V n‖22−

∣∣∣µt〈Mn, |Un|2〉
∣∣∣ .

(5.51)
Applying Young’s inequality, we have∣∣∣µt〈Mn, |Un|2〉

∣∣∣ ≤ 1
2µt‖M

n‖22 + 1
2µt‖U

n‖44 and
∣∣∣µt〈Mn, |Un|2〉

∣∣∣ ≤ 1
4µt‖M

n‖22 + µt‖Un‖44.
(5.52)

Using the first inequality of (5.52) in (5.51), implies

C0 ≥ ‖δtUn‖22 + µt‖δ(α/2)
x Un‖22 + µt‖Un‖22 + 1

2‖δ
(β/2)
x V n‖22. (5.53)

In particular, ‖Un‖2 is bounded and, as a consequence, ‖Un‖4 is also bounded. Now, removing
some terms in (5.51) and using the second inequality of (5.52), it follows that C ≥ C0+µt‖Un‖44 ≥
1
2µt‖M

n‖22.

Theorem 5.2.11 (Consistency). Suppose that u,m ∈ C5,4
x,t (Ω). Then there exists a constant

C which is independent of τ and h, such that |‖(L − L)(u,m)‖|∞ ≤ C(τ2 + h2) and |‖(H −
H)(u,m)‖|∞ ≤ C(τ2 + h2).

Proof. Using the classical argument based on Taylor approximations, the mean value theorem
and the smoothness of u, it is easy to prove that there exists constants C1, C2 ∈ R+, such that∣∣∣∣∣∂2m(x, t)

∂x2 − δ(β)
x µ

(1)
t mn

j

∣∣∣∣∣ ≤ C1(τ2 + h2), ∀(j, n) ∈ IJ × IN−1 (5.54)∣∣∣∣∣∂2 (|u(x, t)|2
)

∂x2 − δ(β)
x µ

(1)
t |unj |2

∣∣∣∣∣ ≤ C2(τ2 + h2), ∀(j, n) ∈ IJ × IN−1. (5.55)

The conclusion is obtained in similar fashion as in [35], considering the above inequalities.

Next, we prove the stability and convergence properties of (5.5). For that reason, in the
following, (u0, u1,m0,m1) and (ũ0, ũ1, m̃0, m̃1) will represent two sets of initial conditions of (5.5),
and we will assume that the initial data for (5.24) are provided exactly. Moreover, if f : F → F
and V ∈ V̊h, then we define δ̃(f(Vj)) = f(Ṽj) − f(Vj), for each j ∈ IJ−1 and F = R,C. The
following results will be crucial to establish the remaining numerical properties.

Lemma 5.2.12 (Maćıas-Dı́az [49]). If V ∈ Vh and α ∈ (1, 2] then

(a) ‖δ(α/2)
x V ‖22 ≤ 2g(α)

0 h1−α‖V ‖22,

(b) ‖δ(α)
x V ‖22 = ‖δ(α/2)

x δ
(α/2)
x V ‖22, and

(c) ‖δ(α)
x V ‖22 ≤ 2g(α)

0 h1−α‖δ(α/2)
x V ‖22 ≤ 4

(
g

(α)
0 h1−α

)2
‖V ‖22.

Lemma 5.2.13 (Gronwall’s inequality [105]). Assume that N ∈ N with N > 1. Let (ωn)n∈IN
and (Cn)n∈IN be sequences of real numbers, and let A, B and Cn be nonnegative numbers, for
each n ∈ IN . Suppose that τ ∈ R+, and that

ωn − ωn−1 ≤ Aτωn +Bτωn−1 + Cnτ, ∀n ∈ IN . (5.56)

If (A+B)τ ≤ (N − 1)/(2N) then

max
n∈IN

|ωn| ≤

ω0 + τ
∑
k∈IN

Ck

 e2(A+B)Nτ . (5.57)
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Lemma 5.2.14. Let u0,m0, ũ0, m̃0 ∈ H1(B) and u1,m1, ũ1, m̃1 ∈ L2(B). Suppose that (U,M)
and (Ũ , M̃) are the solutions of (5.24) corresponding to (u0, u1,m0,m1) and (ũ0, ũ1, m̃0, m̃1),
respectively. Let εn = Ũn − Un and ζn = M̃n −Mn, for each n ∈ IN , and define

ωn = ‖δtεn‖22 + µt‖δ(α/2)
x εn‖22 + µt‖εn‖22 + ‖δ(β/2)

x υn‖22 + µt‖ζn‖22, ∀n ∈ IN−1. (5.58)

If τ is sufficiently small, then there exists a constant C ∈ R independent of h and τ , such that
ωn ≤ ω0 exp(CT ), for each n ∈ IN−1.

Proof. It is easy to check that the sequence (ε, ζ) satisfies ∀(j, n) ∈ I, the following system

δ
(2)
t εnj − δ

(α)
x µ

(1)
t εnj + µ

(1)
t εnj + δ̃

[(
µ

(1)
t Mn

j

) (
µ

(1)
t Unj

)]
+ δ̃

[(
µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)]
= 0,

δ
(2)
t ζnj − δ

(β)
x µ

(1)
t ζnj − δ̃

(
δ

(β)
x µ

(1)
t |Unj |2

)
= 0,

subject to εn0 = εnJ = 0 and ζn0 = ζnJ = 0, ∀n ∈ IN .
(5.59)

For each n ∈ IN , define the difference υn = Ṽ n−V n and, as a consequence, we have δ(β)
x υn = δtζ

n.
The following identities are obtained using similar arguments to the Lemma 5.2.3

(i) 2 Re〈δ(2)
t εn, δ

(1)
t εn〉 = δt‖δtεn−1‖22,

(ii) 2 Re〈−δ(α)
x µ

(1)
t εn, δ

(1)
t εn〉 = δtµt‖δ(α/2)

x εn−1‖22,

(iii) 2 Re〈µ(1)
t εn, δ

(1)
t εn〉 = δtµt‖εn−1‖22,

(iv) −2〈δ(2)
t ζn, µtυ

n−1〉 = δt‖δ(β/2)
x υn−1‖22, and

(v) 2〈δ(β)
x µ

(1)
t ζn, µtυ

n−1〉 = δtµt‖ζn−1‖22.

Since the set {‖Un‖2, ‖Ũn‖2, ‖Mn‖2, ‖M̃n‖2 : n ∈ IN−1} is bounded, we can show that there
exist C1, C2 ∈ R+, such that

Re
〈
δ̃
[(
µ

(1)
t Mn

) (
µ

(1)
t Un

)]
, δ

(1)
t εn

〉
= Re

〈(
µ

(1)
t ζn

) (
µ

(1)
t Ũn

)
+
(
µ

(1)
t Mn

) (
µ

(1)
t εn

)
, δ

(1)
t εn

〉
≤ 1

2

(∥∥∥(µ(1)
t ζn

) (
µ

(1)
t Ũn

)∥∥∥2

2
+
∥∥∥(µ(1)

t Mn
) (
µ

(1)
t εn

)∥∥∥2

2

)
+ ‖δ(1)

t εn‖22

≤ C1
4
(
‖ζn+1‖22 + ‖ζn−1‖22 + ‖εn+1‖22 + ‖εn−1‖22

)
+ 1

2µt‖δtε
n−1‖22

≤ C2
(
µt‖δtεn−1‖22 + µ

(1)
t

[
‖ζn‖22 + ‖εn‖22 + ‖δ(α/2)

x εn‖22
])
.

(5.60)

In similar fashion, it is also easy to prove the existence of C3, C4 ∈ R+, such that

Re
〈
δ̃
[(
µ

(1)
t |Un|2

) (
µ

(1)
t Un

)]
, δ

(1)
t εn

〉
≤ C3

(
µ

(1)
t ‖εn‖22 + µt‖δtεn−1‖22

)
, (5.61)〈

δ̃
(
δ(β)
x µ

(1)
t |Un|2

)
, µtυ

n−1
〉
≤ C4

(
µ

(1)
t ‖εn‖22 + µt‖δtζn−1‖22

)
. (5.62)

Take the real part of the inner product between the first equation in (5.59) and 2δ(1)
t εn, and

compute the inner product of the second equation with 2δtζn−1. Using identities (i)–(v) and
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inequalities (5.60)–(5.62), simplify algebraically and rearrange terms we show that there exists
C5 ∈ R+ such that the following inequalities are satisfied for each n ∈ IN−1:

δt‖δtεn−1‖22 + δ
(1)
t

[
‖δ(α/2)
x εn‖22 + ‖εn‖22

]
≤ C5

(
µ

(1)
t

[
‖ζn‖22 + ‖δ(α/2)

x εn‖22 + ‖εn‖22
]

+ µt‖δtεn−1‖22
)

(5.63)

δt‖δ(β/2)
x υn−1‖22 + δ

(1)
t ‖ζn‖22 ≤ C5

(
µ

(1)
t ‖εn‖22 + µt‖δtζn−1‖22

)
. (5.64)

Adding these last inequalities, we obtain that for each n ∈ IN ,

ωn − ωn−1 ≤ C5τ
(
µ

(1)
t ‖ζn‖22 + µ

(1)
t ‖δ(α/2)

x εn‖22 + 2µ(1)
t ‖εn‖22 + µt‖δtεn−1‖22 + µt‖δtζn−1‖22

)
≤ C6τ

(
ωn + ωn−1

)
(5.65)

where max
{

2, 2g(β)
0 h1−β

}
= C6/C5. If τ is sufficiently small, namely, C6τ ≤ (N − 1)/(4N), then

Gronwall’s inequality establishes the conclusion of this result with C = 4C6.

The following results are immediate consequences of Lemma 5.2.14.

Theorem 5.2.15 (Stability). If the initial data satisfy u0,m0 ∈ H1(B) and u1,m1 ∈ L2(B),
then the solutions of the numerical model (5.24) are unconditionally stable.

Theorem 5.2.16 (Uniqueness). Assume that the hypotheses of Theorem 5.2.15 are satisfied. If
τ is sufficiently small, then the numerical model (5.24) is uniquely solvable.

To establish the quadratic order of convergence of our finite-difference method, we take the
local truncation errors of the equations in (5.24) at the point (xj , tn), this is

ρnj = δ
(2)
t unj − δ(α)

x µ
(1)
t unj + µ

(1)
t unj +

(
µ

(1)
t mn

j

) (
µ

(1)
t unj

)
+
(
µ

(1)
t |unj |2

) (
µ

(1)
t unj

)
, ∀(j, n) ∈ I,

(5.66)

σnj = δ
(2)
t mn

j − δ(β)
x µ

(1)
t mn

j − δ(β)
x µ

(1)
t |unj |2, ∀(j, n) ∈ I. (5.67)

By Theorem 5.2.11, it is clear that |ρnj |+|σnj | = O(τ2+h2). Again, (u,m) will represent a solution
of the continuous problem (5.5), while (U,M) will denote the solution of (5.24) corresponding to
the same set of initial data. Under these circumstances, let εnj = unj − Unj , ηnj = mn

j −Mn
j and

δ
(β)
x θnj = δtη

n
j , for each (j, n) ∈ I. Also, if f : F → F is a function and V ∈ V̊h, then we define

δ̂(f(vj)) = f(vj)− f(Vj), for each j ∈ IJ−1 and F = R,C.

Theorem 5.2.17 (Convergence). Suppose that u,m ∈ C5,4
x,t (Ω). Then the solution of the problem

(5.24) converges to that of (5.5) with order O(τ2 +h2) in the L∞ norm for (Un)n∈IN , and in the
L2 norm for (Mn)n∈IN , when the numerical initial conditions are exact.

Proof. In light of the exactness of the initial conditions, notice firstly that (ε, η) satisfies ∀(j, n) ∈
I, the discrete system

δ
(2)
t εnj − δ

(α)
x µ

(1)
t εnj + µ

(1)
t εnj + δ̂

[(
µ

(1)
t mn

j

) (
µ

(1)
t unj

)]
+ δ̂

[(
µ

(1)
t |unj |2

) (
µ

(1)
t unj

)]
= ρnj ,

δ
(2)
t ηnj − δ

(β)
x µ

(1)
t ηnj − δ̂

(
δ

(β)
x µ

(1)
t |unj |2

)
= σnj ,

subject to
{
ε0 = η0 = ε1 = η1 = 0,
εn0 = εnJ = ζn0 = ζnJ = 0, ∀n ∈ IN .

(5.68)
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Let n ∈ IN−1. Following the argument used in the proof of Lemma 5.2.14, there exists a common
C1 ∈ R+ such that

Re〈ρn, δ(1)
t εn〉 ≤ C1

(
‖ρn‖22 + µt‖δtεn−1‖22

)
, (5.69)

Re
〈
δ̂
[(
µ

(1)
t mn

) (
µ

(1)
t un

)]
, δ

(1)
t εn

〉
≤ C1

(
µ

(1)
t ‖ηn‖22 + µ

(1)
t ‖εn‖22 + µt‖δtεn−1‖22

)
, (5.70)

Re
〈
δ̂
[(
µ

(1)
t |un|2

) (
µ

(1)
t un

)]
, δ

(1)
t εn

〉
≤ C1

(
µ

(1)
t ‖εn‖22 + µt‖δtεn−1‖22 + µ

(1)
t ‖δ(α/2)

x εn‖22
)
, (5.71)

〈σn, µtθn−1〉 ≤ C1
(
‖σn‖22 + µt‖θn−1‖22

)
, (5.72)

〈δ̂
(
δ(β)
x µ

(1)
t |unj |2

)
, µtθ

n−1〉 ≤ C1
(
µ

(1)
t ‖εn‖22 + µt‖δtηn−1‖22 + µ

(1)
t ‖δ(α/2)

x εn‖22
)
. (5.73)

Again, we take the inner product of the first vector equation of (5.68) with 2δ(1)
t εn and use

the inequalities (5.69)–(5.71). On the other hand, take the inner product of the second vector
equation with 2µtθn−1 and use (5.72) and (5.73). In such way, one can show that there exists a
constant C2 ∈ R+ such that

δt‖δtεn−1‖22 + δ
(1)
t ‖δ(α/2)

x εn‖22 + δ
(1)
t ‖εn‖22 ≤ C2

[
‖ρn‖22 + µt‖δtεn−1‖22

+ µ
(1)
t

(
‖ηn‖22 + ‖δ(α/2)

x εn‖22 + ‖εn‖22
)]
,

(5.74)

δt‖δ(β/2)
x θn−1‖22 + δ

(1)
t ‖ηn‖22 ≤ C2

[
‖σn‖22 + µ

(1)
t

(
‖εn‖22 + ‖δ(α/2)

x εn‖22
)

+µt
(
‖δtηn−1‖22 + ‖θn−1‖22

)]
.

(5.75)

respectively. Multiply (5.74) and (5.75) by τ , and adding both new inequalities, it follows that
there exists C3 ∈ R+ such that ξn − ξn−1 ≤ C3τ(‖ρn‖22 + ‖σn‖22) + C3τ(ξn + ξn−1), for each
n ∈ IN−1. Here,

ξn = ‖δtεn‖22 + µt‖δ(α/2)
x εn‖22 + µt‖εn‖22 + ‖δ(β/2)

x θn‖22 + µt‖ηn‖22, ∀n ∈ IN−1. (5.76)

Finally, as a consequence of Lemma 5.2.13, it follows that there exists C ∈ R+ such that ξn ≤
C(τ2 +h2). In particular, note that ‖εn‖2, ‖ηn‖2 ≤ C(τ2 +h2), for each n ∈ IN−1, as desired.

5.3 Explicit Model

Now, in this section, we are going to study the finale scheme. This time, an explicit model to
approximate the solutions of (5.5), given by the following algebraic system, for each ∀(j, n) ∈ I:

δ
(2)
t Unj − δ(α)

x Unj + µ
(1)
t Unj +Mn

j µ
(1)
t Unj +

(
µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)
= 0,

δ
(2)
t Mn

j − δ(β)
x Mn

j − δ(β)
x |Unj |2 = 0,

such that


U0
j = u0(xj), M0

j = m0(xj), ∀j ∈ IJ ,
δ

(1)
t U0

j = u1(xj) δ
(1)
t M0

j = m1(xj), ∀j ∈ IJ−1,

Un0 = UnJ = 0, Mn
0 = Mn

J = 0, ∀n ∈ IN .

(5.77)

Note that the numerical model (5.77) is a three-step explicit technique. The first equation of
that system yields an expression with complex parameters in which the only unknown is Un+1

j .
Moreover, the second equation of (5.77) is a fully explicit difference equation which can be easily
solved for Mn+1

j , for each (j, n) ∈ I. Using then the initial data, we readily obtain that for each
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j ∈ IJ−1, the following identities hold:

2U1
j − 2u0(xj)− 2τu1(xj)

τ2 =δ(α)
x U0

j − (U1
j − τu1(xj))

[
1 +M0

j + 1
2
(
|U1
j |2 + |U1

j − 2τu1(xj)|2
)]
,

(5.78)

M1
j =m0(xj) + τm1(xj) + τ2

2 δ
(β)
x

(
M0
j + |U0

j |2
)
. (5.79)

Again, we will let (V n)n∈IN be a sequence in V̊h such that

δ(β)
x V n

j = δtM
n
j , ∀(j, n) ∈ IJ−1 × IN−1, (5.80)

Under these circumstances, (U,M) will denote a solution of (5.77), and V = (V n)n∈IN will satisfy
(5.80).

Definition 5.3.1. Let (U,M) be a solution of (5.77). The discrete energy density at the time tn
is given by

Hn
j = |δUnj |2 − Unj δ(α)

x Un+1
j + µt|Unj |2 + 1

2 |δxV
n
j |2

+ 1
2M

n+1
j Mn

j + 1
2µt|U

n
j |4 + 1

2
[
Mn
j |Un+1

j |2 +Mn+1
j |Unj |2

]
, ∀j ∈ IJ−1.

(5.81)

The total discrete energy at the time tn is defined, for each n ∈ IN−1, by

En = ‖δtUn‖22 + Re〈δ(α/2)
x Un+1, δ(α/2)

x Un〉+ µt‖Un‖22 + 1
2‖δ

(β/2)
x V n‖22

+ 1
2〈M

n+1,Mn〉+ 1
2µt‖U

n‖44 + 1
2
[
〈Mn, |Un+1|2〉+ 〈Mn+1, |Un|2〉

]
,

(5.82)

Here, we employ the notation |Un|2 = (|Unj |2)j∈IJ , for each n ∈ IN .

There are equal terms in both schemes (5.24) and (5.77), nevertheless, we need to estimate
some new quantities in view to establish the energy conservation for (5.77).

Lemma 5.3.2. The following are satisfied for each n ∈ IN−1,

(a) 2 Re〈−δ(α)
x Un, δ

(1)
t Un〉 = δt Re〈δ(α/2)

x Un, δ
(α/2)
x Un−1〉,

(b) 2 Re〈Mnµ
(1)
t Un, δ

(1)
t Un〉 = 〈Mn, δ

(1)
t |Un|2〉,

(c) 2〈Mn, δ
(1)
t |Un|2〉+ 2〈|Un|2, δ(1)

t Mn〉 = δt
[
〈Mn−1, |Un|2〉+ 〈Mn, |Un−1|2〉

]
,

(d) Re〈Un+1, Un〉 = µt‖Un‖22 − 1
2τ

2‖δtUn‖22, ∀n ∈ IN−1,

(e) |〈Mn, |Un+1|2〉+ 〈Mn+1, |Un|2〉| ≤ µt‖Mn‖22 + µt‖Un‖44.

(f) 2〈δ(β)
x Mn, µtV

n−1〉 = δt〈Mn,Mn−1〉,

(g) 〈δ(β)
x |Un|2, µtV n−1〉 = 〈|Un|2, δ(1)

t Mn〉.

Proof. The identities (a)–(d) are straightforward and (e) is obtained applying Young’s inequality.
Finally, to prove (f) and (g), we use the property (5.80) (see [60]).

Theorem 5.3.3 (Energy conservation). If (U,M) is solution of (5.77), then the quantities (5.82)
are constant. Moreover, if g(γ)

0 τ2h1−γ < 1 holds for γ = α, and γ = β, then the constants are
nonnegative.
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Proof. The first part of the proof is very similar to that in [60], but this time using the quantities
with the term β, then, we will focus only in the second part. By Lemma 5.3.2 (d) and (e), we
have

En ≥ ‖δtUn‖22 + µt‖δ(α/2)
x Un‖22 −

1
2τ

2‖δ(α/2)
x δtU

n‖22 + µt‖Un‖22 + 1
2‖δ

(β/2)
x V n‖22 −

1
4τ

2‖δtMn‖22,
(5.83)

and, from Lemma 5.2.12, it follows that ‖δ(α)
x δtU

n‖22 ≤ 2g(α)
0 h1−α‖δtUn‖22 and ‖δtMn‖22 ≤

2g(β)
0 h1−β‖δ(β/2)

x V n‖22. Using these inequalities in (5.83), we conclude that ∀n ∈ IN−1,

En ≥
(

1− g
(α)
0 τ2

hα−1

)
‖δtUn‖22+µt‖δ(α/2)

x Un‖22+µt‖Un‖22+1
2

(
1− g

(β)
0 τ2

hβ−1

)
‖δ(β/2
x V n‖22 ≥ 0. (5.84)

For this explicit scheme, also we have consistency of order two. In fact, the proof is similar
as in Section 5.2, but this time, we are going to use

LU (Unj ,Mn
j ) = δ

(2)
t Unj − δ(α)

x Unj + µ
(1)
t Unj +Mn

j µ
(1)
t Unj +

(
µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)
, ∀(j, n) ∈ I,

(5.85)

LM (Unj ,Mn
j ) = δ

(2)
t Mn

j − δ(β)
x Mn

j − δ(β)
x |Unj |2, ∀(j, n) ∈ I. (5.86)

where L(Un,Mn) = (L(Unj ,Mn
j ))j∈IJ for each n ∈ IN−1, and L(U,M) = (L(Un,Mn))n∈IN−1 .

In similar fashion, the continuous operator L = Lu × Lm, defined for each (u,m) as in (5.34)
and (5.35). Also, for each x ∈ {xL, xR} and t ∈ [0, T ], we let L(u(x, t),m(x, t)) = 0. Let
L(un,mn) = (L(unj ,mn

j ))j∈IJ for each n ∈ IN−1, and define L(u,m) = (L(un,mn))n∈IN−1 . Sim-
ilarly, let L(un,mn) = (L(unj ,mn

j ))j∈IJ ∈ V̊h for each n ∈ IN−1, and introduce L(u,m) =
(L(un,mn))n∈IN−1 .

Theorem 5.3.4 (Consistency). Suppose that u,m ∈ C5,4
x,t (Ω). Then there exists a constant

C which is independent of τ and h, such that |‖(L − L)(u,m)‖|∞ ≤ C(τ2 + h2) and |‖(H −
H)(u,m)‖|∞ ≤ C(τ + h2).

Theorem 5.3.5 (Boundedness). Let u0,m0 ∈ H1 and u1,m1 ∈ L2(B), and suppose that (U,M)
is the solution of (5.77) corresponding to the initial data u0, m0, u1 and m1. If g(γ)

0 τ2h1−γ < 1
for γ = α, β, then there is a common bound C ∈ R+ for (‖δtUn‖2)n∈IN−1

, (‖δ(α/2)
x Un‖2)n∈IN−1

,
(‖Un‖2)n∈IN−1

, (‖δ(β/2)
x V n‖2)n∈IN−1

, (‖Mn‖2)n∈IN−1
and (‖Un‖4)n∈IN−1

.

Proof. Let n ∈ IN−1 and ε > 1. Proceeding as in [60] is easy to see that

‖δtUn‖22 + Re〈δ(α/2)
x Un+1, δ(α/2)

x Un〉 ≥ 1
ε

(
‖δtUn‖22 + µt‖δ(α/2)

x Un‖22
)
, (5.87)

and
‖δ(β/2)
x V n‖22 + 〈Mn+1,Mn〉 ≥ 1

ε

(
‖δ(β/2)
x V n‖22 + µt‖Mn‖22

)
. (5.88)

On the other hand, applying Young’s inequality we have

|〈Mn, |Un+1|2〉| ≤ ‖Mn‖22 + 1
4‖U

n+1‖44 and |〈Mn+1, |Un|2〉| ≤ 1
4ε‖M

n+1‖22 + ε‖Un‖44, (5.89)
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for each n ∈ IN−1. By Theorem 5.3.3, we know that the quantities (5.82) are equal to some C0 ≥
0. Then, let Cn0 ≥ 0 be a common bound of ‖Mn‖22 and ‖Un‖44, and define Cn1 = C0 + 1

2(ε+1)Cn0 .
Using inequalities (5.87), (5.88) and (5.89), we obtain

Cn1 ≥1
ε

(
‖δtUn‖22 + µt‖δ(α/2)

x Un‖22 + 1
2‖δ

(β/2)
x V n‖22 + 1

2µt‖M
n‖22

)
+ µt‖Un‖22 + 1

2µt‖U
n‖44

− 1
2‖M

n‖22 − 1
8‖U

n+1‖44 − 1
8ε‖M

n+1‖22 − ε
2‖U

n‖44 + 1
2(ε+ 1)

(
‖Mn‖22 + ‖Un‖44

)
≥1
ε

[
‖δtUn‖22 + µt‖δ(α/2)

x Un‖22
]

+ 1
2ε‖δ

(β/2)
x V n‖22 + µt‖Un‖22 + 1

4εµt‖M
n‖22 + 1

4µt‖U
n‖44

(5.90)

for each n ∈ IN−1. As a consequence, there exists Cn2 ≥ 0 such that

‖δtUn‖22, ‖δ(α/2)
x Un+1‖22, ‖Un+1‖22, ‖δ(β)

x V n‖22, ‖Mn+1‖22, ‖Un+1‖44 ≤ Cn2 , (5.91)

for each n ∈ IN−1. Moreover, by hypotheses there exists a common bound C0
0 ≥ 0 for ‖δtU−1‖22,

‖δ(α/2)
x U0‖22, ‖U0‖22, ‖δ(β/2)

x V −1‖22, ‖M0‖22, ‖U0‖44 and ‖U0‖22. Let n ∈ IN−1 and suppose that

‖δtUn−1‖22, ‖δ(α/2)
x Un‖22, ‖Un‖22, ‖δ(β/2)

x V n−1‖22, ‖Mn‖22, ‖Un‖44, ‖Un‖22 ≤ Cn0 , (5.92)

for some Cn0 ≥ 0. The proof follows by induction using C = Cn+1
0 = Cn2 . In fact, it is possible to

show that there exists Cn3 ≥ 0 such that ‖Un+1‖∞ ≤ Cn3 (see [35]) and take Cn+1
0 = max{Cn2 , Cn3 }

.

In the following, (u0, u1,m0,m1) and (ũ0, ũ1, m̃0, m̃1) will represent two sets of initial condi-
tions of (5.5), and we will assume that the initial data for (5.77) are provided exactly. Again, if
f : F → F and V ∈ V̊h, then we define δ̃(f(Vj)) = f(Ṽj)−f(Vj), for each j ∈ IJ−1 and F = R,C.
One more time, we are going to use Lemma 5.2.13 and proceed as in Lemma 5.2.14.

Theorem 5.3.6 (Stability). The method (5.77) is stable under the hypotheses of Theorem 5.3.5.

Proof. Let (u0, u1,m0,m1) and (ũ0, ũ1, m̃0, m̃1) be sets of initial data of (5.5), and observe that
the assumptions of Theorem 5.3.5 hold for both (U, V ) and (Ũ , Ṽ ). On the other hand, note that
(ε, ζ) satisfies the following with (j, n) ∈ I:

δ
(2)
t εnj − δ

(α)
x εnj + µ

(1)
t εnj + δ̃

[
Mn
j

(
µ

(1)
t Unj

)
+
(
µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)]
= 0,

δ
(2)
t ζnj − δ

(β)
x ζnj − δ̃

(
δ

(β)
x |Unj |2

)
= 0,

subject to εn0 = εnJ = 0 and ζn0 = ζnJ = 0, ∀n ∈ IN .
(5.93)

We want to compute the real part of the inner product between the first difference equation of
(5.93) and 2δ(1)

t εn, and the inner product of second difference equation of (5.93) with 2µtυn−1,
where υn = Ṽ n − V n and δ

(β)
x υn = δtζ

n, for each n ∈ IN−1. As we mention before, this is the
same idea that was used in Lemma 5.2.14, but with some different quantities, for instance, notice
that∣∣∣〈δ̃ [Mn

(
µ

(1)
t Un

)]
, δ

(1)
t εn

〉∣∣∣ ≤ C (µ(1)
t ‖ζn‖22 + µ

(1)
t ‖δ(α/2)

x εn‖22 + µ
(1)
t ‖εn‖22 + µt‖δtεn−1‖22

)
,

(5.94)
and ∣∣∣〈δ̃ (δ(β)

x |Un|2
)
, µtυ

n−1
〉∣∣∣ ≤ C (µt‖δ(β/2)

x υn−1‖22 + ‖δ(α/2)
x εn‖22 + ‖εn‖22

)
(5.95)

which are obtained in the same way that they were calculated in (5.60). Also, recall (5.87)
and (5.88) to compute the terms Re〈δ(α/2)

x εn, δ
(α/2)
x εn−1〉x and 〈ζn, ζn−1〉x, respectively. The

conclusion is follows using again, Gronwall’s inequality of Lemma 5.2.13. In fact, the quantity
ωn is defined as in (6.71) to obtain the inequality (5.65).
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The argument to prove our final proposition is similar to that of stability, like in Theorem
5.2.17.

Theorem 5.3.7 (Convergence). If u,m ∈ C5,4
x,t (Ω) solves (5.5), then the solution of (5.77) con-

verges to that of the continuous problem with order O(τ2 + h2) in L∞ for (Un)n∈IN , and in L2

for (Mn)n∈IN .

The remainder of this section will be devoted to study computationally the performance of
the methods proposed in this work. Our study will focus firstly on the capability of the schemes
to preserve the discrete energy throughout time. In all of our simulations, we let B = (−20, 20),
and define the functions u0, m0, u1 and m1 by

u0(x) =
√

10−
√

2
2 sech

√1 +
√

5
2 x

 exp
(
i

√
2

1 +
√

5
x

)
, ∀x ∈ B, (5.96)

m0(x) = −2 sech2

√1 +
√

5
2 x

 , ∀x ∈ B, (5.97)

u1(x) =
√

10−
√

2
2 (tanh x− 1) sech

√1 +
√

5
2 x

 exp
(
i

√
2

1 +
√

5
x

)
, ∀x ∈ B, (5.98)

m1(x) = −4 sech2

√1 +
√

5
2 x

 tanh

√1 +
√

5
2 x

 , ∀x ∈ B, (5.99)

where i2 = −1. As a matter of fact, it is worth pointing out that the exact solution of (5.5) when
α = β = 2 is given by the following exact traveling-wave solution on R× R+ (see [45, 44]):

u(x, t) =
√

10−
√

2
2 sech

√1 +
√

5
2 x− t

 exp
[
i

(√
2

1 +
√

5
x− t

)]
, ∀(x, t) ∈ R× R+,

(5.100)

m(x, t) = −2 sech2

√1 +
√

5
2 x− t

 , ∀(x, t) ∈ R× R+. (5.101)

We consider the system (5.5) with α = β and the initial data (5.96)–(5.99). Computationally,
let us fix h = 0.025 and let τ = 0.004. This study concentrates on the capability of the schemes to
preserve the energy throughout time. To that end, each experiment will determine the deviation
of the total energy of the system with respect to the energy at the initial time, and the results
will be presented as a function of the discrete time. The results of our simulations are shown in
Figure 5.1 for α = β = 1.2 (top row), α = β = 1.5 (middle row) and α = β = 1.8 (bottom row).
The graphs on the left column were obtained using the implicit scheme (5.24), while those on
the right column correspond to the explicit model (5.77). The results show that both methods
approximately preserve the energy of their systems. This is in agreement with the theoretical
results derived in this work. It is worth pointing out that the variation in the total energy
associated to the explicit scheme is smaller. However, we are convinced that this phenomenon is
due to the computational implementation of our techniques.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Graphs of the numerical deviation of discrete energy versus discrete time. The
simulations correspond to numerical solution of (5.5) subjected to the initial data (5.96)–(5.99),
on the spatial domain Ω = (20, 20). Left column: implicit model (5.24); right column: explicit
model (5.77). We used α = β = 1.2 (top row), α = β = 1.5 (middle row) and α = β = 1.8 (bottom
row). The deviations were calculated with respect to the initial energy. Computationally, we used
h = 0.025 and τ = 0004.
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6. Zakharov equations

6.1 Preliminaries

Let Iq = {1, . . . , q} and Iq = Iq ∪ {0} for q ∈ N+. We use the symbol X to denote the closure of
a set X ⊆ Rp under the usual topology of Rp, where p ∈ N+ is a fixed natural number. For the
remainder, we will suppose that T > 0 represents a fixed period of time, and B = (xL, xR) is a
nonempty interval in R. Define Ω = B× (0, T ), and agree that all the functions of this study will
be defined on the set Ω ⊆ R2. Moreover, we may extend the domain of definition of our functions
to R× [0, T ] whenever needed, and by allowing them to be equal to zero on (R \ [xL, xR])× [0, T ].

Definition 6.1.1 (Podlubny [78]). Let Γ denote the usual Gamma function which extends the
factorial function. Suppose that f : R→ R is any function, and assume that n is a non-negative
integer and α is a real number, with the property that n − 1 < α ≤ n is satisfied. Whenever it
exists, the Riesz fractional derivative of f of order α at x ∈ R is given by

dαf(x)
d|x|α

= −1
2 cos(πα2 )Γ(n− α)

dn

dxn

∫ ∞
−∞

f(ξ)dξ
|x− ξ|α+1−n . (6.1)

When u : R× [0, T ]→ R, the Riesz fractional partial derivative of u of order α with respect to x
at (x, t) ∈ R× [0, T ] is given by (when it exists)

∂αu(x, t)
∂|x|α

= −1
2 cos(πα2 )Γ(n− α)

∂n

∂xn

∫ ∞
−∞

u(ξ, t)dξ
|x− ξ|α+1−n . (6.2)

For any z ∈ C, we will represent its complex conjugate using the standard notation z. Let us
define the set Lx,p(Ω) = {f : Ω → F : f(·, t) ∈ Lp(B), for each t ∈ [0, T ]}, where p ∈ [1,∞) and
F = R,C. On the other hand, for any f ∈ Lx,p(Ω), we convey that

‖f‖x,p =
(∫

B
|f(x, t)|pdx

)1/p
, ∀t ∈ [0, T ], (6.3)

which is a function of t ∈ [0, T ]. Moreover, for each pair f, g ∈ Lx,2(Ω), define the following
function of t:

〈f, g〉x =
∫
B
f(x, t)g(x, t)dx, ∀t ∈ [0, T ]. (6.4)

For the remainder of this work, we fix α, β ∈ (1, 2]. Assume that u and m are a complex- and a
real-valued functions, respectively, whose domains are both equal to Ω. Moreover, let u0 : B → C
and m0,m1 : B → R be sufficiently smooth functions. Under these circumstances, the fractional
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extension of the Zakharov problem investigated in this work is given by the system

i
∂u(x, t)
∂t

+ ∂αu(x, t)
∂|x|α

− u(x, t)−m(x, t)u(x, t)− |u(x, t)|2u(x, t) = 0, ∀(x, t) ∈ Ω,

∂2m(x, t)
∂t2

− ∂βm(x, t)
∂|x|β

− ∂β
(
|u(x, t)|2

)
∂|x|β

= 0, ∀(x, t) ∈ Ω,

subject to


u(x, 0) = u0(x), m(x, 0) = m0(x), ∀x ∈ B,
∂m(x, 0)

∂t
= m1(x), ∀x ∈ B,

u(xL, t) = u(xR, t) = 0, m(xL, t) = m(xR, t) = 0, ∀t ∈ [0, T ].

(6.5)

Notice that the case α = β = 2 is precisely the well-known Zakharov system [102, 103]. For
convenience, we define the function v : Ω→ R in such way that

∂βv(x, t)
∂|x|β

= ∂m(x, t)
∂t

, ∀(x, t) ∈ Ω. (6.6)

Definition 6.1.2. Let u,m be a pair of functions satisfying the initial-boundary-value problem
(6.5). The mass density of the system is given by the expression M(x, t) = |u(x, t)|2, for each
(x, t) ∈ Ω. In turn, the total mass at the time t ∈ [0, T ] is calculated throughM(t) = ‖u‖2x,2. Let
us define the Hamiltonian of our fractional Zakharov equations as

H(x, t) =
∣∣∣∣∂u∂t

∣∣∣∣2 +HF (x, t), ∀(x, t) ∈ Ω. (6.7)

Here,

HF (x, t) =
∣∣∣∣∣ ∂α/2u∂|x|α/2

∣∣∣∣∣
2

+ |u|2 +m|u|2 + 1
2

∣∣∣∣∣ ∂β/2v∂|x|β/2

∣∣∣∣∣
2

+ 1
2m

2 + 1
2 |u|

4, ∀(x, t) ∈ Ω (6.8)

denotes the Higgs’ free local energy density component, and v satisfies Equation (6.6). For the
sake of simplification of the nomenclature, we obviated the dependence of all the functions on the
right-hand side of this identity with respect to (x, t). In turn, the associated total energy of the
system at the time t ∈ [0, T ] is provided then by

E(t) =
∫ ∞
−∞
H(x, t)dx =

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
+ EF (t), (6.9)

where

EF =
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 + 〈m, |u|2〉x + 1

2

∥∥∥∥∥ ∂β/2v∂|x|β/2

∥∥∥∥∥
2

x,2
+ 1

2‖m‖
2
x,2 + 1

2‖u‖
4
x,4 (6.10)

represents the Higgs’ free energy at the time t.

Theorem 6.1.3 (Conservation of mass). If u and m satisfy the problem (6.5), then the total
mass is conserved.

Proof. Take the imaginary part of the inner product between the first equation of (6.5) with u
to obtain that

0 = Im
〈
i
∂u

∂t
+ ∂αu

∂|x|α
− u−mu− |u|2u, u

〉
x

= 1
2
d

dt
‖u‖2x,2, ∀t ∈ (0, T ). (6.11)

The property of conservation of mass readily follows now from these identities.
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Theorem 6.1.4 (Conservation of free energy). If u and m satisfy (6.5), then the free energy is
non-negative and constant.

Proof. Using the first equation of (6.5), it follows that ∀t ∈ (0, T ),

0 = Re
〈
i
∂u

∂t
,
∂u

∂t

〉
x

= Re
〈
− ∂αu

∂|x|α
+ u+mu+ |u|2u, ∂u

∂t

〉
x

= 1
2
d

dt

∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 + 〈m, |u|2〉x + 1

2

∥∥∥∥∥ ∂β/2v∂|x|β/2

∥∥∥∥∥
2

x,2
+ 1

2‖m‖
2
x,2 + 1

2‖u‖
4
x,4

 . (6.12)

We conclude from this that E ′F (t) = 0, for each t ∈ [0, T ], as desired. The non-negativity of the
function EF readily follows from its definition and the fact that 〈m, |u|2〉x ≤ 1

2‖m‖
2
x,2 + 1

2‖u‖
4
x,4

by Young’s inequality.

Corollary 6.1.5 (Boundedness). Assume that u and m satisfy the initial-boundary-value problem
(6.5). Suppose also that u, ∂2u/∂x2 ∈ Lx,2(Ω). Then there exist a constant C which depends only
on the initial conditions, such that

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
+
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 +

∥∥∥∥∥ ∂β/2v∂|x|β/2

∥∥∥∥∥
2

x,2
+ ‖m‖2x,2 ≤ C, ∀t ∈ [0, T ]. (6.13)

Moreover, the functions (6.9) and (6.10) are both non-negative.

Proof. Notice that Theorem 6.1.4 assures that there exists a constant C0 ∈ R such that EF (t) =
C0, for each t ∈ [0, T ]. It is worth pointing out that C0 = EF (0), which is entirely expressed in
terms of the initial conditions. On the other hand, observe that |〈m, |u|2〉| ≤ 1

2(‖m‖22 + ‖u‖44)
holds for all t ∈ [0, T ]. Therefore, it follows that

3C0 ≥
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 −

∣∣∣〈m, |u|2〉x∣∣∣+
∥∥∥∥∥ ∂β/2v∂|x|β/2

∥∥∥∥∥
2

x,2
+ 3

2‖m‖
2
x,2 + 3

2‖u‖
4
x,4

≥
∥∥∥∥∥ ∂α/2u∂|x|α/2

∥∥∥∥∥
2

x,2
+ ‖u‖2x,2 +

∥∥∥∥∥ ∂β/2v∂|x|β/2

∥∥∥∥∥
2

x,2
+ ‖m‖2x,2 + ‖u‖4x,4.

(6.14)

Finally, we readily reach the conclusion of this result by letting C = 3C0.

Theorem 6.1.6 (Dissipation of energy). The total energy of the system (6.5) is dissipated.

Proof. We compute firstly the derivative of the first equation of (6.5). Next, we take the imaginary
part of the inner product between that derivative and ∂u

∂t to obtain, for each t ∈ [0, T ], that

0 = Im
〈
i
∂2u

∂t2
+ ∂

∂t

(
∂αut
∂|x|α

− u−mu− |u|2u
)
,
∂u

∂t

〉
x

= 1
2
d

dt

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
− Im

〈
u

(
∂m

∂t
+ u

∂u

∂t

)
,
∂u

∂t

〉
x
.

(6.15)

Using the property on the conservation of free energy and the last identity, we notice that

E ′(t) = 2 Im
〈
u

(
∂m

∂t
+ u

∂u

∂t

)
,
∂u

∂t

〉
x
, ∀t ∈ (0, T ). (6.16)

We conclude that the total energy of the system (6.5) is dissipated, as desired.
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Before we close this section, we introduce the concept of fractional centered differences which
will be the cornerstone to provide consistent a discretization for Riesz-type fractional partial
derivatives. For the remainder, we will employ the discrete spatial step-size h = (xR − xL)/J .

Definition 6.1.7 (Ortigueira [73]). Suppose that f : R → R is a function, and let α and h be
real numbers such that α ∈ (0, 1) ∪ (1, 2] and h > 0. Let (g(α)

k )∞k=−∞ be the two-sided infinite
sequence given by

g
(α)
k = (−1)kΓ(α+ 1)

Γ(α2 − k + 1)Γ(α2 + k + 1) , ∀k ∈ Z. (6.17)

When it exists, the fractional-order centered difference of order α of f at the point x is defined
as

∆α
hf(x) =

∞∑
k=−∞

g
(α)
k f(x− kh), ∀x ∈ R, (6.18)

It is well known [97] that the sequence (g(α)
k )∞k=−∞ satisfies the following properties when

α ∈ (0, 1) ∪ (1, 2]:

(i) g
(α)
0 ≥ 0,

(ii) g
(α)
k = g

(α)
−k < 0 for all k ≥ 1, and

(iii)
∞∑

k=−∞
g

(α)
k = 0.

Moreover, if all the derivatives of the function f : R→ R up to the order five are integrable over
R and h > 0, then the following consistency property holds true [97]:

− 1
hα

∆α
hf(x) = dαf(x)

d|x|α
+O(h2), ∀x ∈ R. (6.19)

6.2 Numerical model

For the remainder, we will use the symbol F to denote any of R or C. Let J and N be arbitrary
natural numbers, and introduce the computational constant τ = T/N . Fix regular partitions of
[xL, xR] and [0, T ], respectively, in the following way:

xL = x0 < x1 < . . . < xj < . . . < xJ = xR, ∀j ∈ IJ , (6.20)

and
0 = t0 < t1 < . . . < tn < . . . < tN = T, ∀n ∈ IN . (6.21)

Let us set unj = u(xj , tn) and mn
j = m(xj , tn), for each (j, n) ∈ IJ × IN , and agree that Unj

and Mn
j denote computational estimates for the exact values of unj and mn

j , respectively. We
employ the notation Vh to represent the vector space of all F-valued functions defined on the
set {xj : j ∈ IJ} which vanish at x0 and xJ . If V ∈ Vh, we agree that Vj = V (xj), for each
j ∈ IJ . Finally, set Un = (Unj )j∈IJ ∈ Vh and Mn = (Mn

j )j∈IJ ∈ Vh, and let U = (Un)n∈IN and
M = (Mn)n∈IN .
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Definition 6.2.1. Let 1 ≤ q <∞. The functions 〈·, ·〉 : Vh × Vh → C and ‖ · ‖q, ‖ · ‖∞ : Vh → R
are defined by

〈U, V 〉 = h
∑
j∈IJ

UjVj , ∀U, V ∈ Vh, (6.22)

‖U‖qq = h
∑
j∈IJ

|Uj |q, ∀U ∈ Vh, (6.23)

‖U‖∞ = max
{
|Uj | : j ∈ IJ

}
, U ∈ Vh. (6.24)

Moreover, for any V = (V n)n∈IN ⊆ Vh we define |‖V ‖|∞ = sup{‖V n‖∞ : n ∈ IN}.

Definition 6.2.2. Let V be U or M , and assume α ∈ (0, 1) ∪ (1, 2]. Introduce the discrete
operators

δxV
n
j =

V n
j+1 − V n

j

h
, ∀(j, n) ∈ IJ−1 × IN , (6.25)

δtV
n
j =

V n+1
j − V n

j

τ
, ∀(j, n) ∈ IJ × IN−1, (6.26)

µtV
n
j =

V n+1
j + V n

j

2 , ∀(j, n) ∈ IJ × IN−1, (6.27)

µ
(1)
t V n

j =
V n+1
j + V n−1

j

2 , ∀(j, n) ∈ IJ × IN−1. (6.28)

Using these definitions, we introduce the operators δ(2)
x V n

j = δx ◦ δxV n
j−1, δ(1)

t V n
j = µt ◦ δtV n−1

j ,
δ

(2)
t V n

j = δt ◦ δtV n−1
j and µ

(2)
t V n

j = µt ◦ µtV n−1
j , for each (j, n) ∈ IJ−1 × IN . Moreover, let

δ(α)
x V n

j = − 1
hα

∑
k∈IJ

g
(α)
j−kV

n
k , ∀(j, n) ∈ IJ−1 × IN . (6.29)

Lemma 6.2.3 (Maćıas-Dı́az [49]). Assume that α ∈ (1, 2] and U, V ∈ Vh. Then 〈−δ(α)
x U, V 〉 =

〈δ(α/2)
x U, δ

(α/2)
x V 〉.

With this nomenclature, the discrete model proposed in the present manuscript to approxi-
mate the solutions of (6.5) is summarized as the following coupled system of algebraic equations:

iδ
(1)
t Unj + δ(α)

x µ
(1)
t Unj − µ

(1)
t Unj −Mn

j µ
(1)
t Unj −

(
µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)
= 0, ∀(j, n) ∈ I,

δ
(2)
t Mn

j − δ(β)
x Mn

j − δ(β)
x |Unj |2 = 0, ∀(j, n) ∈ I,

such that


U0
j = u0(xj), M0

j = m0(xj), ∀j ∈ IJ ,
µ

(1)
t U0

j = u0(xj), δ
(1)
t M0

j = m1(xj), ∀j ∈ IJ−1,

Un0 = UnJ = 0, Mn
0 = Mn

J = 0, ∀n ∈ IN .

(6.30)

The first equation of this system yields an expression with complex parameters in which the only
unknown is Un+1

j . Moreover, the second equation of (6.30) is a fully explicit difference equation
which can be easily solved for Mn+1

j , for each (j, n) ∈ I. Using then the initial data, we readily
obtain that for each j ∈ IJ−1, the following identities hold:

U1
j =u0(x) + iτ

[
δ(α)
x u0(xj)− u0(xj)

(
1 +M0

j + 1
2
(
|Uj |2 + |2u0(xj)− U1

j |2
))]

, (6.31)

M1
j =m0(xj) + τm1(xj) + τ2

2 δ
(β)
x

(
m0(xj) + |u0(xj)|2

)
. (6.32)
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For the remainder of this manuscript, we will employ the sequence (V n)n∈IN in V̊h which
satisfies δ(β)

x V n
j = δtM

n
j , for each (j, n) ∈ IJ−1 × IN−1. Under these circumstances, (U,M) will

denote a solution of (6.30).

Lemma 6.2.4 (Maćıas-Dı́az [49]). If V ∈ Vh and α ∈ (1, 2] then

(a) ‖δ(α/2)
x V ‖22 ≤ 2g(α)

0 h1−α‖V ‖22,

(b) ‖δ(α)
x V ‖22 = ‖δ(α/2)

x δ
(α/2)
x V ‖22,

(c) ‖δ(α)
x V ‖22 ≤ 2g(α)

0 h1−α‖δ(α/2)
x V ‖22 ≤ 4

(
g

(α)
0 h1−α

)2
‖V ‖22.

In a first stage, we will prove the existence of solutions for the numerical model (6.30). The
cornerstone in our proof will be the following fixed-point result from the standard literature.

Lemma 6.2.5 (Browder fixed-point [26]). Let (H, 〈·, ·〉) be a finite-dimensional inner-product
space, let ‖ · ‖ : H → H be the norm induced by 〈·, ·〉, and suppose that F : H → H is continuous.
Assume that there exists λ > 0 such that Re〈F (z), z〉 > 0, for all z ∈ H with ‖z‖ = λ. Then,
there is z∗ ∈ H, such that F (z∗) = 0 and ‖z∗‖ ≤ λ.

Theorem 6.2.6 (Solubility). The model (6.30) is solvable for any set of initial conditions.

Proof. Notice that the approximation (U0,M0) is defined by the initial conditions. Proceeding
inductively, suppose that (Un−1,Mn−1) and (Un,Mn) have been already obtained for some n ∈
IN−1. In a first stage, observe that the second equation of (6.30) can be written as AΨ = b,
where Ψ is the unknown vector of approximations at time tn+1, and the matrix A and the vector
b, are given by

A = 1
τ2



τ2 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 τ2


(6.33)

and

b =



0
δ

(β)
x |Un1 |2 + δ

(β)
x Mn

1 + 1
τ2

(
2Mn

1 −Mn−1
1

)
δ

(β)
x |Un2 |2 + δ

(β)
x Mn

2 + 1
τ2

(
2Mn

2 −Mn−1
2

)
...

δ
(β)
x |UnJ−1|2 + δ

(β)
x Mn

J−1 + 1
τ2

(
2Mn

J−1 −M
n−1
J−1

)
0


. (6.34)

Since A is nonsingular, there exists a vector Mn+1 which satisfies the system consisting of all the
second difference equations of (6.30) at time tn. On the other hand, observe that we can rewrite
the first equation of (6.30) as

µ
(1)
t Unj − Un−1

j + iτ
[
−δ(α)

x µ
(1)
t Unj + µ

(1)
t Unj +Mn

j µ
(1)
t Unj +

(
µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)]
= 0. (6.35)

Now, let us consider the function F : Vh → Vh, where each of the component functions of F is
given by

Fj(η) = ηnj − Un−1
j + iτ

[
−δ(α)

x ηnj + ηnj +Mn
j η

n
j +

(
µ

(1)
t |Unj |2

)
ηnj

]
, ∀η ∈ Vh, j ∈ IJ−1. (6.36)
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Then, taking the real part of the inner product between above identity and η, we obtain

Re〈F (η), η〉 = ‖η‖22 − Re〈Un−1, η〉 ≥ ‖η‖22 − |〈Un−1, η〉| ≥ 1
2
(
‖η‖22 − ‖Un−1‖22

)
. (6.37)

Applying Browder’s fixed-point theorem with λ = ‖Un−1‖22 + 1, it follows that there exists a
vector Un+1 ∈ Vh which satisfies the remaining equation of (6.30).

Definition 6.2.7. Let (U,M) be a solution of (6.30). The discrete mass density of (6.30) at
the point xj and time tn is given by µt|Unj |2, for each (j, n) ∈ IJ−1 × IN−1. In turn, the total
discrete mass of the system at time tn is given by µt‖Un‖22, for each n ∈ IN−1. The discrete
energy density at the point xj and time tn is given by

Hn
j = |δtUnj |2 + µt|δ(α/2)

x Unj |2 + µt|Unj |2 + 1
2 |δ

(β/2)
x V n

j |2

+ 1
2M

n+1
j Mn

j + 1
2µt|U

n
j |4 + 1

2
[
Mn
j |Un+1

j |2 +Mn+1
j |Unj |2

]
, ∀(j, n) ∈ IJ−1 × IN−1.

(6.38)
In turn, the total discrete energy at the time tn is defined, for each n ∈ IN−1, by

En = h
∑
j∈J

Hn
j = ‖δtUn‖22 + EnF , (6.39)

where

EnF = µt‖δ(α/2)
x Un‖22 + µt‖Un‖22 + 1

2‖δ
(β/2)
x V n‖22 + 1

2〈M
n+1,Mn〉+ 1

2µt‖U
n‖44

+ 1
2
[
〈Mn, |Un+1|2〉+ 〈Mn+1, |Un|2〉

]
,

(6.40)

Here, the nomenclature |Un|2 = (|Unj |2)j∈IJ is observed, for each n ∈ IN .

Theorem 6.2.8 (Conservation of discrete mass). If (U,M) is a solution of (6.30), then the total
discrete mass is conserved with respect to the discrete time.

Proof. Rewrite the first difference equation of the discrete model (6.30), compute the inner prod-
uct on both sides with µ

(1)
t Unj and take imaginary parts. As a consequence, we readily check

that
0 = Im

〈
−iδ(1)

t Un, µ
(1)
t Un

〉
= 1

2δ
(1)
t ‖Un‖22 = 1

2δtµt‖U
n‖22, ∀n ∈ IN−1, (6.41)

which yields what we wanted to prove.

Theorem 6.2.9 (Conservation of discrete free energy). Suppose that (U,M) is a solution of
(6.30). Then the discrete free energy EnF is constant. Moreover, if τ2g

(β)
0 h1−β < 1, then EnF ≥ 0

and En ≥ 0, for each n ∈ IN−1.

Proof. Notice that, for each n ∈ IN−1, the following identities are satisfied:

0 = Re
〈
iδ

(1)
t Un, δ

(1)
t Un

〉
= Re

〈
−δ(α)

x µ
(1)
t Un + µ

(1)
t Un

(
1 +Mn + µ

(1)
t |Un|2

)
, δ

(1)
t Un

〉
, (6.42)

0 = 〈−δ(2)
t Mn + δ(β)

x Mn + δ(β)
x |Un|2, µtV n−1〉+ 〈|Un|2δ(1)

t Mn〉 (6.43)

+ 1
2δt

(
‖δ(β/2)
x V n−1‖22 + 〈Mn,Mn−1〉

)
. (6.44)
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Using identities of [63] and calculating the right-hand side of the first of these identities, we obtain
that

δtµt

(
‖δ(α/2)
x Un−1‖22 + ‖Un−1‖22 + 1

2‖U
n−1‖44

)
+ 〈Mn, δ

(1)
t Un〉 = 0, ∀n ∈ IN−1. (6.45)

Observe that the identity 〈Mn, δ
(1)
t Un〉+ 〈|Un|2, δ(1)

t Mn〉 = 1
2δt
[
〈Mn−1, |Un|2〉+ 〈Mn, |Un−1|2〉

]
is satisfied, for each n ∈ IN−1. Finally, sum (6.44) and (6.45) to reach δtE

n−1
F = 0. For the

second part, notice that Lemma 6.2.4(c) implies that hβ−1‖δtMn‖22 ≤ 2g(β)
0 ‖δ

(β/2)
x V n‖22. More-

over, rearranging terms, using some algebraic simplifications and applying the Cauchy–Schwarz
inequality, we may observe that

〈Mn+1,Mn〉 = µt‖Mn‖22 −
τ2

2 ‖δtM
n‖22, ∀n ∈ IN−1, (6.46)

〈Mn, |Un+1|2〉+ 〈Mn+1, |Un|2〉| ≤ µt‖Mn‖22 + µt‖Un‖44, ∀n ∈ IN−1. (6.47)

As a consequence,

EnF ≥ µt‖δ(α/2)
x Un‖22 + µt‖Un‖22 + 1

4

(
hβ−1

g
(β)
0
− τ2

)
‖δtMn‖22 ≥ 0, ∀n ∈ IN−1. (6.48)

Moreover, En = ‖δtUn‖22 + EnF ≥ 0, whence the conclusion of this result readily follows.

Theorem 6.2.10 (Boundedness). Let u0,m0 ∈ H1 and u1,m1 ∈ L2(B), and suppose that (U,M)
is the solution of (6.30) corresponding to the initial data u0, m0, u1 and m1. If g(β)

0 τ2h1−β < 1,
then the sequences (‖δ(α/2)

x Un‖2)n∈IN−1
, (‖Un‖2)n∈IN−1

, (‖δ(β/2)
x V n‖2)n∈IN−1

, (‖Mn‖2)n∈IN−1
and (‖Un‖4)n∈IN−1

are bounded by a common constant.

Proof. Proceeding as in Theorem 6.2.9, we have ∀n ∈ IN−1,

1
2µt‖M

n‖22 = τ2

4 ‖δ
(β)
x V n‖22 + 1

2〈M
n+1,Mn〉 ≤ 1

2τ
2g

(β)
0 h1−β

∥∥∥δ(β/2)
x V n

∥∥∥2

2
+ 1

2〈M
n+1,Mn〉. (6.49)

From the previous theorem, we know that there is a constant C0 such that EnF = C0, for all
n ∈ IN−1. Then

C0 ≥ µt‖δ(α/2)
x Un‖22 + µt‖Un‖22 + 1

2‖δ
(β/2)
x V n‖22 + 1

2〈M
n+1,Mn〉

+ 1
2µt‖U

n‖44 −
1
2

∣∣∣〈Mn, |Un+1|2〉
∣∣∣− 1

2

∣∣∣〈Mn+1, |Un|2〉
∣∣∣ (6.50)

Applying Young’s inequality two times, we obtain
1
2

∣∣∣〈Mn, |Un+1|2〉
∣∣∣+ 1

2

∣∣∣〈Mn+1, |Un|2〉
∣∣∣ ≤ 1

2µt‖M
n‖22 + 1

2µt‖U
n‖44, ∀n ∈ IN−1, (6.51)

1
2

∣∣∣〈Mn, |Un+1|2〉
∣∣∣+ 1

2

∣∣∣〈Mn+1, |Un|2〉
∣∣∣ ≤ 1

4µt‖M
n‖22 + µt‖Un‖44, ∀n ∈ IN−1. (6.52)

Using (6.51) in (6.50) and simplifying algebraically, it is easy to see that

µt‖δ(α/2)
x Un‖22+µt‖Un‖22+1

2‖δ
(β/2)
x V n‖22+1

2〈M
n+1,Mn〉−1

2µt‖M
n‖22 ≤ C0, ∀n ∈ IN−1. (6.53)

Now, take the sum between both sides of (6.49) and (6.53) and simplify again. As a consequence,
it follows that

C0 ≥ µt‖δ(α/2)
x Un‖22 + µt‖Un‖22 + 1

2
(
1− τ2g

(β)
0 h1−β

)
‖δ(β/2)
x V n‖22, ∀n ∈ IN−1. (6.54)
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Using Lemmas 4.3 and 4.4 of [60], it readily follows that

‖δ(β/2)
x V n‖22 + 〈Mn+1,Mn〉 ≤ 3

5
(
‖δ(β/2)
x V n‖22 + µt‖Mn‖22

)
. (6.55)

Removing now the first two terms of right-hand side of (6.50), and using (6.52) and the previous
remark yields

C0 ≥
3
10‖δ

(β/2)
x V n‖22 + 3

10µt‖M
n‖22 −

1
4‖M

n‖22 −
1
2µt‖U

n‖44, ∀n ∈ IN−1. (6.56)

Since µt‖Un‖2 is bounded, then µt‖Un‖4 is also bounded. Therefore, there is a constant C1 such
that

C1 ≥
1
2µt‖U

n‖44 + C0 ≥
1
20µt‖M

n‖22, ∀n ∈ IN−1. (6.57)

The conclusion of this theorem is obtained now by letting C = C0 + 20C1.

6.3 Numerical properties

In this section, we establish the main properties of the finite-difference method (6.30). More
precisely, we prove the consistency, the stability and the convergence of our numerical model.
Some additional nomenclature will be required to that end. For example, we will employ the
continuous differential operators

Lu(x, t) = i
∂u(x, t)
∂t

+ ∂αu(x, t)
∂|x|α

− u(x, t)−m(x, t)u(x, t)− |u(x, t)|2u(x, t), ∀(x, t) ∈ Ω,

(6.58)

Lm(x, t) = ∂2m(x, t)
∂t2

− ∂βm(x, t)
∂|x|β

− ∂β
(
|u(x, t)|2

)
∂|x|β

, ∀(x, t) ∈ Ω. (6.59)

Set L(x, t) = (Lu(x, t),Lm(x, t)), for each (x, t) ∈ Ω. Moreover, define Lnj = L(xj , tn), for each
(j, n) ∈ IJ × IN . For the sake of convenience, we let Ln = (Lnj )j∈IJ , for each n ∈ IN , and convey
L = (Ln)n∈IN .

On the other hand, let us introduce the discrete difference operators

LU (xj , tn) = iδ
(1)
t Unj + δ(α)

x µ
(1)
t Unj − µ

(1)
t Unj

(
1 +Mn

j + µ
(1)
t |Unj |2

)
= 0, ∀(j, n) ∈ I, (6.60)

LM (xj , tn) = δ
(2)
t Mn

j − δ(β)
x Mn

j − δ(β)
x |Unj |2 = 0, ∀(j, n) ∈ I. (6.61)

As in the continuous case, we agree that L(xj , tn) = (LU (xj , tn), LM (xj , tn)), for each (j, n) ∈
IJ × IN , and define Lnj = L(xj , tn). Let us set Ln = (Lnj )j∈IJ , for each n ∈ IN , and let
L = (Ln)n∈IN .

Theorem 6.3.1 (Consistency). Suppose that u,m ∈ C5,4
x,t (Ω). Then there exist constants C and

C ′ which are independent of τ and h, such that |‖L − L‖|∞ ≤ C(τ2 + h2) and |‖H − H‖|∞ ≤
C ′(τ2 + h2).

Proof. Using Taylor’s theorem, the mean value theorem and the regularity of the functions u and
m, it is possible to show that there are constants Ci ∈ R+ independent of τ and h, for each i ∈ I5,
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such that ∣∣∣∣∂u(xj , tn)
∂t

− δ(1)
t unj

∣∣∣∣ ≤ C1(τ2 + h2), ∀(j, n) ∈ I, (6.62)∣∣∣∣∂αu(xj , tn)
∂|x|α

− δ(α)
x µ

(1)
t unj

∣∣∣∣ ≤ C2(τ2 + h2), ∀(j, n) ∈ I, (6.63)∣∣∣u(xj , tn)− µ(1)
t unj

∣∣∣ ≤ C3τ
2, ∀(j, n) ∈ I, (6.64)∣∣∣m(xj , tn)u(xj , tn)−mn

j µ
(1)
t unj

∣∣∣ ≤ C4τ
2, ∀(j, n) ∈ I, (6.65)∣∣∣|u(xj , tn)|2u(xj , tn)−

(
µ

(1)
t |unj |2

) (
µ

(1)
t unj

)∣∣∣ ≤ C5τ
2, ∀(j, n) ∈ I. (6.66)

From the triangle inequality, there exists a constant C∗ ∈ R+ which is independent of τ and h,
with the property that |‖LU − LU‖|∞ < C∗(τ2 + h2). In similar fashion, there exist constants
C6, C7, C8 ∈ R+ which are independent of both τ and h, for which the inequalities∣∣∣∣∣∂2m(xj , tn)

∂t2
− δ(2)

t mn
j

∣∣∣∣∣ ≤ C6(τ2 + h2), ∀(j, n) ∈ I, (6.67)∣∣∣∣∣∂βm(xj , tn)
∂|x|β

− δ(β)
x mn

j

∣∣∣∣∣ ≤ C7(τ2 + h2), ∀(j, n) ∈ I, (6.68)∣∣∣∣∣∂β
(
|u(xj , tn)|2

)
∂|x|β

− δ(β)
x |unj |2

∣∣∣∣∣ ≤ C8h
2, ∀(j, n) ∈ I, (6.69)

are satisfied. Again, we use the triangle inequality to show that there is a constant C∗∗ ∈ R+

which is independent of τ and h, with the property that |‖LM − LM‖|∞ < C∗∗(τ2 + h2). The
conclusion is follows letting C as the maximum of C∗ and C∗∗. The second inequality of this
result can be obtained in similar fashion.

In view to show the stability and convergence properties of (6.5), assume that (u0, u1,m0,m1)
and (ũ0, ũ1, m̃0, m̃1) are two sets of initial conditions of (6.5). Moreover, suppose that the initial
data for (6.30) are provided exactly.

Definition 6.3.2. If f : F → F and V ∈ Vh then we define δ̃(f(Vj)) = f(Ṽj) − f(Vj), for each
j ∈ IJ−1.

Lemma 6.3.3 (Pen-Yu [75]). Let (ωn)Nn=0 and (ρn)Nn=0 be finite sequences of nonnegative real
numbers, assume that τ > 0 and suppose that there exists C ≥ 0 such that

ωk ≤ ρk + Cτ
k∑

n=0
ωn, ∀k ∈ IN . (6.70)

If τ is sufficiently small then ωn ≤ ρneCnτ for each n ∈ IN .

Theorem 6.3.4 (Stability). Let u0,m0, ũ0, m̃0 ∈ H1(B) and u1,m1, ũ1, m̃1 ∈ L2(B). Sup-
pose that (U,M) and (Ũ , M̃) are the solutions of (6.30) corresponding to (u0, u1,m0,m1) and
(ũ0, ũ1, m̃0, m̃1), respectively. Let εn = Ũn − Un, ζn = M̃n −Mn and υn = Ṽ n − V n, for each
n ∈ IN , and define

ωn = µt
(
‖εn‖22 + ‖ζn‖22

)
+ ‖δ(β/2)

x υn‖22, ∀n ∈ IN−1. (6.71)

For τ sufficiently small, there exists C ∈ R+ independent of h and τ , such that ωn ≤ ω0eCnτ , for
each n ∈ IN−1.
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Proof. Clearly the sequence (ε, ζ) satisfies the system

iδ
(1)
t εnj + δ(α)

x µ
(1)
t εnj − µ

(1)
t εnj − δ̃

[(
Mn
j + µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)]
= 0, ∀(j, n) ∈ I,

δ
(2)
t ζnj − δ(β)

x ζnj − δ̃
(
δ(β)
x |Unj |2

)
= 0, ∀(j, n) ∈ I,

subject to εn0 = εnJ = 0 and ζn0 = ζnJ = 0, ∀n ∈ IN .

(6.72)

Solving the first equation of (6.72) for iδ(1)
t εnj , computing the inner product on both sides of that

identity with 2µ(1)
t εn, taking imaginary parts, and using algebraic arguments, there exists C1 > 0

such that, for each n ∈ IN−1,

µtδt‖εn−1‖22 = 2 Im
〈
δ̃
[(
Mn
j + µ

(1)
t |Unj |2

) (
µ

(1)
t Unj

)]
, µ

(1)
t εn

〉
≤ C1

(
‖εn−1‖22 + ‖εn‖22 + ‖εn+1‖22 + ‖ζn−1‖22 + ‖ζn‖22 + ‖ζn+1‖22

)
.

(6.73)

Now, since δtζn = δ
(β)
x υn for each n ∈ IN−1, is easy to check that

2
[
〈−δ(2)

t ζn, µtυ
n−1〉+ 〈δ(β)

x ζn, µtυ
n−1〉

]
= δt

(
‖δ(β/2)
x υn−1‖22 + 〈ζn−1, ζn〉

)
≥ 1

2δt
(
‖δ(β/2)
x υn−1‖22 + µt‖ζn−1‖22

)
.

(6.74)

Take the inner product between the second equation of (6.72) and µtυn−1, use the above inequality
and the fact that ‖δtζn‖22 ≤ 2g(β)

0 h1−β‖δ(β/2)
x υn‖22. It is possible to show then that there is a

constant C2 > 0 such that

µtδt‖ζn−1‖22 + δt‖δ(β/2)
x υn−1‖22 ≤ C2

(
‖εn‖22 + µt‖δ(β/2)

x υn−1‖22
)
. (6.75)

Adding (6.73) and (6.75), and taking the sum from n = 1 to m on both sides of the resulting
inequality, we obtain that

µt
(
‖εm‖22 + ‖ζm‖22

)
+ ‖δ(β/2)

x υm‖22 ≤ µt
(
‖ε0‖22 + ‖ζ0‖22

)
+ ‖δ(β/2)

x υ0‖22

+ C2τ
m∑
n=1

(
‖εn‖22 + µt‖δ(β/2)

x υn−1‖22
)

+ C1τ
m∑
n=1

(
‖εn−1‖22 + ‖εn‖22 + ‖εn+1‖22

+ ‖ζn−1‖22 + ‖ζn‖22 + ‖ζn+1‖22
)

≤ (1 + (6C1 + 2C2)τ)
[
µt
(
‖ε0‖22 + ‖ζ0‖22

)
+ ‖δ(β/2)

x υ0‖22
]

+ (6C1 + 2C2)τ
m∑
n=1

[
µt
(
‖εn‖22 + ‖ζn‖22

)
+ ‖δ(β/2)

x υn‖22
]
.

(6.76)
Let now C = 6C1+2C2 and ρ = (1 + (6C1 + 2C2)τ)

[
µt
(
‖ε0‖22 + ‖ζ0‖22

)
+ ‖δ(β/2)

x υ0‖22
]
, and apply

Lemma 6.3.3 to reach the conclusion of this theorem.

The following is a straight-forward consequence from the stability property of (6.30).

Corollary 6.3.5 (Uniqueness). Let (u0, u1,m0,m1) be a set of initial conditions satisfying u1, ũ1 ∈
L2 and u0, ũ0,m0 ∈ H1. For sufficiently small values of τ , the finite-difference scheme (6.30) is
uniquely solvable.
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(a) (b)

(c) (d)

Figure 6.1: Approximate solutions for (a) Reu(x, t), (b) Im u(x, t), (c) |u(x, t)| and (d) m(x, t)
versus x and t. The approximations were obtained using the finite-difference method (6.30) with
parameters h = 0.5, τ = 0.01, Ω = (−50, 50)× (0, 10) and α = β = 2. Computationally, we used
a tolerance in the infinity norm equal to 1 × 10−12, and a maximum number of iterations equal
to 30.

Definition 6.3.6. If f : F → F and V ∈ Vh then we define δ̂(f(vj)) = f(vj) − f(Vj), for each
j ∈ IJ−1 and F = R,C.

We establish next the convergence property of our numerical model.

Theorem 6.3.7 (Convergence). Suppose that u,m ∈ C5,4
x,t (Ω). Then the solution of the problem

(6.30) converges to that of (6.5) with order O(τ2 + h2).

Proof. Consider the local truncation errors of the finite-difference system (6.30) at (xj , tn), given
by

ρnj = iδ
(1)
t unj + δ(α)

x µ
(1)
t unj − µ

(1)
t unj −mn

j µ
(1)
t unj −

(
µ

(1)
t |unj |2

) (
µ

(1)
t unj

)
, ∀(j, n) ∈ I,

σnj = δ
(2)
t mn

j − δ(β)
x mn

j − δ(β)
x |unj |2 = 0, ∀(j, n) ∈ I.

(6.77)

By Theorem 6.3.1, we know that |ρnj |+ |σnj | = O(τ2 + h2). Then, let (u,m) be a solution of 6.5
and (U,M) a solution of 6.30, and define εnj = unj − Unj , ηnj = mn

j −Mn
j and θnj = υnj − V n

j ,
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(a) (b)

(c) (d)

Figure 6.2: Left column: approximate solutions for (a) Mu(x, t) and (c) HFu(x, t) versus x
and t. Right column: approximate solutions for (b) M(t) and (d) EF (t). The approximations
were obtained using the finite-difference method (6.30) with parameters h = 0.5, τ = 0.01,
Ω = (−50, 50)× (0, 10) and α = β = 2. Computationally, we used a tolerance in the infinity norm
equal to 1× 10−12, and a maximum number of iterations equal to 30.

∀(j, n) ∈ I. Notice that, δ(β)
x θnj = δtη

n
j , ∀(j, n) ∈ I. Moreover, the pair (ε, η) satisfies the system

iδ
(1)
t εnj + δ(α)

x µ
(1)
t εnj − µ

(1)
t εnj − δ̂

[(
mn
j + µ

(1)
t |unj |2

) (
µ

(1)
t unj

)]
= ρnj , ∀(j, n) ∈ I,

δ
(2)
t ηnj − δ(β)

x ηnj − δ̂
(
δ(β)
x |unj |2

)
= σnj , ∀(j, n) ∈ I,

subject to εn0 = εnJ = 0 and ηn0 = ηnJ = 0, ∀n ∈ IN .

(6.78)

Proceeding as in Theorem 6.3.4, we can check that there exist constants C3 and C4 such that

µtδt‖εn−1‖22 ≤ C3
(
‖ρn‖22 + ‖εn−1‖22 + ‖εn‖22 + ‖εn+1‖22 + ‖ηn−1‖22 + ‖ηn‖22 + ‖ηn+1‖22

)
, (6.79)

and
µtδt‖ηn−1‖22 + δt‖δ(β/2)

x θn−1‖22 ≤ C4
(
‖σn‖22 + ‖εn‖22 + µt‖δ(β/2)

x θn−1‖22
)
. (6.80)
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(a) (b)

(c) (d)

Figure 6.3: Approximate solutions for (a) Reu(x, t), (b) Im u(x, t), (c) |u(x, t)| and (d) m(x, t)
versus x and t. The approximations were obtained using the finite-difference method (6.30) with
parameters h = 0.5, τ = 0.01, Ω = (−50, 50)× (0, 10), α = 1.2 and β = 1.8. Computationally, we
used a tolerance in the infinity norm equal to 1 × 10−12, and a maximum number of iterations
equal to 30.

For each k ∈ IN−1, take ωk = µt
(
‖εk‖22 + ‖ηk‖22

)
+ ‖δ(β/2)

x θk‖22 and

ρk = (1 + (6C3 + 2C4)τ)
[
µt
(
‖ε0‖22 + ‖η0‖22

)
+ ‖δ(β/2)

x θ0‖22
]

+ (C3 + C4)τ
m∑
n=0

(
‖ρn‖22 + ‖σn‖22

)
.

(6.81)
It follows that there exists a constant C ≥ 0, with the property that ωk ≤ Cρk, for each k ∈ IN−1.
As a consequence, ‖εn‖2, ‖ηn‖2 ≤

√
C(τ2+h2), which implies that the solutions of (6.30) converge

quadratically to those of (6.5).

6.4 Computer simulations

The purpose of this section is to provide computer simulations using a Matlab implementation of
the numerical model (6.30) to solve the Zakharov system (6.5). The computer code was employed
a fixed-point approach to approximate the solution of the first discrete equation of (6.30) at each
iteration. Meanwhile, the second equation of our numerical model was solved explicitly and
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(a) (b)

(c) (d)

Figure 6.4: Left column: approximate solutions for (a) Mu(x, t) and (c) HFu(x, t) versus x
and t. Right column: approximate solutions for (b) M(t) and (d) EF (t). The approximations
were obtained using the finite-difference method (6.30) with parameters h = 0.5, τ = 0.01,
Ω = (−50, 50)×(0, 10), α = 1.2 and β = 1.8. Computationally, we used a tolerance in the infinity
norm equal to 1× 10−12, and a maximum number of iterations equal to 30.

exactly.
To produce our simulations, we will impose homogeneous Neumann conditions on the bound-

ary of B, along with the following set of initial conditions:

u0(x) =
√

10−
√

2
2 sech

√1 +
√

5
2 x

 exp
(
i

√
2

1 +
√

5
x

)
, (6.82)

m0(x) = −2 sech2

√1 +
√

5
2 x

 , (6.83)

m1(x) = −4 sech2

√1 +
√

5
2 x

 tanh

√1 +
√

5
2 x

 . (6.84)

As a matter of fact, it is worth pointing out that these functions are initial conditions for an exact
solution of the well-known Klein–Gordon–Zakharov equations which describe the propagation of
Langmuir waves in plasma physics. That exact solution is actually provided by the set of functions
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(see [45, 44])

u(x, t) =
√

10−
√

2
2 sech

√1 +
√

5
2 x− t

 exp
[
i

(√
2

1 +
√

5
x− t

)]
, ∀(x, t) ∈ R× R+,

(6.85)

m(x, t) = −2 sech2

√1 +
√

5
2 x− t

 , ∀(x, t) ∈ R× R+. (6.86)

In a first approach, we consider the system (6.5) with α = β = 2, and defined over the space-
time domain Ω = (−50, 50) × (0, 10). Computationally, we let h = 0.5 and τ = 0.01. As we
mentioned previously, the mathematical model will be solved using the finite-difference scheme
(6.30), which will require a computational implementation of a fixed-point method to solve the
first difference equation at each iteration. To that end, we will set a tolerance in the infinity
norm equal to 1 × 10−12, and a maximum number of iterations equal to 30. In the absence
of a known exact solution for the Zakharov system, we will obtain the first approximations of
our methodology using the exact solutions (6.85)–(6.86). Under these circumstances, Figure 6.1
provides the approximate solutions for (a) Reu(x, t), (b) Im u(x, t), (c) |u(x, t)| and (d) m(x, t)
versus x and t. In turn, Figure 6.2 shows graphs of the approximate solutions for (a) Mu(x, t)
and (c) HFu(x, t) versus x and t, and for (b)M(t) and (d) EF (t) versus t. From these results, we
can readily observe that the total mass and the Higgs’ free energy are approximately conserved
in the discrete domain, in agreement with the theoretical results presented in this work.

Before closing this section, we will provide a new set of simulations using now α = 1.2
and β = 1.8. All the initial and boundary conditions along with the model and computational
parameters are as before. With these conventions, Figure 6.3 shows the approximate solutions
for (a) Reu(x, t), (b) Im u(x, t), (c) |u(x, t)| and (d) m(x, t) versus x and t. On the other hand,
Figure 6.4 shows graphs of the approximate solutions for (a) Mu(x, t) and (c) HFu(x, t) versus
x and t, and for (b) M(t) and (d) EF (t) versus t. The results show again the capability of the
finite-difference scheme to preserve the total mass of the system and the Higgs’ free energy in the
discrete scenario. Again, this is in agreement with the theoretical results provided in this work.
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Conclusions

Chapter 1 In this work, we investigated the numerical solution of a fractional extension of the
Klein–Gordon–Zakharov equations from plasma physics. The model considers the presence of
space-fractional derivatives of the Riesz type, together with homogeneous Dirichlet data at the
boundary and initial conditions. The fractional model has an invariant energy functional, and we
propose an explicit numerical model to approximate the solutions using fractional-order centered
differences. A discrete energy functional is also proposed in this work and we prove rigorously
that, as its continuous counterpart, it is preserved at each iteration and, in that sense, the present
work reports on a conservative finite-difference scheme to approximate the solutions of hyperbolic
systems [36, 42, 38]. Among the most important numerical properties established in this work, we
show that the model is a consistent, stable and convergent technique. Additionally, we propose
some bounds for the numerical solutions, and provide some computer simulations which illustrate
the fact that the numerical model is quadratically convergent.

Chapter 2 In this note, we have provided an accurate statement of an existence of solutions of
the implicit finite-difference model (2.2), along with its proof. This result corrects the statement
and the proof of [35, Theorem 5.3] of our published manuscript. It is worth mentioning that the
actual statement to guarantee the existence of solutions requires additional hypotheses, and that
the proof is more complicated that the wrong demonstration given in our former article. We
took this opportunity to introduce an explicit variation of the finite-difference model investigated
in [35]. In accordance with the aims of this letter, we establish the unconditional existence of
solution for the new scheme. The argument of the proof is similar to that of the implicit scheme,
that is why we only provide a shortened demonstration in this manuscript. The authors would
like to apologize for any convenience caused by the wrong proof in our previous paper. Finally,
we would like to point out that the first author was who first pointed out the error in the proof.

Chapter 3 In this work, we investigated the numerical solution of a fractional extension of the
Klein–Gordon–Zakharov equations from plasma physics. The model considers the presence of
space-fractional derivatives of the Riesz type, together with homogeneous Dirichlet data at the
boundary and initial conditions. We proved in this work that the fractional model has a positive
invariant quantity, which we identify as the energy of the system. Motivated by this fact, we pro-
pose a numerical model to approximate the solutions of the Klein–Gordon–Zakharov equations,
which is based on the use of fractional-order centered differences. A discrete energy functional is
also proposed in this work and we prove rigorously that, as its continuous counterpart, is preserved
at each iteration. In that sense, the present approach reports on a structure-preserving technique
for a complex system [55, 24]. Among the most important numerical properties established in
this work, we show that the model is a consistent, stable and convergent technique. We establish
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also that the numerical model has solutions for any set of initial conditions, and that they are
unique for sufficiently small values of the temporal step-size. The existence is a consequence of
the Leray–Schauder fixed-point theorem, while the uniqueness follows from the stability of the
method. Additionally, we propose some bounds for the numerical solutions, and provide some
computer simulations which illustrate the fact that the numerical model is quadratically conver-
gent. It is worth pointing out that the advantage of the discretization proposed in this work lies
in that the difference equations to solve the component equations are decoupled. This implies
that the numerical schemes can be solved separately at each temporal step. Obviously, pertinent
physical applications are expected as a consequence of the completion of this work [53].

Chapter 4 In this work, we investigated numerically a generalization of the well-known Klein–
Gordon–Zakharov system which considers two fractional derivatives of the Riesz type. The frac-
tional derivatives are not required to be of the same order, but they belong to the interval (1, 2].
It is known that the system considered in this work has a conserved energy-like quantity, and that
the solutions are uniformly bounded. Motivated by these facts, we proposed a finite-difference
discretization of the the system under investigation which has associated conserved energy-like
quantities. In that sense, the present work proposes a structure-preserving scheme to solve a
system of partial differential equations [54]. The discretization is based on the use of fractional-
order centered differences to approximate the Riesz-type fractional derivatives. In turn, we prove
thoroughly that the energy-like quantities are conserved throughout time, and that they are non-
negative as their continuous counterparts. As a corollary, we establish the uniform boundedness
of the numerical approximations. The properties of consistency, stability and convergence were
theoretically established, also. In particular, we show that our approach yields second-order con-
sistent approximations to the exact solutions of the continuous model. Using a discrete form of
Gronwall’s inequality, we prove that the finite-difference model is stable and quadratically con-
vergent. As a corollary of stability, we proved that the numerical model is uniquely solvable.
Some numerical simulations were presented using a computer implementation of our numerical
methodology.

Chapter 5 In this work, we investigated the numerical solution of a multi-fractional extension of
the Klein–Gordon–Zakharov equations from plasma physics. The continuous model considers the
presence of space-fractional derivatives of the Riesz type, together with homogeneous Dirichlet
data at the boundary and initial conditions. It is well known that the system investigated in
this work has an energy functional which conserved through time. Two nonlinear finite-difference
schemes were proposed in this work to solve the mathematical model, one is implicit and the other
is explicit. Our discretizations are both based on the use of fractional-order centered differences.
Discrete energy functionals are proposed for both models, and we prove prove rigorously that,
as their continuous counterpart, they are preserved throughout the discrete time. Among the
most important numerical properties established in this work, we show that both models are
consistent, stable and convergent techniques. We establish also that the numerical model has
solutions for any set of initial conditions under suitable circumstances, and that they are unique
for sufficiently small values of the temporal step-size. The existence properties are consequences
of the Leray–Schauder fixed-point theorem, while the uniqueness follows from the stability of
the methods. Additionally, we propose some bounds for the numerical solutions, and provide
some computer simulations which illustrate the fact that the numerical models are quadratically
convergent, and are capable of preserving their energy functionals.

Chapter 6 A space-fractional extension of the Zakharov system was introduced and inves-
tigated in this study from analytical and numerical points of views. The system consists of
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two partial differential equations with nonlinear coupling, and initial and boundary conditions
are imposed on a bounded interval of real numbers. It was proven that the fractional system
is capable of preserving the mass and Higgs’ free energy throughout time, and that the total
energy is dissipated. Moreover, the total mass, the total free energy and the total energy are
non-negative functions of time. Consequently, the boundedness of the solutions of the system
we established. Motivated by these results, we proposed a finite-difference scheme to solve this
system via fractional-order central difference approximations. The discrete model proposed is a
three-level scheme whose implementation was implemented by using both vector equations and
fixed-point techniques. The existence of solutions was proven rigorously through Browder’s fixed-
point theorem, and proposed discrete expressions for the total mass, Higgs’ free energy and the
total energy. It was shown theoretically that the numerical model is capable of preserving the
discrete mass and the discrete Higgs’ free energy. Moreover, the positivity of the mass, the free
energy and the total energy was also verified. From the numerical analysis point of view, we
proved systematically properties of consistency, stability and convergence of the algorithm. As
a consequence of these investigations, the uniqueness of the numerical solutions was also vali-
dated. Computer simulations based on the discrete model were presented. The computational
experiments illustrate important properties of our numerical solution, including its capability to
preserve the mass and Higgs’ free energy.
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[58] Jorge E Maćıas-Dı́az, Ahmed S Hendy, and RH De Staelen. A pseudo energy-invariant
method for relativistic wave equations with Riesz space-fractional derivatives. Computer
Physics Communications, 224:98–107, 2018.

[59] Mattias Marklund. Classical and quantum kinetics of the Zakharov system. Physics of
Plasmas, 12(8):082110, 2005.
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[61] Romeo Mart́ınez, J.E. Maćıas-Dı́az, and A.S. Hendy. Corrigendum to ‘A numerically effi-
cient and conservative model for a Riesz space-fractional Klein-Gordon-Zakharov system’.
Communications in Nonlinear Science and Numerical Simulation, 83:105–109, 2020.
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