
CENTRO DE CIENCIAS BÁSICAS

DEPARTAMENTO DE MATEMÁTICAS Y FÍSICA

TESIS

MATHEMATICAL MODEL OF THE EFFICIENCY OF A SILICON SOLAR
CELL

PRESENTA

Héctor Alejandro Villalobos Martínez

PARA OPTAR POR EL GRADO DE MAESTRO EN CIENCIAS EN
MATEMÁTICAS APLICADAS

COMITÉ TUTORAL

Dr. Jorge Eduardo Macías-Díaz (Co-tutor)
Dr. José Salvador Flores Hernández (Co-tutor)

Dra. Mariana Alfaro Gómez (Asesora)

Aguascalientes, Ags., 18 de febrero de 2021



unIwERSIDaD aUTONOMa 
DE aGUascalieNTES 

FORMATO DE CARTA DE VOTO APROBATORIO 

M. en C. Jorge Martín Alférez Chávez 

DECANO DEL CENTRO DE CIENCIAS BÁSICAS 

PRESENTE 

Por medio de la presente, en mi calidad de co-tutor designado del estudiante HÉCTOR ALEJANDROo 

VILLALOBoS MARTÍNEZ con ID 141476 quien realizó la tesis titulada: MATHEMATICAL MODEL OF 

THE EFFICIENCY OF A SILICON SOLAR CELL, un trabajo propio, innovador, relevante e inédito y con 

fundamento en el Artículo 175, Apartado II del Reglamento General de Docencia doy mi consen-

timiento de que la versión final del documento ha sido revisada y las correcciones se han incorporado 

apropiadamente, por lo que me permito emitir el VOTO APROBATORIO, para que él pueda proceder 

a imprimirla, y así continuar con el procedimiento administrativo para la obtención del grado. 

Pongo lo anterior a su digna consideración y, sin otro particular por el momento, me permito en- 

viarle un cordial saludo. 

ATENTAMENTE 

"Se Lumen Proferre" 

Aguascalientes, Ags., a 18 de febrero de 2021 

D Jorge Eduardo Macias-Diaz 

C.p. Interesado 

ccp Secretaria de Investigación y Posgrado 
C.c.p. Consejero Académico 

c.c.p. Minuta Secretario Técnico 





FORMATO DE CARTA DE VOTO APROBATORIO

M. en C. Jorge Martín Alférez Chávez
DECANO DEL CENTRO DE CIENCIAS BÁSICAS
PRESENTE

Por medio de la presente, en mi calidad de asesor designado del estudiante HÉCTOR ALEJANDRO

VILLALOBOS MARTÍNEZ con ID 141476 quien realizó la tesis titulada: MATHEMATICAL MODEL OF

THE EFFICIENCY OF A SILICON SOLAR CELL, un trabajo propio, innovador, relevante e inédito y con
fundamento en el Artículo 175, Apartado II del Reglamento General de Docencia doy mi consen-
timiento de que la versión final del documento ha sido revisada y las correcciones se han incorporado
apropiadamente, por lo que me permito emitir el VOTO APROBATORIO, para que él pueda proceder
a imprimirla, y así continuar con el procedimiento administrativo para la obtención del grado.

Pongo lo anterior a su digna consideración y, sin otro particular por el momento, me permito en-
viarle un cordial saludo.

ATENTAMENTE
“Se Lumen Proferre”

Aguascalientes, Ags., a 18 de febrero de 2021

Dra. Mariana Alfaro Gómez

c.c.p.- Interesado
c.c.p.- Secretaría de Investigación y Posgrado
c.c.p.- Consejero Académico
c.c.p.- Minuta Secretario Técnico



Elaborado por: D. Apoyo al Posg.
Revisado por: D. Control Escolar/D. Gestión de Calidad.
Aprobado por: D. Control Escolar/ D. Apoyo al Posg.

Código: DO-SEE-FO-15
  Actualización: 01            . 

Emisión: 28/04/20      .

Fecha de dictaminación dd/mm/aaaa: 2/18/2021

NOMBRE: Héctor Alejandro Villalobos Martínez ID 141476

PROGRAMA: Maestría en Ciencias con opción en Matemáticas Aplicadas Matemáticas Aplicadas

TIPO DE TRABAJO: ( x )   Tesis ( )   Trabajo Práctico

TITULO: Mathematical model of the efficiency of a silicon solar cell

IMPACTO SOCIAL (señalar el impacto logrado)

Impacto en la generación de conocimiento científico.

INDICAR SI NO N.A. (NO APLICA)     SEGÚN     CORRESPONDA:

Elementos para la revisión académica del trabajo de tesis o trabajo práctico:

SI El trabajo es congruente con las LGAC del programa de posgrado

SI La problemática fue abordada desde un enfoque multidisciplinario

SI Existe coherencia, continuidad y orden lógico del tema central con cada apartado

SI Los resultados del trabajo dan respuesta a las preguntas de investigación o a la problemática que aborda

SI Los resultados presentados en el trabajo son de gran relevancia científica, tecnologíca o profesional según el área

SI El trabajo demuestra más de una aportación original al conocimiento de su área

NO Las aportaciones responden a los problemas prioritarios del país

NO Generó transferecia del conocimiento o tecnológica

N.A. Cumple con la ética para la investigación (reporte de la herramienta antiplagio)

El egresado cumple con lo siguiente:
SI Cumple con lo señalado por el Reglamento General de Docencia

SI Cumple con los requisitos señalados en el plan de estudios (créditos curriculares, optativos, actividades complementarias,estancia, predoctoral, etc)

SI Cuenta con los votos aprobatorios del comité tutoral, en caso de los posgrados profesionales si tiene solo tutorpodrá liberar solo el tutor

N.A. Cuenta con la carta de satisfacción del Usuario

SI Coincide con el título y objetivo registrado

SI Tiene congruencia con cuerpos académicos

SI Tiene el CVU del Conacyt actualizado

N.A. Tiene el artículo aceptado o publicado y cumple con los requisitos institucionales (en caso que proceda)

En caso de Tesis por artículos científicos publicados
N.A. Aceptación o Publicación de los articulos según el nivel del programa

N.A. El estudiante es el primer autor

N.A. El autor de correspondencia es el Tutor del Núcleo Académico Básico

N.A. En los artículos se ven reflejados los objetivos de la tesis, ya que son producto de este trabajo de investigación.

N.A. Los artículos integran los capítulos de la tesis y se presentan en el idioma en que fueron publicados

N.A. La aceptación o publicación de los artículos en revistas indexadas de alto impacto

Con base a estos criterios, se autoriza se continúen con los trámites de titulación y programación del examen de grado:
Sí

F I R M A S

Elaboró:

* NOMBRE Y FIRMA DEL CONSEJERO SEGÚN LA LGAC DE ADSCRIPCION:
Jorge Eduardo Macías Díaz

NOMBRE Y FIRMA DEL SECRETARIO TÉCNICO:

* En caso de conflicto de intereses, firmará un revisor miembro del NAB de la LGAC correspondiente distinto al tutor o miembro del comité tutoral, asignado por el Decano

Revisó:

NOMBRE Y FIRMA DEL SECRETARIO DE INVESTIGACIÓN Y POSGRADO:

Autorizó:

NOMBRE Y FIRMA DEL DECANO:

Nota: procede el trámite para el Depto. de Apoyo al Posgrado

DICTAMEN DE LIBERACIÓN ACADÉMICA PARA INICIAR LOS TRÁMITES DEL 
EXAMEN DE GRADO 

LGAC (del 
posgrado):

En cumplimiento con el Art. 105C del Reglamento General de Docencia que a la letra señala entre las funciones del Consejo Académico: …. Cuidar la eficiencia terminal del programa de posgrado y el Art. 105F las 
funciones del Secretario Técnico, llevar el seguimiento de los alumnos.

DRA. HAYDÉE MARTÍNEZ RUVALCABA



Acknowledgments

Firstly, I want to thank to CONACYT and UAA for the economical support that enable me to course

the Master’s degree.

I also want to thank all the help and patience of all my teachers and advisors who showed me a

new way to see mathematics as an engineer.

This thesis would not be possible without the support of my wife, Jacqueline, who had my back

since day one and always encourage me to be better.

And, last but not least, thanks to my family for all the help, for raising me as curious man and

teaching me to always aspire for the best.

Héctor Alejandro Villalobos Martínez



Contents

List of Tables 3

List of Figures 3

Resumen 5

Abstract 6

Introduction 7

1 Solar cell physics 10
1.1 Semiconductors: Generalities and properties . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Semiconductor Doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.2 P-N Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.3 Recombination of charge carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Photovoltaic Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Mathematical model 17
2.1 Transport equations in semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Drift-diffusion equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Mathematical modeling of the solar cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Spatial domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Generation of charge carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Recombination of charge carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Electrostatic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.5 Initial, boundary and jump conditions . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Solar cell eficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Qualitative analysis 25
3.1 Important Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Existing drift-difusion models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



3.3 Mathematical and numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Conclusions and future work 34

A Semiconductor generalities 35
A.1 Semiconductor statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.1.1 Lightly doped semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.1.2 Heavily doped semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2 Einstein relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.3 Ideal p-n junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.3.1 Carrier densities at equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.4 Solar cell efficiency parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B Schafetter-Gummel method 39
B.1 Assumptions over the drift-diffusion equations . . . . . . . . . . . . . . . . . . . . . . . 39

B.2 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

C List of Symbols 42

References 45



List of Tables

2.1 Recombination in each electronic region. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B.1 Coefficients for the field dependent mobility . . . . . . . . . . . . . . . . . . . . . . . . . 40

3



List of Figures

1.1 Band diagram for insulators(left), semiconductors (center) and conductors (right). . . . 10

1.2 Crystalline structure between five atoms of silicon. . . . . . . . . . . . . . . . . . . . . . 11

1.3 N-type semiconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 P-type semiconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 P-N Junction. The black arrows indicate how each type of carrier flows for one type

semiconductor to the other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Effect of bias in a P-N junction, no bias (top), forward bias (middle), reverse bias (bottom) 13

1.7 Bulk recombination mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Possibilities for a photon (in yellow) in a solar cell. (a), (b) and (c) indicates electron-

hole pair generation in the n-region, depletion region and p-region respectively. . . . . 14

1.9 Photocurrent generation. The black arrows show how the carriers move when the equi-

librium is broken by cause of radiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.10 Band diagram of an illuminated solar cell. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.11 Direct (a) and indirect (b) band-gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 In a solar cell the regions: Ω∗p, Ωd and Ω∗n are electronically formed between the phys-

ical regions Ωp and Ωn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.1 Solar cell at short-circuit conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.2 Solar cell at open-circuit conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4



Resumen

Este trabajo está dedicado a la modelación de una celda solar de silicio con el fin de mejorar su

eficiencia, está basado en las ecuaciones de continuidad, transporte y Poisson para modelar el com-

portamiento de los portadores de carga en un semiconductor.

Se estudió cuidadosament el fenómeno fotovoltaico en las células solares de silicio para desarrol-

lar el modelo e identificar aquellos parámetros que juegan un papel crucial en los valores que deter-

minan su eficiencia. Estos parámetros incluyen los coeficientes de difusión, movilidad y absorción,

la permitividad, el ancho de las regiones y la vida útil de los portadores minoritarios.

El modelo de celda solar es un sistema de ecuaciones diferenciales parciales elípticas-parabólicas

quasi-lineales de segundo orden con acoplamiento fuerte e interfaz, modelado sobre un dominio

compuesto por tres regiones con diferentes propiedades eléctricas.

A pesar de que existen modelos de células solares preexistentes, hasta donde sabemos, no existen

teoremas de existencia y unicidad con los que trabajar. Sobre dichos modelos , se realizan difer-

entes supuestos con el fin simplificarlos para poder resolverlos, principalmente, mediante métodos

numéricos.

A lo largo de este trabajo se presentan los fundamentos físicos del efecto fotovoltaico con el fin

de ayudar al lector a comprender el desarrollo del modelo y sus condiciones, una vez presentado

el modelo, se realiza un análisis cualitativo para identificar el comportamiento que los parámetros

deben tener en el modelo, para posteriormente se compararlo con la literatura para demostrar su

singularidad y relevancia.
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Abstract

This dissertation is devoted to model a silicon solar cell in order to enhance its efficiency, this is

formulated based on the continuity, transport and Poisson equations to model the behavior of charge

carriers in a semiconductor.

The photovoltaic phenomenon on silicon solar cells was carefully studied to develop the model

and identify those parameters that play a crucial roll in its efficiency values. This parameters in-

clude the diffusion, mobility and absorption coefficients, the permittivity, the regions width and the

minority carrier lifetime.

The solar cell model is a quasi-linear second order elliptic-parabolic partial differential equation

system with strong coupling and interface, modeled over a domain composed of three regions with

different electrical properties.

As far as we know, there are not existence and uniqueness theorems to work with even though

there are preexisting solar cell models. On this preexisting models, different assumptions to simplify

them are done in order to be able to solve them, mostly, using numerical methods.

Along this dissertation, the fundamental physics of the photovoltaic effect are presented in order

to help the reader to understand the development of the model and its conditions, after the model

is presented, a qualitative analysis is made to identify the behavior that the parameters must have

in the model, then the model is compared with those in the literature to demonstrate its uniqueness

and relevance.
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Introduction

The constant growth in the world population, combined with the current lifestyle, has generated an

increase in the energy consumption. This is reflected in the fact that world population grew a 44%

[1] while the energy consumption a 63% [2] from 1990 to 2018.

In the last years, the renewable energies have received great interest due to their high availability,

low pollution rates and maintenance costs. They represented 25% of the world electric energy gener-

ation in 2017, where we can highlight wind power, biomass and solar which had a growth of the 186,

35 and 1033 % respectively, from 2010 and 2017 [3].

The growth exhibited by the solar energy is no surprise since the Sun radiates 62 MW/m2 [4],

which is ten thousand times bigger than the daily world energy consumption [5], additionally its

technologies, thermosolar and photovoltaic, have a simple installation and ease to modify the in-

stalled power according to the needs. Photovoltaic technologies turn solar radiation directly into

electricity based on the use of solar cells i.e. thin films and crystalline silicon (c-Si) structures. This

last one is most mature because of its high availability, no toxicity, low cost and cell manufacturing

capacity with high and stable conversion efficiency [6]. Si technologies represent more than the 80%

of sold photovoltaic modules in the world and is subdivided, depending on the kind of used Si, in:

monocrystalline, policrystalline, amorphous and hybrid [7].

The efficiency of Si solar cells is given in terms of the output power and the incident radiation per

area unit, hence to reduce the area occupied by the cell is important to maximize the efficiency.

The theoretical limit of a c-Si cell under non-concentrated solar light is around 29% which has not

been reached, the best laboratory silicon solar cell has an efficiency over the 24% and is manufactured

by SunPower [6].

To increase this efficiency, research about alternative manufacturing approaches in combination

with fine wafers, low optical gain, band-gap engineering for a better optical absorption [8], selective

passivation contacts [9], temperature control [10] and advanced solar cells configurations [11] is being

developed [13, 14]. The previous cited researches have been carried out experimentally which can be

very expensive.

The use of mathematical models aided by computational tools have been developed to reduce

experimentation costs; the most basic models of these technologies are those based on equivalent

circuits as those presented in [15, 16, 17, 18]. Also some simulations and calculations are made to

vary the operation parameters of a solar cell such as temperature and irradiation levels [19, 20, 21,

7



22], characteristics of the interconnection ribbons [23, 24], impact of dust over the cell surface [25],

solar tracking systems [26], surface texturing [27] and partial shadowing [28] in order to obtain the

performance curves and compare them with real solar cells.

PC1D is a software which is able to solve the fully coupled nonlinear equations for the quasi-

one-dimensional transport of electrons and holes in photovoltaic cells, this software allows to vary

the main parameters of the construction and operation of a solar cell. Based on this software, Ba-

sore presents and solves the physical and numerical models that make possible to approximate the

multidimensional effects found in textured crystalline silicon solar cells [29].

More specialized and specific projects have been developed based on partial differential equations

using the Poisson and Boltzmann Transport Equations, this last one is a complex equation which can

explain the behavior of microscopic particles in semiconductor devices which has been solved using

different tools such the Galerkin method [19], linear approximation and domain decomposition [30],

and a WENO (weighted essentially non-oscillatory) solver [31].

Due the complexity of the Boltzmann Transport Equation, it is often used in its macroscopic forms

which are known as the drift-diffusion model, used by Foster for the modeling of a Perovskite solar

cell [67] and Kirchartz to model organic solar cells [33] both in steady state, and the hydrodynamic

model, used to modeling of a GaAs solar cell [34].

On the other hand, the challenges to simulate a solar cell are to determinate the mobility and the

recombination/generation rate [33, 35] and to properly model the parameters such as the intrinsic

carrier density [36] and the diffusion length [37].

The Poisson and drift-diffusion equations can be solved in different ways depending on the es-

tablished conditions, for example numerically discretizing using Scharfetter-Gummel and solving by

Gummel iteration method [38] or discretizing by standard finite difference method in space and time

to solve both the time-dependent and stationary problems using Gummel-Schwarz double iteration,

a classical upwind discretization of the advection for the space variable for stability of the system,

and the forward Euler scheme for the time variable [41]; while analytically solutions have been ob-

tained using constant field method/single exponential approximation [35] and Riccati substitution

[42], this analytical solutions have only been obtained by making not so real world assumptions or in

steady state.

Accordingly, the boundary behavior is very important to solve the equations since different possi-

ble types of boundary conditions can be established depending on the type of metallic contacts on the

semiconductor [41] and in the case of numerical solutions the mesh must fulfill different conditions

[36, 43].

In order to solve mathematically correct this kind of equations, theorems to prove existence,

uniqueness, regularity and asymptotic behavior of the solutions must be used as [44] does when

modeling a semiconductor device defining a specific domain with its boundary conditions and as

[45] where they establish the characteristics that the reaction and diffusion function must satisfy in a

quasilinear parabolic–elliptic chemotaxis system in order to ensure a unique global classical solution

which is a similar work as presented in [46, 47] with the difference that [46] includes theorems for

weak solutions and asymptotic behavior. In [33] is mentioned that a finite difference method is an

usual way to obtain the solution of the system with a Scharfetter–Gummel method to have a numer-

ically stable solver which they recommend to be used only for the first iterations and then switch to



the fully coupled method for the rest to get better convergence.

The previous mentioned researches open the path for us to develop our model and enrich the ex-

isting mathematical models and experimental works since most of these references treat the problem

in a similar way than us but in a steady state or for a solar technology different from silicon, which

motivate us to develop a time transcendent model for silicon since it is the most common technology

for solar cells, this formulation generates a parabolic-elliptic differential equation system therefore

all the mathematical theory will be focused on this type of problems.

Consequently, we are interested in developing a mathematical and computational model that

allows us to study, understand and predict the behavior of a solar cell efficiency to contribute in their

improvement. By developing this model we can vary the different parameters that affect its efficiency

in order to maximize it. Also, counting with a tool like this for the most basic solar technology can

help to develop the new technologies since they have (practically) the same operating principle.

Objectives

General objective

• To develop and validate a mathematical model that improves the efficiency of silicon solar cells.

Specific objectives

• To obtain a mathematical model which determines the efficiency of a solar cell involving the

most relevant phenomenons and experimental factors of the photovoltaic effect.

• To qualitatively analyze the obtained model demonstrating existence, uniqueness and asymp-

totic behavior of the solution.

• To implement a numeric method to approximate solutions of the continuous model.

• To computationally simulate the model modifying the studied experimental factors and com-

paring it with experimental results.

• To adjust the model parameters to approximate more efficiently the photovoltaic effect.
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1. Solar cell physics

In this chapter we analyze the photovoltaic effect in order to understand how solar energy is trans-

formed into electrical energy in a solar cell. In Section 1.1, we first introduce the concept of charge

carriers in a semiconductor then explain the doping process and finally present the physics involved

in a P-N junction. In Section 1.2, we address the photovoltaic effect by studying how certain factors

in the P-N junction facilitate or limit the recombination and generation of charge carriers when a flow

of photons produced by solar rays is absorbed in a solar cell.

1.1 Semiconductors: Generalities and properties

To get a better understanding of the working of a solar cell, in this section we study the structure

and properties of its main component, silicon (Si), a semiconductor very abundant in the Earth. Elec-

trical properties in the solids are determined by the distribution of the electrons in the valence and

conduction bands, see Figure 1.1.

Figure 1.1: Band diagram for insulators(left), semiconductors (center) and conductors (right).

In conductors, the conduction and valence band are overlaped allowing an easy movement of

the electrons between the bands. Meanwhile, electrons in the valence band of semiconductors and

insulators need a certain amount of energy to jump to the conduction band, lower than 5 eV for

semiconductors and higher than 5 eV for insulators, this energy is known as energy gap or band gap

10



and is denoted by Eg .

Electrons in a semiconductor are arranged in a crystalline structure, particularly, the atoms in Si

share its valence electrons creating covalent bonds. This way, as we can see in Figure 1.2, there are

not free electrons (at absolute zero) that can move between bands. However, if certain amount of

energy is applied, as example an increment of temperature, an electron will acquire enough energy

to break a bond and convert itself in a free electron and to create a hole (positively charged specie),

in a semiconductor the electron and hole are known as charge carriers.

Figure 1.2: Crystalline structure between five atoms of silicon.

1.1.1 Semiconductor Doping

The process of adding atoms of other materials (impurities) in the atomic structure of a semiconduc-

tor in order to modify its properties is called doping; a semiconductor is named intrinsic when it is

pure and extrinsic when it is doped.

When a certain amount of atoms elements of V-A group are added to Si, as it is shown in Figure

1.3 with phosphorus atoms, the impurity atoms form covalent bonds with silicon atoms, but since

the elements of V-A group have five electrons in the valence band, each impurity atom will produce

a free electron leaving the silicon negatively charged, the obtained material is named n-type silicon.

Figure 1.3: N-type semiconductor

11



On the other hand, when atoms of an element of the group III-A, as it is shown for boron in Figure

1.4, are added, a hole is produced for each impurity atom since the elements of III-A group has three

electrons in the valence band, this way the silicon is positively charged, the obtained material is

named p-type silicon.

Figure 1.4: P-type semiconductor

1.1.2 P-N Junction

The region shared by an N-type and an P-type material when they are placed in touch is known as

P-N junction. As we can see in Figure 1.5, there is a high concentration of electrons in the N-region

and of the holes in the P-region, so they move according to their concentration gradient.

Figure 1.5: P-N Junction. The black arrows indicate how each type of carrier flows for one type
semiconductor to the other.

When electrons from the N-region diffuse into the P-region, positively charged ions are left behind

and the holes in the P-region which diffuse into N-region leave negatively charged ions near the P-

N junction a neutrally charged region is created which is known as depletion region. On the other

hand, the positive ions in the N-region and the negative ones in the P-region produce a "built-in"

electric field that avoids the movement of charge carriers between the regions, this electric field is

represented by the blue arrow in Figure 1.5. So, an external force will be required to move a charge

carrier from one region to another such force is called barrier potential and is denoted by Vbi .
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When a voltage is applied to the terminals of the junction, it is said to be biased, if the positive

terminal of the voltage source is connected to the P side of the junction is said to be forward bias and

if the positive terminal of the voltage source is connected to the N side of the junction is said to be

reverse bias. The built-in voltage of a P-N junction is reduced or increased by the applied voltage Va,

this is given by

Vj = Vbi −Va (1.1.1)

where Va > 0 for forward bias and Va < 0 for reverse bias. When forward biased, the diffusion of

electrons and holes in the junction is increased attempting to reestablish equilibrium, resulting in

current flowing through the circuit. This will also affect the width of the depletion region as the

value of Vbi change as we can see in Figure 1.6.

Figure 1.6: Effect of bias in a P-N junction, no bias (top), forward bias (middle), reverse bias (bottom)

1.1.3 Recombination of charge carriers

The generation of an electron-hole pair occurs when the electrons move from valence band to con-

duction band due to light absorption or increase of temperature. Meanwhile, recombination is the

process where an electron-hole pair is annihilated [54].

The recombination processes can be divided in bulk and surface recombination [55], where bulk

processes can also be subdivided in: radiative, Auger and Defect-assisted or SRH (for Shockley-Read-

Hall). The first one consists in the transition of an electron from the conduction band into the valence

band with a photon emission, the second one appears when an electron transfers its extra energy

to another electron during a recombination process, the second electron will jump into a higher

energy level and, when it relaxes, will release this extra energy as heat and the last one happens

when the semiconductor contains trap states near the mid-gap. These recombination mechanisms

are illustrated in Figure 1.7.

Meanwhile, surface recombination occurs when an interface between two different materials is

created, i.e. at the front of a solar cell where the crystal lattice ends abruptly and a high concentration

of defects is created, consequently when a minority carrier reaches a contact it can recombine with a
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Figure 1.7: Bulk recombination mechanisms.

charge in the electrode [33].

1.2 Photovoltaic Effect

In this section we analyze the neccesary conditions for sunlight to generate a photocurrent in the

solar cell, first we compare the energy emitted by the photons with the band gap in the solar cell (Eg )

to determine whether or not this energy can generate electron-hole pairs. Afterthat, we present the

mechanisms that occur inside and outside the depletion region so that electron-hole pairs contribute

to the photocurrent.

As we can see in Figure 1.8 a certain amount of the sunlight is reflected and the rest can be

absorbed or transmitted. The generation of an electron-hole pair due to the sunlight happens when

the photon energy (Eph) is greater or equal to the band gap (Eg ) in the solar cell. However, it is

important to point out that if Eph = Eg a transmission process can occur, that is, the photons will

cross the solar cell without creating an electron-hole pair.

Figure 1.8: Possibilities for a photon (in yellow) in a solar cell. (a), (b) and (c) indicates electron-hole

pair generation in the n-region, depletion region and p-region respectively.
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The electron-hole pairs can be generated in any of the three regions of the solar cell: depletion

region, P-region and N-region. If an electron-hole pair is generated inside the depletion region, by

the action of the electric field, the electron is sent into the N-region and the hole to the P-region,

producing thus a voltage between the terminals of the cell and/or a current flow into an external

circuit. On the other hand, if an electron-hole pair is generated in the P-region the electron must

travel a certain distance to arrive to the depletion region without recombining and be tossed into

the N-region therefore it contributes to the photocurrent. In similar way, if an electron-hole pair is

generated in the N-region, to contribute to the photocurrent, the hole must be able to travel a certain

distance to reach the depletion region [56].

The distance traveled by a minority carrier γ , electron in the P-region and hole in the N-region,

until the depletion region is called minority carrier diffusion length and is given by Lγ =
√
Dγτγ ,

where Dγ is the diffusion coefficient and τγ its lifetime [57]. The previous formula allows to deter-

mine the maximum width of each region in the solar cell since to avoid the recombination such width

should be smaller that the corresponding diffusion length.

Summarizing, when a photon with enough energy creates an electron-hole pair that reaches the

depletion region, see Figure 1.9, the action of the electric field will drift an electron towards the N-

region (due to its positive charge) and a hole to the P-region (due to its negative charge). This way,

electrons are collected by the contacts placed at the front of the cell and flow through an external

circuit to the back contact in the P-region [52].

Figure 1.9: Photocurrent generation. The black arrows show how the carriers move when the equi-
librium is broken by cause of radiation.

A solar cell has no external bias but when a photogenerated electron-hole pair is created, the

minority carriers are swept down the energy barrier due to the build-in electric field as it can be

appreciated in Figure 1.10. The photogenerated carriers create a new electric field E′ with opposite

direction than the build-in field meaning that the net electric field is given by E − E′ , similar to a

forward bias [58].

The creation of electron-hole pairs via the absorption of sunlight is essential to the operation

of solar cells causing the transition of electrons from the valence band to the conduction bands, it

is important to point out that during this process the energy and momentum of all the particles

involved are conserved. The absorption coefficient varies according to the structure band of the

semiconductor used for the manufacture of the solar cell. When the valence-band maximum occurs
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Figure 1.10: Band diagram of an illuminated solar cell.

at the same crystal momentum that the conduction-band minimum we say that the material posses a

direct band structure and in the opposite case that posses a indirect band structure [54], see Figure

1.11.

Figure 1.11: Direct (a) and indirect (b) band-gap.

In indirect band-gap semiconductors (as Si), their absorption coefficient are lower than those of

direct band-gap semiconductors [54] since they require of photons and phonons (low energy parti-

cles with high momentum) to accomplish the transition of an electron from the valence band to the

conduction band and to conserve the electron momentum. As a result of this, light penetrates more

deeply in indirect band-gap semiconductor and to harness all it potentials is necessary to maximize

the number of phonons with anti-reflective coatings and/or texturizing in order to maximize the

effective thickness of the absorber [59].
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2. Mathematical model

Most of the experimental works that aims to improve the efficiency of solar cells are focused in solar

panels and the behavior of the efficiency when external phenomena as temperature [10, 64], absorp-

tion coat in the panel [8], rearrange of the contacts [11] and creation of new materials of the contacts

[9] are modified. In this way, these surveys seek to improve the efficiency of a solar panel once the

solar cell has already been manufactured.

Therefore, in this chapter we present a mathematical model that allows to study the change in

the efficiency of a single solar cell through the modification of certain parameters involved in its

manufacture. This model essentially describes the concentration of charge carriers (electrons and

holes) in a single solar cell and considers phenomena such as diffusion, drift, recombination and

generation.

2.1 Transport equations in semiconductors

The transport of charge carriers in a single semiconductor can be modeled by means of two macro-

scopic models: the hydrodynamic model and drift-diffusion model. The hydrodynamic model is

obtained applying the entropy maximum principle to closure the moment equations of the Boltz-

mann equation and relates the interaction of electrons, holes and impurities (donors and acceptors)

under the action of an electrical field, this model has been used to simulate a MOSFET device and a

diode [19] and a GaAs solar cell [34]. On the other hand, the drift-diffusion model is determined by

means of a scaling and posterior expansion of Boltzmann equations in which the collision operator

is considered as the simple relaxation time approximation. Since drift-diffusion model has shown to

reproduce in a good way the electronic behavior of a single semiconductor [33, 35, 67] and it is less

complex than the hydrodynamic one, it will be used to model the photovoltaic effect in the solar cell.

17



2.1.1 Drift-diffusion equations

The drift-diffusion equations for a single semiconductor are given by
∂n
∂t

=
1
q
∇Jn +G −R

∂p

∂t
= −1

q
∇Jp +G −R

div(ε∇φ) = −q(p −n+ND −NA)

(2.1.1)

where n and p denote respectively the concentration of electrons and holes in the semiconductor,

φ the electrostatic potential, q the electron charge and ε the permittivity. Also, G and R represent

respectively the generation and recombination of charge carriers and, ND andNA are respectively the

concentration of donor and acceptor impurities. Furthermore, the terms Jn and Jp defined as the net

current density of electrons and holes , are given by

Jn = Jn(diffusion) + Jn(drift) = q (Dn∇n−µnn∇φ) , (2.1.2)

Jp = Jp(diffusion) + Jp(drift) = −q
(
Dp∇p+µpp∇φ

)
, (2.1.3)

with Dn and Dp the respective diffusion coefficients of electrons and holes and, µn and µp are their

respective mobility coefficients.

2.2 Mathematical modeling of the solar cell

In this section we use the drift-diffusion equations (2.1.1)-(2.1.3) to model the photovoltaic effect

in a solar cell. We first mathematically characterize the three electronic regions in a solar cell, af-

ter, analyze the contributions of the generation and the recombination of charge carriers and show

the variation of the electrostatic potential throughout the cell and, finally tacking into account the

suitable initial and boundary conditions we present the mathematical model obtained.

2.2.1 Spatial domain

Let xp,dp,dn and xn be positive real numbers with dp < xp and dn < xn and let also be Ω = (−xp,xn) a

open set of R such that Ω is the union of the subsets Ω∗p =
(
−xp,−dp

)
, Ωd =

(
−dp,dn

)
and Ω∗n = (dn,xn)

and their corresponding boundaries denoted by ∂Ω∗p =
{
−xp,−dp

}
, ∂Ωd =

{
−dp,dn

}
and ∂Ω∗n = {dn,xn}.

Therefore, as we can see in Figure 2.1, the three electronic regions: the P-region that does not

belong to the depletion region, the depletion region and the N-region that is not in the depletion

region are respectively represented by: Ω∗p, Ωd and Ω∗n.

2.2.2 Generation of charge carriers

The mechanism of generation of charge carriers by means of light was introduced by Gärtner in 1959

[65], he considered a photon flux F produced by a monochromatic light of intensity If on the cell’s

surface with F =
λIf
hc

, where λ and c are respectively the wavelength and the speed of light, and h
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Figure 2.1: In a solar cell the regions: Ω∗p, Ωd and Ω∗n are electronically formed between the physical
regions Ωp and Ωn.

is the Planck’s constant. Taking into account that a part of the light is reflected, the term (1 − r)F
represents the absorbed photon flux, where r is the reflection coefficient of the cell. From Lambert’s

law (also known as Bouguer’s law) we know that the absorbed photon flux decays exponentially with

the distance into the material, this way, the net absorbed photon flux F̃ is given by

F̃ = (1− r)Fe−αx

with α as the absorption coefficient of the light with a wavelength λ. On the other hand, under the

assumption that an electron-hole pair is created for each absorbed photon, the rate of generation is

given by

G = lim
∆x→0

F̃(x)− F̃(x+∆x)
∆x

= − d
dx
F̃(x) = αF̂e−αx (2.2.1)

where F̂ =
(1− r)λ
hc

If .

2.2.3 Recombination of charge carriers

There are three types of recombination of charge carriers: radiative (Rλ), Auger (RAuger ) and Defect-

assisted (RSRH ), see Section 1.1.3. This way, by considering the contribution of each type of recombi-

nation R is given by

R =

 ∑
trapsj

RSRHj

+Rλ +RAuger , (2.2.2)
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where

RSRHj =
pn−n2

i

τSRH,n
(
p+ pj

)
+ τSRH,p

(
n+nj

) , (2.2.3)

Rλ = Bλ(pn−n2
i ), (2.2.4)

RAuger = (Cnn+Cpp)(pn−n2
i ). (2.2.5)

Here, ni is the intrinsic carrier concentration, Bλ the radiative recombination coefficient [40] and,

Cn and Cp are respectively the Auger recombination coefficients for electrons and holes [41]. Mean-

while, τSRH,n and τSRH,p represent the lifetime of electrons and holes in SRH recombination [106],

respectively.

The recombination rate is governed by the minority carrier density, consequently, let ω and ω be,

respectively, the majority and minority carrier density whose initial densities are given by ω0 and ω0.

Assuming that ω0 ≤ω�ω0 it gets

RSRH,ω ≈
ω −ω0
τSRH,ω

,

Rλ,ω ≈
ω −ω0
τλ,ω

,

RAuger,ω ≈
ω −ω0
τAuger,ω

.

Therefore, the recombination rate for the minority and majority carriers is given by

Rω = RSRH,ω +Rλ,ω +RAuger,ω ≈
ω−ω0
τω

Rω = 0

where τω =
1

τSRH,ω
+

1

τRλ,ω
+

1
τAuger,ω

is the minority carrier lifetime.

Since the electrons (n) are minority carriers in Ω∗p and the holes (p) in Ω∗n and, there are not free

carriers in the depletion region Ωd . The recombination rate for the three electronic regions are shown

in Table 2.1.

Region/Rate Rn Rp

Ω∗p
n−n0

τRn
0

Ωd 0 0

Ω∗n 0
p − p0

τRp

Table 2.1: Recombination in each electronic region.

2.2.4 Electrostatic potential

The electrostatic potential and the density of charge carriers and impurities, in a semiconductor,

are related by means of the Poisson equation div(ε∇φ) = −qρ where ρ is the net charge in a specific

electronic region. According to the electronic behavior of the P-N junction, which was presented in
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Section 1.1.2, we have that

div (ε∇φ) =



−q(p −n−NA) in Ω∗p

−q(ND −NA) in Ωd

−q(p −n+ND ) in Ω∗n

(2.2.6)

2.2.5 Initial, boundary and jump conditions

Initial conditions

Given that at the beginning there is no recombination and generation of charge carriers and consider-

ing that the solar cell is in equilibrium, that is, there is no current due to drift or diffusion of carriers,

the initial conditions for electrons and holes are given by

n(x, t) =


0 in Ω∗p × {t = 0}
0 in Ωd × {t = 0}
ND (x) in Ω∗n × {t = 0}

(2.2.7)

p(x, t) =


NA(x) in Ω∗p × {t = 0}
0 in Ωd × {t = 0}
0 in Ω∗n × {t = 0}

(2.2.8)

The initial value for electric potential φ is determined solving the Poisson equation (2.2.6) when

n and p are respectively given by (2.2.7) and (2.2.8).

Remark 2.1. It is often assumed that the carrier densities obey the Maxwell-Boltzmann statistics and

that ND , NA and ε are constant, under such assumptions the initial value for φ is

φ(x) =



φp in Ω∗p × {t = 0}

q
NA
2ε

(
x+ dp

)2
in Ωdp × {t = 0}

q
ND
ε

(
dn −

x
2

)
x+ q

NA
2ε
d2
p in Ωdn × {t = 0}

φn in Ω∗n × {t = 0}

(2.2.9)

Boundary conditions

To close the circuit in the solar cell two metals are placed at x = −xp and x = xn, these types of contacts

metal-semiconductor are modeled by imposing of Dirichlet boundary conditions

n (x, t) = neq (x) , (2.2.10)

p (x, t) = peq (x) , (2.2.11)

φ (x, t) = Vbi +φph, (2.2.12)

where φph = φnph+φpph is the photogenerated potential which is the sum of the potentials generated at

the edges of the cell. Additionally, we establish that φ(0) = 0 and, to maintain the charge neutrality
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at equilibrium in Ω∗p and Ω∗n
∇E = div(ε∇φ) = 0.

The conditions (2.2.10)-(2.2.12) are determined in a equilibrium solar cell for which the current den-

sities are zero, that is  Dn∇n−µnn∇φ = 0,

Dp∇p+µpp∇φ = 0,
, (2.2.13)

also the neutrality charge and the law of mass action ND (x)−NA(x) + peq (x)−neq (x) = 0,

neq (x)peq (x) = n2
i ,

(2.2.14)

are kept. From (2.2.14) it follows that

neq (x) =
1
2

(√
(ND (x)−NA(x))2 + 4n2

i +ND (x)−NA(x)
)

(2.2.15)

and

peq (x) =
1
2

(√
(ND (x)−NA(x))2 + 4n2

i −ND (x) +NA(x)
)
. (2.2.16)

Given that outside of depletion region electric field is negligible we assume that the electric potential

is constant there. Therefore, if F1 and F2 are functions defined by φ(x) = F1 (x,n(x)) = F2 (x,p(x)) such

that are solutions of system (2.2.13) then Vbi defined as Vbi = φ(dn)−φ(−dp) is given by

Vbi = F1

(
dn,neq(dn)

)
−F1

(
−dp,neq(−dp)

)
= F2

(
dn,peq(dn)

)
−F2

(
−dp,peq(−dp)

)
. (2.2.17)

Remark 2.2. Note that we have only assumed that the electric field is constant outside of depletion

region. For which the boundary conditions obtained by the systems (2.2.13) and (2.2.14) are much

general than the existing works. These conditions are commonly determined considering the solar

cell as an ideal diode as can be seen in Appendix A .

Jump conditions

A very complicated issue in the modeling of the solar cell is to impose suitable boundary conditions, if

we think from the mathematical point of view then we want to obtain a sufficiently smooth solution

along the domain but such boundary conditions are not consistent with the physical part. On the

other hand, some boundary conditions are only valid if the process satisfies certain assumptions

which are not applicable with the particular phenomenon [67, 101].

For lightly doped semiconductors where the P-N junction is homogeneous, a Schottky contact is

considered for which the electrostatic potential at the interfaces x = −dp and x = dn is given by [41]

[φ]−dp = φ−d−p −φ−d+
p

= 0,
[
∂φ

∂x

]
−dp

=
∂φ

∂x

∣∣∣∣∣−d−p − ∂φ∂x
∣∣∣∣∣−d+

p

= 0 (2.2.18)

[φ]dn = φd−n −φd+
n

= 0,
[
∂φ

∂x

]
dn

=
∂φ

∂x

∣∣∣∣∣
d−n

−
∂φ

∂x

∣∣∣∣∣
d+
n

= 0. (2.2.19)
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Meanwhile, the current densities satisfy the following conditions [68, 66]

[Jn · ν]−dp = Jn · ν|−d−p − Jn · ν|−d+
p

= −vn,−dp
(
n−neq

)
, [Jn · ν]dn = Jn · ν|d−n − Jn · ν|d+

n
= −vn,dn

(
n−neq

)
[
Jp · ν

]
−dp

= Jp · ν
∣∣∣−d−p − Jp · ν∣∣∣−d+

p
= vp,−dp

(
p − peq

)
,

[
Jp · ν

]
dn

= Jp · ν
∣∣∣
d−n
− Jp · ν

∣∣∣
d+
n

= vp,dn
(
p − peq

)
where vγ,x represents the recombination velocity of carrier γ (γ = {electron,hole}) at point x and the

superscripts − and + indicates respectively the left and right side of the interface.

In the case of heavily doped semiconductors, the above conditions are not applicable. In this

sense, the problem of finding suitable interface conditions for semiconductors that does not satisfy

the assumptions of a ideal p-n junction, see Appendix A, is still a open problem [66, 67].

Remark 2.3. To increase the efficiency of a solar cell, we must first analyze different situations such as

doping at different levels, doping profile, diffusion coefficients dependent on the electric field among

others, before imposing boundary and interface conditions that are physically consistent.

2.3 Mathematical model

The following set of systems of differential equations under the boundary and interface conditions

analyzed in Subsection 2.2.5 constitutes our mathematical model for a solar cell that, as we will see

in the next section, allows us to study the efficiency of solar cell by means of the variables n, p and φ

of the model.

∂n
∂t

=
1
q
∂
∂x
Jn +αF̂e−αx − n−n0

τRn
in Ω∗p × (0,T ]

∂p

∂t
=− 1

q
∂
∂x
Jp +αF̂e−αx in Ω∗p × (0,T ]

∂
∂x

(
ε
∂φ

∂x

)
=− q(p −n−NA) in Ω∗p × (0,T ]

n(x, t) =neq(x), p(x, t) = peq(x), φ(x) = Vbi +φpph on
{
x = −xp

}
× (0,T ]

n(x, t) =0, p(x, t) =NA,
∂
∂x
E = − ∂

∂x

(
ε
∂φ

∂x

)
= 0 on Ω∗p × {t = 0}

(2.3.1)



∂n
∂t

=
1
q
∂
∂x
Jn +αF̂e−αx in Ωd × (0,T ]

∂p

∂t
=− 1

q
∂
∂x
Jp +αF̂e−αx in Ωd × (0,T ]

∂
∂x

(
ε
∂φ

∂x

)
=− q(ND −NA) in Ωd × (0,T ]

n(x, t) =0, p(x, t) = 0 on Ωd × {t = 0}

φ(x) =0 on {x = 0} × {t = 0}

(2.3.2)
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∂n
∂t

=
1
q
∂
∂x
Jn +αF̂e−αx in Ω∗n × (0,T ]

∂p

∂t
=− 1

q
∂
∂x
Jp +αF̂e−αx −

p − p0

τRp
in Ω∗n × (0,T ]

∂
∂x

(
ε
∂φ

∂x

)
=− q(p −n+ND ) in Ω∗n × (0,T ]

n(x, t) =neq(x), p(x, t) = peq(x), φ(xn) = Vbi +φnph on {x = xn} × (0,T ]

n(x, t) =ND , p(x, t) = 0,
∂E
∂x

= − ∂
∂x

(
ε
∂φ

∂x

)
= 0 on Ω∗n × {t = 0}

(2.3.3)

Remark 2.4. The model (2.3.1)-(2.3.3) is also applicable for heavily doped semiconductors applying

the generalized Einstein relations (A.2.1) in the current densities Jn and Jp given in (2.1.2) and (2.1.3),

respectively.

Remark 2.5. The interval (0,T ] represents the temporal domain.

2.3.1 Solar cell eficiency

The main objective of this work is to improve the efficiency of a solar cell for wich we will show as

the variables of the model (2.3.1)-(2.3.3) allow to address it.

The efficiency (η) in the solar cell is the relation between the generated power and the incident

power (Pi) given by

η =
ImaxVmax

Pi
(2.3.4)

where Imax and Vmax are respectively the maximum current and voltage in the cell. Firstly, since the

total current is related with the current density J by

I(t) =
∫
Ω

J · dS,

and

J (n,p,φ) = Jn + Jp = q (Dn∇n−µnn∇φ)− q
(
Dp∇p+µpp∇φ

)
,

then, the total current in the cell is given by

I(t) = q
∫
Ω

[(
Dn∇n∗ −Dp∇p∗

)
−
(
µnn

∗ +µpp
∗
)
∇φ∗

]
· dS (2.3.5)

here, (n(x, t),p(x, t),φ(x)) = (n∗(x, t),p∗(x, t),φ∗(x)) represents the solution of model (2.3.1)-(2.3.3). On

the other hand, the voltage in the cell is defined as the potential difference between the terminals

x = −xd and x = xn, therefore

V
∣∣∣∣x=xn

x=−xd
= φ∗(xn)−φ∗(−xd) (2.3.6)

Remark 2.6. The formulas (2.3.5) and (2.3.6) for the current and voltage in the cell are obtained

considering lightly doped semiconductors, for heavily doped semiconductors or a combination of

both it is necessary a complete analysis to obtain the corresponding formulas.
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3. Qualitative analysis

In this chapter, we determine according to the existing mathematical models the most relevant pa-

rameters that might allow us to improve the efficiency in the model (2.3.1)-(2.3.3). We also present

the mathematical results about of important aspects over the mathematical model.

3.1 Important Parameters

Here, we present the parameters that allow in the model (2.3.1)-(2.3.3) improve the efficiency in a

solar cell. Moreover, we show the assumptions carried out in similar mathematical models existing

in the literature.

1. Mobility coefficients

(i) Constant: reference values for µn and µp respectively are 1400 cm2/(V ·s) and 470 cm2/V ·s
[70].

(ii) Function of the temperature: If the doping levels are low the mobility is governed by intrin-

sic lattice scattering, µL = CLT
−3/2 where T is the temperature and CL is a constant [54],

meanwhile, if the doping is high the ionized impurity scattering controls the scattering,

µI =
CIT

3/2

ND +NA
with CI a constant [54]. On the other hand. when more than one scattering

type is considered, the mobility coefficient is obtained as the reciprocal of the sum of each

scattering mechanism contribution reciprocal.

(iii) Function of impurity concentrations The mobility coefficients can be estimated by the fol-

lowing empirical formulas [54, 70]

µn = 92 +
1318

1 +
[
(NA +ND )/1× 1017]0.85 [cm2/(V · s)]

and

µp = 50 +
420

1 +
[
(NA +ND )/1.6× 1017]0.7 [cm2/(V · s)].
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(iv) Function of the electric potential:

µn = µ0
n

(
1 +

µ0
n|∇φ|
vn

)−1

and, µp = µ0
p

1 +
µ0
p |∇φ|
vp

−1

where µ0
n and µ0

p are respectively field-independent scattering mobility coefficients of elec-

trons and holes [44].

2. Diffusion coefficients

(i) Constant: common values for Dn and Dp are respectively 20cm2/s and 3cm2/s [37].

(ii) Function of the electric potential: under the assumptions that the Einstein relations are ful-

filled and that the diffusion coefficients are functions of the mobility coefficients, which

are dependent on the electric potential, it follows that [44]

Dγ = µγ (−∇φ) +
2
3
τγ

[
µγ (−∇φ)| − ∇φ|

]2
, γ = n,p.

3. Absorption coefficient

(i) Constant: its value is normally determined for a specific wavelength or obtained as an

average of a selected range of wavelengths, i.e. 9.52× 104 cm−1 for 400 nm [74].

(ii) Function of the extinction coefficient: Beer-Lambert’ s law relates the absorption coefficient

(α), the extinction coefficient (κe) and incident wavelength (λ) by means of the formula

α =
4πκe
λ

[56].

(iii) Function of the temperature:

α =
∑
i,j=1,2

CiAj

 [~ν −Egi(T ) +Epi]2

eEpi /KT−1
+

[~ν −Egi(T )−Epi]2

1− e−Epi /KT

+Ad[~ν −Egd(T )]1/2,

for 20K ≤ T ≤ 500K, the values of functions and constants are given in [75].

4. Doping profile

(i) Constant: some reference values for ND and NA, respectively, are 1 × 1020cm−3 and 1 ×
1015cm−3 [54], 1× 1019cm−3 and 1.5× 1016cm−3 [37], 5× 1014cm−3 and 1× 1013cm−3 [56]

(ii) Function of space: some doping profiles are the following
Gaussian ⇒ NA(D)(x) =N0e

−x2/(4Dγ t)

Complementary error ⇒ NA(D)(x) =N0erfc

 x

2
√
Dγ t


Rxponential ⇒ NA(D)(x) =N0e

x/(2
√
Dγ t)

where t is a period of time, N0 is the doping concentration at the surface and γ is either n

for ND or p for NA [35].
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5. Cell width

To avoid the recombination of charge carriers, the width of regions n and p should be limited

by the diffusion length

Lγ =
√
Dγτγ , γ = n,p.

Some reference values for xn and xp are respectively 0.35µm and 300µm [54], and 0.2nm and

300nm [56].

6. Permittivity

(i) Constant: an usual value is 1.04× 10−12F/cm or its relative value respect the vacuum per-

mittivity (8.854× 10−12F/m) is 11.7.

(ii) Function of temperature: the value of the permittivity increases as the temperature increases

due to the activation of different polarization mechanisms.

(iii) Function of space: if the solar cell is composed by different materials the permittivity will

vary between regions, this way, sometimes it is considered as a piecewise constant function

[67].

7. Generation term

(i) Function of absorption coefficient:
G = αF̂e−αx

where α is the absorption coefficient and F̂ the absorbed photon flux [65].

(ii) Function of direction:

G =

 α(x)G0(x0)e
∫ s
0 α(x0+s′θ0)ds′ if x = x0 + xθ0

0 otherwise,

where the absorption coefficient α(x) is integrated over the usable spectrum, x0, θ0 and G0

are the incident location, direction and photon flux [41].

(iii) Interaction between generation and recombination: A particular form for the recombination

and generation terms is the one presented by Carlo de Falco et al. [72] where they are

governed by the additional differential equation

Ẋ = g − r
g = G(x, t)︸︷︷︸

(a)

+ ζpn︸︷︷︸
(b)

r = kdissX︸︷︷︸
(c)

+ krecX︸︷︷︸
(d)

where (a) provides the photo-generation rate, (b) the recombination rate, (c) the separation

rate of a bound pair and (d) the recombination rate of electron-hole pairs that are not split.
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8. Recombination term

(i) Shockley-Read-Hall Recombination:

RSRH =
pn−n2

i

τSRH,n (p+ni) + τSRH,p (n+ni)
,

where ni is the intrinsic carrier concentration, meanwhile, τSRH,n and τSRH,p represent

respectively the lifetime of electrons and holes [106].

(ii) Auger recombination:
RAuger = (Cnn+Cpp)(pn−n2

i ),

Cn and Cp are respectively the Auger recombination coefficients for electrons and holes

[41].

(iii) Radiative recombination:
Rλ = Bλ(pn−n2

i ),

here, Bλ is the radiative recombination coefficient [40].

3.2 Existing drift-difusion models

Here, we enlist some models based on the drifft-diffusion equations which have been used to describe

the concentration of charge carriers and the electric field in a single semiconductor. Although the

model (2.3.1)-(2.3.3) is more complex, due to the coupling in the interfaces, these works allow to

observe whether or not its solution will possess the following properties:

1. Existence of solutions

(i) Under the assumption thatDn = µn andDp = µp and positive bounded mobility coefficients

of the form µ =
(
x,

∣∣∣∇φ∣∣∣) Beirao da Veiga [78], shows by the Schauder fixed theorem and the

upper and lower solutions that the drift-diffusion model has a weak steady state solution.

(ii) Unlike da Veiga, Frehse and Naumann [79] prove the existence of a positive weak steady

state solution, if the diffusion coefficients and the saturation velocity are bounded, that is,

there exist Ki and Mi positive such that 0 < Di < Ki and µi
∣∣∣∇φ∣∣∣ <Mi .

(iii) Falco et al. [72] presents a weak solution existence theorem for the stationary state by

assuming that ζ, kdiss, krec and G(x, t) are positive constants, the Einstein relations are sat-

isfied, the voltage is bounded, κγ = 0 and βγ , αγ are position functions only, additionally,

in the case of transient regime, also a theorem is proposed establishing that the model

admits a weak solution (φ,u), where u := (n,p), such that:

(a) u > 0 a.e. ΩT

(b) u(x,0) =U (x,0) and u −U ∈ L2(0,T ;Ho)2

(c) u ∈ (C(0,T ;L2(Ω))∩L∞(ΩT ))2

(d)
∂u
∂t
∈ L2(0,T ;H ′0)2
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(e) φ−Ψ ∈ L2(0,T ;H0) with φ ∈ L∞(ΩT )

where U := (n0,p0) ∈ (H1(ΩT )∩ L∞(ΩT ))2 and Ψ ∈ H1(ΩT )∩ L∞(ΩT ) is a function repre-

senting a lifting of the electric potential boundary conditions.

2. Global solutions

(i) Fang e Ito [80] proves the existence of a global weak solution when the mobility of charge

carriers is a bounded lipschitz and the recombination term is locally lipschitz continuous.

(ii) Nagai and Ogawa [81] show that the drift-diffusion model without the recombination and

generation terms has a non-negative global solution for the Cauchy problem whenever the

initial data u0 satisfies that u0(1 + |x|) ∈ L1(R2).

3. Boundedness of solutions

(i) Beirao da Veiga in [78] also proves that as the time-dependent solution as the steady state

solution of the drift-diffusion equations is uniformly bounded if the diffusion and mobility

of charge carriers are constant.

(ii) Flores and Jerez assumming that the Nernst-Einstein relation is satisfied and considering

the current density constant proved by means of the upper and lower solutions technique

the boundedness of the solution if a homogeneous Neumann boundary condition is im-

possed.

4. Asymptotic behavior

(i) For the drift-diffusion equations with zero Neumann conditions andDn =Dp = µn = µp = 1,

Mock shows that the time dependent solution decays exponentially to its unique steady

state solution whenever the impurity profile in the semiconductor let be constant [83].

Moreover, he proves that the electrical potential φ is bounded in the norm L1 where the

constant depends on the initial data and the impurity profile.

(ii) Assuming the diffusion and mobility of charge carriers constant, a differentiable and bound-

ed recombination term as well as the impurity profile and the generation term are in

L∞(Ω), Fang and Ito [80] proves the existence of a compact, connected and maximal at-

tractor.

3.3 Mathematical and numerical analysis

In this section we analyze the mathematical and numerical aspects in the model (2.3.1)-(2.3.3) such

as: the existence and uniqueness of the solution, the need to obtain a numerical method that conserves

the electron and hole densities as well as their positivity, the analysis of the singularly perturbed

system obtained by means of a suitable scalling and finally the study of numerical methods used to

tackle the coupling in the interfaces.
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3.3.1 Existence and Uniqueness

In the case of steady state the variables n and p are commonly changed in terms of quasi-Fermi levels

φn and φp by means of the Maxwell-Boltzmann statistic

n = nie
q(φ−φn)
kT , p = nie

q(φp−φ)
kT , (3.3.1)

it is important to note that this relation is valid only for low carrier densities, however, if the semicon-

ductor has a high density of carriers then the above relation should be substituted by the Fermi-Dirac

statistic [87]. On the other hand, when the Einstein relation is held some works use the Slotboom for-

mulation [76, 77]

n = nie
φ
UT Φn, p = nie

−φ
UT Φp, (3.3.2)

where UT is the thermal voltage. Although under anyone of these formulations the positivity of their

respective variables is ensured, in terms of the variables (φ,φn,φp) the differential operators of the

continuity equations are nonlinear meanwhile in terms of the variables
(
φ,Φn,Φp

)
the differential

operators are linear and self-adjoint [88]. This way, by means of the relation (3.3.2) the drift-diffusion

model can be rewritten as follows

ε∆φ = qni

(
Φne

φ
UT −Φpe

−φ
UT

)
− qC(x),

niUT∇ · (µne
φ
UT ∇Φn) = R

(
φ,Φn,Φp

)
,

niUT∇ · (µpe
−φ
UT ∇Φp) = R

(
φ,Φn,Φp

)
,

subject to the boundary (
φ,Φn,Φp

) ∣∣∣∂ΩD
=

(
φD ,Φn,D ,Φp,D

)
,(

∂φ

∂ν
,
∂Φn
∂ν

,
∂Φp
∂ν

) ∣∣∣∂ΩN
= (0,0,0) .

Markowich demonstrated the existence of weak solutions of the drift-diffusion equations with a SRH

recombination proving that the map G
(
Φ

(k)
n ,Φ

(k)
p

)
=

(
Φ

(k+1)
n ,Φ

(k+1)
p

)
, defined as:

1. Given
(
Φ

(k)
n ,Φ

(k)
p

)
to solve φ(k+1) in the Poisson equation

ε∆φ(k+1) = qni

(
Φ

(k)
n e

φ(k+1)

UT −Φ (k)
p e

−φ(k+1)

UT

)
− qC(x), (3.3.3)

subject to the boundary conditions φ(k+1)
∣∣∣∂ΩD

= φD and ∂φ(k+1)

∂ν

∣∣∣∂ΩN
= 0

2. Solve Φ
(k+1)
n in the continuity equation

niUT∇ ·
(
µne

φ(k+1)

UT ∇Φ (k+1)
n

)
=

1−Φ (k+1)
n Φ

(k)
p

τn

(
e
φ(k+1)

UT Φ
(k)
n + 1

)
+ τp

(
e
−φ(k+1)

UT Φ
(k)
p + 1

) , (3.3.4)
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subject to the boundary conditions Φ (k+1)
n

∣∣∣∂ΩD
= Φn,D and ∂Φ

(k+1)
n
∂ν

∣∣∣∂ΩN
= 0

3. Solve Φ
(k+1)
p in the continuity equation

niUT∇
(
µpe

−φ(k+1)

UT ∇Φ (k+1)
p

)
=

1−Φ (k)
n Φ

(k+1)
p

τn

(
e
φ(k+1)

UT Φ
(k)
n + 1

)
+ τp

(
e
−φ(k+1)

UT Φ
(k)
p + 1

) , (3.3.5)

subject to the boundary conditions Φ (k+1)
p

∣∣∣∂ΩD
= Φp,D and

∂Φ
(k+1)
p

∂ν

∣∣∣∂ΩN
= 0,

satisfies the conditions of the Schauder Fixed Point Theorem whenever the mobilities are bounded

and the boundary conditions are smooth enough. It is important to note that the condition over the

mobilities it is necessary to ensure that the differential operators in (3.3.4) and (3.3.5) let be uniformly

elliptic which implies the well-posedness of map G.

For transient case,

λ2∆φ = n− p −C(x) (3.3.6)
∂n
∂t

= ∇ · (µn∇n−n∇φ)−R(n,p) (3.3.7)

∂p

∂t
= ∇ ·

(
µp∇p − p∇φ

)
−R(n,p) (3.3.8)

subject to the initial and boundary conditions

n(x,0) = n0(x) , p(x,0) = p0(x)

(φ,n,p)
∣∣∣∂ΩD

= (φD ,nD ,pD ) , (∂φ∂ν ,
∂n
∂ν ,

∂p
∂ν )

∣∣∣∂ΩN
= (0,0,0)

(3.3.9)

Gajewski, assuming that the initial conditions n0 and p0 are functions in L2(Ω), the carrier mobilities

are bounded functions of electric field and the Einstein is kept, demonstrated that exists a unique

weak solution for short time interval by means of proving the contractivity of the map F(n(k),p(k)) =

(n(k+1),p(k+1)) defined as follows, see [12] for more details:

1. Given n(k) and p(k) solve φ(k+1) in the Poisson equation

λ2∆φ(k+1) = n(k) − p(k) −C(x)

φ(k+1)
∣∣∣∂ΩD

= φD

∂φ(k+1)

∂ν

∣∣∣∂ΩN
= 0
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2. Solve n(k+1) and p(k+1) in the parabolic system

∂n(k+1)

∂t
= ∇ ·

(
µn∇n(k+1) −n(k)∇φ(k+1)

)
−R(n(k),p(k)),

∂p(k+1)

∂t
= ∇ ·

(
µp∇p(k+1) − p(k)∇φ(k+1)

)
−R(n(k),p(k)),(

n(k+1),p(k+1)
) ∣∣∣∂ΩD

= (nD ,pD ),(
∂n(k+1)

∂ν
,
∂p(k+1)

∂ν

) ∣∣∣∂ΩN
= (0,0).

It is necessary to say that the contractivity of F was proved in the set

Ma = {(n,p) : ‖(n,p)‖ ≤ a} (3.3.10)

where

‖(n,p)‖ =
[

max
0≤t≤T

{
‖n(t)‖2L2(Ω) + ‖p(t)‖2L2(Ω)

}
+
∫ T

0

(
‖n(s)‖2H1(Ω) + ‖p(s)‖2H1(Ω)

)
ds

]
(3.3.11)

Remark 3.1. The results about of existence of solutions for the drift-diffusion have been obtained for

single semiconductors assuming mainly that the Einstein relation is satisfied, the carrier densities are

bounded functions and that the Neumann boundary conditions are homogeneous. In the case of the

model (2.3.1)-(2.3.3) boundary conditions of Robin type are impossed and existence results for this

case are still an open problem.

3.3.2 Numerical methods

To study the way of improving the efficiency of the solar cell by means of the model (2.3.1)-(2.3.3), it

is important to analyze the numerical methods that have been used to solve the drift-diffusion equa-

tions, such methods showed to satisfy the physical aspects and to solve certain observed mathematical

difficulties.

From physical point of view is strictly necessary to implement numerical methods that conserve

the carrier densities and assure their positivity also of being thermodynamically consistent. To sat-

isfy the first two requirements non-standard discretization methods have been used in order to avoid

spatial oscillations generated by small parameters obtained after the scaling of drift-diffusion equa-

tions. These small parameters convert to the drift-diffusion equations in singularly perturberd prob-

lems which are either tackled by asymptotic expansions [87, 89] or by non-standard discretization

schemes, as the upwind-method [41], which are applied to adaptative meshes like Shishkin type

ones [92] that are much finner when the scaling parameter is smaller.

In the case of the thermodynamical consistency, the Scharfetter-Gummel method was developed

[84, 87], for the steady state case, considering a exponential behavior of charge, specifically that the

carrier distributions obey the Maxwell-Boltzmann statistics (3.3.1), and approximating the potential

as a piece-wise linear function for a constant field between the mesh points [43]. However, for de-

generate semiconductors that obey the Fermi-Dirac statistics [93] the generalized Einstein relation

should be assumed and generalizations of Scharfetter-Gummel method had to be carried out [94].
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The methods that are not based on the Scharfetter-Gummel method should add correction terms to

assure their thermodynamical consistency [88].

On the other hand, once the discretizations are obtained the resulting systems of nonlinear equa-

tions can be solved by Newton-type methods [95, 96] or by the Gummel method [38, 91]. The first

one is widely used by its order accuracy but a suitable initial guess should be imposed, in these sense

continuation methods are employed only to tackle this purpose [97]. The second one is iterative pro-

cedure of sequential type that decouples the Poisson equation by initial values of n and p for the

transient case or φn and φp for the steady state case, unlike Newton’ s method the Gummel method

is almost unconditionally convergent but its order accuracy is less than the Newton method [90]. It

is important to point out that the resulting systems are frequently badly conditioned for which pre-

conditioners are commonly used [86]. Finally, methods based on the Schwarz domain decomposition

and multigrid methods are used to deal with differential equations that are coupled in the interfaces

as the case of the model (2.3.1)-(2.3.3) [30].

Remark 3.2. As we can observe to carry out numerical simulations that allow to improve the efficiency

of a solar cell by means of our model different assumptions can be considered but such assumptions

imply the development of suitable and novel techniques as well as great mathematical challenges.
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4. Conclusions and future work

In this work a mathematical model was formulated to improve the efficiency of a single solar cell.

The model is based on the drift-diffusion equations and it considers experimental parameters such

as: mobility, diffusion and absorption coefficients, and doping profile among others. It takes into

account phenomena as: diffusion, drift, generation and recombination of charge carriers. The model

consists on three strongly coupled elliptic-parabolic systems coupled by two interfaces.

The model is applicable as for non-degenerate semiconductors as for degenerate semiconductors

and allows carry out different assumptions over the parameters to improve the efficiency of the solar

cell which is determined in terms of the carrier densities and the electric potential. On the other hand,

the model has the limitations that the generation term does not consider different wavelengths, which

are observable in time, and it does not take into account temperature variations.

After of analyzing the mathematics and physics involved in the mathematical modeling of the

solar cell, this work presents the following challenges:

1. To determine the depletion region for non-uniformly distributed impurities it is necessary to

find the curves γ1 and γ2 that delimit the regions Ωdp and Ωdn such that the charges contained

in these regions are equal and satisfy the drift-diffusion equations under equilibrium condi-

tions.

2. The boundary and interface conditions should be imposed according to the doping levels, dop-

ing profile and junction type among others and these conditions have to prove to be physically

consistent.

3. To study the interfaces and the well-posedness of the model, existence and uniqueness results

should be proved for elliptic-parabolic systems with Robin boundary conditions.

4. To analyze the efficiency of solar cells made from degenerate semiconductors or a combination

with non-degenerate semiconductors, novel numerical methods that are thermodynamically

consistent must be developed, in the case of discretization methods we want also to find a

suitable technique that combines the advantages of Newton’s and Gummel’s methods.

5. To reproduce suitably the behavior of the carrier densities in the interfaces of the model, we

have to compare the domain decomposition and multi-grid methods as well as the asymptotic

expansions.
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A. Semiconductor generalities

This appendix we present important aspects about the semiconductors as well as some idealizations

that have been considered to model the transport of charge carriers in the semiconductors.

A.1 Semiconductor statistics

The semiconductor statistics show how are related the free and impurity carriers as well as their

ionization energy. This way, the electron and hole concentrations are given by

n =
∫ ∞
Ec

Dc(E)f (E)dE, p =
∫ Ev

−∞
Dv(E)(1− f (E))dE. (A.1.1)

where

Dc(E) =
8πmn

√
2mn(E −Ec)
h3 , E ≥ Ec

Dv(E) =
8πmp

√
2mp(Ev −E)

h3 , E ≤ Ev

are respectively the density of states in the conduction band and valence band and, mn and mp are

respectively the effective masses of the electron and hole meanwhile h is the Planck’s constant. On

the other hand, f (E) is a distribution function that represents the probability of a set of electronic

states are occupied [103].

A.1.1 Lightly doped semiconductors

For lightly doped semiconductors also known as non-degenerate ones, the Maxwell-Boltzmann dis-

tribution

fMB(E) = e−
E−EF
kT , (A.1.2)

implies that the electron and hole concentrations are

n =Nce
(EF−Ec)/kT , p =Nve

(Ev−EF )/kT
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where Nc and Nv indicate respectively the effective density of states in the conduction and valence

bands, given by

Nc = 2
(

2πmnkT
h2

)3/2

, Nv = 2
(

2πmpkT

h2

)3/2

In thermodynamical equilibrium the law of mass action stablish that

np = n2
i =NcNve

(Ev−Ec)/kT =NcNve
−Eg /kT

where Eg represents the band gap.

A.1.2 Heavily doped semiconductors

Depending on the level of impurities and working temperatures, semiconductors have insulating or

conductive properties. Lightly doped semiconductors behave as insulators at low temperatures since

the impurity atoms only have the energy to move to the neighboring atom. Meanwhile, in heavily

doped semiconductors the impurity atoms are at a shorter distance so a band of impurities is formed

that overlaps the conduction band whereby the semiconductor acts as a conductor [104]. On the other

hand, the heavily doped semiconductors obey the Fermi-Dirac distribution

fFD (E) =
1

1 + e(E−EF )/kT
, (A.1.3)

In the case of Fermi-Dirac distribution the integrals shown in (A.1.1) can not been explicitly deter-

mined. However, if E� EF then the Maxwell-Boltzmann can be used to approximated them. In any

other case, the carrier densities are given by [104, 105]

n =NcF1/2

(EF −EC
KT

)
, p =NvF1/2

(EF −EC
KT

)
(A.1.4)

where

Fη(x) =
∫ ∞

0

yη

1 + ey−x
dy. (A.1.5)

A.2 Einstein relations

The diffusion and drift processes are involved in the current density of electrons and holes and they

are related as follows [107]
Dn
µn

=
kbT
q
,

Dp
µp

=
kbT
q

these relations as known as Einstein relations which are only valid for lightly doped semiconductors

whenever as long as there is a small charge in the band edges. For degenerate semiconductors, the

generalized Einstein relations for the electrons were determined by Chakravarti and Nag [108]

Dn
µn
≈ kbT

q


F1/2(γ) +

15αkbT
4

F3/2(γ)

F−1/2(γ) +
15αkbT

4
F1/2(γ)

 (A.2.1)
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with α , 0 for non-parabolic energy bands and α = 0 for the parabolic ones.

A.3 Ideal p-n junction

The ideal p-n junction is a idealized model in which have been impossed the following [107]:

1. n and p materials are lightly doped,

2. their respective concentrations ND and NA are uniformly distribuited,

3. all the dopants are ionized,

4. there is not recombination in the depletion region.

A.3.1 Carrier densities at equilibrium

Under the law of mass action np = n2
i , the equilibrium hole and electron concentrations in a ideal p-n

junction can be approximated by

p =NA, n =
n2
i

NA
(A.3.1)

in the p-region and

p =
n2
i

ND
, n =ND (A.3.2)

in the n-region. These concentrations are considered in the mentioned regions far from junction area

[107]. On the other hand, the electrostatic potentials are given by

φp ≡
kT
q

ln
(
ni
NA

)
, φn ≡

kT
q

ln
(
ND
ni

)
and the built-in voltage Vbi is

Vbi = φn +
∣∣∣φp∣∣∣ =

kT
q

ln

NDNAn2
i

 . (A.3.3)

In addition, the width of the depletion region (W ) and the maximum value of the electric field (Emax)

are given by [57]

W =

√
2ε
q

[
NA +ND
NAND

]
Vbi , Emax =

qNDdn
ε

=
qNAdp
ε

where

dn =

√
2ε
qND

[
NA

NA +ND

]
Vbi , dp =

√
2ε
qNA

[
ND

NA +ND

]
Vbi .
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A.4 Solar cell efficiency parameters

The energy conversion efficiency (η) is the relation between the generated power and the incident

power (Pi) so the maximum efficiency is calculated using the formula

η =
VmaxImax

Pi
(A.4.1)

where Imax and Vmax are respectively the maximum current and voltage.

In technical terms, the efficiency of a solar cell is related with different parameters [60, 61] such

as: the open circuit voltage (Voc), short circuit current (Isc) and the fill factor (FF) as follows

FF =
VmaxImax
VocIsc

=
ηPi
VocIsc

. (A.4.2)

where Isc is obtained by measuring the current in the circuit shown in Figure A.1 and Voc is the

potential difference between the two terminals of the cell when it is being irradiated and the current

can not flow through it, it causes the electrons to be pushed to the N region and the holes to the p

region, see Figure A.2.

Figure A.1: Solar cell at short-circuit conditions

Figure A.2: Solar cell at open-circuit conditions
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B. Schafetter-Gummel method

In this appendix we present the Scharfetter-Gummel method which have been widely used to nu-

merically solve the drift-diffusion equations for non-degenerate semicondutors and for which several

generalizations have been developed [84].

B.1 Assumptions over the drift-diffusion equations

Let us consider the drift-diffusion equations in one spatial dimension

dE
dx = q

ε (p −n+ND −NA)
∂n
∂t

=
1
q
∂Jn
∂x

+G

∂p

∂t
= −1

q

∂Jp
∂x

+G

(B.1.1)

where

Jn = qµnnE + kT µn
∂n
∂x

Jp = qµppE − kT µp
∂p

∂x

(B.1.2)

In their work, Scharfetter and Gummel [84] impossed the following assumptions over the generation-

recombination rate and the carrier mobilities.

1. The generation-recombination rate G is due to two phenomena: the carrier generation and

recombination through the defects denote by Gd and the ionization or avalanche ionization GI
given by

Gd =
pn−n2

i

τp(n+n1) + τn(p+ p1)
(B.1.3)

and

GI =
1
q

(
αn(E)|Jn|+αp |Jp |

)
(B.1.4)

2. The carrier mobilities are dependent of the electric field(
µ0

µ

)2

= 1 +
(

ND
ND /S +N

)
+
(

(E/A)2

E/A+F

)
+ (E/B)2 (B.1.5)
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where

µ0 N S A F B
Holes 480 4x1016 81 6.1x103 1.6 2.5x104

Electrons 1400 3x1016 350 3.5x103 8.8 7.4x103

Table B.1: Coefficients for the field dependent mobility

B.2 Numerical method

Due to the nonlinearities in Scharfetter-Gummel model it must be solved numerically, to achieve it,

the structure is divided into small cells and the spatial derivatives in the equations are solved using

standard difference approximations given by

dp(j)

dt
= Gj −

J
(i)
p − J

(i−1)
p

∆x
dn(j)

dt
= Gj +

J
(i)
n − J

(i−1)
n

∆x
E(i) −E(i−1)

∆x
= q
ε (p(j) −n(j) +N (j)

D −N
(j)
A )

,

where the point i is at the middle of the points j + 1 and j, then, Jn, Jp, µn,µp and E are assumed

constant between mesh points, leading to the solution

J
(i)
p = E(i)

 p(j)µ
(i)
p

1− exp(−E(i)∆x)
+

p(j+1)µ
(i)
p

1− exp(E(i)∆x)


J

(i)
n = E(i)

 n(j+1)µ
(i)
n

1− exp(−E(i)∆x)
+

n(j)µ
(i)
n

1− exp(E(i)∆x)


,

which is numerically stable.

For the time advancement, the equation system represented using a vector is

ẏ = f (y),

with y0 and δy(t) as the initial value of y and its time increases, respectively. Therefore

y(t) = y0 + δy(t),

which for small deviations δy, f (y) is expanded as

δy = f (y0) +Mδy,

where M indicates the matrix df /dy.

In the case that M, f , and δy were ordinary numbers

δy(t) =
(
eMt − 1

)
f /M, or δy(t) = f · t

(
1 +Mt/2 + (Mt)2/6 + ...

)
.
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Additionally, in the case of small and finite time steps, the solution is given by(
1− Mt

2

)
δy(t) = f · t,

representing the vector equation that must be solved for each time increment which is added to y0.

In this particular case,

yj =


∆n(j)

∆p(j)

∆E(i)

 ,
and,

f j =

 ∆p(j)

∆n(j)

 .
And the vector equation to solve in each time is[2

t
−M(j)

]
y(j) = 2f (j)

0 +∆ft ,

with ∆ft as the change in f (j) at the terminals and M(j) =
∂f (j)

∂y
.
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C. List of Symbols

In this appendix we present the meaning of the different symbols used in this dissertation.

Bλ radiative recombination coefficient (1.8× 10−15cm3s−1) for Si

c speed of light in the vacuum

C doping profile

Cn electron Auger recombination coefficient (2.8× 10−31cm6s−1) for Si

Cp hole Auger recombination coefficient (0.99× 10−31cm6s−1) for Si

dn width of the n-region in the depletion region

dp width of the p-region in the depletion region

Dn electron diffusion coefficient

Dp hole diffusion coefficient

E electric field

Ec conduction band energy

Eg band-gap energy

Ef Fermi level energy

Ei intrinsic Fermi level energy

Emax maximum value of the electric field

ET trap energy

Ev valence band energy

f carrier distribution function

F photon flux

F̃ absorbed photon flux

F̂ photon flux in the generation term

G electron-hole pair generation rate

h Planck constant

I current

If intensity of monochromatic light flux

J current density

Jn electron current density

Jp hole current density
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k Boltzmann constant

Ln electron diffusion length

Lp hole diffusion length

mn electron effective mass

mp hole effective mass

n electron concentration

ni intrinsic carrier concentration

neq electron concentration in equilibrium

NA acceptor impurities concentration

NC effective density of states in the conduction band

ND donor impurities concentration

NV effective density of states in the valence band

p hole concentration

peq hole concentration in equilibrium

q elemental charge

r reflection coefficient of the cell

R electron-hole pair recombination rate

RAuger,n electron Auger recombination rate

RAuger,p hole Auger recombination rate

Rλ,n electron radiative recombination rate

Rλ,p hole radiative recombination rate

RSRHj,n electron defect assisted recombination rate

RSRHj,p hole defect assisted recombination rate

U net rate of generation and recombination of electrons and holes

UT thermal voltage

Va polarization voltage

Vbi built-in voltage

Vj junction voltage

Vp photogenerated voltage

w width of the depletion region in an gradual junction

α cell absorption coefficient of light the corresponding wavelength

γ carrier concentration (electrons or holes)

ε static dielectric constant of the semiconductor, in this case, silicon

λ light’s wavelength

µn electron mobility

µp holes mobility

ν light’s frequency

φ electrostatic potential

φn n region electrostatic potential

φp p region electrostatic potential

ρ electric charge density
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τ average collision time

τAuger,n electron lifetime in Auger recombination

τAuger,p hole lifetime in Auger recombination

τλ,n electron lifetime in radiative recombination

τλ,p hole lifetime in radiative recombination

τn electron lifetime

τp hole lifetime

τSRH,n electron lifetime in SRH recombination

τSRH,p hole lifetime in SRH recombination
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