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Abstract

In this thesis, firstly we investigate a hyperbolic partial differential equation that generalizes the classical
wave equation. The model considers a spatial Laplatian of fractional order in terms of Riesz fractional
derivatives, and a generalized potential function. To approximate the solution of this model we propose
a finite difference method with second-order consistency based on fractional centered differences. This
numerical approximation, besides of being stable and convergent, has the property of conserving or dissi-
pating the system’s energy under the same parametric and boundary conditions as the continuous model.
In the second part, we study a generalized form of a two-dimensional coupled hyperbolic system that
describes an activator-inhibitor chemical reaction that produces stationary spatial structures known as
Turing patterns. The reaction terms are polynomial type and the diffusive terms are fractional Riesz
Laplacians with differentiation orders in (0,1) (subdiffusion) and (1,2] (superdiffusion). A finite-difference
methodology based on the use of fractional centered differences was designed to approximate the solutions
of the problem. We prove the existence and the uniqueness of the solutions of the numerical method and
establish its main numerical properties, namely, quadratic consistency, stability and quadratic convergence.
Numerical simulations show the appearance of Turing patterns under subdiffusive conditions, and not only
under the scenario previously reported in literature of superdiffusive conditions.
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Resumen

En esta tesis, en primer lugar estudiamos una ecuación diferencial parcial hiperbólica fraccionaria que gen-
eraliza la ecuación de onda clásica. El modelo considera un laplaciano espacial en términos de la derivada
fraccionaria de Riesz, y una función de potencial generalizada. Para aproximar la solución de este modelo
proponemos un método de diferencias finitas con orden de consistencia cuadrático, el cual incorpora difer-
encias centradas fraccionarias. Esta aproximación numérica, además de ser estable y convergente, tiene
la propiedad de conservar o disipar la enerǵıa del sistema bajo las mismas condiciones paramétricas y de
frontera que el modelo continuo. En la segunda parte, estudiamos una forma generalizada de un sistema
hiperbólico bidimensional que describe una reacción qúımica de tipo activador-inhibidor que produce pa-
trones espaciales estacionarios conocidos como patrones de Turing. Los términos de reacción son de tipo
polinomial, en tanto que los términos de difusión son laplacianos fraccionarios de Riesz con órdenes de
diferenciación en (0,1) (subdifusión) y (1,2] (superdifusión). Para aproximar las soluciones del problema
se diseñó una metodoloǵıa de diferencias finitas basada en el uso de diferencias centradas fraccionarias.
Demostramos la existencia y unicidad de las soluciones del método numérico y establecemos sus princi-
pales propiedades numéricas, a saber, consistencia cuadrática, estabilidad y convergencia cuadrática. Las
simulaciones numéricas del método muestran, tal como lo reportan otros estudios, la aparición de patrones
de Turing en escenarios de superdifusión. Adicionalmente, mostramos que los patrones de Turing también
se presentan bajo condiciones de subdifusión.
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Introduction

Aims and scope

The design of numerical methods that preserve the discrete energy of conservative systems governed by
partial differential equations has been an important area of research in computational physics [20, 127].
Many different approaches have been employed in order to provide numerical techniques that preserve
the total energy of discrete models, including finite differences [141], mimetic finite differences [71], finite
elements [47], Galerkin methods [33], symplectic techniques [130], G-symplectic schemes [26] and finite
pointset methods [73] among other approaches. Historically, the development of numerical techniques that
preserve physical properties of the solutions of systems of partial differential equations was popularized
by D. Furihata and coworkers at the turn of the 21st century [43, 44]. Many reports on the design of
numerical techniques that preserve physical or mathematical invariants of systems of partial differential
equations were proposed afterwards [19], including manuscripts on methods that preserve the mass [55]
and the momentum [117] of a system. Of course, many physical applications have been proposed using
those techniques.

The design of techniques to approximate the solution of physical systems has been largely enriched
with the study of partial differential equations of fractional orders. Indeed, fractional calculus has found
interesting applications in many fields of the natural sciences and engineering, including the theory of
viscoelasticity [60], the theory of thermoelasticity [100], financial problems under a continuous time frame
[109], self-similar protein dynamics [49] and quantum mechanics [90]. Distributed-order fractional diffusion-
wave equations are used in groundwater flow modelling to and from wells [115, 98]. A vast amount
of nonequivalent approaches have been followed, and new criteria of fractional differentiation have been
proposed constantly in the last decades. However, the problem in those cases is the common lack of a
physically meaningful formulation of the Euler–Lagrange formality for fractional variational systems [1].
As expected, this has been a major problem in the design of energy-preserving method for fractional partial
differential equations.

In spite of this shortcoming, many of the partial differential equations from mathematical physics have
been extended to the fractional scenario. Physically, problems that only considered local contributions
to the dynamics of discrete or continuous systems have been extended to account for global effects. In
such way, various classical models that were traditionally described by partial differential equations have
been formulated using derivatives of fractional order under different approaches [108, 91, 122]. Among the
models that have been extended to the fractional scenario are the classical nonlinear wave equations [103, 5].
Here, it is important to point out that the Riesz definition of spatial derivatives of fractional order has been
extensively employed in order to account physically for anomalous diffusion [51], and to provide pertinent
conservation laws and Hamiltonian-like equations [125]. In view of these remarks, a natural question
that arises immediately is whether it is feasible to propose finite-difference discretizations of nonlinear
hyperbolic equations with Riesz space-fractional derivatives, in such way that known conservation laws are
likewise conserved in the discrete domain.

The purpose of this thesis is, in the first part, to approximate a nonlinear dissipative wave equation
with Riesz space-fractional derivatives using a finite-difference discretization based on fractional centered
differences. We will establish the capability of the finite-difference scheme to preserve the dissipation or the
conservation of energy of the discrete system. Furthermore, we will show that our method is a consistent
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technique and we will establish the stability and the convergence properties of our scheme. In the second
part, we investigate numerically a generalized two-dimensional hyperbolic system with anomalous diffusion
that describes the interaction between an activator and an inhibitor in chemical reactions. Again, we
provide a discretization using fractional centered differences. The use of a fixed-point theorem as well
as some properties of fractional discrete operators will allow us to prove the existence (and uniqueness)
of solutions of the numerical method. Employing Taylor series, we establish the method’s second order
of consistency. Additionally, the discrete energy method will be employed to prove the stability and
convergence properties. Some computational simulations are carried out in order to validate our code and
to identify conditions for the presence of Turing patterns.

Summary

This thesis is sectioned as follows.

• Chapter 1 provides a list of important second-order partial differential equations that constitute
particular cases of the equation under study. We state the general form of our problem, describe
the most important applications that it models, and provide analytical methods to compute solution
and, particularly, soliton-like solutions to several particular cases. We close this chapter stating some
important definitions and results from numerical analysis that we use in this thesis without reference.

• Chapter 2 deals with a nonlinear dissipative wave equation with Riesz space-fractional derivatives.
We present an energy functional proposed in the literature and show that the initial-boundary-value
problem is conservative or dissipative under suitable analytic conditions. The concept of fractional
centered differences is recalled and a numerical method to approximate the equation’s solution is
proposed. The most important physical properties of the method are analyzed, particularly the
capability of preserving the dissipation or conservation of energy of the discrete system. Next, the
most important numerical properties of our technique (consistency, stability and convergence) are
stablished. Some computational simulations are presented in the final section of this chapter.

• Chapter 3 presents a numerical method to approximate a two-dimensional hyperbolic system describ-
ing the interactions of and activator-inhibitor chemical reaction subject to fractional diffusion. Initial
conditions are imposed on a closed and bounded rectangle and a finite difference method employing
fractional centered differences is proposed to approximate the solutions of our generalized model.
We establish the solvability of our numerical technique, and show that the method is a quadratically
consistent, stable and quadratically convergent. Computer simulations are provided, exhibiting the
presence of Turing patterns under suitable parameter conditions.
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1. Preliminaries

The nonlinear Klein-Gordon equation is one of the most important and simplest nonlinear differ-

ential equations that appear in relativistic quantum mechanics. As a second-order partial differential

equation, the Klein-Gordon equation generalizes several other important problems in various branches

of physics, chemistry and mathematical biology that range from the classical diffusion equation to the

stochastic Fisher-KPP equation, from the classical wave equation to the Schrödinger and the teleg-

rapher’s equations. The present chapter is devoted to introduce and evidence the importance of the

differential equation under study in this thesis. We also present some important definitions and results

of numerical analysis that will be used without reference in further chapters.

1.1 Basic definitions

By a domain we understand a closed connected subset of R
n. A function u defined in a domain D is

said to be have compact support if it is zero outside a compact subset of D. A function u defined on a
domain D is called smooth in D if it has continuous partial derivatives of all orders in D. The function
u is called small at infinity if for every x̄0 in the boundary of D,

lim
x̄ → x̄0

x̄ ∈ D

u(x̄) = 0.

Let a, b, c, d and e be real numbers with at least one of a, b or c not equal to zero. A second-order
partial differential equation in the variables x and y with constant coefficients is an equation of the form

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
= F (x, y), (1.1)

where u is a function of (x, y) usually assumed to be defined and of compact support in some domain D,
that has continuous partial derivatives up to the second order in D. The number b2 − 4ac is called the
discriminant of Equation (1.1) and yields a criterion to classify second-order partial differential equations:

• If b2 − 4ac > 0 then Equation (1.1) is called a hyperbolic equation. As an example of this type of
equation we have the classical one-dimensional wave equation

∂2u

∂x2
=

1

ν2

∂2u

∂t2
.

It describes the vertical disturbance of a wave with phase velocity ν as it travels on the horizontal
direction. The wave equation applies to a stretched string or a plane electromagnetic wave. Given
initial and boundary conditions the wave equation can be solved exactly by using a Fourier transform
method or via separation of variables.

• If b2 −4ac = 0 then Equation (1.1) is called a parabolic equation. An example of parabolic equation
is the one-dimensional diffusion equation (also called heat equation)

∂u

∂t
= κ

∂2u

∂x2
.
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This equation commonly arises in problems of heat conductivity. In those situations κ represents
thermal diffusivity and u represents temperature. If initial and boundary conditions are given, the
diffusion equation can be solved analytically by separation of variables.

• If b2 − 4ac < 0 then Equation (1.1) is called an elliptic equation. Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0

is an example of an elliptic equation. It is satisfied by the potential of any distribution of matter which
attracts according to the Newtonian Law. A solution to Laplace’s equation is uniquely determined
if the value of the function or the normal derivative of the function is specified on all boundaries.

We must remark that the wave equation, the heat equation and Laplace’s equation have generalizations
that model the corresponding physical phenomena in three dimensions. For example, the wave equation

in three space variables reads

∇2u =
1

ν2

∂2u

∂t2
,

where u is a scalar function that depends on the space coordinate (x, y, z) and time t. The symbol ∇2

denotes the Laplacian differential operator, which is the divergence of the gradient of a scalar function.
With this notation the three-dimensional diffusion equation is described by the equation

∂u

∂t
=

1

κ
∇2u,

and the three-dimensional Laplace’s equation by

∇2u = 0.

Let V and ρ be scalar functions depending only on space. An important variation of the three-
dimensional Laplace’s equation occurs in classical electromagnetic theory when relating the electric po-
tential V of a distribution and its charge density ρ. The relation between V and ρ is described by the
equation ǫ0∇2V = ρ, which is called Poisson’s equation. More generally, every equation of the form

∇2u = F (x, y, z, t),

where u is a scalar function depending on x, y, z and t, is called a Poisson equation. Another useful
classification of second-order partial differential equations with constant coefficients is in terms of a property
called linearity. Differential equation (1.1) is called linear if for arbitrary real constants k1, k2 and solutions
u1, u2 of (1.1), k1u1 + k2u2 is also a solution of (1.1).

Finally, if the variable time is one of the independent variables of the scalar function u then the term
k∂u/∂t in the differential equation modeling u is called the external damping term and the constant k
is called the external damping coefficient. The differential equation is said to be damped if k is not
equal to zero, otherwise it is called undamped.

1.2 Important partial differential equations

Many other three-dimensional generalizations of the wave equation, the diffusion equation and Laplace’s
equation happen to appear in mathematical physics and biology. For example, the manipulation of
Maxwell’s equations to obtain propagating waves gives rise to the so called Helmholtz equation [146],
whose general form is

∇2u+ k2u = 0,

where k is a real constant and u is a scalar function in the variables x, y, z, t. Obviously, Helmholtz
equation is a linear second-order partial differential equation that generalizes the three-dimensional wave
equation.

Another physical example appears in the field of non-relativistic quantum mechanics: Let ~ denote
Planck’s original constant divided by 2π. The wave function associated to a particle of mass m with
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potential scalar function V is a scalar function u that depends on the position vector (x, y, z) of the
particle and the time t, given by the differential equation

i~
∂u

∂t
= − ~

2

2m
∇2u+ V u.

This differential equation is called Schrödinger’s equation. In this equation the scalar function u may
be complex, but the square of its modulus is a real scalar function that represents the probability density
function associated with the location of the particle at any time. It is worth noticing that Schrödinger’s
equation provides a mathematical generalization of the three-dimensional diffusion equation. Observe that
because the scalar function V does not need to be constant, Schrödinger’s equation is a linear partial
differential equation with not necessarily constant coefficients.

The relativistic counterpart of Schrödinger’s equation is the Klein-Gordon equation. By the linear

Klein-Gordon equation we understand the linear second-order partial differential equation

∇2u =
1

c2

∂2u

∂t2
+m2u,

where m is a real constant and u is a scalar function of position and time. This is the equation for a
relativistic quantum-mechanical scalar (spin-zero) particle of mass m. The exact solution of this equation
in the form of a traveling wave is given in [99]. An important nonlinear variation of this equation that
often appears in the study of the collisional properties of solitons [97, 116], that is solitary waves, and a
number of other physical applications [8, 48, 13] is the sine-Gordon equation

∇2u =
1

c2

∂2u

∂t2
+m2 sin u.

Several nonlinear variations of the Klein-Gordon equation appear in many branches of physics, chem-
istry and other sciences. The Landau-Ginzburg equation is one of those equations. Studied by Lev
Landau and Vitaly Ginzburg in 1950 while studying the theory of superconductivity, this equation is used
to study simple periodic oscillations and the change of their amplitude and frequency with respect to initial
excitations in problems that arise in oscillating chemical reactions and atomic physics. In dimensionless
form, the three-dimensional Landau-Ginzburg equation is given by

∂2u

∂t2
− ∇2u−m2u+G′(u) = 0

In mathematical biology, consider a population distributed in a linear habitat with uniform density. If
at any point of the habitat a mutation advantageous to survival occurs then the mutant gene increases
at the expense of the allelomorphs previously occupying the same locus. Mathematically, let u be the
frequency of the mutant gene and let m be a constant representing intensity of selection in favor of the
mutant gene. Then u must satisfy Fisher’s equation (also called the Fisher-KPP equation)

∂u

∂t
= k

∂2u

∂x2
+ F (u),

where k is a diffusion coefficient and u depends on the position x in the linear habitat and time t given
in generations. This parabolic equation was simultaneously and independently investigated by Fisher [37]
and Kolmogoroff et al. [61], using F (u) = mu(1 −u). It is used also in describing the process of epidermal
wound healing [111]. Other applications appear in the theory of superconducting electrodynamics [129]
and in the study of excitons [102]. Fisher’s equation is a nonlinear equation that obviously generalizes the
three-dimensional diffusion model if we rewrite Fisher’s equation as

∂u

∂t
= k∇2u+ F (u).

The stochastic Fisher-KPP equation is the one-dimensional Fisher equation with F (u) = mu(1 −
u)+γ

√
u(1 − u)η(x, t), where 0 ≤ u ≤ 1, γ is a real constant, and η(x, t) is a Gaussian white noise process

in space and time with mean equal to zero [29]. To fix ideas, we may think of a noise as a random signal
of known statistical properties of amplitude, distribution, and spectral density. A noise is a white noise
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in space and time if it is uncorrelated in these two variables, and it is Gaussian if its probability density
function over a given frequency band is normal. The stochastic Fisher-KPP equation is a stochastic partial
differential equation that describes random walk processes that have applications in hydrodynamics and
economics.

Second-order partial differential equations describing diffusion or conduction happen to appear in the
area of thermodynamics [85]. Heat conduction is understood as the transfer of heat from warm areas
to cooler ones, and effectively occurs by diffusion. Under the assumption of a macroscopic continuum
formulation, the Fourier equation [39] for the heat flux q̄ in a medium of density ρ, mass heat capacity
CP , and temperature function u, is

q̄ = −k∇u,
where both q̄ and u depend on the three spatial coordinates and time, k = ρκCP is the thermal conductivity
of the medium, and κ is the thermal diffusivity term of the classical diffusion equation.

The previously mentioned Fourier heat conduction equation is diffusive and does not account for the
temperature propagation speed in transient situations. Because of certain issues argued and identified
earlier, attempts to account for a finite speed of heat propagation have evolved over the years. The
Maxwell-Cattaneo model [17], which is based on the notion of relaxing the heat flux, is given as

τ
∂q̄

∂t
= −q̄ − k∇u,

where τ is the relaxation time. Assuming that there are no heat sources and that k is constant, the
one-dimensional version of the Maxwell-Cattaneo equation together with the energy equation

ρCP
∂u

∂t
+
∂q

∂x
= 0,

yield the hyperbolic equation

τρCP
∂2u

∂t2
− k

∂2u

∂x2
+ ρCP

∂u

∂t
= 0.

Obviously, it can be generalized to the three-dimensional case as

∂2u

∂t2
− k

τρCP
∇2u+

1

τ

∂u

∂t
= 0.

The telegraph equation is a hyperbolic equation that describes heat or mass transport. It models
phenomena that are mixtures between diffusion and wave propagation. In this model a small section of
a telegraph wire is treated to study the pulse of voltage moving along the wire. It was studied in 1876
by Heaviside in his research on coaxial marine telegraph cables [70]. The telegraph equation is the linear
second-order partial differential equation

∂2u

∂x2
− 1

ν2

∂2u

∂t2
− γ

∂u

∂t
− b2u = 0,

where ν is positive, and γ and b are nonnegative constants. The one-dimensional wave equation is just
a particular case of the telegraph equation with γ and b both equal to zero. The generalization of the
telegraph equation to three dimensions is

∇2u− 1

ν2

∂2u

∂t2
− γ

∂u

∂t
− b2u = 0.

1.3 Modified Klein-Gordon equations

The objective of this section is to study a general form of the Klein-Gordon equation that embraces the
partial differential equations described in the previous section and, at the same time, takes into account
a third-order term proportional to the Laplacian of the partial derivative of u in time, which physically
represents the internal damping term. More precisely, let u be a function of the spatial variables X,
Y , Z, and the time variable T . The nonlinear partial differential equation with constant coefficients that
we wish to study in this thesis is

a
∂2u

∂T 2
− b∇2u− c

∂

∂T

(
∇2u

)
+ d

∂u

∂T
+m2u+G′(u) = 0,

11



Let x = X/
√
b, y = Y/

√
b, z = Z/

√
b, and t = T/

√
a for a and b positive numbers. Let β = c/(b

√
a)

and γ = d/
√
a. Our problem can be stated in dimensionless form as

∂2u

∂t2
− ∇2u− β

∂

∂t

(
∇2u

)
+ γ

∂u

∂t
+m2u+G′(u) = 0,

subject to : { u(x̄, 0) = φ(x̄), x̄ ∈ D,
∂u

∂t
(x̄, 0) = ψ(x̄), x̄ ∈ D.

(1.2)

This initial-value problem will be referred to as the modified nonlinear Klein-Gordon equation or
the dissipative nonlinear Klein-Gordon equation, and its numerical study for the particular choice
G′(u) = up, for p > 1 an odd number, is the topic of this section. We identify the term containing the
coefficient β as the internal damping term, while the term containing γ is easily identified as the external
damping term. Needless to say that the differential equation in (1.2) generalizes the equations listed in
Section 1.2 either by choosing suitable coefficients or by suppressing terms; the classical Klein-Gordon
equation, for instance, can be obtained by setting β and γ both equal to zero and G′ identically zero. It
is worthwhile mentioning that the undamped nonlinear Klein-Gordon equation with G′(u) = u3 is called
the quasilinear Klein-Gordon equation, and it also has physical applications [92].

The following is the major theoretic result we will use in our investigation. It is valid only for certain
classical one-dimensional nonlinear Klein-Gordon equations. Here M(t) represents the amplitude of a
solution of (1.2) at time t, that is

M(t) = max
x

|u(x, t)|.

Theorem 1.3.1. Let β and γ be both equal to zero, and let G′(u) = |u|p−1u. Suppose that φ and ψ are
smooth and small at infinity. Then

(1) If p < 5, a unique smooth solution of (1.2) exists with amplitude bounded at all time [57].

(2) If p ≥ 5, a weak solution exists for all time [110].

(3) For p > 8/3 and for solutions of bounded amplitude, there is a scattering theory; in particular, they
decay uniformly as fast as M(t) ≤ c(1 + |t|)−3/2 [88].

Josephson transmission lines

As we stated in the introductory chapter, initial-value problem (1.2) has applications in several physical
problems. In the remainder of this section we will describe some of them.

A Josephson junction is a type of electronic circuit capable of switching at very high speeds when
operated at temperatures approaching absolute zero. Named for the British physicist who designed it, a
Josephson junction exploits the phenomenon of superconductivity, that is the ability of certain materials
to conduct electric current with practically zero resistance. Josephson junctions are used in certain special-
ized instruments such as highly-sensitive microwave detectors, magnetometers, and quantum interference
devices.

A Josephson junction is made up of two superconductors, separated by a nonsuperconducting layer so
thin that electrons can cross through the insulating barrier. The flow of current between the superconduc-
tors in the absence of an applied voltage is called a Josephson current, and the movement of electrons
across the barrier is known as Josephson tunneling. Two or more junctions joined by superconducting
paths form what is called a Josephson interferometer.

While researching superconductivity, Josephson studied the properties of a junction between two su-
perconductors [58]. Following up on earlier works by Leo Esaki and Ivar Giaever, he demonstrated that
in a situation when there is electron flow between two superconductors through an insulating layer (in the
absence of an applied voltage), and a voltage is applied, the current stops flowing and oscillates at a high
frequency. This phenomenon is called the Josephson effect, and it is influenced by magnetic fields in
the vicinity, a capacity that enables the Josephson junction to be used in devices that measure extremely
weak magnetic fields, such as superconducting quantum interference devices. For their efforts, Josephson,
Esaki, and Giaever shared the Nobel Prize for Physics in 1973.

It is worthwhile mentioning that the theory of low temperature conductivity tells us that a supercon-
ductor is a system where a fraction of the conduction electrons form pairs called Cooper pairs. In these
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Figure 1.1: Schematic representation of a small Josephson junction.

pairs the two electrons have opposite momentum and spin. These pairs are able to condense in the same
quantum state so that the superconductor can be described by a single macroscopic wave function

Ψ =
√
ρeiφ.

Here ρ represents the pair density and φ is the quantum phase common to all pairs. A small Josephson

junction consists of two small layers of superconducting metal separated by a thin dielectric barrier layer,
which is small enough to permit tunneling of Cooper pairs (equivalently, coupling of the wave functions of
the two superconductors).
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Figure 1.2: Schematic representation of a long Josephson junction.

A long Josephson junction consists of two identical superconducting long strips separated by a thin
dielectric layer. This long tunneling junction can be regarded as a transmission line as far its electromag-
netic behavior is concerned [8]. However, in dealing with real transmission lines for the long Josephson
junction one must take into account losses, bias, and junction irregularities which influence motion [104].
When we account for all of these effects, we obtain the third-order partial differential equation

∂2φ

∂x2
− ∂2φ

∂t2
− α

∂φ

∂t
+ β

∂3φ

∂x2∂t
= sinφ− γ,

where α, β and γ are constants.

The statistical mechanics of kinks

The statistical mechanics of kinks (that is, exact solitary waves) of nonlinear coherent structures has been
studied by two approaches. In the first approach one assumes that the kinks may be treated as weakly
interacting elementary excitations. Provided the kink density is low, the canonical partition function can
be found by standard methods [83, 64, 25]. Alternatively, it is possible to calculate the partition function
to exploit a transfer operator technique. This method was used by Krumhansl and Schrieffer in [64], and it
showed that in the low temperature limit the partition function naturally factorizes into two contributions:
A tunneling term which they were able to identify with the kink contribution, and the remainder which
they identified as linearized phonons (by a phonon we mean a quantized mode of vibration occurring in
a rigid crystal lattice, such as the atomic lattice of a solid).

The ideas of Krumhansl and Schrieffer were further refined and extended to a wider class of systems
[25]. In particular, interactions of kinks with linearized phonons were considered, leading to substantial
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corrections of results. Computer simulations based on standard methods [4] made possible to verify results
on the equilibrium statistical mechanics of kinks using a dimensionless Langevin equation describing
the (1 + 1)-dimensional theory:

∂2φ

∂t2
=
∂2φ

∂x2
− γ

∂φ

∂t
− φ(1 − φ2) + F (x, t).

The wave equation revisited

Initial-value problem (1.2) also describes the mechanical motion of strings for certain physical situations.
Consider the one-dimensional motion of a string immersed in a non-Hookean medium. We represent the
vertical motion of the string as a function u(r, t) of horizontal position and time, and the nonlinear force
of the medium by G′(u). The string is assumed to posses internal damping due to its inner stiffness, which
is proportional to urrt. Finally, we assume that there exists friction between the string and the medium
that derives in a force which opposes the motion of the string and is proportional to the vertical velocity
of the string. In these circumstances, the motion of our string will be described by (1.2).

1.4 Elementary solutions

In our study we will be often interested in studying soliton solutions. As mentioned before, solitons are
solitary waves found in many nonlinear physical phenomena. They were first named by Zabusky and
Kruskal in 1965 [143], and first appeared in the solution of the Korteweg-de Vries equation

∂u

∂t
+
∂3u

∂x3
− 6u

∂u

∂x
= 0.

Later on it was proved that equations such as the nonlinear Schrödinger equation, the nonlinear Klein-
Gordon equation and the sine-Gordon equation also posses soliton solutions. Mathematically, solitons

have been defined [30] as solutions of nonlinear partial differential equations which

(i) represent waves of permanent form and velocity,

(ii) decay or approach a constant at infinity, and

(iii) can interact strongly with other solitons and retain their identity.

Given a differential equation in the variables x and t, an elementary soliton solution is a solution
of the differential equation u of the form u(x, t) = φ(x − vt) with the property that the infinite limits
limx→−∞ u(x, t) and limx→+∞ u(x, t) are constant with respect to time. In this section we derive the
solution of the linear Klein-Gordon equation using Fourier transforms and some elementary soliton solutions
for some important nonlinear partial differential equations. Throughout ξ will denote the quantity x− vt.

The linear Klein-Gordon equation

First we wish to use Fourier transform to solve an arbitrary initial value-problem involving the linear
Klein-Gordon equation and provide a solution in terms of the source function. After that, we will find the
traveling wave solutions of this differential equation. Thus, let m be a real constant and the consider the
(1 + 1)-dimensional initial-value problem

∂2u

∂t2
− ∇2u+m2u = 0,

subject to : { u(x, 0) = φ(x), x̄ ∈ R,
∂u

∂t
(x, 0) = ψ(x), x ∈ R.

Using Fourier transform, this problem in terms of the source function S(x, t) can be expressed as the
initial-value problem
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∂2Ŝ

∂t2
+ k2Ŝ +m2Ŝ = 0,

subject to :




Ŝ(k, 0) = 0, −π < k < π,

∂Ŝ

∂t
(k, 0) = 1, −π < k < π.

For a fixed value of k, the differential equation in the initial-value problem above is ordinary, and its
solution is a linear combination of sines and cosines. It can be seen then that the particular solution to
this problem is of the form Ŝ(k, t) = sin(ωt)/ω, where ω =

√
k2 +m2. After applying inverse Fourier

transform to Ŝ and simplifying, it is easy to obtain that

S(x, t) =

{ 1

2
J0

(
m
√
t2 − x2

)
, for |x| < t,

0, for |x| ≥ t,

Where J0 is the Bessel function of the first kind of order 0 whose general definition may be found in [53].
Needless to say that the source function S of the linear Klein-Gordon equation converges to the source
function corresponding to the classical wave equation when m tends to 0.

We are interested now in computing radially symmetric solutions of the three-dimensional linear Klein-
Gordon equation using Fourier transforms. It is easy to verify that the expression Ŝ(k̄, t) of the Fourier
transform of the source function in this case will be the same as that of the (1+1)-dimensional one. Letting
r represent the Euclidean norm of x̄ in R

3 and computing the inverse Fourier transform of Ŝ we get

S(r, t) =
1

8π3

∫ 2π

0

∫ π

0

∫ ∞

0

sin(ωt)

ω
k2 sin θeikr cos θdk dθ dφ

=
1

2πr2

∫ ∞

0

sin(t
√
k2 +m2)√

k2 +m2
k sin kr dk

= − 1

4πr

δ

δr

∫ ∞

−∞

sin(t
√
k2 +m2)√

k2 +m2
eikrdk.

Let H represent the Heaviside function. Computing the above derivative with respect to r and using
the identities J0 = −J1 and J0(0) = 1, we obtain that

S(r, t) =
1

2π
δ(t2 − r2) −mH(t2 − r2)

J1(m
√
t2 − r2)

4π
√
t2 − r2

.

The sine-Gordon equation

The sine-Gordon equation has been used as a mathematical model in many different applications, including
the propagation of ultra-short optical pulses in resonant laser media [66], a universal theory of elementary
particles [112, 113, 35], and the propagation of magnetic flux in Josephson junctions [59]. Here we consider
the classical (1 + 1)-dimensional sine-Gordon equation presented in Section 1.2, with parameters m2 =
c = 1, and assume that u(x, t) = φ(x − vt) = u(ξ) is an elementary soliton solution. Then φ satisfies the
ordinary differential equation (1 − v2)φξξ − sinφ = 0. Multiplying then by φx, integrating with respect to
ξ and solving for φξ, we obtain that

dφ

dξ
=

(
2A− 2 cosφ

1 − v2

)1/2

,

where A is the constant of integration. Now we use separation of variables and the substitution A(1−v2) =
1. Integrating both sides and noting that 1−cosφ = 2 sin2( 1

2φ) and noting that the derivative with respect
to φ of ln tan(1

4φ) equals 1
2 csc( 1

2φ), we get

√
2 ln

[
tan(1

4φ)

tan(1
4φ0)

]
=

[
2

1 − v2

]1/2

(ξ − ξ0).
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Figure 1.3: Soliton solution (solid line) and anti-soliton solution (dotted line) of the sine-Gordon equation
at time 0, with v = 0.1.

Finally, solving for φ and expressing the result in terms of x and t, it is possible to write the elementary
soliton solution as

u(x, t) = 4 arctan

[
exp

(
x− vt√
1 − v2

)]
.

This solution is sometimes called a kink; its profile is shown in Figure 1.3. The other soliton solution
that can be obtained from the sine-Gordon equation, called the anti-kink or anti-soliton, is shown in
the same figure. Its analytical expression is given by

u(x, t) = 4 arccot

[
exp

(
x− vt√
1 − v2

)]
.

We must mention here that the sine-Gordon equation possesses solutions built up from the superposition
of solitons and/or anti-solitons. Those solutions and the elementary soliton solutions obtained above are
listed in Table 1.1 for the sake of future reference (see [128]).

The Landau-Ginzburg equation

The (1 + 1)-dimensional Landau-Ginzburg equation is another important nonlinear partial differential
equation arising in physics that possesses soliton solutions. From the mathematical point of view, the
Landau-Ginzburg equation can be seen as a quasilinear Klein-Gordon equation with purely imaginary
mass and nonlinear term proportional to u3. More concretely, the Landau-Ginzburg equation with real
parameters m and λ under study in this section can be written as

∂2u

∂t2
− ∂2u

∂x2
−m2u+ λu3 = 0.

Using the same technique to find elementary, solitary wave solutions, we suppose that u(x, t) = φ(ξ),
where ξ = x− vt for some v ∈ R. Then φ satisfies the ordinary differential equation

(1 − v2)
d2φ

dξ2
= −m2φ+ λφ3.
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Type of solution Analytical expression

single soliton u(x, t) = 4 arctan

[
exp

(
x− vt√
1 − v2

)]

single anti-soliton u(x, t) = u(x, t) = 4 arccot

[
exp

(
x− vt√
1 − v2

)]

two solitons u(x, t) = 4 arctan

[
v sinh(x/

√
1 − v2)

cosh(vt/
√

1 − v2)

]

soliton and anti-soliton 4 arctan

[
sinh(vt/

√
1 − v2)

v cosh(x/
√

1 − v2)

]

”breather” u(x, t) = 4 arctan

[√
1 − v2

v

sin(vt)

cosh(x
√

1 − v2)

]

Table 1.1: Different types of soliton solutions of the sine-Gordon equation.

Solving and then multiplying by 2φ′(ξ), we obtain that

d

dξ

[(
dφ

dξ

)2
]

=
1

2(1 − v2)

d

dξ

(
λφ4 − 2m2φ2

)
.

We integrate now with respect to ξ both sides of the equation. An integration constant will appear in the
right-hand side of the resulting equality. By choosing this constant of integration equal to m2/(2λ(1−v2)),
taking the negative square root on both sides of the equation, separating variables, and completing the
square in the radical that contains φ, we obtain that

− 1√
λ

∫ φ

φ0

dφ

φ2 −m2/λ
=

∫ ξ

ξ0

dξ√
2(1 − v2)

.

Let ξ0 and φ0 be both equal to zero. Expressing the integrand in the left-hand side of the preceding
equality, integrating, and then evaluating from φ0 to φ, we get

1

2m
ln

∣∣∣∣∣
(φ+m/

√
λ)(φ0 −m/

√
λ)

(φ−m/
√
λ)(φ0 +m/

√
λ)

∣∣∣∣∣ =
ξ − ξ0√
2(1 − v2)

We choose φ0 and ξ0 to be equal to zero. Solving then for φ we obtain the following soliton (kink) solution
for the Landau-Ginzburg equation

u(x, t) =
m√
λ

= tanh

[
m(x− vt)√

2(1 − v2)

]

The corresponding anti-soliton (anti-kink) solution to the Landau-Ginzburg equation is obtained by eval-
uating the solition solution at (−x, t). A graph showing the kink and anti-kink of the Landau-Ginzburg
equation is shown in Figure 1.4.

1.5 Elements of numerical analysis

In our investigation, we are interested in developing finite-difference schemes to approximate radially
symmetric solutions of modified nonlinear Klein-Gordon equations. In order to determine how accurate
our approximations are, we need to introduce the notions of convergence, consistency and stability. To
understand these concepts we must first clarify some ideas from mathematical analysis. Here we follow
[105] and [126]. Throughout K denotes the fields R and C.

Normed linear spaces

A norm on a vector space V over a scalar field K is a function || · || that associates every element of V with
a real number, such that for any vectors ū and v̄, and any scalar a, the following properties are satisfied:

17



−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

x

u
(x

,0
)

Figure 1.4: Soliton solution (solid line) and anti-soliton solution (dotted line) of the Landau-Ginzburg
equation at time 0, with v = 0.1.

(i) ||v̄|| ≥ 0, and ||v̄|| = 0 if and only if v̄ = 0,

(ii) ||av̄|| = |a| ||v̄||, and

(iii) ||ū+ v̄|| ≤ ||ū|| + ||v̄||.

It is worthwhile mentioning that a vector space with a norm associated with it is called a normed

linear space or simply normed space. The following are examples of normed linear spaces with the
given norms.

Example 1.5.1. Denote by | · | the standard norm in K. The linear space Kn can be given the p-norm

(p ≥ 1)

||x̄||p =

(
n∑

i=1

|xi|p
)1/p

.

The 1-norm and the 2-norm in Kn are called the the taxicab norm and the Euclidean norm , respec-
tively. Kn can also be normed by the so called infinity norm ||x̄||∞ = max{|x1|, . . . , |xn|}.

Example 1.5.2. Let ∆x and p be positive numbers with p > 1. The space ℓp,∆x is the normed linear
space of all infinite sequences u = (. . . , u−1, u0, u1, . . . ) of elements in K with vector addition and scalar

multiplication given componentwise, such that
∑

−∞<j<∞

|uj |p < ∞. The norm is given by

||u||p,∆x =

(
∞∑

k=−∞

|uk|p∆x

)1/p

.

The space ℓp is the space ℓp,1. If p is equal to 2 then ℓp,∆x is called the energy space.

Example 1.5.3. Let λ represent the Lebesgue measure on X ⊆ R. The space Lp(X) for p > 1 is the
normed linear space of all equivalence classes of functions f : X → R under the relation of equivalence
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almost everywhere, together with addition and scalar multiplication defined in representatives, such that∫
X
fp dλ < ∞. Its norm is given by

||f ||p =

(∫

X

fp dλ

)1/p

.

Example 1.5.4. Let || · || be any norm in Kn. The space of all n × n-matrices with coefficients in K is
a normed linear space with the usual operations of addition of matrices and scalar multiplication, with
matrix norm defined by

||Q|| = sup
||ū||≤1

{Qū}.

Convergence

A difference scheme Ln
ku

n
k = Gn

k approximating the partial differential equation Lv = F is a convergent

scheme at time t in the norm || · || of ℓp,∆x if, as (n+ 1)∆t → t,

||un+1 − vn+1|| → 0

as ∆x,∆t → 0. Here un = (. . . , un
−1, u

n
0 , u

n
1 , . . . ) and vn = (. . . , vn

−1, v
n
0 , v

n
1 , . . . ) are the sequences repre-

senting the vector of approximations to the solution of the partial differential equation and the vector of
exact solutions whose k-th component is v(k∆x, n∆t), respectively.

Consistency

The difference scheme un+1 = Qun + ∆tGn is consistent with the partial differential equation Lv = F
in the norm || · || if the solution v of the differential equation satisfies

vn+1 = Qvn + ∆tgn + ∆tτn,

and ||τn|| → 0 as ∆x,∆t → 0. Moreover, the scheme is said to be accurate with order O(∆xp) + O(∆tq) if

||τn|| = O(∆xp) + O(∆tq).

Stability

One interpretation of stability of a finite-difference scheme is that, for a stable scheme, small errors in the
initial conditions cause small errors in the solution. As we will see, the definition does allow the errors
to grow but limits them to grow no faster than exponential. More precisely, the finite-difference scheme
un+1 = Qun is said to be stable with respect to the norm || · || if there exist positive constants ∆x0 and
∆t0, and nonnegative constants K and β so that

||un+1|| ≤ Keβt||u0||,

for 0 ≤ t = (n + 1)∆t, 0 < ∆x ≤ ∆x0 and 0 < ∆t ≤ ∆t0. If further restrictions on the relationship
between ∆t and ∆x are needed in order to guarantee stability of the finite-difference scheme, we say that
the scheme is conditionally stable.

One characterization of stability that is often useful comes from the inequality in the definition above.
We state this in the following result.

Theorem 1.5.5. The scheme un+1 = Qun is stable with respect to the norm || · || if and only if there exist
positive constants ∆x0 and ∆t0, and nonnegative constants K and β so that

||Qn+1|| ≤ Keβt,

for 0 ≤ t = (n+ 1)∆t, 0 < ∆x ≤ ∆x0 and 0 < ∆t ≤ ∆t0.

19



The scheme un+1 = Qun is said to be stable order n with respect to the norm || · || if there exist
positive constants ∆x0 and ∆t0, and nonnegative constants K1, K2 and β such that

||un+1|| ≤ (K1 + nK2)eβt||u0||,

for 0 ≤ t = (n+ 1)∆t, 0 < ∆x ≤ ∆x0 and 0 < ∆t ≤ ∆t0. Obviously, if a finite-difference scheme is stable
then it will be stable order n. We also realize that the above definition is equivalent to requiring that Q
satisfy ||Qn|| ≤ (K1 + nK2)eβt.

The use of the discrete Fourier transform is a useful tool in the analysis of stability of finite-difference
schemes for initial-value problems. We define the discrete Fourier transform of u ∈ ℓ2 as the function
û ∈ L2([−π, π]) given by

û(ξ) =
1√
2π

∞∑

m=−∞

e−imξum,

for ξ ∈ [−π, π]. The ℓ2 vectors that we will be using later will be the ℓ2,∆x vectors that are the solutions
to our finite-difference schemes at time step n.

Example 1.5.6. The central second-order difference is the linear operator δ2 that associates with
each infinite sequence u = (. . . , u−1, u0, u1, . . . ) of real numbers the infinite sequence δ2u whose m-th
component is given by um+1 − 2um + um−1. It is easy to check that the Fourier transform of δ2u is given
by −4 sin2 ξ

2 û.

It is important to remark that if u ∈ ℓ2 has discrete Fourier transform û then ||û||2 = ||u||2, where the
first norm is the L2-norm on [−π, π] and the second norm is the ℓ2-norm. This fact constitutes a bridge
between the spaces ℓ2 and L2([−π, π]) that provides us with the following important result for stability.

Theorem 1.5.7. The sequence {un} is stable in ℓ2,∆x if and only if {ûn} is stable in L2([−π, π]).

Let un+1 = Qun be a finite difference scheme. Taking discrete Fourier transform in both sides we
obtain an equation of the form ûn+1 = A(ξ)ûn. The matrix A(ξ) is called the amplification matrix of
the difference scheme. By virtue of Theorem 1.5.7, the stability of the scheme depends on the growth of
the amplification matrix raised to the n-th power.

Theorem 1.5.8 (Lax Theorem). If a two-level difference scheme un+1 = Qun + ∆tGn is consistent in
the norm || · || to an initial-value problem and is stable with respect to || · ||, the it is convergent with respect
to || · ||.

1.6 Finite differences

We could begin by recalling the standard definition of derivative which we have learned in elementary
calculus.

Definition 1.6.1. The derivative of the function u(x) is defined by the equation

u′(x) = lim
∆x→0

u(x+ ∆x) − u(x)

∆x
. (1.3)

provided the limit exists. The number u′(x) is also called the rate of change of u at x.

However, the computers can not handle the previous limit, namely, when ∆x → 0, and hence a discrete
analogue of the continuous scenario need to be considered. In the discretization, we can regard that the
set of points on which the function is defined is finite, and the function value is available on a discrete set
of points. The approximations to the derivative of the function will must to come from these finite sets of
points.

Figure 1.5 shows us the discrete set of points xi where the function is known. We use the notation
ui = u(xi) to denote the value of the function at the i-th node of the computational grid. We divide the
axis into a set of intervals of width ∆xi = xi+1 −xi. We can fix the grid spacing, it means that all intervals
are of equal size, so we will refer to the grid spacing as ∆x. If we make the last, we will obtain several
advantages when we develop the method as we will see afterward.

20



b b b

b

b
b
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Figure 1.5: Computational grid and example of backward (red dashed line), forward (blue dashed line)
and centered (magenta dashed line) linear interpolation to the function.

Finite difference approximation

We employ the definition of derivative in the continuous case to approximate the derivative in the discrete
case:

u′(xi) ≈ u(xi + ∆xi) − u(xi)

∆x
=
ui+1 − ui

∆x
, (1.4)

where now ∆x is a finite and small but not necessarily infinitesimally small quantity. In the literature,
this is known as a forward Euler approximation since it uses forward differencing.

Intuitively, we hope that the approximation improves, it means, the error will decrease, as ∆x is made
smaller. The above is not the only way to approximate the derivative. We provide two other equally valid
approximations:

u′(xi) ≈ u(xi) − u(xi − ∆x)

∆x
=
ui − ui−1

∆x
, (1.5)

and

u′(xi) ≈ u(xi + ∆x) − u(xi − ∆x)

∆x
=
ui+1 − ui−1

∆x
. (1.6)

Equation (1.5) is known as backward Euler’s approximation whereas Equation (1.6) represents the
centered difference approximation. All these definitions are equally equivalent in the continuous case but
yield to different approximations in the discrete case. The question becomes which one is better, and is
there a way to quantify the error committed. The answer lies in the application of Taylor series analysis.

Taylor series

Let’s start with the identity

u(x) = u(xi) +

∫ x

xi

u′(s)ds. (1.7)

Since u(x) is arbitrary, the formula should hold with u(x) replaced by u′(x), it means,

u′(x) = u′(xi) +

∫ x

xi

u′′(s)ds. (1.8)
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Replacing this expression in the original formula and carrying out the integration (since u(xi) is constant)
we get

u(x) = u(xi) + (x− xi)u
′(xi) +

∫ x

xi

∫ x

xi

u′′(s)dsds. (1.9)

The process can be repeated with

u′′(x) = u′′(xi) +

∫ x

xi

u′′′(s)ds, (1.10)

to get

u(x) = u(xi) + (x− xi)u
′(xi) +

(x− xi)
2

2!
u′′(xi) +

∫ x

xi

∫ x

xi

∫ x

xi

u′′′dsdsds. (1.11)

We can repeat this process under the assumption that u(x) is sufficiently differentiable, and we find

u(x) = u(xi) + (x− xi)u
′(xi) +

(x− xi)
2

2!
u′′(xi) + . . .+

(x− xi)
n

n!
u(n)(xi) +Rn+1, (1.12)

where the remainder is given by

Rn+1 =

∫ x

xi

· · ·
∫ x

xi

u(n+1)(s)(ds)n+1. (1.13)

Equation (1.12) is known as the Taylor series of the function u(x) about the point xi. Notice that the
series is a polynomial in (x− xi) and the coefficients are the (scaled) derivatives of the function evaluated
at xi.

If the (n+ 1)-th derivative of the function u has minimum m and maximum M over the interval [xi, x]
the we can write ∫ x

xi

· · ·
∫ x

xi

m(ds)n+1 ≤ Rn+1 ≤
∫ x

xi

· · ·
∫ x

xi

M(ds)n+1, (1.14)

m
(x− xi)

n+1

(n+ 1)!
≤ Rn+1 ≤ M

(x− xi)
n+1

(n+ 1)!
, (1.15)

which shows that the remainder is bounded by the values of the derivative and the distance of the point x
to the expansion point xi raised to the power n + 1. If we further assume that u(n+1) is continuous then
it must take all values between m and M , that is

Rn+1 = u(n+1)(ξ)
(x− xi)

n+1

(n+ 1)!
, (1.16)

for some ξ ∈ [xi, x].

Taylor series and finite differences

The behavior of numerical approximation to differential equations can be studied using Taylor series. First,
we consider the forward Euler with Taylor series. For this, we need to expand the function u at xi+1 about
the point xi:

u(xi + ∆xi) = u(xi) + ∆xi
∂u

∂x

∣∣∣∣
xi

+
∆x2

i

2!

∂2u

∂x2

∣∣∣∣
xi

+
∆x3

i

3!

∂3u

∂x3

∣∣∣∣
xi

+ . . . (1.17)

We can rearrange the Taylor series to get the following

u(xi + ∆xi) − u(xi)

∆xi
− ∂u

∂x

∣∣∣∣
xi

=
∆xi

2!

∂2u

∂x2

∣∣∣∣
xi

+
∆x2

i

3!

∂3u

∂x3

∣∣∣∣
xi

+ . . .

︸ ︷︷ ︸
Truncation Error

(1.18)

where it is now clear that the forward Euler formula (1.4) corresponds to truncating the Taylor series
after the second term. We can see that the right-hand side of Equation (1.18) coincides with the error
committed when we terminate the series and is referred to as the truncation error. The truncation error
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could be defined as the difference between the partial derivative and its finite difference representation.
For sufficiently smooth functions and adequately small ∆xi, the first term in the series is usually used to
establish the order of magnitude of the error. The first term in the truncation error is the product of the
second derivative evaluated at xi and the grid spacing ∆xi: the former is a property of the function itself

while the latter is a numerical parameter which we can change. Thereby, for finite ∂2u
∂x2 , the numerical

approximation depends linearly on the parameter ∆xi. If we were to half ∆xi, we would expect a linear
decrease in the error, if we make ∆xi sufficiently small. We know that there is a notation to refer this
behavior, that is truncation error ∼ O(∆xi). In general, if ∆xi is not constant we choose a representative
value of the grid spacing. Note that in general, we can not calculate the exact truncation error; all we can
do is characterize the behavior of this error as ∆x → 0. Thus, we can rewrite Equation (1.18) as

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui

∆xi
+ O(∆x) (1.19)

Now, we can use the Taylor series expansion to obtain an expression for the truncation error when we
consider the backward difference formula

u(xi − ∆xi−1) = u(xi) − ∆xi−1
∂u

∂x

∣∣∣∣
xi

+
∆x2

i−1

2!

∂u2

∂x2

∣∣∣∣
xi

− ∆x3
i−1

3!

∂u3

∂x3

∣∣∣∣
xi

+ . . . (1.20)

where ∆xi−1 = xi − xi−1. We proceed to get an expression for the error corresponding to backward
difference approximation of the first derivative

u(xi) − u(xi − ∆xi−1)

∆xi−1
− ∂u

∂x

∣∣∣∣
xi

= −∆xi−1

2!

∂u2

∂x2

∣∣∣∣
xi

+
∆x2

i−1

3!

∂u3

∂x3

∣∣∣∣
xi

+ . . .

︸ ︷︷ ︸
Truncation Error

(1.21)

We realize that the truncation error of the backward difference is not the same as the forward difference;
it behave similarly in terms of order of magnitude analysis, and is linear in ∆x, that is

∂u

∂x

∣∣∣∣
xi

=
ui − ui−1

∆xi−1
+ O(∆x) (1.22)

Observe that in both cases we used the information provided at just two points to obtain the approxi-
mation, and the error performs linearly in both instances.

We can obtain a higher order approximation of the first derivative by combining the two Taylor series
Equation (1.17) and (1.20). Notice first that the high order derivatives of the function u are all evaluated
at the same point xi and are the same in both expansions. Now, if we form a linear combination of the
equations, the prime error will vanish. Observe Equations (1.18) and (1.21). Multiplying the first by
∆xi−1 and the second by ∆xi and adding both equations we get:

1

∆xi + ∆xi−1

[
∆xi−1

ui+1 − ui

∆xi
+ ∆xi

ui − ui−1

∆xi−1

]
− ∂u

∂x

∣∣∣∣
xi

=
∆xi−1∆xi

3!

∂3u

∂x3

∣∣∣∣
xi

+ . . . (1.23)

The approximation uses information about the function u at three points: xi−1, xi and xi+1. Thus, the
truncation error ∼ O(∆xi−1∆xi) and is second order. We can observe that on the important case where
the grid spacing is constant, the expression simplifies to

ui+1 − ui−1

2∆x
− ∂u

∂x

∣∣∣∣
xi

=
∆x2

3!

∂3u

∂x3

∣∣∣∣
xi

+ . . . (1.24)

Hence, for an equally spaced grid, the centered difference approximation converges quadratically as
∆x → 0:

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui−1

2∆x
+ O(∆x2) (1.25)
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Higher order approximation

The Taylor expansion provides a suitable tool to derive a higher order approximation to derivatives of any
order. In most of the following we will consider the grid spacing to be constant as is usually the case in
most applications. In fact, we will assume constant spacing grid in this thesis.

Equation (1.24) yields the simplest way to derive a fourth order approximation. As an important
property of this centered formula is that its truncation error contains only odd derivative terms:

ui+1 − ui−1

2∆x
=
∂u

∂x
+

∆x2

3!

∂3u

∂x3
+

∆x4

5!

∂5u

∂x5
+

∆x6

7!

∂7u

∂x7
+ . . .+

∆x2m

(2m+ 1)!

∂2m+1u

∂x2m+1
+ . . . (1.26)

The above formula can be applied with ∆x replace by 2∆x, and 3∆x respectively, to get:

ui+2 − ui−2

4∆x
=
∂u

∂x
+

(2∆x)2

3!

∂3u

∂x3
+

(2∆x)4

5!

∂5u

∂x5
+

(2∆x)6

7!

∂7u

∂x7
+O(∆x8), (1.27)

ui+3 − ui−3

6∆x
=
∂u

∂x
+

(3∆x)2

3!

∂3u

∂x3
+

(3∆x)4

5!

∂5u

∂x5
+

(3∆x)6

7!

∂7u

∂x7
+O(∆x8). (1.28)

Multiplying Equation (1.26) by 22 and subtracting it from Equation (1.27), we cancel the second order
error term to get:

8(ui+1 − ui−1) − (ui+2 − ui−2)

12∆x
=
∂u

∂x
− 4∆x4

5!

∂5u

∂x5
− 20∆x6

7!

∂7u

∂x7
+O(∆x8). (1.29)

Repeating this process for Equation (1.27) but using the factor 32 and subtracting it from Equation
(1.28), we get

27(ui+1 − ui−1) − (ui+3 − ui−3)

48∆x
=
∂u

∂x
− 9∆x4

5!

∂5u

∂x5
− 90∆x6

7!

∂7u

∂x7
+O(∆x8). (1.30)

Even though both Equation (1.29) and (1.30) are meaningful, the latter is not used in the practice since
it does not sense to ignore neighboring points while using more distant ones. Nevertheless, this expresion
is appropiate to derive a sixth approximation to the first derivative: multiply equation (1.30) by 9 and the
same equation by 4 and subtract to get:

45(ui−1 − ui−1) − 9(ui+2 − ui−2) + (ui+3 − ui−3)

60∆x
=
∂u

∂x
+

36∆x6

7!

∂7u

∂x7
+O(∆x8). (1.31)

The process can be repeated to derive higher order approximations.
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2. A structure-preserving method for a

fractional wave equation

In this chapter, we consider an initial-boundary-value problem governed by a (1 + 1)-
dimensional hyperbolic partial differential equation with constant damping that generalizes
many nonlinear wave equations from mathematical physics. The model considers the presence
of a spatial Laplacian of fractional order which is defined in terms of Riesz fractional derivatives,
as well as the inclusion of a generic continuously differentiable potential. It is known that the
undamped regime has an associated positive energy functional, and we show here that it is pre-
served throughout time under suitable boundary conditions. To approximate the solutions of
this model, we propose a finite-difference discretization based on fractional centered differences.
Some discrete quantities are proposed in this work to estimate the energy functional, and we
show that the numerical method is capable of conserving the discrete energy under the same
boundary conditions for which the continuous model is conservative. Moreover, we establish
suitable computational constraints under which the discrete energy of the system is positive.
The method is consistent of second order, and is both stable and convergent. The numerical
simulations shown here illustrate the most important features of our numerical methodology.

2.1 Introduction

The design of energy-preserving finite-difference schemes for nonlinear partial differential equations has
been an important topic of research since the early studies by L. Vázquez and coworkers in the 1970s. Many
nonlinear partial differential equations are known to posses energy functionals that are preserved under
suitable boundary conditions, including models like the Schrödinger, the sine-Gordon and the nonlinear
Klein–Gordon equations from relativistic quantum mechanics, just to mention some wave equations of
physical relevance. Motivated by this fact, several groups of researchers have developed reliable numerical
techniques to approximate the solutions of these and other nonlinear conservative systems as well as the
constant energy functionals associated to them. The most notable contributions to the state of the art were
the energy-preserving finite-difference methodologies proposed for the Schrödinger [119], the sine-Gordon
[9, 36] and the nonlinear Klein–Gordon regimes [114]. In fact, those works (among other important papers
of those decades) still continue to be sources of motivation for the numerical investigation of nonlinear
wave equations [74]. Later on, these studies were extended to account for different potential functions
and for dissipative terms. In this way, the investigation of energy- or dissipation-preserving methods was
extended to more complicated regimes. At the same time, a solid basis for their design was also formulated
by D. Furihata and coworkers in various seminal papers [44, 84]. In many senses, these works constitute
the formal birth of the discrete variational derivative method, whose use has been widely accepted in the
specialized literature [45].

In general, the use of numerical methods that preserve invariants obeys various physical and math-
ematical reasons, including the need to establish analytically some numerical properties. On physical
grounds, it is highly desirable to have at hand reliable numerical techniques that resemble the dynamics
of the continuous models of interest. In that sense, the early reports by L. Vázquez and co-authors [114]
communicated the physical need to develop methods with both numerical and meaningful physical proper-
ties. Those reports have been perhaps some of the first efforts in the investigation of structure-preserving
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methods for partial differential equations or, as R. E. Mickens calls them [86], dynamically consistent
numerical techniques. It is worth mentioning that the development of structure-preserving methods has
been a fruitful avenue of research in numerical analysis. This approach has been extensively followed in the
numerical solution of many partial differential equations of integer order [50, 14, 38, 136, 117]. However,
it is known nowadays that various fractional models from physics are also capable of preserving significant
quantities. Some examples of such models are some gradient and Hamiltonian extensions of the Hemlholtz
conditions for phase space [120], some fractional equivalents of the Fokker–Planck equation for fractal
media [120], continuous-limit approximations of systems of coupled oscillators with power-law interactions
[63] and mathematical models with fractional dynamics resulting in optimal control theory [40]. In view
of the meaningfulness of those problems, some structure-preserving numerical methods have been already
proposed to describe the fractional dynamics of those models. For instance, energy-conserving methods
have been proposed to approximate the solution of systems consisting of nonlinear fractional Schrödinger
equations using finite-differences [131, 132] and Galerkin methods [69].

It is important to note that the notions of ‘structure preservation’ or ‘dynamic consistency’ not only refer
to the capability of numerical methods to preserve analogues of physical quantities (like energy, momentum,
mass, etc.). In a broader sense, these concepts also refer to the capacity of a computational technique to
preserve mathematical features of the relevant solutions of continuous systems that naturally arise from
the physical context of the problem. A typical example is the condition of positivity (or nonnegativity) of
solutions, which is a natural requirement for problems in which the variables of interest are measured in
absolute scales [76, 21]. Boundedness is another desirable characteristic in physical problems where there
are natural limitations of growth, particularly in models that describe the dynamics of populations under
limited resources and space [101, 142] or transport phenomena in turbulent flows. Another mathematical
feature of some solutions is the monotonicity, which is important in the approximation of equations whose
solution is a cumulative distribution of probability [78] or some traveling wave [77]. In the present work,
however, we will consider a nonlinear dissipative wave equation with Riesz space-fractional derivatives
for which some positive energy functional is preserved under suitable boundary and parameter conditions.
Motivated by the early works by L. Vázquez and D. Furihata, we will design a structure-preserving method
that conserves the dissipation of the energy of the system. More concretely, our approach will be based on
the use of fractional centered differences, and we will provide discrete schemes for both the solution of the
problem and the total energy of the system. We will show here that, under appropriate conditions on the
computational parameters, the total energy of the discretized system is likewise a positive function of the
time. To that end, various alternative expressions of the energy invariants will be derived. The preserved
quantities will be used then to show that the method proposed in this chapter is not only consistent but
also stable and convergent of second order. Some simulations will show the capability of the method to
preserve the energy under the analytic conditions derived in this work.

This chapter is divided as follows. The nonlinear dissipative wave equation with Riesz space-fractional
derivatives that motivates our investigation is presented in Section 2.2, together with the relevant definitions
of the fractional differential operators and an energy functional proposed in the literature [5]. We show
therein that the initial-boundary-value problem under investigation is a conservative system under suitable
analytic conditions. Section 2.3 introduces the discrete nomenclature and the method to solve numerically
the problem under investigation. The concept of fractional centered differences will be recalled therein and
some useful lemmas will be proved in the way. The most important physical properties of the method will
be established in Section 2.4. Concretely, we will establish the capability of the finite-difference scheme to
preserve the dissipation or the conservation of energy of the discrete system. In turn, the most important
numerical properties of our technique will be proved in Section 2.6. In that stage we will show that our
method is a consistent technique, and we will establish the stability and the convergence properties of our
scheme. Additionally, that section offers some qualitative simulations that illustrate the capability of our
scheme to preserve the energy or the dissipation of energy in Riesz space-fractional wave equations. This
work closes with a section of concluding remarks. Additionally, we provide a discussion of the capability
of our methodology to preserve the energy of an unbounded system described by a nonlinear Riesz space-
fractional wave equation.
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2.2 Preliminaries

2.2.1 Long-range interactions

The present section is devoted to provide some physical justification for studying the fractional partial
differential equation of (2.7), using properties of systems with linear long-range interactions [124, 123].
Consider a one-dimensional system of interacting oscillators described by the equation of motion

dsun

dts
(t) = In(u(t)) + F (un(t)), ∀t ∈ R

+,∀n ∈ Z. (2.1)

In the context of [121], the number s is equal to 1 or 2, the functions un represent displacements from
the equilibrium and F represents the interaction of the oscillators with an external force. Moreover, the
distance between consecutive oscillators is equal to h and the term In is defined in general by

In(u(t)) =

∞∑

m=−∞
m 6=n

J(n,m) [un(t) − um(t)] , ∀t ∈ R
+,∀n ∈ Z. (2.2)

Here J represents the interparticle interaction function.
It is important to point out that there are various examples of long-range interactions in physics and

other areas of science. A typical example in physics is the linear interaction of particles in a three-
dimensional gravitational system [10]. Other examples are the interactions of vortices in two-dimensions,
engineering problems on elasticity arising from the study of planar stress, systems of electric charges and
systems that consider dipolar forces [15]. Moreover, there are several well-characterized cases of long-range
interactions involved in activation and repression of transcription in chromosomal and gene regulation [87].
In various of these examples, the interaction function J satisfies the conditions

(a) J(n,m) = J(n−m) = J(m− n) for all m,n ∈ Z,

(b)
∑∞

n=1 |J(n)|2 < ∞.

It is easy to see that these conditions imply that J(−n) = J(n) for each n ∈ Z.

Definition 2.2.1 (Tarasov [121]). Suppose that conditions (a) and (b) above are satisfied, and let α > 0.
Then J is called an α-interaction if the function

Jα(k) =

∞∑

n=−∞
n6=0

e−iknJ(n) = 2

∞∑

n=1

J(n) = cos(kn), ∀k ∈ R, (2.3)

satisfies

Aα = lim
k→0

Jα(k) − Jα(0)

|k|α ∈ R \ {0}. (2.4)

Various examples of α-interactions can be found in the appendix of [121]. In the following, we will let
Fh : un(t) → û(k, t) denote the Fourier series transform, let L : û(k, t) → ũ(k, t) be the passage to the limit
when the distance between consecutive oscillators tend to zero, and let F−1 : ũ(k, t) → u(x, t) be the inverse
Fourier transform. Finally, let ◦ represent the composition of functions and define T = F−1 ◦L◦Fh. Using
these nomenclature, the next theorem establishes conditions under which the partial differential equation
of (2.7) can be obtained from systems of oscillators with long-range interactions.

Theorem 2.2.2 (Tarasov [121]). Let α > 0 and let J be an α-interaction. Then T transforms the discrete
equations of motion (2.1) into the fractional continuous equation

∂su

∂ts
(x, t) − hαAα

∂αu

∂|x|α (x, t) − F (u(x, t)) = 0, ∀(x, t) ∈ R × R
+, (2.5)

where the fractional derivative in space is the Riesz fractional derivative of order α.

As a matter of fact [121], a special example of α-interaction is the function defined by J(n,m) =
Jα(n−m) for each m,n ∈ Z and 1 < α < 2, where

Jα(n) =
(−1)nΓ(α+ 1)

Γ( α
2 − n+ 1)Γ(α

2 + n+ 1)
, ∀n ∈ Z. (2.6)

Use of the transformation T described above results in an approximation of the Riesz spatial derivative.
An argument similar to this is employed in [18] to derive the second-order consistent approximation (2.34).
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2.2.2 Mathematical model

In this section we let T > 0 and γ ∈ R
+ ∪ {0}, and suppose that a, b ∈ R satisfy a < b. Throughout this

work we will assume that 1 < α ≤ 2 and let Ω = (a, b) × (0, T ) ⊆ R
2. We will employ here the notation

Ω to represent the closure of Ω in R
2 under the standard topology, and will assume that G : R → R,

that φ, ψ : [a, b] → R and that f, g : [0, T ] → R are all continuously differentiable functions that satisfy
the compatibility conditions φ(a) = f(0), φ(b) = g(0), ψ(a) = f ′(0) and ψ(b) = g′(0). Moreover, we will
suppose that G is nonnegative, that G′′ is bounded and that u : Ω → R is a sufficiently smooth function
that satisfies the initial-boundary-value problem

∂2u

∂t2
(x, t) − ∂αu

∂|x|α (x, t) + γ
∂u

∂t
(x, t) +G′(u(x, t)) = 0, ∀(x, t) ∈ Ω,

such that





u(x, 0) = φ(x), ∀x ∈ (a, b),
∂u

∂t
(x, 0) = ψ(x), ∀x ∈ (a, b),

u(a, t) = f(t), ∀t ∈ (0, T ),
u(b, t) = g(t), ∀t ∈ (0, T ),

(2.7)

which is a model that results after applying the Fourier series transform, a limiting processes and the inverse
Fourier transform to suitable physical systems with long-range interactions (see 2.2.1 for the details). In
this work, we define

∂αu

∂|x|α (x, t) =
−1

2 cos( πα
2 )Γ(2 − α)

∂2

∂x2

∫ b

a

u(ξ, t)

|x− ξ|α−1
dξ, ∀(x, t) ∈ Ω. (2.8)

Note that the operator (2.8) is the Riesz fractional derivative of order α in the spatial variable, which
is an operator that agrees with the spatial Laplacian when α = 2. Alternatively, the Riesz fractional
operator can be expressed in terms of the Riemann–Liouville fractional derivatives as

∂αu

∂|x|α (x, t) = − 1

2 cos( πα
2 )

(aD
α
x +x D

α
b )u(x, t), ∀(x, t) ∈ Ω, (2.9)

where aD
α
x and xD

α
b are, respectively, the left and the right Riemann–Liouville fractional derivatives in

space of order α. More concretely,

aD
α
xu(x, t) =

1

Γ(2 − α)

∂2

∂x2

∫ x

a

u(ξ, t)

(x− ξ)α−1
dξ, ∀(x, t) ∈ Ω, (2.10)

xD
α
b u(x, t) =

1

Γ(2 − α)

∂2

∂x2

∫ b

x

u(ξ, t)

(ξ − x)α−1
dξ, ∀(x, t) ∈ Ω. (2.11)

In the present work, Γ will denote the usual gamma function, namely,

Γ(z) =

∫ ∞

0

sz−1e−sds, ∀s > 0. (2.12)

In the following, we will use Lx,2(Ω) to represent the set of all functions f : Ω → R such that f(·, t) ∈
L2([a, b]) for each t ∈ [0, T ]. For each pair f, g ∈ Lx,2(Ω), the inner product of f and g is the function of t
defined by

〈f, g〉x =

∫ b

a

f(ξ, t)g(ξ, t)dξ, ∀t ∈ [0, T ]. (2.13)

Here the integration is considered in the sense of Lebesgue. As expected, the Euclidean norm of f ∈
Lx,2(Ω) is the function of t defined by ‖f‖x,2 =

√
〈f, f〉. The set of all functions f : Ω → R such that

f(·, t) ∈ L1([a, b]) for each t ∈ [0, T ] will be denoted by Lx,1(Ω), and for each such f we define its norm as
the function of t given by

‖f‖x,1 =

∫ b

a

|f(ξ, t)|dξ, ∀t ∈ [0, T ]. (2.14)
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The literature on mathematical physics has proposed various functionals to calculate the energy of
systems governed by (2.7) when γ = 0 (see [125], for instance). For purposes of this work, we will use the
energy integral employed in [5], which is given by

E(t) =
1

2

∥∥∥∥
∂u

∂t

∥∥∥∥
2

x,2

+
1

2

〈
u,− ∂αu

∂|x|α
〉

x

+ ‖G(u)‖x,1 , ∀t ∈ [0, T ]. (2.15)

It is important to note here that the Riesz fractional derivative of order α is a self-adjoint and negative
operator [68]. It is a well known fact that positive self-adjoint operators may possess positive square-roots,
and that they are unique when they exist (see [41] for a justification of this fact). This and [68] imply
that the additive inverse of the Riesz fractional derivative has a square root operator Ξα and is unique.
Moreover, the following holds for u and v:

〈
− ∂αu

∂|x|α , v
〉

x

= 〈Ξαu,Ξαv〉x . (2.16)

As a consequence, the energy function (2.15) may be rewritten alternatively as

E(t) =
1

2

∥∥∥∥
∂u

∂t

∥∥∥∥
2

x,2

+
1

2
‖Ξαu‖2

x,2 + ‖G(u)‖x,1 . (2.17)

Obviously, the associated energy density is defined for each (x, t) ∈ Ω by

H(x, t) =
1

2

[
∂u

∂t
(x, t)

]2

− 1

2
u(x, t)

∂αu

∂|x|α (x, t) +G(u(x, t))

=
1

2

[
∂u

∂t
(x, t)

]2

+
1

2
[Ξαu(x, t)]

2
+G(u(x, t)).

(2.18)

Here we have used the assumption that G is a nonnegative function.

Theorem 2.2.3. Let u be a solution of (2.7) with f = g = 0 and φ(a) = ψ(a) = φ(b) = ψ(b) = 0. Then
E ′(t) = −γ‖ut‖2

x,2, for each t ∈ (0, T ). Here ut represents the partial derivative of u with respect to t. If
additionally γ = 0 then the system (2.7) is conservative.

Proof. Beforehand, note that the following identities hold:

1

2

d

dt

∥∥∥∥
∂u

∂t

∥∥∥∥
2

x,2

=
1

2

∫ b

a

∂

∂t

(
∂u

∂t
(ξ, t)

)2

dξ =

〈
∂u

∂t
,
∂2u

∂t2

〉
, (2.19)

1

2

d

dt
‖Ξαu‖2

x,2 =

〈
∂

∂t
(Ξαu) ,Ξαu

〉

x

=

〈
Ξα

(
∂u

∂t

)
,Ξαu

〉

x

=

〈
∂u

∂t
,− ∂αu

∂|x|α
〉
, (2.20)

d

dt
‖G(u)‖x,1 =

∫ b

a

∂

∂t
G(u(ξ, t))dξ =

〈
∂u

∂t
,G′(u)

〉
. (2.21)

Taking derivative with respect to t on both sides of (2.17), using the identities above and the partial
differential equation of (2.7), and simplifying algebraically we obtain

E ′(t) =

∫ b

a

∂u

∂t
(ξ, t)

[
∂2u

∂t2
(ξ, t) − ∂αu

∂|x|α (ξ, t) +G′(u(ξ, t))

]
dξ = −γ

∫ b

a

[
∂u

∂t
(ξ, t)

]2

dξ, (2.22)

whence the result readily follows.

Corollary 2.2.4. If u is a solution of (2.7) such that f = g = 0 and φ(a) = ψ(a) = φ(b) = ψ(b) = 0 then

E(t) = E(0) − γ

∫ t

0

∥∥∥∥
∂u

∂t

∥∥∥∥
2

x,2

dt, ∀t ∈ [0, T ]. (2.23)

Proof. The conclusion is a direct consequence of Theorem 2.2.3.

In the following sections, we will develop a numerical method to approximate both the solutions of
(2.7) and the energy function (2.15) in such way that the discrete versions of Theorem 2.2.3 and Corollary
2.2.4 are still satisfied. Various additional numerical properties of our methodology will be derived in the
way, including the positivity of the discrete energy function as well as the consistency, the stability and
the convergence of the method.
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2.3 Numerical method

For the remainder of this work we let h > 0 and τ be fixed step-sizes in space and time, respectively, and
assume that N = T/τ and M = (b − a)/h are positive integers. Consider uniform partitions of [a, b] and
[0, T ], respectively, given by xj = a + jh and tn = nτ for each 0 ≤ j ≤ M and each 0 ≤ n ≤ N . In this
work, the symbol vn

j will represent a numerical approximation to the exact value of un
j = u(xj , tn), that

is, the solution of the initial-boundary-value problem (2.7) at the point (xj , tn), for each 0 ≤ j ≤ M and
each 0 ≤ n ≤ N . Moreover, we will use the discrete linear operators

µtu
n
j =

un+1
j + un

j

2
= u(xj , tn) + O(τ), (2.24)

µ
(1)
t un

j =
un+1

j + un−1
j

2
= u(xj , tn) + O(τ2), (2.25)

δtu
n
j =

un+1
j − un

j

τ
=
∂u

∂t
(xj , tn) + O(τ), (2.26)

δ
(1)
t un

j =
un+1

j − un−1
j

2τ
=
∂u

∂t
(xj , tn) + O(τ2), (2.27)

δ
(2)
t un

j =
un+1

j − 2un
j + un−1

j

τ2
=
∂2u

∂t2
(xj , tn) + O(τ2), (2.28)

for each 1 ≤ j ≤ M − 1 and 1 ≤ n ≤ N − 1. Obviously, the right-hand sides of the equations (2.24)–
(2.28) summarize the consistency properties of each discrete operator. In addition, the following operator
estimates G′(u(xj , tn)) with an order of consistency equal to O(τ2):

δ
(1)
u,tG(un

j ) =





G(un+1
j ) −G(un−1

j )

un+1
j − un−1

j

, if un+1
j 6= un−1

j ,

G′(un
j ), if un+1

j = un−1
j .

(2.29)

It is important to note that the discrete operator (2.29) is clearly well defined. Moreover, the fact that
the function G is differentiable at un

j for each 1 ≤ j ≤ M − 1 and each 1 ≤ n ≤ N − 1 implies that the

operator δ
(1)
u,tG is continuous at un

j . On the other hand, it is worth pointing out that the derivative of G
may be approximated using a different definition. For instance, instead of considering differences in the
temporal domain in (2.29), one may opt to consider differences with respect to the spatial grid. Consistent
approximations for the derivative of G can be derived in that way also, but the author does not know how
to propose a numerically efficient and dissipation-preserving technique to solve (2.7) using such approach.
On the other hand, use of (2.29) presents the advantage that the rate of change of some discrete energy
invariants will result in discrete forms of Theorem 2.2.3 and Corollary 2.2.4 (see Section 2.4).

Definition 2.3.1. For any function f : R → R, any h > 0 and any α > −1 we define the fractional
centered difference of order α of f at the point x as

∆α
hf(x) =

∞∑

k=−∞

g
(α)
k f(x− kh), ∀x ∈ R, (2.30)

whenever the right-hand side of this expression converges. The coefficients of the sequence (g
(α)
k )∞

k=−∞ are
defined by

g
(α)
k =

(−1)kΓ(α+ 1)

Γ( α
2 − k + 1)Γ(α

2 + k + 1)
, ∀k ∈ N ∪ {0}. (2.31)

For computational purposes, it is convenient to possess an iterative formula to calculate the coefficients

of the sequence (g
(α)
k )∞

k=−∞. Using induction one may readily check that





g
(α)
0 =

Γ(α+ 1)

Γ(α/2 + 1)2
,

g
(α)
k+1 =

(
1 − α+ 1

α/2 + k + 1

)
gk, ∀k ∈ N ∪ {0}.

(2.32)
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Figure 2.1: Forward-difference stencil for the approximation to the exact solution of (2.7) at the time tn,
using the finite-difference scheme (2.37). The black circles represent the known approximations at the
times tn−1 and tn, while the crosses denote the unknown approximations at the time tn+1.

It is important to note also that if 1 < α < 2 then the fractional centered differences satisfy (see [94])

lim
h→0

−1

hα
∆α

hf(x) =
∂αf

∂|x|α (x), ∀x ∈ R. (2.33)

We will require the following result from the literature.

Lemma 2.3.2 (Çelik and Duman [18]). If 1 < α < 2 then the sequence (g
(α)
k )∞

k=−∞ satisfies

(i) g
(α)
0 ≥ 0,

(ii) g
(α)
k = g

(α)
−k < 0 for all k ≥ 1, and

(iii)
∑∞

k=−∞ g
(α)
k = 0.

For each nonnegative integer m, let Cm(R) denote the space of all the functions f : R → R which
have continuous derivatives up to the mth order, and let L1(R) represent the vector space of all the
Lebesgue-integrable functions f . As a consequence of Lemma 2.3.2, the series in the right-hand side of
(2.30) converges absolutely for any bounded function f ∈ L1(R). With this notation, it is easy to see that
any f ∈ C5(R) for which all of its derivatives up to order five belong to L1(R), satisfies the property

− 1

hα
∆α

hf(x) =
∂αf(x)

∂|x|α + O(h2), ∀x ∈ R, (2.34)

whenever 1 < α < 2 (see [18]). Under these circumstances, if 1 ≤ j ≤ M − 1 and 1 ≤ n ≤ N − 1 then

∂αu

∂|x|α (xj , tn) = − 1

hα

(xj−a)/h∑

k=−(b−xj)/h

g
(α)
k u(xj − kh, tn) + O(h2) = δ(α)

x un
j + O(h2), (2.35)

where

δ(α)
x un

j = − 1

hα

M∑

k=0

g
(α)
j−ku

n
k . (2.36)

With this nomenclature, the finite-difference method to approximate the solution of (2.7) on Ω is given
by

δ
(2)
t vn

j − δ(α)
x vn

j + γδ
(1)
t vn

j + δ
(1)
v,tG(vn

j ) = 0, ∀j ∈ {1, . . . ,M − 1},∀n ∈ {1, . . . , N − 1},

such that





v0
j = φ(xj), ∀j ∈ {1, . . . ,M − 1},
δtv

0
j = ψ(xj), ∀j ∈ {1, . . . ,M − 1},

vn
0 = f(tn), ∀n ∈ {1, . . . , N − 1},
vn

M = g(tn), ∀n ∈ {1, . . . , N − 1}.

(2.37)
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Note that this scheme is a three-step method whose forward-difference stencil is shown in Figure 2.1. This
technique requires solving an uncoupled system of nonlinear equations at each temporal step. Indeed, note
that the only unknown in the jth difference equation of (2.37) is vn+1

j . Consequently, an approximation
to the value of the each of the unknowns may be calculated using a numerical method to estimate roots
of nonlinear equations. For computational implementation purposes, note that the number vn+1

j is indeed
root of

Fn
j (v) = (v − vn−1

j )(r+v + cn
j ) + τ2

[
G(v) −G(vn−1

j )
]
, (2.38)

where

r± = 1 ± 1
2τγ, (2.39)

cn
j = r−v

n−1
j − 2vn

j − τ2δ(α)
x vn

j . (2.40)

Before closing this section, it is important to mention that many fractional problems have been studied
using high-order numerical schemes. As examples, some high-order finite-difference schemes were proposed
in [145] to approximate the two-dimensional nonlinear space fractional Schrödinger equation, and stable
multi-domain spectral penalty methods for Caputo fractional partial differential equations were proposed
in [138]. The method introduced in the present work is perhaps one of the first numerically efficient
techniques proposed for Riesz space-fractional dissipative wave equations of the Klein–Gordon and sine-
Gordon type that has structure-preserving properties. Indeed, we will see in the following sections that
(2.37) is a second-order consistent and stable technique which has quadratic order of convergence and
for which a priori bounds are available. Moreover, in Section 2.4 we will propose energy quantities that
mimic the energy properties of the continuous model (2.7). More concretely, discrete forms of Theorem
2.2.3 and Corollary 2.2.4 are available for our finite-difference scheme. Finally, we will show that the
energy quantities are positive under suitable conditions on the numerical step-sizes, in agreement with the
expression (2.17).

2.4 Energy invariants

In this section we show that the finite-difference method (2.37) satisfies physical properties similar to those
satisfied by (2.7). More precisely, we will propose here a numerical energy functional associated to the
scheme (2.37) that is preserved under suitable boundary and parameter conditions. For that reason we
will suppose that the initial-boundary conditions satisfy

{
f(t) = g(t) = 0, ∀t ∈ [0, T ],
φ(x) = ψ(x) = 0, for x = a, b.

(2.41)

Throughout this section, we will employ the spatial mesh

Rh =
{

(xj)M−1
j=1 ∈ R

M−1|xj = a+ jh for each 1 ≤ j ≤ M − 1
}
. (2.42)

Let Vh be the vector space of all real grid functions on Rh. For any u ∈ Vh and j ∈ {1, . . . ,M − 1}
convey that uj = u(xj). Moreover, define respectively the inner product 〈·, ·〉 : Vh × Vh → R and the norm
‖ · ‖1 : Vh → R by

〈u, v〉 = h

M−1∑

j=1

ujvj , (2.43)

‖u‖1 = h

M−1∑

j=1

|uj |, (2.44)

for any u, v ∈ Vh. The Euclidean norm induced by 〈·, ·〉 will be denoted by ‖ · ‖2.
In the following, we will represent the solutions of the finite-difference method (2.37) by (vn)N

n=0, where
we convey that vn = (vn

1 , . . . , v
n
M−1) for each 0 ≤ n ≤ N . This convention is justified in view that the

identities vn
0 = vn

M = 0 are satisfied in light of (2.41). We will also need the following real matrix of size
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(M − 1) × (M − 1):

A =




g
(α)
0 g

(α)
−1 · · · g

(α)
2−M

g
(α)
1 g

(α)
0 · · · g

(α)
3−M

...
...

. . .
...

g
(α)
M−2 g

(α)
M−3 · · · g

(α)
0



. (2.45)

Definition 2.4.1. A real square matrix A is a Z-matrix if all its off-diagonal entries are less than or equal
to zero. We say that A is an M -matrix or a Minkowski matrix if the following are satisfied:

(i) A is a Z-matrix,

(ii) all the diagonal entries of A are positive, and

(iii) there is a diagonal matrix D with positive diagonal entries, such that AD is strictly diagonally
dominant.

Among other properties, every M -matrix is nonsingular and the entries of its inverse are all posi-
tive numbers (see [42] and references therein). It is worth recalling that this feature of M -matrices has
been employed previously in the literature to design non-negativity- and boundedness-preserving implicit
numerical methods to approximate the solution of diffusive partial differential equations [78, 77].

Lemma 2.4.2. The following are properties satisfied by A:

(a) A is Hermitian.

(b) A is strictly diagonally dominant,

(c) All the eigenvalues of A are positive real numbers bounded from above by 2g
(α)
0 .

(d) A is positive-definite.

(e) A is an M -matrix.

Proof.

(a) Lemma 2.3.2 shows that A is symmetric, so it is Hermitian.

(b) Once again, Lemma 2.3.2 shows that A is strictly diagonally dominant. This readily follows from
the fact that for each j ∈ {1, . . . ,M − 1},

Rj =

M−1∑

k=1
k 6=j

|g(α)
j−k| <

∞∑

k=−∞
k 6=0

|g(α)
k | = −

∞∑

k=−∞
k 6=0

g
(α)
k = g

(α)
0 = |g(α)

0 |. (2.46)

(c) From (a) we already know that the eigenvalues of A are real. Additionally, the Gershgorin circle

theorem guarantees that for each eigenvalue λ of A there exists 1 ≤ j ≤ M − 1 such that |λ− g
(α)
0 | ≤

Rj , where Rj is given as in (2.46). In particular, this implies that

0 < g
(α)
0 −Rj ≤ λ ≤ g

(α)
0 +Rj < 2g

(α)
0 . (2.47)

(d) This follows from the facts that A is Hermitian and that all its eigenvalues are positive.

(e) This property is a consequence of (a) and Lemma 2.3.2.

Note additionally that if u, v ∈ Vh then 〈u,−δ(α)
x v〉 = h1−αutAv. This fact will be required in the next

lemma.

Lemma 2.4.3. There exists a unique linear positive operator Λ(α) : Vh → Vh such that
〈

−δ(α)
x u, v

〉
=
〈

Λ(α)u,Λ(α)v
〉
, (2.48)

for each u, v ∈ Vh.
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Proof. We provide here a proof different from that given in [132]. The current proof is based on the

properties of the sequence (g
(α)
k )∞

k=−∞. Note firstly that −δ(α)
x : Vh → Vh is a linear transformation that

satisfies the following identities for each u, v ∈ Vh:

〈
−δ(α)

x u, v
〉

= h1−α
M−1∑

j=1

(
M−1∑

k=1

g
(α)
j−kuk

)
vj = h1−α

M−1∑

k=1




M−1∑

j=1

g
(α)
k−jvj


uk =

〈
u,−δ(α)

x v
〉
. (2.49)

This means that −δ(α)
x is a self-adjoint operator on the Hilbert space Vh. Moreover, the fact that the

matrix A is positive-definite implies that
〈

−δ(α)
x u, u

〉
= h1−αutAu ≥ 0 for each u ∈ V. It follows that

−δ(α)
x has a unique square root operator Λ(α), which has the properties of the conclusion of this result.

The next theorem establishes the existence of invariants for the discrete system (2.37). Beforehand,
observe in general that for each 1 ≤ n ≤ N − 1 the following are satisfied:

〈
δ

(2)
t vn, δ

(1)
t vn

〉
=

1

2τ3

〈
(vn+1 − vn) − (vn − vn−1), (vn+1 − vn) + (vn − vn−1)

〉

=
1

2τ3

(
‖vn+1 − vn‖2

2 − ‖vn − vn−1‖2
2

)
=

1

2τ

(
‖δtv

n‖2
2 − ‖δtv

n−1‖2
2

) (2.50)

and 〈
−δ(α)

x vn, δ
(1)
t vn

〉
=

1

2τ

[〈
−δ(α)

x vn, vn+1
〉

−
〈

−δ(α)
x vn, vn−1

〉]

=
1

2τ

[〈
Λ(α)vn,Λ(α)vn+1

〉
−
〈

Λ(α)vn−1,Λ(α)vn
〉]
.

(2.51)

Note also that the non-negativity of G yields

〈
δ

(1)
v,tG(vn), δ

(1)
t vn

〉
=

h

τ




M−1∑

j=1

G(vn+1
j ) +G(vn

j )

2
−

M−1∑

j=1

G(vn
j ) +G(vn−1

j )

2




=
1

τ

[
µt‖G(vn)‖1 − µt‖G(vn−1)‖1

]
.

(2.52)

Theorem 2.4.4 (Dissipation of energy). Let (vn)N
n=0 be solution of the system (2.37) under the conditions

(2.41). For each 1 ≤ n ≤ N − 1, let

En =
1

2
‖δtv

n‖2
2 +

1

2

〈
Λ(α)vn,Λ(α)vn+1

〉
+ µt ‖G(vn)‖1 . (2.53)

If 1 ≤ n ≤ N−1 then δtE
n−1 = −γ‖δ(1)

t vn‖2
2. In particular, the quantities En defined above are invariants

of (2.37) when, in addition, γ = 0.

Proof. The proof hinges on Lemma 2.4.3 and the algebraic identities that precede the present theorem.
Let Θn represent the (M − 1)-dimensional real vector consisting of the left-hand sides of the difference
equations in (2.37) for each n ∈ {1, . . . , N − 1}, and suppose that (vn)N

n=0 is a solution of the finite-

difference method under the assumptions (2.41). Calculating the inner product of Θn with δ
(1)
t vn, using

the identities above and collecting terms, we note that

0 = 〈Θn, δ
(1)
t vn〉 =

1

2

(
‖δtv

n‖2
2 − ‖δtv

n−1‖2
2

)
+

1

2

(〈
Λ(α)vn,Λ(α)vn+1

〉
−
〈

Λ(α)vn−1,Λ(α)vn
〉)

+
(
µt‖G(vn)‖1 − µt‖G(vn−1)‖1

)
+ γ

∥∥∥δ(1)
t vn

∥∥∥
2

2

= δtE
n−1 + γ

∥∥∥δ(1)
t vn

∥∥∥
2

2
,

(2.54)
whence the conclusion of this result is obtained. If γ = 0 then δtE

n = 0, which implies that the quantities
En are invariants of (2.37).

Corollary 2.4.5. If (vn)N
n=0 is a solution of (2.37) when (2.41) are satisfied then

En = E0 − γτ

n∑

k=1

∥∥∥δ(1)
t vk

∥∥∥
2

2
, ∀n ∈ {1, . . . , N − 1}. (2.55)
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Proof. It readily follows from Theorem 2.4.4.

Theorem 2.4.4 and Corollary 2.4.5 are clearly the discrete counterparts of Theorem 2.2.3 and Corollary
2.2.4, respectively, and they indicate that our method is a dissipation-preserving technique. Motivated by
the fact that the functions (2.17) are nonnegative, we establish now conditions under which the energy
invariants (2.53) are also nonnegative. To that end, we will require the following elementary facts will be
employed in the sequel without explicit reference:

(A) Note that |2〈v, w〉| ≤ ‖v‖2
2 + ‖w‖2

2 for any real vectors v and w of the same dimension.

(B) As a consequence, if v and w are real vectors of the same dimension then ‖v±w‖2
2 ≤ 2‖v‖2

2 + 2‖w‖2
2.

(C) The properties of the matrix A summarized in Lemma 2.4.2 show that

‖Λ(α)v‖ = 〈v,−δ(α)
x v〉 = h1−αvtAv ≤ 2g

(α)
0 h1−α‖v‖2

2, (2.56)

for any (M − 1)-dimensional real vector v.

(D) If (vn)N
n=0 is a sequence in Vh and 1 ≤ n ≤ N then vn = v0 + τ

n−1∑

k=0

δtv
k.

Lemma 2.4.6. Suppose that (vn)N
n=0 is a solution of (2.37) satisfying (2.41). Then for each 1 ≤ n ≤ N−1,

En =
1

2
‖δtv

n‖2
2 +

1

2
µt

∥∥∥Λ(α)vn
∥∥∥

2

2
− τ2

4

∥∥∥Λ(α)δtv
n
∥∥∥

2

2
+ µt‖G(vn)‖1. (2.57)

Moreover, the following energy estimate is satisfied:

En ≥ 1

2

(
1 − τ2g

(α)
0

2hα−1

)
‖δtv

n‖2
2 + µt‖G(vn)‖1. (2.58)

Proof. It is sufficient to show that the sum of the second and the third terms in the right-hand side of
(2.57) is equal to 1

2 〈Λ(α)vn,Λ(α)vn+1〉. For each 1 ≤ n ≤ N − 1, observe that

µt

∥∥∥Λ(α)vn
∥∥∥

2

2
+

1

2

〈
Λ(α)vn,Λ(α)(vn+1 − vn)

〉
− 1

2

〈
Λ(α)vn+1,Λ(α)(vn+1 − vn)

〉
=
〈

Λ(α)vn,Λ(α)vn+1
〉
,

(2.59)
whence the identity (2.57) readily follows. As a consequence of this and the inequalities preceding the
statement of the present result, it follows that

τ2

4

∥∥∥Λ(α)δtv
n
∥∥∥

2

2
=

1

8

∥∥∥Λ(α)vn+1 − Λ(α)vn
∥∥∥

2

2
+
τ2

8

〈
δtv

n,−δ(α)
x δtv

n
〉

≤ 1

4

[
‖Λ(α)vn+1‖2

2 + ‖Λ(α)vn‖2
2

]
+
τ2g

(α)
0

4hα−1
‖δtv

n‖2
2

=
1

2
µt‖Λ(α)vn‖2

2 +
τ2g

(α)
0

4hα−1
‖δtv

n‖2
2,

(2.60)

for each 1 ≤ n ≤ N − 1. Using this identity together with the expression (2.57) yields the inequality
(2.58).

The following result establishes conditions under which the quantities (2.53) are nonnegative. This
feature of the energy functionals is in agreement with the positive character of its continuous counterpart
(2.17). The proof readily follows from the previous lemma.

Theorem 2.4.7 (Positivity of the energy). Let (vn)N
n=0 be a solution of (2.37) satisfying (2.41), and let

τ2g
(α)
0 < 2hα−1. Then the quantities En are nonnegative for all 1 ≤ n ≤ N − 1.

Proof. The proof readily follows from Lemma 2.4.6.

Before closing this section, it is important to point out that for each 1 ≤ n ≤ N − 1, the energy
quantity En defined in Theorem 2.4.4 has associated the following discrete energy density functions for
each 1 ≤ j ≤ M − 1:

Hn
j =

1

2

(
δtv

n
j

)2 − 1

2
vn

j δ
(α)
x vn+1

j + µtG(vn
j ) =

1

2

(
δtv

n
j

)2
+

1

2
Λ(α)vn

j Λ(α)vn+1
j + µtG(vn

j ). (2.61)

35



2.5 Unbounded domains

In the present section we discuss briefly the case when the problem (2.7) is defined on an unbounded
spatial-temporal domain. To that end, we let Ω = R ×R

+ ⊂ R
2. Suppose that G : R → R is continuously

differentiable, and that φ, ψ : [a, b] → R are all infinitely smooth functions on R that decrease rapidly. Let
u : Ω → R be a sufficiently smooth function that satisfies the initial-value problem

∂2u

∂t2
(x, t) − ∂αu

∂|x|α (x, t) + γ
∂u

∂t
(x, t) +G′(u(x, t)) = 0, ∀(x, t) ∈ Ω,

such that

{
u(x, 0) = φ(x), ∀x ∈ (a, b),
∂u

∂t
(x, 0) = ψ(x), ∀x ∈ (a, b).

(2.62)

To approximate the solutions of (2.62), we consider a regular spatial partition on R of the form xj = jh
for each j ∈ Z, where h > 0 is the partition norm. Similarly, we consider a partition of the temporal domain
of the form tn = nτ for each n ∈ N∪{0}, where τ > 0 is the temporal step-size. Under these circumstances,
the spatial mesh is

Rh =
{

(xj)∞
j=−∞ ∈ R

ω |xj = jh for each j ∈ Z
}
. (2.63)

We use Vh to denote the real vector space of grid functions on Rh. Moreover, if u ∈ Vh then we use uj to
denote the number u(xj). The symbol ℓp(Rh) will denote the classical spaces of integrable functions with
domain Rh for each p ≥ 1. The usual norm of ℓp(Rh) will be represented by ‖ · ‖p, and the inner product
of ℓ2(Rh) will be denoted by 〈·, ·〉.

Note that the series in the right-hand side of (2.30) converges absolutely for any function f ∈ ℓ1(Rh).
This fact readily follows from Lemma 2.3.2. As a consequence, for each u ∈ ℓ1(Rh) we can define the
discrete space-fractional difference operator of order α of u at xj as

δ(α)
x uj = − 1

hα

∞∑

k=−∞

g
(α)
j−kuk, ∀j ∈ Z. (2.64)

It is easy to check that δ
(α)
x is a linear operator on ℓ1(Rh). With this notation, the finite-difference method

to approximate the solution of (2.62) is given by

δ
(2)
t un

j − δ(α)
x un

j + γδ
(1)
t un

j + δ
(1)
u,tG(un

j ) = 0, ∀j ∈ Z,∀n ∈ N,

such that

{
u0

j = φ(xj), ∀j ∈ Z,
δtu

0
j = ψ(xj), ∀j ∈ Z.

(2.65)

The following is an extension of Lemma 2.3.2.

Lemma 2.5.1. There exists a unique linear positive operator Λ(α) : ℓ1(Rh) → ℓ1(Rh) such that
〈

−δ(α)
x u, v

〉
= 〈Λα

hu,Λ
α
hv〉 , ∀u, v ∈ ℓ1(Rh). (2.66)

Proof. Again, our proof will be different from that provided in [132]. Note firstly that for each u, v ∈
ℓ1(Rh) ⊆ ℓ2(Rh), the sequences −δ(α)

x u and −δ(α)
x v belong to ℓ2(Rh), which means that both

〈
−δ(α)

x u, v
〉

and
〈
u,−δ(α)

x v
〉

exist in R. On the other hand, using the properties of the coefficients (g
(α)
k )∞

k=−∞

summarized in Lemma 2.3.2 we note that

〈
−δ(α)

x u, v
〉

=
1

h1−α

∞∑

j=−∞

(
∞∑

k=−∞

g
(α)
j−kuk

)
vj =

1

h1−α

∞∑

k=−∞




∞∑

j=−∞

g
(α)
k−jvj


uk =

〈
u,−δ(α)

x v
〉
, (2.67)

for all u, v ∈ ℓ1(Rh). This means that −δ(α)
x is a self-adjoint operator, and we only need to show now that it

is also positive. To that end let u ∈ ℓ1(Rh) and define the real vector ūM = (u−M , . . . , u−1, u0, u1, . . . , uM )
of dimension 2M + 1, for each M ∈ M. Also, define the real matrix AM of size (2M + 1) × (2M + 1) by

ĀM =




g
(α)
0 g

(α)
−1 · · · g

(α)
−2M

g
(α)
1 g

(α)
0 · · · g

(α)
1−2M

...
...

. . .
...

g
(α)
2M g

(α)
2M−1 · · · g

(α)
0



. (2.68)
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From the previous sections we know that each of these matrices is positive-definite and, in particular, it
follows that (ūM )tĀM ūM ≥ 0 for each M ∈ N. As a consequence,

〈
−δ(α)

x u, u
〉

= h1−α
∞∑

j=−∞

∞∑

k=−∞

g
(α)
j−kukuj = h1−α lim

M→∞

M∑

j=−M

M∑

k=−M

gj−k(α)ukuj

= h1−α lim
M→∞

ūM ĀM ūM ≥ 0,

(2.69)

for each u ∈ ℓ1(Rh). As a consequence, there exists a unique linear and positive square root Λ(α) :
ℓ1(Rh) → ℓ1(Rh) which satisfies the properties of the lemma.

The proof of the following result is now similar to that of Theorem 2.4.4.

Theorem 2.5.2 (Energy property). Let (vn)∞
n=0 ⊆ ℓ1(Rh) be a solution of (2.65), and define the constants

En through (2.53) for each n ∈ N. Then the constants satisfy δtE
n−1 = −γ‖δ(1)

t vn‖2
2 for each n ∈

{1, . . . , N − 1}. As a consequence, the quantities En are invariants of (2.65) when γ = 0.

2.6 Numerical results

The main numerical properties of the finite-difference method (2.37) as well as some illustrative compu-
tational simulations are presented in this stage. Here we show that our scheme is a consistent, stable
and convergent technique under suitable conditions on the parameters of the model. In a first stage, we
show that (2.37) is a second-order consistent technique. For practical purposes we define the following
continuous and discrete functionals:

Lu(x, t) =
∂2u

∂t2
(x, t) − ∂αu

∂|x|α (x, t) + γ
∂u

∂t
(x, t) +G′(u(x, t)), ∀(x, t) ∈ Ω, (2.70)

Lun
j = δ

(2)
t un

j − δ(α)
x un

j + γδ
(1)
t un

j + δ
(1)
u,tG(un

j ), ∀j ∈ {1, . . . ,M − 1},∀n ∈ {1, . . . , N − 1}. (2.71)

Theorem 2.6.1 (Consistency). If u ∈ C5,4
x,t (Ω) then there exists a constant C > 0 which is independent of

h and τ such that for each j ∈ {1, . . . ,M − 1} and each n ∈ {1, . . . , N − 1},
∣∣Lun

j − Lu(xj , tn)
∣∣ ≤ C(τ2 + h2). (2.72)

Proof. We employ here the usual argument with Taylor polynomials and the identity (2.35). Using the
hypotheses of continuous differentiability, there exist constants C1, C2, C3, C4 ∈ R such that

∣∣∣∣δ
(2)
t un

j − ∂2u

∂t2
(xj , tn)

∣∣∣∣ ≤ C1τ
2, (2.73)

∣∣∣∣δ
(α)
x un

j − ∂αu

∂|x|α (xj , tn)

∣∣∣∣ ≤ C2h
2, (2.74)

∣∣∣∣δ
(1)
t un

j − ∂u

∂t
(xj , tn)

∣∣∣∣ ≤ C3τ
2, (2.75)

∣∣∣δ(1)
u,tG(un

j ) −G′(u(xj , tn))
∣∣∣ ≤ C4τ

2, (2.76)

for each j ∈ {1, . . . ,M − 1} and each n ∈ {1, . . . , N − 1}. The conclusion of this theorem is readily reached
using the triangle inequality and defining C = max{C1, C2, γC3, C4}.

The following result will be useful to establish a priori bounds for the solution of (2.37), and to prove
the stability and convergence properties of (2.37). It is obviously a discrete version of the well-known
Gronwall inequality.

Lemma 2.6.2 (Pen-Yu [95]). Let (ωn)N
n=0 and (ρn)N

n=0 be finite sequences of nonnegative mesh functions,
and suppose that there exists C ≥ 0 such that

ωn ≤ ρn + Cτ

n−1∑

k=0

ωk. (2.77)

Then ωn ≤ ρneCnτ for each 0 ≤ n ≤ N .
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Theorem 2.6.3. If (vn)N
n=0 is a solution of (2.37) satisfying (2.41) and 8Tg

(α)
0 τ < hα−1 then there exists

C ∈ R
+ such that

‖vn‖2
2 ≤ 4

(
‖v0‖2

2 + 2T 2E0

)
eCnτ , ∀n ∈ {1, . . . , N}. (2.78)

Proof. Note firstly that 8Tg
(α)
0 τ < hα−1 implies that τ2g

(α)
0 < 2hα−1. Theorem 2.4.7 guarantees then that

the quantities En are nonnegative and that En ≤ E0 for each 1 ≤ n ≤ N . Let C ∈ R
+ satisfy

4Tg
(α)
0

hα−1

(
2

C
+ τ

)
< 1. (2.79)

It is easy to check that 2η < Cτ(1 − η) where η = 4Tτg
(α)
0 h1−α. Using these facts and the remarks before

Lemma 2.4.6 together with the Cauchy–Schwarz inequality, we obtain

‖vn‖2
2 ≤ 2‖v0‖2

2 + 2nτ2
n−1∑

k=0

‖δtv
k‖2

2

≤ 2‖v0‖2
2 + 4Tτ

n−1∑

k=0

[
1

2
‖δtv

k‖2
2 +

1

2
µt‖Λ(α)vk‖2

2 + µt‖G(vk)‖1

]

≤ 2‖v0‖2
2 + 4T 2E0 + Tτ3

n−1∑

k=0

‖Λ(α)δtv
k‖2

2

≤ 2‖v0‖2
2 + 4T 2E0 +

(
4Tg

(α)
0

hα−1

)
τ

n−1∑

k=0

[
‖vk+1‖2

2 + ‖vk‖2
2

]
,

(2.80)

for each 1 ≤ n ≤ N . Collecting all the terms with ‖vn‖2
2 and dividing by 1 − η we reach

‖vn‖2
2 ≤ C1

(
‖v0‖2

2 + 2T 2E0
)

+ C2τ

n−1∑

k=0

‖vk‖2
2, ∀n ∈ {1, . . . , N}, (2.81)

where C1 = 2(1 − η)−1 and C2 = 2ητ−1(1 − η)−1. The conclusion of this result is reached now using
Lemma 2.6.2 after noting that C1 < 4 and C2 < C.

Lemma 2.6.4. Let G ∈ C2(R) and G′′ ∈ L∞(R), and suppose that (un)N
n=0, (vn)N

n=0 and (Rn)N
n=0 are

sequences in R
M−1. Let ǫn = vn − un and G̃n = δv,tG(vn) − δw,tG(wn) for each 0 ≤ n ≤ N . Then there

exists C1 ∈ R
+ that depends only on G such that

|2〈Rn − G̃n, δ
(1)
t εn〉| ≤ 2‖Rn‖2

2 + C1

(
‖εn+1‖2

2 + ‖εn−1‖2
2 + ‖δtε

n‖2
2 + ‖δtε

n−1‖2
2

)
. (2.82)

Moreover, there exist C2, C3 ∈ R
+ that depend only on G such that for each 1 ≤ k ≤ N − 1,

2τ

∣∣∣∣∣

k∑

n=1

〈Rn − G̃n, δ
(1)
t εn〉

∣∣∣∣∣ ≤ 2τ

k∑

n=0

‖Rn‖2
2 + C2‖ε0‖2

2 + C3τ

k∑

n=0

‖δtε
n‖2

2. (2.83)

Proof. Let C0 = sup{G′′(u) : u ∈ R}. As a consequence of the Mean Value Theorem and a straightforward

integration we obtain that |G̃n
j | ≤ C0(|εn+1

j | + |εn−1
j |) for each 1 ≤ j ≤ M − 1 and each 1 ≤ n ≤ N − 1. It

follows that

|2〈Rn − G̃n, δ
(1)
t εn〉| ≤ 2‖Rn‖2

2 + 2‖G̃n‖2
2 + ‖δ(1)

t εn‖2
2

≤ 2‖Rn‖2
2 + 4C0

(
‖εn+1‖2

2 + ‖εn−1‖2
2

)
+

1

2

(
‖δtε

n‖2
2 + ‖δtε

n−1‖2
2

)
,

(2.84)

whence the inequality (2.82) readily follows with C1 = max{4C0,
1
2 }. Using that inequality and the remarks
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before Lemma 2.4.6 we obtain that

2τ

∣∣∣∣∣

k∑

n=1

〈Rn − G̃n, δ
(1)
t εn〉

∣∣∣∣∣ ≤ 2τ
k∑

n=0

‖Rn‖2
2 + 2C1τ

[
k+1∑

n=0

‖εn‖2
2 +

k∑

n=0

‖δtε
n‖2

2

]

≤ 2τ

k∑

n=0

‖Rn‖2
2 + 2C1τ

[
k+1∑

n=0

(
2‖ε0‖2

2 + 2Tτ

n−1∑

l=0

‖δtε
l‖2

2

)
+

k∑

n=0

‖δtε
n‖2

2

]

≤ 2τ

k∑

n=0

‖Rn‖2
2 + 4C1T‖ε0‖2

2 + 2C1(2T 2 + 1)τ

k∑

n=0

‖δtε
n‖2

2,

(2.85)
for each 1 ≤ k ≤ N − 1. The conclusion of this result follows for C2 = 4C1T and C3 = 2C1(2T 2 + 1).

We turn our attention to the stability and the convergence properties of (2.37). In the following results,
the constants C1, C2 and C3 are as in the previous lemma, and (φv, ψv, f, g) and (φw, ψw, f, g) will denote
two sets of initial-boundary conditions of (2.7).

Theorem 2.6.5 (Stability). Let G ∈ C2(R) and G′′ ∈ L∞(R), and suppose that τ, h ∈ R
+ satisfy

τ2g
(α)
0

2hα−1
+ C3τ < 1. (2.86)

Let v = (vn)N
n=0 and w = (wn)N

n=0 be solutions of (2.37) for (φv, ψv, f, g) and (φw, ψw, f, g), respectively,
and let εn = vn − wn for each 0 ≤ n ≤ N . Then there exist C4, C5 ∈ R

+ independent of v and w such
that

‖δtε
n‖2

2 ≤ C4

(
‖δtε

0‖2
2 + µt‖Λ(α)ε0‖2

2 + ‖ǫ0‖2
2

)
eC5nτ , ∀n ∈ {1, . . . , N − 1}. (2.87)

Proof. Beforehand, let η0 ∈ R
+ satisfy

τ2g
(α)
0

2hα−1
< η0 < 1 − C3τ. (2.88)

Obviously, the sequence (εn)N
n=0 satisfies the initial-boundary-value problem

δ
(2)
t εn

j − δ(α)
x εn

j + γδ
(1)
t εn

j + δ
(1)
v,tG(vn

j ) − δw,tG(wn
j ) = 0, ∀j ∈ {1, . . . ,M},∀n ∈ {1, . . . , N},

such that





ε0
j = φv(xj) − φw(xj), ∀j ∈ {1, . . . ,M − 1},
δtε

0
j = ψv(xj) − ψw(xj), ∀j ∈ {1, . . . ,M − 1},

εn
0 = εn

M = 0, ∀n ∈ {1, . . . , N − 1}.

(2.89)

For the sake of convenience, let G̃n
j = δ

(1)
v,tG(vn

j )−δw,tG(wn
j ) for each 1 ≤ j ≤ M−1 and each 1 ≤ n ≤ N−1.

From the identities preceding Theorem 2.4.4 and the proof of Lemma 2.4.6, we readily obtain that
〈
δ

(2)
t εn, δ

(1)
t εn

〉
=

1

2τ

(
‖δtε

n‖2
2 − ‖δtε

n−1‖2
2

)
, (2.90)

〈−δ(α)
x εn, δ

(1)
t εn〉 = δt

(
1

2
µt‖Λ(α)εn−1‖2

2 − τ2

4
‖Λ(α)δtε

n−1‖2
2

)
, (2.91)

|2〈G̃n, δ
(1)
t εn〉| ≤ C1

(
‖δtε

n‖2
2 + ‖δtε

n−1‖2
2 + ‖εn+1‖2

2 + ‖εn−1‖2
2

)
, (2.92)

for each 1 ≤ n ≤ N − 1 and for some C1 ∈ R
+. Let k ∈ {1, . . . , N − 1}. Taking the inner product of δ

(1)
t ǫnj

with both sides of the respective difference equation of (2.89), substituting the identities above, calculating
then the sum of the resulting identity for all n ∈ {1, . . . , k}, multiplying by 2τ on both sides, applying
Lemma 2.6.4 with Rn = 0 and simplifying algebraically we obtain

(1 − η0)‖δtε
k‖2

2 ≤
(

1 − τ2g
(α)
0

2hα−1

)
‖δtε

k‖2
2 ≤ ‖δtε

k‖2
2 + µt‖Λ(α)εk‖2

2 − τ2

2
‖Λ(α)δtε

k‖2
2

= ‖δtε
0‖2

2 + µt‖Λ(α)ε0‖2
2 − τ2

2
‖Λ(α)δtε

0‖2
2 − 2τ

k∑

n=1

[
γ‖δ(1)

t εn‖2
2 + 〈G̃n, δ

(1)
t εn〉

]

≤ ‖δtε
0‖2

2 + µt‖Λ(α)ε0‖2
2 + C2‖ε0‖2

2 + C3τ

k∑

n=0

‖δtε
n‖2

2.

(2.93)
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Subtracting C3τ‖δtε
k‖2

2 on both ends of this inequality and dividing next both sides by 1 − η0 − C3τ , it
follows that there exist constants C4, C5 ∈ R

+ such that

‖δtε
k‖2

2 ≤ C4

(
‖δtε

0‖2
2 + µt‖Λ(α)ε0‖2

2 + ‖ε0‖2
2

)
+ C5τ

k−1∑

n=0

‖δtε
n‖2

2. (2.94)

The conclusion of this theorem is reached now using Lemma 2.6.2.

It is worth noting that the inequality (2.86) is satisfied for sufficiently small values of τ . Finally, we
tackle the problem of the convergence of the numerical method (2.37). The proof of the following result is
similar to that of Theorem 2.6.5, for that reason we provide only an abridged proof.

Theorem 2.6.6 (Convergence). Let u ∈ C5,4
x,t (Ω) be a solution of (2.7) with G ∈ C2(R) and G′′ ∈ L∞(R),

and let (vn)N
n=0 be a solution of (2.37) for the initial-boundary conditions (φ, ψ, f, g). Assume that (2.41)

hold, and let ǫn = vn − un for each 0 ≤ n ≤ N . If (2.86) holds then the method (2.37) is convergent of
order O(τ2 + h2).

Proof. Let η0 ∈ R
+ be as in the proof of Theorem 2.6.5, and let Rn

j be the truncation error at the point

(xj , tn) for each 0 ≤ j ≤ M and each 1 ≤ n ≤ N . Then (ǫn)N
n=0 satisfies

δ
(2)
t ǫnj − δ(α)

x ǫnj + γδ
(1)
t ǫnj + δ

(1)
v,tG(vn

j ) − δw,tG(wn
j ) = Rn

j , ∀j ∈ {1, . . . ,M − 1},∀n ∈ {1, . . . , N − 1},
such that

{
ǫ0j = δtǫ

0
j = 0, ∀j ∈ {1, . . . ,M − 1},

ǫn0 = ǫnM = 0, ∀n ∈ {1, . . . , N − 1}.
(2.95)

Following the proof of Theorem 2.6.5, let G̃n
j = δ

(1)
v,tG(vn

j ) − δw,tG(wn
j ) for each 1 ≤ j ≤ M − 1 and each

1 ≤ n ≤ N − 1. Proceeding as in the proof of that theorem, we readily obtain

(1 − η0)‖δtǫ
k‖2

2 ≤ ‖δtǫ
0‖2

2 + µt‖Λ(α)ǫ0‖2
2 + 2τ

k∑

n=1

〈Rn − G̃n, δ
(1)
t ǫn〉

≤ ‖δtǫ
0‖2

2 + µt‖Λ(α)ǫ0‖2
2 + C2‖ǫ0‖2

2 + 2τ

k∑

n=0

‖Rn‖2
2 + C3τ

k∑

n=0

‖δtǫ
n‖2

2,

(2.96)

for each 1 ≤ k ≤ M − 1. Subtracting C3τ‖δtǫ
k‖2

2 on both ends of this inequality and dividing both sides
by 1 − η0 − C3τ , it follows that there exist constants C4, C5 ∈ R

+ such that

‖δtǫ
k‖2

2 ≤ C4

(
‖δtǫ

0‖2
2 + µt‖Λ(α)ǫ0‖2

2 + ‖ǫ0‖2
2 + τ

k∑

n=0

‖Rn‖2
2

)
+ C5τ

k∑

n=0

‖δtǫ
n‖2

2. (2.97)

Let C be the constant of Lemma 2.6.4, and let C6 = C4C
2eC5TT . Lemmas 2.6.4 and 2.6.2, and the initial-

boundary conditions in (2.95) imply now that ‖δtǫ
k‖2

2 ≤ C6(τ2 + h2), whence the conclusion follows.

Finally, we provide some numerical approximations of the solution of problem (2.7) that show the
capability of (2.37) to preserve the energy. In our implementation of Newton’s method, the initial approx-
imation to the root of Fn

j will be the number vn
j . In all our numerical experiments, we will prescribe the

initial data using a suitable exact solution of a nonlinear wave equation with derivatives of integer order.
For all our simulations we will use a tolerance equal to 1 × 10−8 and a maximum number of iterations
equal to 20.

Example 2.6.7. Let 0 < ω < 1. In this example, we let G(u) = 1 − cosu for all u ∈ R, and use the exact
solution of the classical sine-Gordon equation described by

u(x, t) = 4 arctan

( √
1 − ω2 cosωt

ω cosh
√

1 − ω2x

)
, ∀(x, t) ∈ R × (R+ ∪ {0}). (2.98)

Computationally, we consider the domain Ω = (−30, 30) × (0, 100), h = 0.5 and τ = 0.05. Figure 2.2
shows the numerical solution (left column) and the associated Hamiltonian (right column) of the problem
(2.7) obtained using (2.37) and (2.61), respectively, for ω = 0.9 and γ = 0. Various derivative orders were
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Graphs of the numerical solution (left column) and the associated Hamiltonian (right column)
of the problem (2.7) with G(u) = 1 − cosu obtained using (2.37) and (2.61) on Ω = (−30, 30) × (0, 100).
The initial data were provided by (2.98) with ω = 0.9, and the parameters employed were γ = 0, h = 0.5
and τ = 0.05. Various derivative orders were used, namely, α = 2 (top row), α = 1.6 (middle row) and
α = 1.2 (bottom row). The insets of the graphs of the right column represent the discrete dynamics of the
total energy (2.53) of the system.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Graphs of the numerical solution (left column) and the associated Hamiltonian (right column)
of the problem (2.7) with G(u) = 1 − cosu obtained using (2.37) and (2.61) on Ω = (−30, 30) × (0, 100).
The initial data were provided by (2.98) with ω = 0.9, and the parameters employed were γ = 0.05, h = 0.5
and τ = 0.05. Various derivative orders were used, namely, α = 2 (top row), α = 1.6 (middle row) and
α = 1.2 (bottom row). The insets of the graphs of the right column represent the discrete dynamics of the
total energy (2.53) of the system.
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used, namely, α = 2 (top row), α = 1.6 (middle row) and α = 1.2 (bottom row). The insets of the graphs
of the right column represent the discrete dynamics of the total energy (2.53) of the system. The results
show that the discrete total energy is conserved. We have used different computational parameters and
the result (not shown here in view of their redundancy) show that the discrete total energy is likewise
conserved, in agreement with Theorem 2.4.4.

Example 2.6.8. Consider now the same problem as in Example 2.6.7, but letting γ = 0.05. The results of
the simulations are shown in Figure 2.3. Obviously, in this case the quantities En are not conserved in
view of the presence of a nonzero damping term. These results are in agreement with Theorem 2.4.4.

Before we close this section, we must point out that the simulations were obtained using an implemen-
tation of our method in c©Matlab 8.5.0.197613 (R2015a) on a c©Sony Vaio PCG-5L1P laptop computer
with Kubuntu 16.04 as operating system. In terms of computational times, we are aware that better results
may be obtained with more modern equipment and more modest Linux/Unix distributions.
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3. An efficient method for a fractional

inhibitor-activator system

Departing from a two-dimensional hyperbolic system that describes the interaction between
some activator and inhibitor substances in chemical reactions, we investigate a general form
of that model using a finite-difference approach. The model under investigation is a nonlinear
system consisting of two coupled partial differential equations with generalized reaction terms.
The presence of two-dimensional diffusive terms consisting of fractional operators of the Riesz
type is considered here, using spatial differentiation orders in the set (0, 1) ∪ (1, 2]. We impose
initial conditions on a closed and bounded rectangle, and a finite-difference methodology based
on the use of fractional centered differences is proposed. Among the most important results
of this work, we prove the existence and the uniqueness of the solutions of the numerical
method, and establish analytically the second-order consistency of our scheme. Moreover, the
discrete energy method is employed to prove the stability and the quadratic convergence of the
technique. Some numerical simulations obtained through our method show the appearance of
Turing patterns and wave instabilities, in agreement with some reports found in the literature
on superdiffusive hyperbolic activator-inhibitor systems. As a new application, we show that
Turing patterns are also present in subdiffusive scenarios.

3.1 Introduction

The investigation on the conditions under which Turing patterns appear in physical systems has been
a highly transited avenue of research from the mathematical, the numerical and the physical points of
view. It is well know that many nonlinear systems exhibit Turing patterns under suitable conditions on
the parameters of the model and the initial data. Some diffusion-reaction systems exhibit the presence
of patterns, like some coupled systems which describe the interaction between inhibitor and activator
substances in chemistry [31, 28], especially in chemical reactions with chlorine dioxide, iodine, and malonic
acid [106]. In fact, several different Turing patterns are also found in the chlorine-iodide-malonic acid
reaction, including hexagonal, striped [107], and oscillatory structures [139]. Outside the chemical sciences,
there is also evidence on the presence of this kind of nonlinear behavior. For instance, there is experimental
evidence on the presence of azimuthal Turing patterns in Kerr combs generated by whispering-gallery-mode
resonators [23], and the theory suggests that diffusion-reaction systems may be used to understand the
formation of this type of patterns in biology [62]. Even the labyrinthine structure of the cerebral cortex
has been identified as a complex three-dimensional Turing pattern [16]. Moreover, it is well known that
the Brusselator is a system which exhibits the presence of that type of structures [96, 12].

The physical models described in the paragraph above are diffusive equations. It is well known that
these systems have the physical limitation that any perturbation is instantaneously propagated throughout
the system. For that reason, hyperbolic forms of these equations are physically preferred. It turns out
that a wide variety of Turing patterns have been found also in hyperbolic systems. For example, Turing
instabilities have been investigated in diffusive predator-prey models with hyperbolic mortality [118, 144],
in hyperbolic models for locally interacting cell systems [75], in the hyperbolic chaos of standing wave
patters generated by a modulated pump source [54] and in the spreading of infectious diseases in hyperbolic
susceptible-infected-removed models [7]. Also, the presence of various wave and Turing patterns has been
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studied in the context of hyperbolic forms of the Brusselator [22, 3], in some hyperbolic models for self-
organized biological aggregations and movement [32], in network systems through collective patterns and
single differentiated nodes [135], in predator-prey reaction-diffusion models with spatiotemporal delays
[137] and in hyperbolic vegetation models for semiarid environments [24], just to mention some systems.

In recent years, fractional derivatives have been introduced to mathematical models in order to provide
more realistic descriptions of the physical phenomena. For instance, many fractional systems have been
obtained as the continuous limit of discrete systems of particles with long-range interactions [121, 125].
However, independently of that, fractional derivatives have been successfully used in the theory of vis-
coelasticity [60], the theory of thermoelasticity [100], financial problems under a continuous time frame
[109], self-similar protein dynamics [49] and quantum mechanics [90]. Moreover, some distributed-order
fractional diffusion-wave equations are used in the modeling of groundwater flow to and from wells [115, 98].
As expected, the complexity of fractional problems is considerably higher that that of integer-order models,
whence the need to design reliable numerical techniques to approximate the solutions is pragmatically jus-
tified. In this direction, the literature reports on various methods to approximate the solutions of fractional
systems. For example, some numerical methods have been proposed to solve fractional partial differen-
tial equations using fractional centered differences [80, 82], the time-fractional diffusion equation [6], the
fractional Schrödinger equation in multiple spatial dimensions [11], the nonlinear fractional Korteweg-de
Vries–Burgers equation [34], the fractional FitzHugh–Nagumo monodomain model in two spatial dimen-
sions [72], distributed-order time-fractional diffusion-wave equations on bounded domains [140] and some
Hamiltonian hyperbolic fractional differential equations that generalize various well-known wave equations
from relativistic quantum mechanics [79].

In light of these facts, the investigation on the presence of Turing patterns in fractional systems (in
both the parabolic and hyperbolic types) has been also an interesting topic of research in recent years.
Some reports have studied the presence of these patterns in simple models with fractional diffusion [67],
in fractional reaction-diffusion systems with indices of different order [46] and with multiple homogeneous
states [27], in hyperbolic inhibitor-activator systems with fractional diffusion [89], in two-species fractional
reaction-diffusion systems [52] and in reaction models with sub-diffusion [93]. At the same time, various
numerical methods have been proposed in the literature to investigate complex nonlinear models [56, 65,
134]. Motivated by these facts, the purpose of this work is to investigate numerically a two-dimensional
hyperbolic system with superdiffusion that describes the interaction between an activator and an inhibitor
in chemical reactions. For convenience, we will study a generalized form of the physical model, and provide
a discretization of this system using fractional centered differences. Using some properties of fractional
discrete operators and a fixed-point theorem, we will establish the existence (and, ultimately, the uniqueness
also) of solutions of the numerical method. By employing the standard argument with Taylor polynomials,
we will show that the method is a second-order consistent technique. The discrete energy method will be
employed then to prove the stability and the convergence properties of our technique. Some computational
experiments will be carried out in order to verify the validity of our code and to propose an application to
subdiffusive systems.

This chapter is sectioned as follows. In Section 3.2, we provide the mathematical model under in-
vestigation, which is a system of hyperbolic partial differential equations with fractional diffusion in two
spatial dimensions. Some sufficient conditions for the presence of Turing patterns are recalled therein, and
the generalized form of the physical model is provided. In that section, we also introduce the concept of
fractional centered differences, which is the cornerstone to approximate the terms with fractional diffusion.
We will record therein some useful properties on fractional centered differences for the sake of convenience.
Section 3.3 is devoted to provide the discrete nomenclature and the numerical method to approximate
the solutions of our generalized model. In that section, we also establish that the numerical technique is
solvable and provide comments on its computer implementation. The most interesting numerical features
of our technique are established in Section 3.4. More precisely, we show that the method is a quadratically
consistent method, which is stable and quadratically convergent. As a corollary, we will notice that our
scheme has a unique solution under suitable parameter conditions. Section 3.5 provides some computer
simulations. As an application of our technique, we exhibit the presence of Turing patters in various sce-
narios. The results will be in qualitative agreement with predictions reported in the specialized literature.
We close this work with a section of concluding remarks, and an appendix in which we provide the proofs
for the technical lemmas employed.
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3.2 Preliminaries

Suppose that a1, a2, b1, b2 ∈ R satisfy a1 < b1 and a2 < b2, and let T > 0. Let B = (a1, b1) × (a2, b2) and
define Ω = B×(0, T ). We will employ B and Ω to represent respectively the closures of B and Ω under the
standard topology of R3, and we will use ∂B to denote the boundary of B. In this chapter, u, v : Ω → R

represent functions and let x = (x1, x2). Throughout, we will assume that u(x, t) = v(x, t) = 0, for each
t ∈ [0, T ] and x ∈ R

2 \B.

Definition 3.2.1 (Maćıas-Dı́az [81]). Let α > −1, let u : Ω → R be any function, and suppose that n is a
nonnegative integer such that n− 1 < α ≤ n. The Riesz fractional derivatives of u of order α with respect
to x1 and with respect to x2 at the point (x, t) are defined, respectively, by

∂αu(x, t)

∂|x1|α =
−1

2 cos( πα
2 )Γ(n− α)

∂n

∂xn
1

∫ ∞

−∞

u(ξ, x2, t)dξ

|x1 − ξ|α+1−n
, ∀(x, t) ∈ Ω, (3.1)

∂αu(x, t)

∂|x2|α =
−1

2 cos( πα
2 )Γ(n− α)

∂n

∂xn
2

∫ ∞

−∞

u(x1, ξ, t)dξ

|x2 − ξ|α+1−n
, ∀(x, t) ∈ Ω. (3.2)

Here, Γ is the usual Gamma function.

Definition 3.2.2 (Maćıas-Dı́az [81]). Let α > −1 and assume that n is a nonnegative integer such that
n− 1 < α ≤ n. The Riesz fractional Laplacian of order α of the function u : Ω → R at the point (x, t) is
given by

∇αu(x, t) =
∂αu(x, t)

∂|x1|α +
∂αu(x, t)

∂|x2|α , ∀(x, t) ∈ Ω. (3.3)

It is worth pointing out that the classical second-order derivatives of u with respect to x1 and x2 result
from (3.1) and (3.2), respectively, in the case when α = 2. Moreover, notice that the right-hand side of
(3.3) becomes the classical Laplacian in the spatial variables in that case.

For the remainder of this work, we will use α1 and α2 to represent real numbers in (0, 1)∪(1, 2]. Assume
that a, b, c, du, dv are nonnegative numbers, suppose that τu, τv are positive and let φu, φv, ψu, ψv : B → R.
The functions φu and φv denote the initial profiles for u and v, respectively, and ψu and ψv are the
respective initial velocities. With these conventions, the problem under consideration in this work is the
following nonlinear initial-value problem, which describes the hyperbolic dynamics of an activator-inhibitor
system with anomalous diffusion:

τu
∂2u(x, t)

∂t2
+
∂u(x, t)

∂t
= u(x, t) − av(x, t) + bu(x, t)v(x, t) − [u(x, t)]3 + du∇α1u(x, t), ∀(x, t) ∈ Ω,

τv
∂2v(x, t)

∂t2
+
∂v(x, t)

∂t
= u(x, t) − cv(x, t) + dv∇α2v(x, t), ∀(x, t) ∈ Ω,

such that





u(x, 0) = φu(x), ∀x ∈ B,
v(x, 0) = φv(x), ∀x ∈ B.
∂u

∂t
(x, 0) = ψu(x), ∀x ∈ B,

∂v

∂t
(x, 0) = ψv(x), ∀x ∈ B.

(3.4)
The system (3.4) describes the spatio-temporal dynamics of interaction between an activator substance

and an inhibitor, each of them represented by u and v, respectively. In this context, the constants τu and
τv are the inertial times of u and v, respectively, and du and dv are the respective diffusion coefficients. It
is worthwhile to note that this model has been presented here in dimensionless form. The reaction terms of
the partial differential equations of (3.4) were first proposed in the literature to describe the chlorine-iodine-
malonic acid reaction [31]. Indeed, the model in [31] is obtained from (3.4) letting τu = τv = 0, du = 1,
dv = d ∈ R

+ and α1 = α2 = 2. Moreover, the problem (3.4) was studied in [89] using τu = τv = τ ∈ R
+,

du = 1, dv = d, α1 = α, α2 = β and α, β ∈ (1, 2]. In that case, it was established that some sufficient
parametric conditions for the presence of Turing patterns are provided by

1 < c < a < aT , d > 1, b <
√
c(a− c), (3.5)

where aT = 1
4 (d+ c)2d−1.
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For purposes of this work, we will consider a more general form of (3.4) which includes generic expres-
sions of the reaction terms of the partial differential equations. More precisely, we will consider

τu
∂2u(x, t)

∂t2
+
∂u(x, t)

∂t
=

∂F (u(x, t), v(x, t))

∂u
+ du∇α1u(x, t), ∀(x, t) ∈ Ω,

τv
∂2v(x, t)

∂t2
+
∂v(x, t)

∂t
=

∂G(u(x, t), v(x, t))

∂v
+ dv∇α2v(x, t), ∀(x, t) ∈ Ω,

such that





u(x, 0) = φu(x), ∀x ∈ B,
v(x, 0) = φv(x), ∀x ∈ B.
∂u

∂t
(x, 0) = ψu(x), ∀x ∈ B,

∂v

∂t
(x, 0) = ψv(x), ∀x ∈ B,

(3.6)

where F,G : R2 → R are sufficiently smooth functions. Note that the model (3.4) is a particular form of
(3.6) with

F (u, v) = 1
2u

2 − auv + 1
2bu

2v − 1
4u

4, ∀u, v ∈ R, (3.7)

G(u, v) = uv − 1
2cv

2, ∀u, v ∈ R. (3.8)

In this work, we follow a finite-difference approach to approximate the solutions of (3.6), and use
fractional centered differences to estimate Riesz space-fractional derivatives in a consistent form [94].

Definition 3.2.3. For any function f : R → R, any h > 0 and β > −1, the fractional centered difference
of order β of f at the point x is defined as

∆
(β)
h f(x) =

∞∑

k=−∞

g
(β)
k f(x− kh), ∀x ∈ R, (3.9)

where

g
(β)
k =

(−1)kΓ(β + 1)

Γ( β
2 − k + 1)Γ(β

2 + k + 1)
, ∀k ∈ Z. (3.10)

Lemma 3.2.4 (Wang et al. [133]). If 0 < β ≤ 2 and β 6= 1 then the coefficients (g
(β)
k )∞

k=−∞ satisfy:

(a) g
(β)
0 > 0,

(b) g
(β)
k = g

(β)
−k ≤ 0 for all k 6= 0, and

(c)

∞∑

k=−∞

g
(β)
k = 0. As a consequence, it follows that g

(β)
0 = −

∞∑

k=−∞
k 6=0

g
(β)
k .

Lemma 3.2.5 (Wang et al. [133]). Let f ∈ C5(R) and assume that all its derivatives up to order five are
integrable. If 0 < β ≤ 2 and β 6= 1 then, for almost all x,

−∆β
hf(x)

hβ
=
dβf(x)

d|x|β + O(h2). (3.11)

3.3 Numerical methodology

In this section, we introduce the discrete nomenclature and the numerical method to approximate the
solutions of (3.4). The notation will be similar to that employed in [80]. We describe it here briefly for
the sake of convenience.

Let Iq = {1, . . . , q} and Iq = Iq ∪{0}, for each q ∈ N. Let K,M,N ∈ N, and define the spatial partition
norms h1 = (b1 − a1)/M and h2 = (b2 − a2)/N in the x1- and the x2-directions, respectively. We will
consider the following uniform partitions of the intervals [a1, b1] and [a2, b2], respectively:

a1 = x1,0 < x1,1 < . . . < x1,m < . . . < x1,M = b1, ∀m ∈ IM , (3.12)

a2 = x2,0 < x2,1 < . . . < x2,n < . . . < x2,N = b2, ∀n ∈ IN . (3.13)
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Let J = IM−1 × IN−1 and J = IM × IN . We will fix a uniform partition of [0, T ] consisting of K
subintervals, namely,

0 = t0 < t1 < . . . < tk < . . . < tK = T, ∀k ∈ IK , (3.14)

and define τ = T/K. For each (m,n, k) ∈ J × IK , let uk
m,n and vk

m,n represent approximations to the
exact values of the solutions u and v of (3.6), respectively, at the point xm,n = (x1,m, x2,n) and time tk.
Let ϕm,n = ϕ(xm,n) for any function ϕ : B → R and (m,n) ∈ J .

Let h = (h1, h2) and h∗ = h1h2. Convey that Rh = {xj}j∈J ⊆ R
2 and let Vh be the real vector space

of all real functions on Rh. For any u ∈ Vh and j ∈ J , let uj = u(xj). We represent any numerical
approximation to the solution of (3.6) by (u,v), where u = (uk)K

k=0 and v = (vk)K
k=0, and uk = (uk

j )j∈J

and vk = (vk
j )j∈J , for each k ∈ IN . Alternatively, we will employ the nomenclature (u,v) = ((uk,vk))K

k=0.
In the following and unless we say otherwise, we will use w to represent u or v. Likewise, w will denote u

or v.

Definition 3.3.1. Define the inner product 〈·, ·〉 : Vh × Vh → R and the norm ‖ · ‖1 : Vh → R by

〈u,v〉 = h∗

∑

j∈J

ujvj , ‖u‖1 = h∗

∑

j∈J

|uj |, ∀u,v ∈ Vh. (3.15)

The Euclidean norm induced by 〈·, ·〉 will be denoted by ‖ · ‖2, and ‖ · ‖∞ will be the usual infinity norm
in Vh.

Definition 3.3.2. For each sequence (wk)K
k=0 ⊆ Vh, (m,n) ∈ J and k ∈ IK−1, define the following linear

operators:

δ
(1)
t wk

m,n =
wk+1

m,n − wk−1
m,n

2τ
, (3.16)

δ
(2)
t wk

m,n =
wk+1

m,n − 2wk
m,n + wk−1

m,n

τ2
, (3.17)

µtw
k
m,n =

wk+1
m,n + wk

m,n

2
, (3.18)

µ
(1)
t wk

m,n =
wk+1

m,n + wk−1
m,n

2
. (3.19)

Obviously, the operator (3.16) provides a consistent approximation of the first-order partial derivative of
w with respect to t at (xm,n, tk), while (3.17) approximates consistently the second-order partial derivative
of w with respect to t, and (3.18) and (3.19) estimate consistently the value of w at that point.

Definition 3.3.3. Let 0 < β ≤ 2 with β 6= 1. For each (wk)K
k=0 ⊆ Vh, (m,n) ∈ J and k ∈ IK , define the

linear operators

δ(β)
x1

wk
m,n = − 1

hβ
1

M∑

j=0

g
(β)
m−jwk

j,n, δ(β)
x2

wk
m,n = − 1

hβ
2

N∑

j=0

g
(β)
n−jwk

m,j . (3.20)

In light of Lemma 3.2.5, the operators in Definition 3.3.3 yield second-order approximations of the
fractional derivatives of w of order β with respect to x1 and x2, respectively, at the point (xm,n, tk), for
each (m,n, k) ∈ J × IK . So,

δ(β)
x wk

m,n = δ(β)
x1

wk
m,n + δ(β)

x2
wk

m,n, ∀(m,n, k) ∈ J × IK , (3.21)

is a second-order approximation of the fractional Laplacian of w of order β at (xm,n, tk).

Definition 3.3.4. For each (uk)K
k=0, (v

k)K
k=0, (w

k)K
k=0 ⊆ Vh, and each j ∈ J and k ∈ IK−1, define the
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nonlinear operators

δ
(1)
u,tF

k
j (w,v) =





F (wk+1
j ,vk

j ) − F (uk−1
j ,vk

j )

wk+1
j − uk−1

j

, if wk+1
j 6= uk−1

j ,

∂F (uk
j ,v

k
j )

∂u
, if wk+1

j = uk−1
j ,

(3.22)

δ
(1)
v,tG

k
j (u,w) =





G(uk
j ,w

k+1
j ) −G(uk

j ,v
k−1
j )

wk+1
j − vk−1

j

, if wk+1
j 6= vk−1

j ,

∂G(uk
j ,v

k
j )

∂v
, if wk+1

j = vk−1
j .

(3.23)

Note that δ
(1)
u,tF

k(w,v) = (δ
(1)
u,tF

k
j (w,v))j∈J and δ

(1)
v,tG

k(u,w) = (δ
(1)
v,tG

k
j (u,w))j∈J are both continuous

operators on Vh for each k ∈ IK−1, whenever F and G are differentiable on R
2.

For each P ∈ N and β ∈ (0, 1) ∪ (1, 2], define the real matrix AP of size (P + 1) × (P + 1) by

A
(β)
P =




g
(β)
0 g

(β)
1 · · · g

(β)
P

g
(β)
1 g

(β)
0 · · · g

(β)
P −1

...
...

. . .
...

g
(β)
P g

(β)
P −1 · · · g

(β)
0



. (3.24)

We define the diagonal block-matrices A
(β)
x1

and A
(β)
x2

of sizes of sizes [(M+1)×(N+1)]×[(M+1)×(N+1)]
using direct sums of matrices:

A(β)
x1

= A
(β)
M ⊕A

(β)
M ⊕ · · · ⊕A

(β)
M︸ ︷︷ ︸

(N+1)-times

, A(β)
x2

= A
(β)
N ⊕A

(β)
N ⊕ · · · ⊕A

(β)
N︸ ︷︷ ︸

(M+1)-times

. (3.25)

Lemma 3.3.5 (Maćıas-Dı́az [79]). The following are properties satisfied by A
(β)
xi , for each β ∈ (0, 1)∪(1, 2]

and i ∈ I2:

(a) A
(β)
xi is real and symmetric, so Hermitian.

(b) A
(β)
xi is strictly diagonally dominant,

(c) All the eigenvalues of A
(β)
xi are positive real numbers bounded from above by 2g

(β)
0 .

(d) A
(β)
xi is positive-definite.

Proof. The proof is similar to that in [79, Lemma 4.2].

Note that any u ∈ Vh may be represented in vector form alternatively as

ux1
= (u0,0,u1,0, . . . ,uM,0︸ ︷︷ ︸,u0,1,u1,1, . . . ,uM,1︸ ︷︷ ︸, . . . ,u0,N ,u1,N , . . . ,uM,N︸ ︷︷ ︸), (3.26)

ux2
= (u0,0,u0,1, . . . ,u0,N︸ ︷︷ ︸,u1,0,u1,1, . . . ,u1,N︸ ︷︷ ︸, . . . ,uM,0,uM,1, . . . ,uM,N︸ ︷︷ ︸). (3.27)

It is straightforward to see then that δ
(β)
xi u = −h−β

i A
(β)
xi u⊤

xi
and 〈u,−δ(β)

xi v〉 = h∗h
−β
i uxi

A
(β)
xi v⊤

xi
, for each

i ∈ I2, each β ∈ (0, 1) ∪ (1, 2] and u,v ∈ Vh. These facts will be used in the proof of the next Lemma.

Lemma 3.3.6. For each i ∈ I2 and β ∈ (0, 1) ∪ (1, 2], there exists a unique positive self-adjoint (square-

root) operator Λ
(β)
xi : Vh → Vh, such that 〈−δ(β)

xi u,v〉 = 〈Λ(β)
xi u,Λ

(β)
xi v〉, for each u,v ∈ Vh.

Proof. Recall that A
(β)
xi is a symmetric matrix, and note that −δ(β)

xi : Vh → Vh is a linear operator that
satisfies the following identities for each u, v ∈ Vh:

〈
u,−δ(β)

xi
v
〉

= h∗h
−β
i uxi

A(β)
xi

v⊤
xi

= h∗h
−β
i

(
uxi

A(β)
xi

v⊤
xi

)⊤

= h∗h
−β
i vxi

A(β)
xi

u⊤
xi

=
〈

−δ(β)
xi

u,v
〉
. (3.28)
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This means that −δ(β)
xi is a self-adjoint operator on the Hilbert space Vh. Moreover, the fact that the

matrix A
(β)
xi is positive-definite implies that

〈
u,−δ(β)

xi u
〉

= h∗h
−β
i uxi

A
(β)
xi u⊤

xi
≥ 0 for each u ∈ V. It

follows that −δ(β)
xi has a unique square-root operator Λ

(β)
xi , which has the desired properties.

For each β ∈ (0, 1) ∪ (1, 2], define

g
(β)
h = 2h∗g

(β)
0

√
h−2β

1 + h−2β
2 , γ

(β)
h = 2h∗g

(β)
0

(
h−β

1 + h−β
2

)
(3.29)

Using this nomenclature, the following result summarizes some easy properties of the fractional centered
difference operators and their respective square-roots. Those properties will be used for the remainder of
this chapter.

Lemma 3.3.7. Let v ∈ Vh and i ∈ I2. If β ∈ (0, 1) ∪ (1, 2] then

(a) ‖Λ
(β)
xi v‖2

2 ≤ 2g
(β)
0 h∗h

−β
i ‖v‖2

2,

(b) ‖δ(β)
xi v‖2

2 = ‖Λ
(β)
xi Λ

(β)
xi v‖2

2,

(c) ‖δ(β)
xi v‖2

2 ≤ 4
(
g

(β)
0 h∗h

−β
i

)2

‖v‖2
2 and

(d)
∑

i∈I2

‖δ(β)
xi

v‖2
2 ≤

(
g

(β)
h ‖v‖2

)2

and
∑

i∈I2

‖Λ(β)
xi

v‖2
2 ≤ γ

(β)
h ‖v‖2

2.

Proof.

(a) The properties of matrix A
(β)
xi summarized in Lemma 3.3.5 guarantee vxi

A
(β)
xi v⊤

xi
≤ 2g

(β)
0 ‖vxi

‖2
2

holds. The remarks before the proof of Lemma 3.3.6 lead to ‖Λ
(β)
xi v‖2

2 = h∗h
−β
i vxi

A
(β)
xi v⊤

xi
≤

2g
(β)
0 h∗h

−β
i ‖v‖2

2.

(b) Using Lemma 3.3.6, we obtain

‖δ(β)
xi

v‖2
2 = 〈−δ(β)

xi
v,−δ(β)

xi
v〉 = 〈Λ(β)

xi
v,−δ(β)

xi
Λ(β)

xi
v〉 = 〈Λ(β)

xi
Λ(β)

xi
v,Λ(β)

xi
Λ(β)

xi
v〉 = ‖Λ(β)

xi
Λ(β)

xi
v‖2

2.
(3.30)

(c) This property is a consequence of (a) and (b). Indeed, note that

‖δ(β)
xi

v‖2
2 = ‖Λ(β)

xi
Λ(β)

xi
v‖2

2 ≤ 2g
(β)
0 h∗h

−β
i ‖Λ(β)

xi
v‖2

2 ≤ 4
(
g

(β)
0 h∗h

−β
i

)2

‖v‖2
2. (3.31)

(d) This property follows immediately from (c).

Assume that ψu and ψv represent the exact values of the solutions u and v, respectively, at the time
t1. Under these circumstances, the numerical method to approximate the solutions of (3.6) is described
by the following scheme:

τuδ
(2)
t uk

j + δ
(1)
t uk

j = δ
(1)
u,tF

k
j (u,v) + duδ

(α1)
x uk

j , ∀(j, k) ∈ J × IK−1,

τvδ
(2)
t vk

j + δ
(1)
t vk

j = δ
(1)
v,tG

k
j (u,v) + dvδ

(α2)
x vk

j , ∀(j, k) ∈ J × IK−1,

such that





u0
j = φu(xj), ∀j ∈ J,

v0
j = φv(xj), ∀j ∈ J,

u1
j = ψu(xj), ∀j ∈ J,

v1
j = ψv(xj), ∀j ∈ J.

(3.32)

The method is an explicit scheme, in the sense that the solutions uk+1
j and vk+1

j of the discrete system at
the kth iteration are obtained separately by solving two polynomial equations that depend exclusively on
uk+1

j and vk+1
j , respectively. The finite-difference scheme will be coded in Fortran using an implementation

of the Newton–Raphson method for solving nonlinear equations. For the simulations in Section 3.5, we
will use a maximum number of iterations equal to 20 and a tolerance in the infinity norm of 1 × 10−8 as
stopping criteria.
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Lemma 3.3.8 (Brouwer’s fixed-point theorem [2]). Let V be a finite-dimensional vector space over R,
and 〈·, ·〉 an inner product on V. Suppose that f : V → V is continuous, and that there exists λ > 0 such
that 〈f(w),w〉 ≥ 0, for each w ∈ V with ‖w‖ = λ. Then there exists w ∈ V with ‖w‖ ≤ λ, satisfying
f(w) = 0.

Theorem 3.3.9 (Existence of solutions). Let F and G be differentiable in the first and second arguments,
respectively, and assume that those derivatives are bounded. Then (3.32) has a solution for any set of
initial conditions.

Proof. We prove this result using induction. Notice that the approximations (u0,v0) and (u1,v1) exist,
so assume that (uk−1,vk−1) and (uk,vk) have been obtained for some k ∈ IK−1. Note that the continuity

of the operator δ
(1)
u,tF

k, together with the boundedness of the first derivative of F imply that δ
(1)
u,tF

k is
bounded. Let hu : Vh → Vh be the continuous function whose jth component hu

j : Vh → R is given by

hu
j (w) = τu

wj − 2uk
j + uk−1

j

τ2
+

wj − uk−1
j

2τ
− δ

(1)
u,tF

k
j (w,v) − δ(α1)

x uk
j , ∀w ∈ Vh,∀j ∈ J. (3.33)

Using the boundedness of δ
(1)
u,tF

k and the Cauchy–Schwarz inequality, and applying then the properties of
Lemma 3.3.7, there exists a constant K1 ∈ R

+ such that

〈h(w),w〉 ≥ τu

τ
‖w‖2

(
‖w‖2 − 2‖uk‖2 − ‖uk−1‖2

)

+
1

2τ
‖w‖2

(
‖w‖2 − ‖uk−1‖2

)
−K1‖w‖2 − ‖δ(α1)

x uk‖2‖w‖2,
(3.34)

for all w ∈ Vh. After regrouping, it follows that 〈h(w),w〉 ≥ c1‖w‖2(‖w‖2 − λ1) for each w ∈ Vh. Here,

c1 =
2τu + τ

2τ2
, (3.35)

λ1 =
(4τu + 2τ2g

(α1)
h )‖uk‖2 + (2τu + τ)‖uk−1‖2 + 2τ2K1

2τu + τ
. (3.36)

It is obvious that both c1 and λ1 are positive, and that 〈f(w),w〉 ≥ 0 for each w ∈ Vh with ‖w‖2 = λ1.
By Brouwer’s fixed-point theorem, there exists uk+1 ∈ Vh with ‖uk+1‖2 ≤ λ1, such that hu(uk+1) = 0. In
similar fashion, there exist λ2 > 0 and vk+1 ∈ Vh with ‖vk+1‖2 ≤ λ2, such that hv(vk+1) = 0. It follows
that there exists a solution (uk+1,vk+1) of the method at the kth temporal step, and the conclusion follows
now by induction.

3.4 Numerical properties

The purpose of this section is to establish the most important numerical properties of the method (3.32).
More concretely, we will prove that the method is a quadratically consistent technique which is both stable
and quadratically convergent. Moreover, we will prove the existence and the uniqueness of the solutions
of our numerical method as a corollary of Theorem 3.3.9 and the numerical stability.

To establish the consistency property of the method, we define the continuous operators

Lu(u(x, t), v(x, t)) = τu
∂2u(x, t)

∂t2
+
∂u(x, t)

∂t
− ∂F (u(x, t), v(x, t))

∂u
− du∇α1u(x, t), ∀(x, t) ∈ Ω, (3.37)

Lv(u(x, t), v(x, t)) = τv
∂2v(x, t)

∂t2
+
∂v(x, t)

∂t
− ∂G(u(x, t), v(x, t))

∂v
− dv∇α2v(x, t), ∀(x, t) ∈ Ω. (3.38)

We also define the following discrete operators:

Lu(uk
j ,v

k
j ) = τuδ

(2)
t uk

j + δ
(1)
t uk

j − δ
(1)
u,tF

k
j (u,v) − duδ

(α1)
x uk

j , ∀(j, k) ∈ J × IK−1, (3.39)

Lv(uk
j ,v

k
j ) = τvδ

(2)
t vk

j + δ
(1)
t vk

j − δ
(1)
v,tG

k
j (u,v) − dvδ

(α2)
x vk

j , ∀(j, k) ∈ J × IK−1. (3.40)

Moreover, we let L(xj , tk) = (Lu(u(xj , tk), v(xj , tk)),Lv(u(xj , tk), v(xj , tk))), for each (j, k) ∈ J × IK−1.
Also, let us define Lk

j = (Lu(uk
j ,v

k
j ),Lv(uk

j ,v
k
j )), for each (j, k) ∈ J × IK−1. We will convey in the

following that uk
j = u(xj , tk) and vk

j = v(xj , tk), for each (j, k) ∈ J × IK .
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Theorem 3.4.1 (Consistency). If u, v ∈ C5(Ω) then there exists a constant C ∈ R
+ independent of τ and

h, such that
‖L(xj , tk) − Lk

j ‖∞ ≤ C(τ2 + ‖h‖2
2), ∀(j, k) ∈ J × IK−1. (3.41)

Proof. We will employ here the usual argument with Taylor polynomials and Lemma 3.2.5. Using the
smoothness of the functions u and v, there exist constants Cw

1 , C
w
2 ∈ R

+ for w = u, v, such that

∣∣∣∣δ
(2)
t wk

j − ∂2w(xj , tk)

∂t2

∣∣∣∣ ≤ Cw
1 τ

2, ∀(j, k) ∈ J × IK−1, (3.42)

∣∣∣∣δ
(1)
t wk

j − ∂w(xj , tk)

∂t

∣∣∣∣ ≤ Cw
2 τ

2, ∀(j, k) ∈ J × IK−1. (3.43)

Similarly, there exist constants Cw
3 , C

w
4 ∈ R

+ for w = u, v, with the properties

∣∣∣∣δ
(1)
u,tF

k
j (uk

j ,v
k
j ) − ∂F (u(xj , tk), v(xj , tk))

∂u

∣∣∣∣ ≤ Cu
3 τ

2, ∀(j, k) ∈ J × IK−1,
∣∣∣∣δ

(1)
v,tG

k
j (uk

j ,v
k
j ) − ∂G(u(xj , tk), v(xj , tk))

∂v

∣∣∣∣ ≤ Cv
3 τ

2, ∀(j, k) ∈ J × IK−1,
∣∣∣δ(α1)

x uk
j − ∇α1u(xj , tk)

∣∣∣ ≤ Cu
4 ‖h‖2

2, ∀(j, k) ∈ J × IK−1,∣∣∣δ(α2)
x vk

j − ∇α2v(xj , tk)
∣∣∣ ≤ Cv

4 ‖h‖2
2, ∀(j, k) ∈ J × IK−1.

(3.44)

Let Cw = max{τwC
w
1 , C

w
2 , C

w
3 , dwC

w
4 } for each w = u, v. Then the conclusion of the theorem readily

follows from the triangle inequality, letting C = Cu ∨ Cv.

We will require the following lemmas.

Lemma 3.4.2 (Pen-Yu [95]). Let (ωk)K
k=0 and (ρk)K

k=0 be sequences of nonnegative numbers, and let C ≥ 0
be such that

ωk ≤ ρk + Cτ

k−1∑

l=0

ωl, ∀k ∈ IK . (3.45)

Then ωk ≤ ρkeCkτ for each k ∈ IK .

Lemma 3.4.3. Let F,G ∈ C2(R2) have partial derivatives of the second order with respect to u and v,
respectively, which are bounded in R

2. Let (u,v) and (ũ, ṽ) be solutions of (3.32), and let eu,k = uk − ũk

and ev,k = vk − ṽk for each k ∈ IK . Let (Ru,k)K
k=0, (R

v,k)K
k=0 ⊆ Vh, and let F̃ k = δ

(1)
u,tF

k(uk,vk) −
δ

(1)
u,tF

k(ũk, ṽk) and G̃k = δ
(1)
v,tG

k(uk,vk) − δ
(1)
v,tG

k(ũk, ṽk) for each k ∈ Ik. Then there exist constants
Cu

1 , C
v
1 ∈ R

+ which depend only on F and G, respectively, such that

∣∣∣〈2F̃ k, δ
(1)
t eu,k〉

∣∣∣ ≤ Cu
1

(
‖δte

u,k‖2
2 + ‖δte

u,k−1‖2
2 + ‖eu,k+1‖2

2 + ‖eu,k−1‖2
2

)
, ∀k ∈ IK−1, (3.46)

∣∣∣〈2G̃k, δ
(1)
t ev,k〉

∣∣∣ ≤ Cv
1

(
‖δte

v,k‖2
2 + ‖δte

v,k−1‖2
2 + ‖ev,k+1‖2

2 + ‖ev,k−1‖2
2

)
, ∀k ∈ IK−1. (3.47)

Moreover, there exist constants Cu
2 , C

u
3 ∈ R

+ that depend only on F as well as constants Cv
2 , C

v
3 ∈ R

+ that
depend only on G, such that

2τ

∣∣∣∣∣

k∑

l=1

〈Ru,l − F̃ l, δ
(1)
t eu,l〉

∣∣∣∣∣ ≤ 2τ
k∑

l=0

‖Ru,l‖2
2 + Cu

2 ‖eu,0‖2
2 + Cu

3 τ
k∑

l=0

‖δte
u,l‖2

2, ∀k ∈ IN−1, (3.48)

2τ

∣∣∣∣∣

k∑

l=1

〈Rv,l − G̃l, δ
(1)
t ev,l〉

∣∣∣∣∣ ≤ 2τ
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l=0

‖Rv,l‖2
2 + Cv

2 ‖ev,0‖2
2 + Cv

3 τ

k∑

l=0

‖δte
v,l‖2

2, ∀k ∈ IN−1. (3.49)

Proof. We will only establish (3.46) and (3.48), the other inequalities are proved in similar way. Let Cu
0

be the a bound of the second partial derivative of F with respect to u on R
2. As a consequence of the
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Mean Value Theorem and a straightforward integration, |F̃ k
j | ≤ C0(|eu,k+1

j | + |eu,k−1
j |) for each j ≤ J and

k ∈ IK−1. It follows that

|2〈Ru,k − F̃ k, δ
(1)
t εn〉| ≤ 2‖Ru,k‖2

2 + 2‖F̃ k‖2
2 + ‖δ(1)

t eu,k‖2
2

≤ 2‖Ru,k‖2
2 + 4Cu

0

(
‖eu,k+1‖2

2 + ‖eu,k−1‖2
2

)
+

1

2

(
‖δte

k‖2
2 + ‖δte

k−1‖2
2

)
,

(3.50)

whence the inequality (3.46) readily follows with Cu
1 = max{4Cu

0 ,
1
2 }. Using (3.50), we obtain now

2τ

∣∣∣∣∣
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〈Ru,l − F̃ l, δ
(1)
t eu,l〉

∣∣∣∣∣ ≤ 2τ
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‖Ru,l‖2
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1 τ

[
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‖eu,l‖2
2 +

k∑
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‖δte
u,l‖2

2

]

≤ 2τ
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‖Ru,l‖2
2 + 2Cu

1 τ

[
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(
2‖eu,0‖2

2 + 2Tτ
l−1∑

i=0

‖δte
u,i‖2

2

)
+

k∑

l=0

‖δte
u,l‖2

2

]

≤ 2τ

k∑

l=0

‖Ru,l‖2
2 + 4Cu

1 T‖eu,0‖2
2 + 2Cu

1 (2T 2 + 1)τ

k∑

l=0

‖δte
u,l‖2

2, ∀k ∈ IK−1.

(3.51)
The conclusion follows letting Cu

2 = 4Cu
1 T and Cu

3 = 2Cu
1 (2T 2 + 1).

Next, we will use the notation Φ = (φu, φv, ψu, ψv) and Φ̃ = (φũ, φṽ, ψũ, ψṽ) to represent two sets of
initial conditions for (3.6). In the following, the constants Cw

1 , Cw
2 and Cw

3 will be as in Lemma 3.4.3, for
each w = u, v.

Theorem 3.4.4 (Stability). Assume that F,G ∈ C2(R2) have partial derivatives of the second order with
respect to u and v, respectively, which are bounded in R

2. Let

1

2
duτ

2γ
(α1)
h + Cu

3 τ < τu,
1

2
dvτ

2γ
(α2)
h + Cv

3 τ < τv. (3.52)

Suppose that (u,v) and (ũ, ṽ) are solutions of (3.32) corresponding to Φ and Φ̃, respectively, and define
eu,k = uk − ũk and ev,k = vk − ṽk, for each k ∈ IK . Then there exist constants C4, C5 ∈ R

+ such that
∑

w=u,v

‖δte
w,k‖2

2 +
∑

i∈I2

µt

[
‖Λ(α1)

xi
eu,k‖2

2 + ‖Λ(α2)
xi

ev,k‖2
2

]
≤

C5

(
∑

w=u,v

[
‖δte

w,0‖2
2 + ‖ew,0‖2

2

]
+
∑

i∈I2

µt

[
‖Λ(α1)

xi
eu,0‖2

2 + ‖Λ(α2)
xi

ev,0‖2
2

])
eC4kτ , ∀k ∈ IK .

(3.53)

Proof. It is obvious that the sequence ((eu,k, ev,k))K
k=0 satisfies

τuδ
(2)
t e

u,k
j + δ

(1)
t e

u,k
j − F̃ k

j − duδ
(α1)
x e

u,k
j = 0, ∀(j, k) ∈ J × IK−1,

τvδ
(2)
t e

v,k
j + δ

(1)
t e

v,k
j − G̃k

j − dvδ
(α2)
x e

v,k
j = 0, ∀(j, k) ∈ J × IK−1.

such that





e
u,0
j = φu(xj) − φũ(xj), ∀j ∈ J,

e
v,0
j = φv(xj) − φṽ(xj), ∀j ∈ J,

e
u,1
j = ψu(xj) − ψũ(xj), ∀j ∈ J,

e
v,1
j = ψv(xj) − ψṽ(xj), ∀j ∈ J.

(3.54)

Here, we let F̃ k
j = δ

(1)
u,tF

k
j (uk

j ,v
k
j ) − δ

(1)
u,tF

k
j (ũk

j , ṽ
k
j ) and G̃k

j = δ
(1)
v,tG

k
j (uk

j ,v
k
j ) − δ

(1)
v,tG

k
j (ũk

j , ṽ
k
j ), for each

(j, k) ∈ J × IK−1. On the other hand, note that the following identity is readily established:

〈δ(2)
t ew,k, δ

(1)
t ew,k〉 =

1

2τ

(
‖δte

w,k‖2
2 − ‖δte

w,k−1‖2
2

)
, ∀k ∈ IK−1,∀w = u, v. (3.55)

Also, using the properties of square-root operators, we obtain that

〈−δ(ζ)
x ew,k, δ

(1)
t ew,k〉 =

1

2τ

2∑

i=1

[

(
µt‖Λ(ζ)

xi
ew,k‖2

2 − τ2

2
‖Λ(ζ)

xi
δte

w,k‖2
2

)

−
(
µt‖Λ(ζ)

xi
ew,k−1‖2

2 − τ2

2
‖Λ(ζ)

xi
δte

w,k−1‖2
2

)
],

(3.56)
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for each k ∈ IK , w = u, v and ζ ∈ (0, 1) ∪ (1, 2]. Let ηu
0 ∈ R

+ satisfy 1
2duτ

2γ
(α1)
h < ηu

0 < τu − Cu
3 τ , and

define the constants

ωu,k = (τu − Cu
3 − ηu

0 )‖δte
u,k‖2

2 + du

∑

i∈I2

µt‖Λ(α1)
xi

eu,k‖2
2, ∀k ∈ IK−1, (3.57)

ρu = τu‖δte
u,0‖2

2 + du

∑

i∈I2

µt‖Λ(α1)
xi

eu,0‖2
2 + Cu

2 ‖eu,0‖2
2. (3.58)

Let l ∈ IK , take the inner product of δ
(1)
t eu,k with both sides of the first difference equation of (3.54), and

substitute the identities above. Multiply then by 2τ , sum then over all k ∈ Il, use the inequality (3.48)
with Ru,k = 0 and the properties in Lemma 3.3.7, and simplify algebraically to obtain

ωl ≤ (τu − Cu
3 τ)‖δte

u,l‖2
2 + du

∑

i∈I2
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xi
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2
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2
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2
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3 τ)‖δte

u,0‖2
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2 + 2τ

∣∣∣∣∣
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k=1

〈F̃ k, δ
(1)
t eu,k〉

∣∣∣∣∣

≤ ρu + Cu
3 τ

l−1∑

k=0

‖δte
u,k‖2

2 ≤ ρu + Cu
4 τ

l−1∑

k=0

ωu,k, ∀l ∈ IK−1.

(3.59)

Here, we used Cu
4 = Cu

3 /(τu −Cu
3 τ −ηu

0 ) ∈ R
+. An application of Lemma 3.4.2 shows that ωu,k ≤ ρueCu

4
kτ

for each k ∈ IK . Let ηv
0 ∈ R

+ satisfy 1
2dvτ

2γ
(α2)
h < ηv

0 < τv − Cv
3 τ , and define the constants

ωv,k = (τv − Cv
3 τ − ηv

0)‖δte
v,k‖2

2 + dv

∑

i∈I2

µt‖Λ(α2)
xi

ev,k‖2
2, ∀k ∈ IK−1, (3.60)

ρv = τv‖δte
v,0‖2

2 + dv

∑

i∈I2

µt‖Λ(α2)
xi

ev,0‖2
2 + Cv

2 ‖ev,0‖2
2. (3.61)

In similar fashion, it is easy to check that there exists Cv
4 ∈ R

+ such that ωv,k ≤ ρveCv
4

kτ for each k ∈ IK .
Let C4 = Cu

4 ∨ Cv
4 and ζ = min{τu − Cu

3 τ − ηu
0 , τv − Cv

3 τ − ηv
0 , du, dv}. It follows that

ζ

(
‖δte

u,k‖2
2 + ‖δte

v,k‖2
2 +

∑

i∈I2

µt

[
‖Λ(α1)
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eu,k‖2

2 + ‖Λ(α2)
xi

ev,k‖2
2

])
≤ ωu,k + ωv,k ≤ (ρu + ρv)eC4kτ (3.62)

The conclusion of the theorem follows now letting C5 = ζ−1 max{τu, τv, du, dv, C
u
2 , C

v
2 }.

Theorem 3.3.9 established the existence of solutions of the method (3.32). We will prove the uniqueness
next.

Corollary 3.4.5 (Uniqueness of solutions). Suppose that F,G ∈ C2(R2) have bounded derivatives up to
second order in R

2, and let (3.52) be satisfied. Then (3.32) has a unique solution for any set of initial
data.

Proof. Suppose that (u,v) and (ũ, ṽ) are solutions of (3.32) corresponding to the same set of initial data
Φ. By hypothesis, (u0,v0) = (ũ0, ṽ0) and (u1,v1) = (ũ1, ṽ1), so let us assume that (uk,vk) = (ũk, ṽk)
for some k ∈ IK−1. The inequality (3.53) together with the fact that the identities

‖δte
w,0‖2 = ‖ew,0‖2 = µt‖Λ(α1)

xi
eu,0‖2 = ‖Λ(α2)

xi
ev,0‖2 = 0 (3.63)

hold for each w = u, v and i ∈ I2, and the inequality

‖δte
u,k‖2

2 + ‖δte
u,k‖2

2 ≤
∑

w=u,v

‖δte
w,k‖2

2 +
∑

i∈I2

µt

[
‖Λ(α1)

xi
eu,k‖2

2 + ‖Λ(α2)
xi

ev,k‖2
2

]
, (3.64)

yield that ‖δte
u,k‖2 = ‖δte

u,k‖2 = 0. As a consequence of the assumption on the solutions at the kth
temporal step, we obtain that (uk+1,vk+1) = (ũk+1, ṽk+1). The result follows now by induction.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Snapshots of the approximate solutions of the variable u of (3.4) versus (x, y) ∈ B = (0, 200)×
(0, 200) for α = α1 = α2 and α = 2 (top row), α = 1.5 (middle row) and α = 1 (bottom row). The
times t = 100 (left column) and t = 1000 (right column) were used in these simulations, together with the
parameter values a = 7.45, b = 2.5, c = 5, du = 1, dv = 20 and τu = τv = 1. Computationally, we used
the method (3.32) with the numerical constants h1 = h2 = 1 and τ = 0.01. The graphs were normalized
with respect to the absolute maximum of the solution at each time.
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(a) (b)

(c) (d)

Figure 3.2: Snapshots of the approximate solutions of the variable u of (3.4) versus (x, y) ∈ B = (0, 200)×
(0, 200) for α1 = α2 = 1.5. The times (a) t = 100, (b) t = 400, (c) t = 1000 and (d) t = 2500 were used
in these simulations, together with the parameter values a = 7.45, b = 0.5, c = 5, du = 1, dv = 20 and
τu = τv = 1. Computationally, we used the method (3.32) with the numerical constants h1 = h2 = 1 and
τ = 0.01. The graphs were normalized with respect to the absolute maximum of the solution at each time.

Finally, the next result summarizes the convergence properties of (3.32). Its proof is similar to that of
Theorem 3.4.4, for that reason we provide only a sketch of the proof.

Theorem 3.4.6 (Convergence). Suppose that F,G ∈ C2(R2) have bounded derivatives up to second order
in R

2, and assume that (3.52) holds. If u, v ∈ C5(Ω) are solutions of (3.6) corresponding to the initial data
Φ, then the method (3.32) converges to the exact solution with order O(τ2 + ‖h‖2

2).

Proof. Let (u,v) be the unique solution of (3.32), and let eu,k = uk − uk and ev,k = vk − vk, for each
k ∈ IK . Note that the sequence ((eu,k, ev,k))K

k=0 satisfies

τuδ
(2)
t e

u,k
j + δ

(1)
t e

u,k
j − F̃ k

j − duδ
(α1)
x e

u,k
j = R

u,k
j , ∀(j, k) ∈ J × IK−1,

τvδ
(2)
t e

v,k
j + δ

(1)
t e

v,k
j − G̃k

j − dvδ
(α2)
x e

v,k
j = R

u,k
j , ∀(j, k) ∈ J × IK−1.

such that: e
u,0
j = e

v,0
j = e

u,1
j = e

v,1
j = 0, ∀j ∈ J.

(3.65)

Here, we let F̃ k
j = δ

(1)
u,tF

k
j (uk

j , v
k
j ) − δ

(1)
u,tF

k
j (uk

j ,v
k
j ) and G̃k

j = δ
(1)
v,tG

k
j (uk

j , v
k
j ) − δ

(1)
v,tG

k
j (uk

j ,v
k
j ), for each

(j, k) ∈ J × IK−1. The numbers R
u,k
j and R

v,k
j are the local truncation errors associated to the first

and the second difference equations of (3.65), respectively. By Theorem 3.4.1, it follows that there exists

C ∈ R
+ such that |Ru,k

j |, |Rv,k
j | ≤ C(τ2 + ‖h‖2

2), for each (j, k) ∈ J × IK . It is easy to check that (3.55)

and (3.56) are also satisfied in the present case. Let ηu
0 , η

v
0 ∈ R

+ be as in the proof of Theorem 3.4.4, and
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(a) (b)

(c) (d)

Figure 3.3: Snapshots of the approximate solutions of the variable u of (3.4) versus (x, y) ∈ B = (0, 200)×
(0, 200) for α1 = α2 = 1.5. The times (a) t = 150, (b) t = 450, (c) t = 1000 and (d) t = 2000 were used
in these simulations, together with the parameter values a = 7.45, b = 1.5, c = 5, du = 1, dv = 20 and
τu = τv = 1. Computationally, we used the method (3.32) with the numerical constants h1 = h2 = 1 and
τ = 0.01. The graphs were normalized with respect to the absolute maximum of the solution at each time.

let Cw
4 = Cw

3 /(τw − Cw
3 τ − ηw

0 ) for w = u, v. Let ωu,k and ωv,k be also as in the proof of Theorem 3.4.4,
and define the constants

ρu,k = τu‖δte
u,0‖2

2 + du
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xi

eu,0‖2
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‖Ru,l‖2
2, ∀k ∈ IK , (3.66)

ρv,k = τv‖δte
v,0‖2
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2 + Cv
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‖Rv,l‖2
2, ∀k ∈ IK . (3.67)

Note that we can use the initial conditions of (3.65) to simplify these last two expressions. Proceeding now
as in the proof of Theorem 3.4.4, we obtain that ωu,k ≤ ρu,keCu

4
kτ and ωv,k ≤ ρv,keCv

4
kτ for each k ∈ IK .

As a consequence, there exists C5 ∈ R
+ such that
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eu,k‖2

2 + ‖Λ(α2)
xi

ev,k‖2
2

]

≤ C5(ρu + ρv)eC4kτ

≤ τC5e
C4T

k∑

l=0

[
‖Ru,l‖2

2 + ‖Rv,l‖2
2

]
≤ C6(τ2 + ‖h‖2

2)2, ∀k ∈ IK−1,

(3.68)
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(a) (b)

(c) (d)

Figure 3.4: Snapshots of the approximate solutions of the variable u of (3.4) versus (x, y) ∈ B = (0, 200)×
(0, 200) for α1 = α2 = 1.5. The times (a) t = 50, (b) t = 150, (c) t = 450 and (d) t = 1000 were used
in these simulations, together with the parameter values a = 7.45, b = 2.5, c = 5, du = 1, dv = 20 and
τu = τv = 3.5. Computationally, we used the method (3.32) with the numerical constants h1 = h2 = 1
and τ = 0.01. The graphs were normalized with respect to the absolute maximum of the solution at each
time.

where C6 = 2C5C
2TeC4T . It is easy to see now that

‖ew,k‖2
2 ≤ 2‖ew,0‖2

2 + 2Tτ
k−1∑

l=0

‖δte
w,l‖2

2 ≤ C7(τ2 + ‖h‖2
2)2, ∀k ∈ IK ,∀w = u, v, (3.69)

for C7 = 2T 2C6. We conclude that there exists C0 ∈ R such that ‖ew,k‖2 ≤ C0(τ2 +‖h‖2
2) for each k ∈ IK .

The conclusion of the theorem readily follows from this fact.

3.5 Numerical simulations

The first part of the present section is devoted to validate qualitatively the numerical method (3.32).
To that end, we will consider the continuous model (3.4) defined on the set B = (0, 200) × (0, 200).
Computationally, we let h1 = h2 = 1 and τ = 0.01. The simulations were carried using an implementation
of our method in c©Matlab 8.5.0.197613 (R2015a) on a c©Sony Vaio PCG-5L1P laptop computer with Linux
Mint 18.03 Cinnamon (Sylvia) as operating system. In terms of computational times, we are aware that
better results may be obtained with more modern equipment and more modest Linux/Unix distributions.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Snapshots of the approximate solutions of the variable u of (3.4) versus (x, y) ∈ B = (0, 200)×
(0, 200) for α = α1 = α2 and α = 0.75 (top row), α = 0.50 (middle row) and α = 0.25 (bottom row). The
times t = 100 (left column) and t = 1000 (right column) were used in these simulations, together with the
parameter values a = 7.45, b = 2.5, c = 5, du = 1, dv = 20 and τu = τv = 3.5. Computationally, we used
the method (3.32) with the numerical constants h1 = h2 = 1 and τ = 0.01. The graphs were normalized
with respect to the absolute maximum of the solution at each time.

59



(a) (b)

(c) (d)

Figure 3.6: Snapshots of the approximate solutions of the variable u of (3.4) versus (x, y) ∈ B = (0, 200)×
(0, 200) for α1 = α2 = 0.75. The times (a) t = 50, (b) t = 100, (c) t = 400 and (d) t = 1000 were used
in these simulations, together with the parameter values a = 7.45, b = 1.5, c = 5, du = 1, dv = 20 and
τu = τv = 1. Computationally, we used the method (3.32) with the numerical constants h1 = h2 = 1 and
τ = 0.01. The graphs were normalized with respect to the absolute maximum of the solution at each time.

In the following, we let τu = τv = τ , du = 1, dv = d and α = α1 = α2. Moreover, we use parameter values
satisfying (3.5), and let x = x1 and y = x2.

Example 3.5.1. Consider the system (3.4) with the parameter values a = 7.45, b = 2.5, c = 5, d = 0.25
and τ = 1. As initial profiles, let φu and φv be samples of a uniformly distributed random variable on
the interval [−0.03, 0.03], and use zero initial velocities. Figure 3.1 shows snapshots of the approximate
solutions of the variable u of (3.4) for various values of α and different times. We used α = 2 (top row),
α = 1.5 (middle row) and α = 1 (bottom row), together with the times t = 100 (left column) and t = 1000
(right column). These simulations establish that the wave number of Turing patters increases as the order
of differentiation α increases, in agreement with the literature [89].

Example 3.5.2. Let b = 0.5, and consider all the other parameter values as in Example 3.5.1. Figure 3.2
shows snapshots of the approximate solutions of the variable u of (3.4) versus x and y for α = 1.5. The
times (a) t = 150, (b) t = 450, (c) t = 1000 and (d) t = 2000 were used in these simulations, and the
graphs have been normalized with respect to the absolute maximum of the solution at each time. In this
case, the solution firstly breaks up into hexagons due to the small perturbations at the initial time. The
emergent hexagons are not stable, and they are replaced gradually by stripes. The stripes prevail over
the whole domain, and the qualitative dynamics of the system does not undergo any further substantial
changes. This is in agreement with the analytical results and with the parabolic scenario.

Example 3.5.3. Fix now b = 1.5, and consider the same parameter values as in Example 3.5.2. Under these
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circumstances, Figure 3.3 shows snapshots of the approximate solutions of the variable u of (3.4) versus
x and y. We employed α = 1.5, and the times (a) t = 150, (b) t = 450, (c) t = 1000 and (d) t = 2000.
Notice that the results show the coexistence of strips and hexagons at different times. Ultimately, both
the hexagonal and the striped patterns coexist.

Example 3.5.4. Fix b = 2.5 and τ = 3, while the remaining parameters are as in Example 3.5.2. Figure
3.4 shows snapshots of the approximate solutions of the variable u of (3.4) versus x and y for α = 1.5,
at the times (a) t = 150, (b) t = 450, (c) t = 1000 and (d) t = 2000. In our simulations, we noted the
presence of stable hexagonal patterns at different times. Moreover, the pattern dynamics converges to
stable hexagonal patterns.

Our last example shows evidence supporting the existence of Turing patters in subdiffusive forms of
(3.4).

Example 3.5.5. Use the same experimental setting of Example 3.5.1. Figure 3.5 shows snapshots of the
approximate solutions of the variable u of (3.4) for various values of α and different times. We used
α = 0.75 (top row), α = 0.50 (middle row) and α = 0.25 (bottom row), together with the times t = 100
(left column) and t = 1000 (right column). These results show that Turing patters are also present in the
system (3.4) when α ∈ (0, 1). Finally, Figure 3.6 shows the development of patterns in the system (3.4)
when α = 0.75. This behavior is similar to that obtained when α ∈ (1, 2].
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Conclusions

Chapter 2 In this chapter, we considered a damped fractional extension of the classical nonlinear wave
equation. The model under investigation is defined on a closed and bounded interval of the real line, and
it considers the presence of a general nonlinear potential function that generalizes many particular models
from mathematical physics, including the well-known sine-Gordon and Klein–Gordon equations from rel-
ativistic quantum mechanics. Moreover, we considered a space-fractional extension of the wave equation
using Riesz fractional derivatives of orders in (1, 2). We show here that the model under investigation pos-
sesses energy functionals which are preserved under suitable assumptions on the boundary conditions and
the parameters of the model. The exact resolution of the problem under study is a difficult mathematical
task, so the design of numerical techniques that are capable of preserving discrete energy functions is a
problem that merits further investigation.

Motivated by the analytical difficulties to provide explicit solutions of our fractional wave equation, we
designed a finite-difference scheme to approximate its solutions. The numerical method is based on the
use of fractional centered differences, which provide second-order consistent approximations of fractional-
order derivatives. Using operator theory, we show that the discrete fractional Laplacian is a positive and
self-adjoint operator, whence the existence of a square root readily follows. This fact is employed then
to propose a discrete energy functional of the numerical method which, under suitable conditions on the
boundary conditions and the model parameters, is preserved at each discrete time. Additionally, the
method is a second-order consistent discretization of the problem under investigation, and the simulations
provided in this work show that the energy is conserved throughout time when the assumptions of the
relevant theorems on energy preservation are satisfied. Finally, we analyze the case of an unbounded
domain, and we show that the same properties of conservation of energy hold in the unbounded case.

Chapter 3 In this chapter, we designed a numerical method to approximate the solutions of a two-
dimensional hyperbolic system that describes the interaction between an activator and an inhibitor in
chemical reactions. The system is nonlinear, and it consists of two coupled partial differential equations
with polynomial reaction terms. We considered the presence of two-dimensional superdiffusive terms
consisting of fractional operators of the Riesz type, with differentiation orders in (0, 1) ∪ (1, 2]. Initial
conditions were imposed on a closed and bounded rectangle of R

2, and a finite-difference methodology
based on the use of fractional centered differences was designed to approximate the solutions of the problem.
We proved analytically the existence and the uniqueness of the solutions of the numerical method, and
we established thoroughly the most interesting numerical properties of the method, namely, its quadratic
consistency, its stability and its quadratic convergence. Some numerical simulations obtained through our
method show the appearance of Turing patterns and wave instabilities, in agreement with some reports
on superdiffusive models found in the literature. Moreover, the numerical simulations shows evidence
supporting the existence of Turing patters also in subdiffusive forms of the physical model.
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