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Al Doctor Manuel Ramı́rez Aranda y al M. en C. Fausto Arturo Contreras Rosales por su disposición
y tiempo para la revisión de este trabajo.

A mis padres por su apoyo y por siempre ser mi mejor ejemplo a seguir.

A mi pareja Jazmı́n, por darme siempre apoyo, compañ́ıa y motivación.
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Resumen

En este trabajo estudiamos el comportamiento asintótico de las soluciones de una ecuación diferencial
parcial no homogénea semilineal. Comenzamos probando la existencia de una solución suave para nues-
tra ecuación de interés haciendo uso del teorema del punto fijo de Banach. También demostramos que
nuestra solución es acotada. A continuación, establecemos la regularidad temporal de nuestra solución
utilizando el teorema del valor medio, la desigualdad de Gronwall y dando expĺıcitamente la primera
derivada. Para finalizar el caṕıtulo 2, demostramos que nuestra solución es, de hecho, una solución
clásica, probamos que nuestra solución es positiva y, además, demostramos que nuestra solución local
es una solución global. En el caṕıtulo 3 determinamos las condiciones bajo las cuales nuestra solución
es integrable. Finalmente, estudiamos el comportamiento asintótico de nuestra solución y discutimos
brevemente las consecuencias y la importancia de nuestros resultados finales.
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Abstract

In this work we study the asymptotic behavior of the solutions of a semilinear non-homogeneous
partial differential equation. We begin by proving the existence of a mild solution for our equation of
interest making use of Banach’s fixed point theorem. We also prove our solution is bounded. Next, we
establish the temporal regularity of our solution using the mean value theorem, Gronwall’s inequality
and giving explicitly the first derivative. To finish chapter 2, we prove that our mild solution is in fact a
classical solution, we prove that our solution is positive and moreover, we prove that our local solution
is a global solution. In chapter 3 we determine conditions under which our solution is integrable.
Finally, we study the asymptotic behavior of our solution and we briefly discuss the consequences and
importance of our final results.
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Introduction

Background

In recent years there has been an increase in interest in the study of partial differential equations that
involve the fractional Laplacian. One reason for this is the fact that unlike the classical operators, the
fractional Laplacian is a non-local operator. As a result, new analytical techniques are developed to
be able to study fractional partial differential equations. Moreover, the fractional Laplacian models
a great number of phenomena in molecular biology, mathematical finance, statistical physics and
hydrodynamics, for example.

The existence of global solutions of (1) has been proved in some particular cases. For example, in
the classical scenario (α = 2), a stochastic method was used in [10] to estimate the solutions of (1)
when g = ϕ = 0. Also, the existence of a unique bounded solution of an elliptic equation similar to (2)
was proved when g = 0. In that case, the author uses a Dirichlet problem to establish the existence.
Similar results were obtained in [12, 19] for a more general source term f . It is worth mentioning that
the number of reports for the classical case is very large. On the other hand, the number of works
dealing with positive solutions of (1) when α ∈ (0, 2) has increased in recent years, though most of
them study the existence of positive radial solutions (see [7, 16] as examples).

Other existing works on parabolic semilinear fractional partial differential equations are scarce. For
example, in [13] the authors study a model similar to (1) for a fractional Laplacian with α ∈ (0, 2].
The existence of solutions is established but no asymptotic behavior is studied. Some finite-element
methods were introduced in [15] to approximate the solutions of an extended form of a model similar
ours. Meanwhile, the convergence of solutions of a fractional heat equation is investigated in [21]
considering α ∈ (0, 1), and a more general fractional heat equation is studied analytically in [11].
However, from our point of view, the study reported in this manuscript has not been performed
previously in the literature.

The purpose of this thesis is to study the temporal monotonicity of the positive solutions of the
parabolic semilinear partial differential equation of interest. We additionally use our results to establish
the existence of solutions for the elliptic equation. The proofs regarding the existence of solutions for
our model of interest and regarding the temporal regularity of our solutions are fairly standard in
literature. The novelty of this work commences in the proof of the positivity of our solutions. When
we try to apply the technical approach to our particular model we are faced with various technical

4



difficulties. In this case the novelty lies in the use of Gronwall’s inequality to prove the uniform
integrability of the solution. This result was then employed to prove that the local minimum is global.
The rest of the proof follows as in the classic case. In the proof that the elliptic equation has a solution
for the case α = 2, d ∈ {1, 2}, to the best of our knowledge, our approach is entirely new. The idea
consists of using the asymptotic properties of the solutions of an initial value problem which we will
mention in following chapters. This leads to proving that the solution of our elliptic equation is in fact
in the domain of the fractional Laplacian. Finally, we show that integrability depends entirely on our
source term f .

The results studied in this work can be used in several branches. One example can be found in
probability theory. Firstly, it is worth recalling that there are some Markov process in probability
theory which are characterized through their Laplace functionals [5, 17]. Such processes are measure-
valued and, intuitively, they represent the continuous-state of clouds of certain branching phenomenon.
The study of their path properties is based mainly on the Laplace functionals and, consequently, on
the properties of the solutions of equations like that studied in the present paper. For example,
when the diffusion is a stable process and the branching mechanism f is x1+β , then we obtain the
(α, d, β)-superprocess.

There is an extensive literature on path behavior properties of superprocesses. Using mild solutions
of the equation ∂u(t, x)/∂t = ∆αu(t, x)− (u(t, x))1+β , one of the authors studied the self-intersection
local time of (α, d, β)-superprocess [17].

Aims and scope

This thesis is sectioned as follows:

• Chapter 1 begins by providing various important inequalities which will be used throughout this
work, such as Young’s inequality for convolutions and Gronwall’s inequality. Furthermore, we
list important results and theorems which are of great importance throughout this work. Next,
we proceed to provide a definition for semigroups and we state the definition of its infinitesimal
generator. Additionally, we list some properties of semigroups and generators, and we finish the
section stating important results on semigroups. In the next section we introduce the concept of
α-stable densities and list a few results and properties of these densities. We close this chapter
by discussing the definition of the fractional Laplacian, a key concept in this work.

• Chapter 2 starts proving the existence of a mild solution for our model of interest. To achieve
this goal we prove the temporal continuity of an auxiliary function, we prove this function is a
contraction and finally we apply Banach’s contraction principle to obtain a local mild solution
for our model of interest. In the following section we seek to prove the temporal regularity of our
solution. To prove this we give explicitly the first derivative of our solution and prove that it is
in fact the function we seek employing diverse inequalities, Gronwall’s inequality and the mean
value theorem. Afterwards, we give a brief demonstration proving that the mild solution we
found in the previous section is in fact a classical solution. In the third section of this chapter we
start by briefly discussing the uniform continuity of our solution. We then proceed to prove the
positivity of our solution by assuming our solution is not positive and reaching a contradiction,



thus our solution is non-negative. To end this chapter we use the positivity of our solution along
with a few other results to prove that the maximum time of existence of our solution is not finite.

• In Chapter 3, we commence by using the time-monotonicity of our solution to obtain a solution
for our semilinear elliptic equation. We consider the case in which d > α and the case α = 2,
d ∈ {1, 2}. After proving this result we define a new function and we use this function to
determine conditions that guarantee the integrability of our solutions.

• This thesis closes with a section of conclusions for each chapter and a list of relevant references.

The Problem

In this work, we study the temporal monotonicity of the positive solutions of the parabolic semilinear
partial differential equation

∂u

∂t
(t, x) = ∆αu(t, x)− g(x)f(u(t, x)) + ϕ(x), (t, x) ∈ (0,∞)× Rd,

u(0, x) = ψ(x), x ∈ Rd,
(1)

where ∆α, is the fractional Laplacian with α ∈ (0, 2], the initial datum ψ is a nonnegative function
in the domain of ∆α, the source term f is a convex function with f(0) = 0, and both g and ϕ are
nonnegative continuous functions. The purpose of the present work is to prove that (1) has a unique
positive and bounded global solution u(t, x). Moreover, we will see that u is monotone in time, in
which case it makes sense to define u∞(x) = limt→∞ u(t, x). As a result, we obtain that u∞ is a
solution of the semilinear elliptic equation

∆αv(x) = g(x)f(v(x))− ϕ(x), x ∈ Rd, (2)

with boundary condition lim||x||→∞ v(x) = 0.
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1. Preliminaries

In this chapter, we will state some important results that will be used throughout this work. We will
also discuss basic properties of semigroups and the α stable density.

1.1 Elementary results

Theorem 1.1 (Leibniz rule). Let f(t, x), a(t), b(t) be differentiable functions in t0 ≤ t ≤ t1 with
a, b ∈ x0 ≤ x ≤ x1. Thus

d

dt

∫ b(t)

a(t)
f(t, x)dx =

∫ b(t)

a(t)

∂f(t, x)
∂t

dx+ f(t, b)db
dt

(t)− f(t, a)da
dt

(t).

The formula has the following interpretation: the first term on the right yields the change in the
integral, due to the fact that the function is changing with respect to time. The second term takes
into consideration the area gained by moving the upper limit of integration in the direction of the
positive axis, and the third term takes into consideration the area lost from moving the lower limit of
integration. The proof can be found in [8].

We will list now various inequalities and results which will be used throughout this work. Most of
these results along with their respective proofs can be found in [1].

Theorem 1.2 (Bellman-Gronwall inequality). Suppose ϕ ∈ L1[a, b] and that ϕ satisfies

ϕ(t) ≤ f(t) + β

∫ t

a

ϕ(s)ds, (1.1)

∀t ∈ [a, b], and β being a positive constant. Thus

ϕ(t) ≤ f(t) + β

∫ t

a

f(s) exp(β(t− s))ds. (1.2)

Moreover, when f(t) is a constant α, we have

ϕ(t) ≤ α exp(β(t− s)).
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Theorem 1.3 (Minkowski’s inequality). Let f ∈ Lp(Rd), g ∈ Lp(Rd), for 1 ≤ p ≤ ∞. Thus

‖f + g‖p ≤ ‖f‖p + ‖g‖p . (1.3)

Theorem 1.4 (Young’s convolution inequality). Assume that f ∈ Lp(Rd), g ∈ Lq(Rd) and suppose
that 1

p + 1
q = 1

r + 1, for 1 ≤ p, q, r ≤ ∞. Thus

‖f ∗ g‖p ≤ ‖f‖p ‖g‖p , (1.4)

with the convolution of two functions defined as

(f ∗ g)(x) =
∫
Rd
f(x− y)g(y)dy. (1.5)

Theorem 1.5 (Dominated convergence theorem). Let fn be a sequence of measurable functions in the
measure space (X,Σ, µ) such that fn → f pointwise. Suppose that there exists g integrable such that
|fn| ≤ g for all n. Then f is integrable and

lim
n→∞

∫
X

fndµ =
∫
X

fdµ. (1.6)

Theorem 1.6 (Mean value theorem). Suppose that the function f is continuous on a closed interval
I = [a, b] and that the derivative f ′ exists at every point of (a, b). Then there exists c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a). (1.7)

Theorem 1.7 (Maximum principal). Let Ω be a bounded domain. Suppose u ∈ C2
1 (Ω)∩C(Ω), that L

is strictly elliptic, c ≤ 0 and Lu ≥ 0 in Ω. Then either u ≡ supΩ u or u does not attain a nonnegative
maximum in Ω.

Lemma 1.8 (Fatou’s lemma). Let (X,Σ, µ) be a measure space and consider fn : X → [0,∞] a se-
quence of nonnegative measurable functions. Then lim infn→∞ fn is measurable and∫

X

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
X

fndµ. (1.8)

Theorem 1.9 (L’Hopital’s rule). Let f, g be differentiable functions on an open interval I except in a
point c. Suppose that the following conditions are satisfied:

(a) limx→c f(x) = limx→c g(x) = 0 or limx→c f(x) = limx→c g(x) =∞,

(b) g′(x) 6= 0 for all x ∈ I \ {c} , and

(c) limx→c
f ′(x)
g′(x) exists.

Then we have
lim
x→c

f(x)
g(x) = lim

x→c

f ′(x)
g′(x) . (1.9)
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1.2 Subfunctions and superfunctions

Theorem 1.10. Consider the boundary value problem y′′ = f(x, y), y(x1) = y1, y(x2) = y2, and let
I1 = R+ and I2 = {y : |y| <∞}. If f(x, y) satisfies

(a) f(x, y) is continuous on S = {(x, y) : x ∈ I1, y ∈ I2} and

(b) f(x, y) is nondecreasing in y for fixed x ∈ I1

on S, then for any x1, x2 ∈ I, x1 6= x2, and any y1 and y2, the boundary value problem y′′ = f(x.y),
y(x1) = y1, y(x2) = y2, has a unique solution of class C(2) on [x1, x2].

The proof of this theorem is standard and motivates the following:

Definition 1.11. A real valued function S defined on an interval I0 ⊂ I is a superfunction with
respect to the solutions of (1.10) on I0 if y(x) ≤ S(x) on any subinterval [x1, x2] ⊂ I and any solution
y(x) of (1.10) on [x1, x2] with y(x1) ≤ S(x1) and y(x2) ≤ S(x2). The definition of subfunctions is
given similarly in terms of inequalities in the opposite direction [2].

The following are some properties regarding subfunctions and superfunctions.

(i) If s(x) is a subfunction on I0 ⊂ I, then s(x) is continuous on the interior of I0.

(ii) If {sα : α ∈ A} is any collection of subfunctions on I0 ⊂ I which is bounded above at each point
of I0, then s defined by

s(x) = sup{sα(x) : α ∈ A} (1.10)

is a subfunction on I0.

(iii) If s is continuous on I0 ⊂ I and of class C(2) on the interior of I0, then s is a subfunction on I0

if and only if f(x, s) ≤ s′′ on the interior of I0. If s′′ > f(x, s) on [x1, x2] and y(x) is a solution
of (1.10) on [x1, x2] with s(x1) = y(x1), s(x2) = y(x2), then s(x) < y(x) for x ∈ (x1, x2).

(iv) Let s1 be a subfunction on I0 ⊂ I and s2 a subfunction on [x1, x2] ⊂ Ī0. Assume also that
s2(xi) ≤ s1(xi) at points xi, i = 1, 2, contained in the interior of I0. Then s defined on I0 by
s(x) = s1(x) for x /∈ [x1, x2] and s(x) = max[s1(x), s2(x)] for x ∈ [x1, x2] is a subfunction on I0.

1.3 Existence

Lemma 1.12. Let y0(x) be the solution of the boundary value problem y′′ = f(x, y), y(0) = −α,
y(1) = 0. Then the function Ψ0(x) defined by{

Ψ0(x) = y0(x), 0 ≤ x ≤ 1,
Ψ0(x) = 0, x ≥ 1,

(1.11)

is a continuous superfunction on [0,+∞).

The proof of this lemma follows from properties of superfunctions given in [2]. We will also make
use of the following definition.

9



Definition 1.13. Let {ϕ} denote the collection of every continuous subfunction on [0,+∞) such that
ϕ(x) ≤ Ψ0(x) on [0,+∞). We define the function ω as ω(x) = sup{ϕ(x) : ϕ ∈ {ϕ}}.

We note that our function ω is bounded and continuous on [0,+∞) and, moreover, is both a
subfunction and a superfunction on [0,+∞) (see [2]). These results will be used in the proof of the
following result

Theorem 1.14. Consider the following boundary problem:
y′′ = f(x, y),
y(0) = −α, α > 0,
y′(x) ≥ 0, y(x) ≤ 0,

(1.12)

If f(x, y) satisfies

(a) f(x, y) is continuous on S = {(x, y) : x ∈ I1, y ∈ I2} where I1 and I2 are the intervals associated
with the boundary value problem,

(b) f(x, y) is nondecreasing in y for fixed x ∈ I1, and

(c) f(x, 0) ≡ 0 in I1.

on S1 = {(x, y) : x ≥ 0, y ≤ 0} then our boundary problem has a unique solution.

Proof. We shall now show that the function ω(x) is the unique solution of (1.12). Using Theorem 2.1
from [2], it follows that for any b > 0 the boundary value problem y′′ = f(x, y), y(0) = −α, y(b) = ω(b)
has a C(2) solution yb on [0, b]. From a previous lemma, we know that ω is both a subfunction and a
superfunction on [0, b], this implies that yb(x) = ω(x) on [0, b]. Hence, ω is a solution of y′′ = f(x, y)
on [0. +∞) with ω(0) = −α, and ω(x) ≤ Ψ0(x) ≤ 0 on [0,+∞). It follows that if ω′(x0) < 0 for
some x0 > 0, then limx→+∞ ω(x) = −∞, which is a contradiction due to the fact that ω is bounded.
Thus we conclude ω′(x) ≥ 0 on [0. +∞) and additionally, ω is a solution of (1.12). To prove the
uniqueness of our solution, we will begin by assuming there exists another distinct solution u(x) of the
equation (1.12). Due to the uniqueness of the solution for the the boundary problem y′′ = f(x, y) on
finite intervals, there exists x0 ≥ 0 such that u(x) = ω(x) on [0, x0] and u(x) > ω(x) for x > x0. This
implies that u′′(x) − ω′′(x) ≥ 0 for x ≥ x0. As a consequence u(x) − ω(x) → +∞ as x → +∞ which
is impossible since u and ω are both bounded. Hence, ω is the unique solution of (1.12).

Corollary 1.15. Let h : [0,∞) → R be a continuous, non-decreasing function. The initial value
problem {

y′′(r) = h(y(r)), r > 0,
y(0) = 1,

(1.13)

subject to
y(r) > 0, y′(r) < 0, r > 0, (1.14)

has a unique solution χ that satisfies limr→∞ χ(r) = 0 and limr→∞ χ′(r) = 0.

Proof. The proof of this corollary proceeds similarly. Since our function h : [0,∞)→ R is a continuous
non - decreasing function, we can use (1.10). As a result we have that the boundary problem y′′(r) =
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h(y(r)), y(0) = 1, y(1) = 0 has a unique solution y0(r). Taking this solution we can define the following
function Ψ0(r) as {

Ψ0(x) = y0(x), 0 ≤ r ≤ 1,
Ψ0(x) = 0, r ≥ 1,

(1.15)

In this case, Ψ0(r) is a continuous subfunction on [0,+∞).
Let {ϕ} denote the collection of every continuous superfunction on [0,+∞) such that ϕ(r) ≥ Ψ0(r)

on [0,+∞). We define the function χ as χ(r) = inf{ϕ(r) : ϕ ∈ {ϕ}}. As in our previous proof, our
function χ is continuous on [0,+∞) and is both a superfunction and subfunction. Using (1.10), for
any b > 0 the boundary problem y′′(r) = h(y(r)), y(0) = 1, y(b) = χ(b) has a C(2) solution yb on [0, b].
Arguing as in (1.14) we see that χ is a solution of (1.15).

1.4 Semigroups

A semigroup is a family of bounded linear operators {S(t)}t≥0 on a Banach space L that satisfy:
(i) S(0) = I.
(ii) S(t+ s) = S(t)S(s), t, s ≥ 0.
We say a semigroup S(t) is strongly continuous on L if limt→0 S(t)f = f for all f ∈ L. We say

S(t) is a contraction semigroup if ‖S(t)‖ ≤ 1 for all t ≥ 0. We will also define a couple of concepts
regarding semigroups (see [6]):

(a) Suppose S(t) is a strongly continuous semigroup on L that satisfies ‖S(t)‖ ≤M for some M ≥ 1.
Then we can define the norm ‖·‖ on L by

‖f‖ = sup
t≥0
‖S(t)f‖ . (1.16)

(b) We define A the infinitesimal generator of a semigroup S(t) on L as the linear operator defined
by:

Af = lim
t→0

1
t
(S(t)f − f). (1.17)

(c) The domain of A, D(A) is the space of all f ∈ L for which the previous limit exists.

(d) A linear operator A on L is a linear mapping whose domain D(A) is a subspace of L and whose
range resides in L. The graph of A is defined as

B(A) = {(f,Af) : f ∈ D(A)} ⊂ L× L. (1.18)

A is said to be closed if B(A) is a closed subspace of L× L.

The infinitesimal generator of a semigroup will be employed a couple of times throughout this work.
To further be able to work with infinitesimal generators we will give a few results regarding generators.

Proposition 1.16. Let S(t) be a strongly continuous semigroup on L and let A be the corresponding
infinitesimal generator. Then we have the following results:
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(a) Suppose f ∈ L and t ≥ 0. Then we have that
∫ t

0
S(s)fds ∈ D(A) and

S(t)f − f = A

∫ t

0
S(s)fds, (1.19)

(b) If f ∈ D(A) and t ≥ 0, then we have S(t)f ∈ D(A) and moreover

d

dt
S(t)f = AS(t)f = S(t)Af. (1.20)

As a consequence of this proposition we have the following result

Corollary 1.17. Suppose that S(t) is a strongly continuous semigroup on L and that A is the generator
of S(t). Thus we have D(A) is dense in L and A is closed.

Throughout this work St will represent the semigroup defined as

(Sth)(x) =
∫
Rd
ρα(t, x− y)h(y)dy (1.21)

where h ∈ B(Rd) and ρα is the alpha - stable density defined as the fundamental solution of the
Cauchy equation ∂

∂tu(t) = ∆αu(t). Some additional properties of our semigroup used in this work are
the following.

Proposition 1.18. Let ψ ∈ L∞(Rd) and φ ∈ L1(Rd).

(i) For each t > 0, it follows that ‖Stψ‖∞ ≤ ‖ψ‖∞ and ‖Stφ‖1 ≤ ‖φ‖1.

(ii) limt→∞ td/α(Stφ)(x) = p1(0)‖φ‖1 uniformly in x ∈ Rd. In particular, limt→∞(Stφ)(x) = 0
uniformly in x ∈ Rd.

(iii) lim sup‖x‖→∞ |φ(x)| = 0. In particular, lim sup‖x‖→∞ |(Stφ)(x)| = 0 uniformly in t > 0.

(iv) If d > α then

lim sup
‖x‖→∞

lim sup
t→∞

∫ t

0
(Ssφ)(x)ds = 0. (1.22)

Proof. Property (i) readily follows from the definition of the norm (see [9]). Meanwhile, property (ii)
is a consequence of the scale property of α-stable densities and the dominated convergence theorem
(here we use the unimodal property of α-stable densities).

(iii) If lim sup‖x‖→∞ |φ(x)| = l > 0, there is M > 0 sufficiently large so that inf{|φ(x)| : ‖x‖ ≥M} >
l/2. As a consequence,

‖φ‖1 ≥
∫
‖x‖≥M

|φ(x)|dx ≥
∫
‖x‖≥M

l

2dx =∞. (1.23)

The second assertion of (iii) readily follows now from property (i).

12



(iv) Let ε > 0, and take M > 0 such that M1−d/α((d/α) − 1)−1 < ε/2. The scale and unimodal
properties of α-stable densities imply

lim sup
t→∞

∫ t

0
(Ssφ)(x)ds ≤

∫ M

0
(Ssφ)(x)ds+ lim sup

t→∞

∫ t

M

s−d/αp1(0)‖φ‖1ds

≤
∫ M

0
(Ssφ)(x)ds+ p1(0)‖φ‖1

ε

2 , for all x ∈ Rd.
(1.24)

The digression (iii) and the dominated convergence theorem yield

lim sup
‖x‖→∞

lim sup
t→∞

∫ t

0
Ssφ(x)ds ≤ p1(0)‖φ‖1

ε

2 . (1.25)

Finally, we reach the conclusion when we let ε→ 0.

1.5 The α-stable density

We define pα(t, ·) as real-valued functions defined on Rd, with Fourier transforms given by∫
Rd
ez·xipα(t, x)dx = e−t‖z‖

α

, for all t > 0, z ∈ Rd. (1.26)

With · and ‖ · ‖ defined as the inner product and the Euclidean norm in Rd, respectively. α-stable
densities satisfy the following useful properties:

Proposition 1.19. Let pα(t, ·) be any α-stable density.

(i) For each t > 0, ∫
Rd
pα(t, y)dy = 1, (1.27)

and pα(t, x) > 0, for all x ∈ Rd (density property).

(ii) For each t, s > 0 and x ∈ Rd, pα(ts, x) = t−d/αpα(s, t−1/αx) (scale property). In particular, it
follows that pα(t, x) ≤ t−d/αpα(1, 0) (unimodal property).

Proposition 1.20. Let pα(t, ·) be any α-stable density. Thus it stands

pα(t, x) =
∫ ∞

0
fα(t, λ)p2(λ, x)dλ, (1.28)

where p2 is the Gaussian density. This is known as the subordination formula.

Lemma 1.21. The function (t, x) 7→ pα(t, x) is in C∞((0,∞)× Rd).

Proposition 1.22. For each t > 0,

lim
x→0

∫ t

0
‖pα(s, x+ ·)− pα(s, ·)‖1ds = 0. (1.29)

The proofs of these results can be found in [20, 4]
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1.6 The fractional Laplacian

The fractional laplacian (−∆)α is a operator which gives the standard laplacian when we take α = 1.
This operator can be defined in several equivalent forms:

Definition 1.23 (Using Fourier transform). We define the fractional laplacian as the operator with
symbol |ξ|2α. This means the following formula holds:

ˆ(−∆)αf(ξ) = |ξ|2α f̂(ξ) (1.30)

for any f for which the right hand side is valid.

Definition 1.24 (Using functional calculus). We know that the operator −∆ is a self-adjoint positive
definite operator given a dense subset D of L2(Rn). We can define F (−∆) for any continuous function
F : R+ → R. In this way we define (−∆)α.

Definition 1.25 (Using the heat semigroup). We part from the formula

λα = 1
Γ(−α)

∫ ∞
0

(exp(−tλ)− 1) dt

t1+α . (1.31)

with λ ≥ 0 and 0 < α < 1. Suppose λ = |ξ|2 and by using our first definition we get

(−∆)αf(x) = 1
Γ(−α)

∫ ∞
0

(exp(t∆)f(x)− f(x)) dt

t1+α . (1.32)

Definition 1.26 (Infinitesimal generator of a Levy process). Suppose Xt is the α-stable Lévy process
starting at 0 and suppose that f is a smooth function. Then we have

(−∆)α2 f(x) = lim
h→0+

1
h
E[f(x)− f(x+Xh)]. (1.33)

In this particular work, the corresponding infinitesimal generator of the semigroup {St : t ≥ 0} is
the fractional Laplacian ∆α, whose domain is denoted by D(∆α).

Proposition 1.27. Let ∆α represent the fractional Laplacian.

(i) If x ∈ Rd is a global minimum of φ ∈ D(∆α) then ∆αφ(x) ≥ 0.

(ii) ∆α is a closed linear operator.

Proof. The proof of (i) can be found in [4]. Meanwhile, proposition (ii) is Corollary 1.2.5 in [18].

Definition 1.28. Let B(Rd) denote the space of bounded measurable real-valued functions defined
on Rd, and let {St : t ≥ 0} be the semigroup corresponding to the fractional Laplacian. By a mild
solution we mean a continuous curve u : [0,∞)→ B(Rd) satisfying

u(t) = St(ψ) +
∫ t

0
St−s(ϕ− gf(u(s)))ds, t ≥ 0. (1.34)

A classical solution of a partial differential equation of order k is a solution of the partial differential
equation that is at least k times continuously differentiable.
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2. Existence, regularity and positivity of
solutions

In this section we will prove the existence of a solution for our problem of interest and we will prove
several properties of said solution. Amongst these properties we have temporal regularity, positivity
and global existence.

2.1 Local existence

In this section we will assume the following conditions

(i) ψ,ϕ ∈ L1(Rd),

(ii) ψ ∈ D(∆α) ∩B(Rd) and ψ ≥ 0,

(iii) ϕ, g ∈ C(Rd) ∩B(Rd) and ϕ, g ≥ 0, and

(iv) f : [0,∞)→ R is convex with f(0) = 0.

The following theorem is one of our main results.

Theorem 2.1 (Existence). The initial-value problem
∂u(t, x)
∂t

= ∆αu(t, x)− g(x)f(u(t, x)) + ϕ(x),

u(0, x) = ψ(x),
(2.1)

has a classical solution.

To prove this theorem, we will need some technical lemmas. In them, we convey that ET denotes
the Banach space C([0, T ] : B(Rd)) for each T > 0 with the norm

|‖u‖|T = sup{‖u(t)‖∞ : t ∈ [0, T ]}. (2.2)

Lemma 2.2. There exist R, T ∈ R+ such that the function F : ET → ET given by

(Fu)(t) = Stψ +
∫ t

0
St−s(ϕ− gf(u(s)))ds, (2.3)

is bounded in B(0, R) ⊆ ET .
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Proof. Beforehand, notice that∥∥∥∥Stψ +
∫ t

0
St−s(ϕ− gf(u(s)))ds

∥∥∥∥
∞
≤ ‖Stψ‖∞ +

∫ t

0
‖St−s(ϕ− gf(u(s)))‖∞ds

≤ ‖ψ‖∞ +
∫ t

0
(‖ϕ‖∞ + ‖g‖∞‖f‖∞) ds.

(2.4)

Suppose now that u ∈ B(0, R) ⊆ E, so that there exists R > 0 such that u(s) ∈ [−R,R]. As a
consequence,

‖(Fu)(t)‖ ≤ ‖ψ‖∞ +
∫ t

0
‖ϕ‖∞ + ‖g‖∞‖f‖[0,R]ds

≤ ‖ψ‖∞ + T
(
‖ϕ‖∞ + ‖g‖∞‖f‖[0,R]

)
.

(2.5)

Letting R = ‖ψ‖∞ + 1 and T ≤ (‖ϕ‖∞ + ‖g‖∞‖f‖[0,R])−1, we obtain that ‖(Fu)(t)‖ ≤ R for all
t ∈ [0, T ].

Lemma 2.3. The function F : B(0, R)→ B(0, R) defined in Lemma 2.2 is continuous.

Proof. Let t > r, and note that

‖Stψ − Srψ‖ = ‖Sr(St−rψ − ψ)‖ ≤ ‖Sr‖ ‖St−rψ − ψ‖ ≤ ‖St−rψ − ψ‖ → 0 (2.6)

when r ↑ t. Using this result we have∥∥∥∥Stψ +
∫ t

0
St−s(ϕ− gf(u(s)))ds− Srψ −

∫ r

0
Sr−s(ϕ− gf(u(s)))ds

∥∥∥∥
≤ ‖Stψ − Srψ‖+

∥∥∥∥∫ t

0
St−s(ϕ− gf(u(s)))ds−

∫ r

0
Sr−s(ϕ− gf(u(s)))ds

∥∥∥∥
≤
∥∥∥∥∫ t

0
St−s(ϕ− gf(u(s)))ds−

∫ r

0
Sr−s(ϕ− gf(u(s)))ds

∥∥∥∥
≤
∥∥∥∥∫ r

0
Sr−s(St−r(ϕ− gf(u(s)))− (ϕ− gf(u(s))))ds

∥∥∥∥+
∫ t

r

‖St−s(ϕ− gf(u(s)))‖ ds

≤
∫ r

0
‖Sr−s(St−r(ϕ− gf(u(s)))− (ϕ− gf(u(s))))‖ ds+

∫ t

r

‖St−s(ϕ− gf(u(s)))‖ ds

≤
∫ r

0
‖Sr−s‖ ‖(St−r(ϕ− gf(u(s)))− (ϕ− gf(u(s))))‖ ds+

∫ t

r

‖St−s(ϕ− gf(u(s)))‖ ds.

(2.7)

The second term of the right-hand side of these inequalities is bounded by∫ t

r

‖St−s(ϕ− gf(u(s)))‖ds ≤ (t− r)(‖ϕ‖∞ + ‖g‖∞‖f‖[0,R]). (2.8)

In turn, the right-hand side of (2.8) goes to 0 when r tends to t, so we only have to study the behavior
first term. Note that ∫ r

0
‖St−r(ϕ− gf(u(s)))− (ϕ− gf(u(s)))‖ds

=
∫ T

0
1[0,r](s)‖St−r(ϕ− gf(u(s)))− (ϕ− gf(u(s)))‖.

(2.9)
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The function s→ 1[0,r](s)‖St−r(ϕ− gf(u(s))− (ϕ− gf(u(s))‖ is measurable and bounded, one bound
being 2(‖ϕ‖∞ + ‖g‖∞‖f‖[0,R]). By the uniform convergence theorem,

lim
r→t−

∫ r

0
‖St−r(ϕ− gf(u(s)))− (ϕ− gf(u(s)))‖ = 0. (2.10)

We conclude that F is continuous.

Lemma 2.4. Let R = ‖ψ‖∞ + 1. Then the mapping F is a contraction if

T < min
{

R

‖g‖∞f(R) ,
1

‖ϕ‖∞ + ‖g‖∞‖f‖ [0,R]

}
. (2.11)

Proof. Firstly, notice that Lemma 2.3 and the inequality (2.11) imply that the function F is continuous.
On the other hand, for each u, v ∈ B(0, R) it is readily checked that

‖(Fu)(t)− (Fv)(t)‖ =
∥∥∥∥Stψ +

∫ t

0
St−s(ϕ− gf(u(s)))ds− Stψ −

∫ t

0
St−s(ϕ− gf(v(s)))ds

∥∥∥∥
=
∥∥∥∥∫ t

0
St−s(ϕ− gf(u(s)))− St−s(ϕ− gf(v(s))

∥∥∥∥
=
∥∥∥∥∫ t

0
St−s(−gf(u(s)) + gf(v(s)))ds

∥∥∥∥
=
∥∥∥∥∫ t

0
St−s(g(f(u(s))− f(v(s))))ds

∥∥∥∥
≤
∫ t

0
‖St−s(g(f(u(s))− f(v(s))))‖ ds

≤
∫ t

0
‖g(f(u(s))− f(v(s)))‖ ds

≤
∫ t

0
‖g‖ ‖f(u(s))− f(v(s))‖ ds

≤ ‖g‖∞
∫ t

0
‖f(u(s))− f(v(s))‖ds.

(2.12)

As a consequence, u(s), v(s) ∈ [−R,R]. Using the convexity of f , it follows that

f(u(s))− f(v(s))
u(s)− v(s) ≤ f(R)− f(0)

R
. (2.13)

This inequality and (2.16) yield

‖(Fu)(t)− (Fv)(t)‖ ≤ ‖g‖∞
Tf(R)
R
‖u− v‖. (2.14)

Using (2.11) again, we see that the coefficient multiplying ‖u − v‖ at the right-hand side of (2.14) is
less than 1. We conclude that F is a contraction.

Using now Lemmas 2.2 through 2.4 together with Banach’s fixed-point theorem, there exists a
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unique continuous function u ∈ B(0, R) that satisfies

u(t) = Stψ +
∫ t

0
St−s(ϕ− gf(u(s)))ds, ∀t ∈ [0, T ]. (2.15)

In such way, we have established the existence of a mild solution for problem (2.1). Finally we want
to see that the mapping u0 → u from B(Rd) to C([0, T ] : B(Rd)) is continuous. In other words, we
wish to prove that the variation in the initial condition is continuous. To see this, let u and v be the
solutions corresponding to the initial conditions u0 and v0 respectively. Thus we have

‖u(t)− v(t)‖∞ =
∥∥∥∥Stu0 +

∫ t

0
St−s(ϕ− gf(u(s)))ds− Stv0 −

∫ t

0
St−s(ϕ− gf(v(s)))ds

∥∥∥∥
≤ ‖Stu0 − Stv0‖+

∥∥∥∥∫ t

0
St−s(g(f(v(s))− f(u(s))))ds

∥∥∥∥
≤ ‖St(u0 − v0)‖+

∫ t

0
‖St−s(g(f(v(s))− f(u(s))))‖ ds

≤ ‖u0 − v0‖+
∫ t

0
‖g(f(v(s))− f(u(s)))‖ ds

≤ ‖u0 − v0‖+
∫ t

0
‖g‖∞ ‖f(u(s))− f(v(s))‖ ds

= ‖u0 − v0‖+ ‖g‖∞
∫ t

0
‖f(u(s))− f(v(s))‖ ds

≤ ‖u0 − v0‖+ ‖g‖∞
Tf(R)
R
‖u− v‖.

(2.16)

Thus we have
‖u− v‖

(
1− ‖g‖∞

f(R)T
R

)
≤ ‖u0 − v0‖ . (2.17)

Since we have taken T > 0, it yields

‖u− v‖ ≤ R

R− ‖g‖∞f(R)T ‖u0 − v0‖ . (2.18)

From this previous inequality, the continuity in the initial parameter follows.

Corollary 2.5. If g ∈ B(Rd), then the equation

w(t) = Stw(0)−
∫ t

0
St−s(gw(s))ds, w(0) ∈ B(Rd), (2.19)

has a unique solution w ∈ C([0, T ] : B(Rd)).

2.2 Temporal regularity

Theorem 2.6 (Temporal regularity). The solution of (2.1) is differentiable in time.
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Proof. Let u be the unique solution of (2.1), and consider the equation

v(t) = Stv(0)−
∫ t

0
St−s(gf ′(u(s))v(s))ds, (2.20)

which has the unique solution v(0) = ∆αψ − gf(ψ) + ϕ. We wish to prove that v(t) is the derivative
of u(t). To that end, let

uh = u(t+ h)− u(t)
h

, (2.21)

and observe that

‖uh(t)− v(t)‖ =

∥∥∥∥∥ 1
h

(
St+hψ +

∫ t+h

0
St+h−s(ϕ− gf(u(s)))ds− Stψ

−
∫ t

0
St−s(ϕ− gf(u(s)))ds

)
− Stv(0) +

∫ t

0
St−s(gf ′(u(s))v(s))ds

∥∥∥∥ .
(2.22)

To simplify the right hand term, we will use the following the following equation∫ t+h

0
St+h−s(ϕ− gf(u(s)))ds =

∫ h

0
St+h−s(ϕ− gf(u(s)))ds+

∫ t+h

h

St+h−s(ϕ− gf(u(s)))ds

= St

∫ h

0
Sh−s(ϕ− gf(u(s)))ds+

∫ t

0
St−s(ϕ− gf(u(s+ h)))ds.

(2.23)
Using this equation, we have as a result

‖uh(t)− v(t)‖ =

∥∥∥∥∥ 1
h

(
St+hψ +

∫ t+h

0
St+h−s(ϕ− gf(u(s)))ds− Stψ

−
∫ t

0
St−s(ϕ− gf(u(s)))ds

)
− Stv(0) +

∫ t

0
St−s(gf ′(u(s))v(s))ds

∥∥∥∥
=

∥∥∥∥∥ 1
h

(
StShψ + St

∫ h

0
Sh−s(ϕ− gf(u(s)))ds+

∫ t

0
St−s(ϕ− gf(u(s+ h)))ds

)

−Stψ −
∫ t

0
St−s(ϕ− gf(u(s)))ds− Stv(0)

)
+
∫ t

0
St−s(gf ′(u(s))v(s))ds

∥∥∥∥
=

∥∥∥∥∥St
(
Shψ +

∫ h
0 Sh−s(ϕ− gf(u(s)))ds

h

)

+ 1
h

(
−Stψ +

∫ t

0
St−s(ϕ− gf(u(s+ h)))ds−

∫ t

0
St−s(ϕ− gf(u(s)))ds

)
−Stv(0) +

∫ t

0
St−s(gf ′(u(s))v(s))ds

∥∥∥∥
=
∥∥∥∥Stu(h)

h
+ 1
h

(
∫ t

0
St−s(ϕ− gf(u(s+ h)))ds)− Stu(0)

h

− 1
h

∫ t

0
St−s(ϕ− gf(u(s)))ds− Stv(0) +

∫ t

0
St−s(gf ′(u(s))v(s))ds

∥∥∥∥
(2.24)
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so that
‖uh(t)− v(t)‖ =

∥∥∥∥St(u(h)− u(0)
h

− v(0)) + 1
h

∫ t

0
St−s(ϕ− gf(u(s+ h)))ds

− 1
h

∫ t

0
St−s(ϕ− gf(u(s)))ds+

∫ t

0
St−s(gf ′(u(s))v(s))ds

∥∥∥∥
=
∥∥∥∥St(u(h)− u(0)

h
− v(0)) +

∫ t

0
St−s(gf ′(u(s))v(s))ds

1
h

∫ t

0
St−s((ϕ− gf(u(s+ h)))− (ϕ− gf(u(s))))ds

∥∥∥∥
=
∥∥∥∥St(u(h)− u(0)

h
− v(0)) +

∫ t

0
St−s(gf ′(u(s))v(s))ds

−
∫ t

0
St−s(g(f(u(s+ h))− f(u(s))

h
))ds

∥∥∥∥ .

(2.25)

Using the triangle inequality and Proposition 1.18 yields

‖uh(t)− v(t)‖ ≤
∥∥∥∥St(u(h)− u(0)

h
− v(0))

∥∥∥∥+
∥∥∥∥∫ t

0
St−s(g(f(u(s+ h))− f(u(s))

u(s+ h)− u(s) )(v − uh(s))ds
∥∥∥∥

+
∥∥∥∥∫ t

0
St−s(g(f ′(u(s))− f(u(s+ h))− f(u(s))

u(s+ h)− u(s) v)ds
∥∥∥∥

= ‖St‖ ‖uh(0)− v(0)‖∞ +
∫ t

0

∥∥∥∥St−s(g(f(u(s+ h))− f(u(s))
u(s+ h)− u(s) )(v − uh(s)))

∥∥∥∥ ds
+
∫ t

0

∥∥∥∥St−s(g(f ′(u(s))− f(u(s+ h))− f(u(s))
u(s+ h)− u(s) )v(s))

∥∥∥∥ ds
≤ ‖uh(0)− v(0)‖+

∫ t

0
‖g‖

∥∥∥∥f(u(s+ h))− f(u(s))
u(s+ h)− u(s)

∥∥∥∥ ‖uh(s)− v(s)‖ds

+
∫ t

0
‖g‖‖f ′(u(s))− f(u(s+ h))− f(u(s))

u(s+ h)− u(s) ‖‖v(s)‖∞ds.

(2.26)
Let 0 < |h| < T for some 0 ≤ s ≤ T . It is easy to see that u(s+ h) = u(0) if s+ h ≤ 0. Meanwhile, if
T ≤ s+ h then u(s+ h) = u(T ). Note also that if u(s+ h) = u(s), then

f(u(s+ h))− f(u(s))
u(s+ h)− u(s) = 0. (2.27)

This fact and the mean value theorem imply that there exists ξ(s, h) between u(s+ h) and u(s) such
that

f(u(s+ h))− f(u(s))
u(s+ h)− u(s) = f(ξ(s, h)). (2.28)

But u ∈ B(0, R), so |(ξ(s, h))| ≤ R. As a result,∣∣∣∣f(u(s+ h))− f(u(s))
u(s+ h)− u(s)

∣∣∣∣ ≤ ‖f ′‖L[0,R]. (2.29)

On the other hand, taking norm on both sides of (2.20), using the triangle inequality and properties
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of semigroups, we obtain the inequality

‖v(t)‖ ≤ ‖v(0)‖+
∫ t

0
‖g‖‖f ′‖L[0,R]‖v(s)‖ds. (2.30)

Moreover, as a consequence of Gronwall’s inequality, it follows that ‖v(t)‖ ≤ ‖v(0)‖e‖g‖‖f ′‖L[0,R]T .
Substituting this inequality into (2.25) yields

‖uh(t)− v(t)‖ ≤ ‖uh(0)− v(0)‖+ ‖g‖‖v‖[0,T ]

∫ T

0

∥∥∥∥f ′(u(s))− f(u(s+ h))− f(u(s))
u(s+ h)− u(s)

∥∥∥∥ ds
+ ‖g‖‖f ′‖L[0,R]

∫ t

0
‖uh(s)− v(s)‖ds

= ε(h) +M

∫ t

0
‖uh(s)− v(s)‖ds,

(2.31)

where

M = ‖g‖‖f ′‖L[0,R], (2.32)

ε(h) = ‖un(0)− v(0)‖+ ‖g‖‖v‖[0,T ]

∫ T

0

∥∥∥∥f ′(u(s))− f(u(s+ h))− f(u(s))
u(s+ h)− u(s)

∥∥∥∥ ds. (2.33)

By the dominated convergence theorem, the second term at the right-hand side of (2.31) tends to zero.
On the other hand,

lim
h→0+

u(h)− u(0)
h

= v(0). (2.34)

This implies that ε(h) tends to zero as h→ 0. Gronwall’s inequality yields ‖un(t)− v(t)‖ ≤ ε(h)eTM .
As a consequence, u(t) is differentiable and its derivative is equal to v(t).

Finally, we will verify that the mild solution found in this section is indeed a classical solution of
(2.1). To be able to prove that our solution is indeed a classical solution, we must verify that our
solution u is in D(∆). Yet this follows immediately from Proposition 1.12. Let

v(t) = Stu0 +
∫ t

0
T (t− s)(ϕ− gf(u(s)))ds. (2.35)

Since the function ϕ− gf(u(s)) is continuously differentiable then

d

dt
v(t) = d

dt
Stu0 + d

dt

∫ t

0
T (t− s)(ϕ− gf(u(s)))ds

= ∆αStu0 + d

dt

∫ t

0
T (s)(ϕ− gf(u(t− s)))ds.

(2.36)

Define now
ṽ(t) =

∫ t

0
T (s)f(t− s)ds, (2.37)
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where f(t− s) = ϕ− gf(u(t− s)). We wish to study the behavior of

lim
h→0

ṽ(t+ h)− ṽ(t)
h

= lim
h→0

∫ t+h
0 T (s)f(t+ h− s)ds−

∫ t
0 T (s)f(t− s)ds

h

= lim
h→0

∫ t+h
0 T (s)f(t+ h− s)ds−

∫ t+h
0 T (s)f(t− s)ds+

∫ t+h
t

T (s)f(t− s)ds
h

= lim
h→0

∫ t+h
0 T (s)(f(t+ h− s)− f(t− s))ds+

∫ t+h
t

T (s)f(t− s)ds
h

= lim
h→0

{∫ t+h

0
T (s)(f(t− s+ h)− f(t− s)

h
)ds+ 1

h

∫ t+h

t

T (s)f(t− s)ds
}
.

(2.38)
It is easy to verify that the second limit on the right-hand side of (2.38) is equal to T (t)f(0). By
taking the change of variable r = s− t we have

lim
h→0

∫ t+h
t

T (s)f(t− s)ds
h

= lim
h→0

∫ h
0 T (s+ t)f(−s)ds

h
= T (t)f(0). (2.39)

On the other hand the first limit equals
∫ t

0
T (s)f ′(t− s)ds because, if we define

ζ = lim
h→0

∫ t+h

0
T (s)(f(t− s+ h)− f(t− s)

h
)ds. (2.40)

then we have

ζ = lim
h→0

∫ t

0
T (s)(f(t− s+ h)− f(t− s)

h
)ds

+ lim
h→0

∫ t+h

t

T (s)(f(t− s+ h)− f(t− s)
h

)ds

=
∫ t

0
T (s)f ′(t− s)ds+ lim

h→0

∫ t+h

t

T (s)(f(t− s+ h)− f(t− s)
h

)ds

=
∫ t

0
T (s)f ′(t− s)ds+ lim

h→0
1[t,t+h](s)T (s)f(t− s+ h)− f(t− s)

h

=
∫ t

0
T (s)f ′(t− s)ds+ (T (s)f ′(t− s))(0)

=
∫ t

0
T (s)f ′(t− s)ds.

(2.41)

As a consequence,
d

dt
ṽ = T (t)f(0) +

∫ t

0
T (s)f ′(t− s)ds. (2.42)

In this way,

d

dt
v(t) = ∆αT (t)u0 + T (t)(ϕ− gf(u(0))) +

∫ t

0
T (s)(−gf ′(u(t− s))u′(t− s)ds. (2.43)

22



On the other hand, we know that ṽ′(t) = ∆αṽ(t) + f(t), since

ṽ′(t) = lim
h→0

Sh − I
h

ṽ(t)

= lim
h→0

ṽ(t+ h)− ṽ(t)
h

− 1
h

∫ t+h

t

T (t− s+ h)f(s)ds

= ṽ′(t)− f(t).

(2.44)

Using this fact and Theorem 2.6, it follows that

d

dt
v(t) = ∆αStu0 + ∆α

∫ t

0
T (t− s)(ϕ− gf(u(s)))ds+ ϕ− gf(u(t))

= ∆αv(t)− gf(u(t)) + ϕ.

(2.45)

This implies that v is a classical solution of
d

dt
v(t) = ∆αv(t)− gf(u(t)) + ϕ,

v(0) = u(0),
(2.46)

But u is also a mild solution of (2.46). Since the mild solution of (2.46) is unique, we conclude that
u = v. As a result, u is a classical solution for (2.1).

2.3 Positivity

In this section we wish to prove the positivity of the solution of (2.1). But first we will start by proving
the uniform continuity of u in x.

Lemma 2.7. u is uniformly continuous in Rd.

Proof. Let t̃ ∈ [0, T ] arbitrary fixed. Remember

u(t, x) = Stψ(x) +
∫ t

0
St−s(ϕ− gf(u(s)))(x)ds. (2.47)

For the first term we observe

|(ρt ∗ ψ)(x)− (ρt̃ ∗ ψ)(x)| =
∣∣∣∣∫

Rd
ρt(y)ψ(x− y)dy −

∫
Rd
ρt̃(y)ψ(x− y)dy

∣∣∣∣
=

∣∣∣∣∫
Rd

(ρt(y)− ρt̃(y))ψ(x− y)dy
∣∣∣∣

≤ ‖ψ‖∞ ‖ρt − ρt̃‖1 .

(2.48)

To study the second term, we define

h(x) =

∣∣∣∣∣
∫ t̃+ν

0
ρt̃+ν−s ∗ (ϕ− gf(u(s)))(x)ds−

∫ t̃

0
ρt̃−s ∗ (ϕ− gf(u(s)))(x)ds

∣∣∣∣∣ (2.49)
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and we note that

h(x) ≤

∣∣∣∣∣
∫ t̃+ν

0
ρt̃+ν−s ∗ (ϕ− gf(u(s)))(x)ds−

∫ t̃+ν

0
ρt̃−s ∗ (ϕ− gf(u(s)))(x)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t̃+ν

0
ρt̃−s ∗ (ϕ− gf(u(s)))(x)ds−

∫ t̃

0
ρt̃−s ∗ (ϕ− gf(u(s)))(x)ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ t̃+ν

0
(ρt̃+ν−s − ρt̃−s) ∗ (ϕ− gf(u(s)))(x)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t̃+ν

t̃

ρt̃−s ∗ (ϕ− gf(u(s)))(x)ds

∣∣∣∣∣
≤

∫ t̃+ν

0

∥∥ρt̃+ν−s − ρt̃−s∥∥ ds(‖ϕ‖∞ + ‖g‖∞ ‖f‖L∞1 [0,R])

+
∫ t̃+ν

t̃

∥∥ρt̃−s∥∥ ds(‖ϕ‖∞ + ‖g‖∞ ‖f‖L∞1 [0,R])

≤ (‖ϕ‖∞ + ‖g‖∞ ‖f‖L∞1 [0,R])(
∫ t̃+ν

0

∥∥ρt̃+ν−s − ρt̃−s∥∥1 ds+ |ν|).

(2.50)

Since
∥∥ρt̃+ν−s − ρt̃−s∥∥1 → 0 when ν → 0 and moreover

∥∥ρt̃+ν−s − ρt̃−s∥∥1 ≤
∥∥ρt̃+ν−s∥∥1 +

∥∥ρt̃−s∥∥1 = 2. (2.51)

the result holds as a consequence of the dominated convergence theorem.

Theorem 2.8. Let (t̃, x̃) ∈ [0, T ] × Rd arbitrary fixed. The function x → St̃ψ(x) = (ρt̃ ∗ ψ)(x) is
continuous.

Proof. We will begin by proving the continuity of

x→
∫ t̃

0
St̃−s(ϕ− gf(u(s)))(x)ds =

∫ t̃

0
ρt̃−s ∗ (ϕ− gf(u(s)))(x)ds. (2.52)

Note that if xn → x, then

ρt̃−s ∗ (ϕ− gf(u(s)))(xn)→ ρt̃−s ∗ (ϕ− gf(u(s)))(x), fors ∈ [0, t̃]. (2.53)

Additionally ∣∣ρt̃−s ∗ (ϕ− gf(u(s)))(x)
∣∣ ≤ ‖g‖∞ ‖f‖L∞1 [0,R] . (2.54)

The continuity of (2.52) follows from the dominated convergence theorem. Using this previous result
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we have∣∣u(t, x)− u(t̃, x̃)
∣∣ ≤ |(ρt ∗ ψ)(x)− (ρt̃ ∗ ψ)(x̃)|

+

∣∣∣∣∣
∫ t

0
ρt−s ∗ (ϕ− gf(u(s)))(x)ds−

∫ t̃

0
ρt̃−s ∗ (ϕ− gf(u(s)))(x̃)ds

∣∣∣∣∣
≤ |(ρt ∗ ψ)(x)− (ρt̃ ∗ ψ)(x)|+ |(ρt̃ ∗ ψ)(x)− (ρt̃ ∗ ψ)(x̃)|

+

∣∣∣∣∣
∫ t

0
ρt−s ∗ (ϕ− gf(u(s)))(x)ds−

∫ t̃

0
ρt̃−s ∗ (ϕ− gf(u(s)))(x)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t̃

0
ρt̃−s ∗ (ϕ− gf(u(s)))(x)ds−

∫ t̃

0
ρt̃−s ∗ (ϕ− gf(u(s)))(x̃)ds

∣∣∣∣∣ .
(2.55)

By the uniform continuity of t in x, each of the terms on the right hand side of the inequality go to 0
when x→ x̃, yielding the result.

Now that we have proven the uniform continuity of u we can start giving the proof of the positivity
of u. We will begin by defining a function h such that h(t) = inf u(t, x) for x ∈ Rd and t ∈ [0, T ]. We
will also make use of the following lemmas.

Lemma 2.9. The function h defined above is continuous in [0, T ].

Proof. We wish to see that h is continuous in t̃ ∈ [0, T ]. By continuity of u we know that given ε > 0
there exists δ > 0 such that

∣∣t− t̃∣∣ < δ ⇒
∣∣u(t, x)− u(t̃, x)

∣∣ < ε, for every x ∈ Rd. Using this and
properties of absolute value,

−ε+ u(t̃, x) < u(t, x) < u(t̃, x) + ε. (2.56)

Using properties of infimum we have

−ε+ inf u(t̃, x) ≤ inf u(t, x) ≤ inf u(t̃, x) + ε, (2.57)

using properties of absolute value we conclude that
∣∣infx∈Rd u(t, x)− infx∈Rd u(t̃, x)

∣∣ ≤ ε.
Now let t̃ ∈ [0, T ] such that h(t̃) = inft∈[0,T ] h(t). It is easy to verify the following lemma.

Lemma 2.10. For t̃ we have that lim|x|→∞
∣∣u(t̃, x)

∣∣ = 0.

Proof. Using the integral representation of u yields∫
Rd
|u(t, x)| dx ≤ ‖ψ‖1 +

∫ t

0
‖ϕ‖1 dt+

∫ t

0
c ‖g‖∞

∫
Rd
|u(s, x)| dxds

≤ (‖ψ‖1 + T ‖ϕ‖1) + c ‖g‖∞
∫ t

0

∫
Rd
|u(s, x)| dxds.

(2.58)

By Gronwall’s inequality ∫
Rd
|u(t, x)| dx ≤ (‖ψ‖∞ + T ‖ϕ‖∞) exp{c ‖g‖∞ T}. (2.59)

Now we note that
lim sup
|x|→∞

(Stψ)(x) = lim sup
|x|→∞

(ρt ∗ ψ)(x). (2.60)
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This follows from the fact that ∫
(ρt ∗ ψ)(x)dx = ‖ψ‖1 <∞. (2.61)

implies that lim sup|x|→∞(ρt ∗ ψ)(x) = 0. This is seen by assuming

lim sup
|x|→∞

(ρt ∗ ψ)(x) = L > 0. (2.62)

By definition, this implies for M sufficiently large, inf |x|≥M (ρt ∗ ψ)(x) > 1
2 . As a result,

∞ > ‖ψ‖ =
∫
Rd

(ρt ∗ ψ)(x)dx ≥
∫
|x|≥M

(ρt ∗ ψ)(x)dx ≥ ∞. (2.63)

Moreover,
∥∥f̃∥∥1 ≤ c ‖u(t)‖1 ≤ C, with C constant, ∀t ∈ [0, T ]. As a consequence,

lim sup
|x|→∞

f(u(t, x− y)) = lim sup
|x|→∞

f(u(t, x)) = 0. (2.64)

Finally, using the inequality

ρ(t̃− s, y)g(x− y)f̃(u(s, x− y)) ≤ ‖g‖∞ f̃(‖u‖)ρ(t̃− s, y). (2.65)

and using the dominated convergence theorem we have

lim sup
|x|→∞

∫ t̃

0

∫
Rd
g(x− y)f̃(u(s, x− y))ρ(t̃− s, y)dyds = 0. (2.66)

Hence we can conclude lim|x|→∞
∣∣u(t̃, x)

∣∣ = 0.

We will now suppose that h(t̃) < 0. By definition of h we can find a M > 0 such that
∣∣u(t̃, x)

∣∣ <
−h(t̃)

2 , for every |x| > M . This implies u(t̃, x) > h(t̃)
2 , for every |x| > M . From this we can define

inf
x∈Rd

u(t̃, x) = inf
|x|≤M

u(t̃, x) = u(t̃, x̃). (2.67)

In this way u(t̃, x̃) = h(t̃) = inf(t,x)∈[0,T ]XRd u(t, x). Define ξ = u(t̃, x̃) < 0. If t̃ = 0 then ψ(x̃) =
u(0, x̃) = ξ < 0. Thus t̃ ∈ (0, T ]. Now we will define the function h̃ such that h̃(t) = infx∈Rd V (x, t),
with V (t, x) = u(t, x)−K(t̃− t) and K = − ξ

6t̃ > 0, for t ∈ [0, t̃]. The continuity of u on t uniform in
x implies h̃ is continuous in [0, t̃]. As a consequence there exists t̂ ∈ [0, t̃] such that

h̃(t̂) = inf
t∈[0,t̃]

h̃(t) = inf
t∈[0,t̃]

inf
x∈Rd

V (t, x). (2.68)

By 2.10 we have that lim|x|→∞ V (t̂, x) = −K(t̃ − t̂). As a consequence there exists M > 0 such
that

∣∣V (t̂, x) +K(t̃− t̂)
∣∣ < − ξ6 . As a result we have V (t̂, x) > ξ

6 −K(t̃− t̂), ∀ |x| > M . On the other
hand, we know limt→t̃ u(t, x̃) = ξ. Hence there exists δ > 0 such that for 0 < t − t̃ < δ we have∣∣u(t, x̃)− u(t̃, x̃)

∣∣ < − ξ2 . It follows that u(t, x̃) < ξ
2 when 0 < t− t̃ < δ. Thus if t ∈ (t̃− δ, t̃) we have

u(t, x̃) < ξ

2 < −Kt̃+ ξ

6 = ξ

3 . (2.69)
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Using the fact that −Kt̃ < K(t̂− t) and 2.69 yields

u(t, x̃) < −Kt̃+ ξ

6 < K(t̂− t) + ξ

6 . (2.70)

Using 2.70 and replacing K(t̂− t) with −K(t+ t̃− t̃− t̂) we have

u(t, x̃) < −K(t+ t̃+−t̃+ t̂) + ξ

6 . (2.71)

Separating this term, passing −K(t − t̃) to the other side and using the definition of V (t, x̃) we have
V (t, x̃) < ξ

6 −K(t̃− t̂). Applying definition of t̂ and definition of V (t, x̃) we have

h̃(t̂) ≤ h̃(t) ≤ V (t, x̃) < ξ

6 −K(t̃− t̂). (2.72)

It follows that infx∈Rd V (t̂, x) < ξ
6 − K(t̃ − t̂). Because of this there must exist z ∈ Rd such that

V (t̂, z) < ξ
6 −K(t̃− t̂). This would imply that |z| ≤M and that

h(t̂) = inf
x∈Rd

V (t̂, x) = inf
|x|≤M

V (t̂, x) = V (t̂, x̂) = inf
t∈[0,t̃]

inf
x∈Rd

V (t, x). (2.73)

On the other hand since V (t̂, x̂) ≤ u(t̃, x̃) we have that u(t̂, x̂)−K(t̃− t̂) ≤ ξ. Passing the second term
to the other side and using the fact that K and t̂ are greater than 0 we have u(t̂, x̂) < ξ + Kt̃. By
definition we have that

ξ +Kt̃ = ( 1
3t̃

(−ξ2))t̃+ ξ = 5
6ξ (2.74)

Since ξ < 0 this tells us that u(t̂, x̂) < 0. If we take t̂ = 0 we reach V (0, x̂) < ξ
6 −K(t̃). Subtracting

K(t̃ − 0) on the left hand side, simplifying the right hand side and using the definition of ψ(x̃) we
reach ψ(x̃) < ξ

6 < 0. Thus t̂ ∈ (0, t̃]. This implies that

∂

∂t
V (t̂, x̂) = lim

h↓0

V (t̂, x̂)− V (t̂− h, x̂)
h

≤ 0. (2.75)

Using 2.75, the fact that f̃(u(t̂, x̂)) = 0 and

∆αV (t̂, x̂) = ∆αu(t̂, x̂)−K∆α(t̃− t̂) = ∆αu(t̂, x̂). (2.76)

We have
0 ≤ ∆αu(t̂, x̂)− g(x̂)f̃(u(t̂, x̂)) + ϕ(x̂) = ∂

∂t
u(t̂, x̂) ≤ −K < 0 (2.77)

since x̂ is global infimum of V. This means that the point (t̂, x̂) ∈ [0, T ] × Rd does not satisfy the
equation. Hence ξ ≥ 0. As a result we have that our solution is non-negative.

2.4 Global existence

Up to this point, we have proven that our model has a local positive solution. We wish to prove that
our local solution is in fact, a global solution. In other words, we wish to prove that the maximum
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time of existance tmax of is not finite. For this purpose, we will assume that tmax is finite. Then,

lim
t→tmax

‖u(t)‖ =∞. (2.78)

Since otherwise there is a sequence tn ↑ tmax such that ‖u(tn)‖ ≤ C for all n, for some fixed C. We
now define

V (t) = u(tn + t), t ≥ 0. (2.79)

From this definition we have

V (t) = Stn+tϕ+
∫ tn+t

0
Stn+t−s(ϕ− gf(u(s)))ds

= Stu(tn) +
∫ t

0
St−s(ϕ− gf(u(tn + s)))ds

= StV (0) +
∫ t

0
St−s(ϕ− gf(V (s)))ds.

(2.80)

But we also know that taking

ξ = St[Stnψ +
∫ tn

0
Stn−s(ϕ− gf(u(s)))ds] +

∫ t

0
St−s(ϕ− gf(u(t+ s)))ds (2.81)

we have
ξ = St+tnψ +

∫ tn

0
St+tn−s(ϕ− gf(u(s)))ds

+
∫ t

0
St−s(ϕ− gf(u(tn + s))ds

= St+tnψ +
∫ tn

0
St+tn−s(ϕ− gf(u(s)))ds

+
∫ tn+s

tn

Stn+t−s(ϕ− gf(u(s))ds.

(2.82)

By Banach’s fixed point principle there exists

T̃ = min{ R̃

‖g‖∞ f(R̃)
,

1
‖ϕ‖∞ + ‖g‖∞ ‖f‖[0,R̃]}. (2.83)

Such that
1 + ‖u(tn)‖ ≤ 1 + C = R̃. (2.84)

In this way, T̃ is independant of n and we have that V (t) is a unique solution in the interval [0, T̃ ]. Now
let us take ε = T̃

2 > 0. Since tn ↑ tmax there exists n0 positive integer such that tn0 ∈ (tmax− T̃ , tmax).
This implies that tmax < tn0 + T̃ . Finally, we define the function:

w(t) = u(t), t ≤ tn0 , (2.85)

w(t) = V (t− tn0), t ≥ tn0 , (2.86)

28



for t ∈ [0, tn0 + T̃ ]. We know that w is a mild solution for

w̃(t) = ST w̃(0) +
∫ t

0
St−s(ϕ− gf(ũ(s)))ds (2.87)

for any t ∈ [0, tn0 + T̃ ]. As a result
lim

t→tmax
‖u(t)‖ =∞ (2.88)

but that is a contradiction due to the fact that our solution u is bounded. As a result, we have that
tmax is not finite.
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3. Integrability and asymptotic behavior

We will start this section using the time-monotonicity of the solution u of (1) in order to obtain a
solution v of (2).

Theorem 3.1. Let d > α and suppose that

(i) ϕ ∈ C(Rd) ∩B(Rd) ∩ L1(Rd) with ϕ ≥ 0, and

(ii) f : [0,∞)→ R is convex and satisfies f(0) = 0.

Then there is a solution u∞ ∈ B‖ψ‖∞+1(0) of (2) satisfying the boundary condition lim‖x‖→∞ u∞(x) =
0. If α = 2 and d ∈ {1, 2} we require that ϕ ∈ Cc(Rd), lim inf‖x‖→∞ g(x) > 0, and g(x) > 0 for all
x ∈ Rd.

Proof.

• Case 1: d > α. Consider (1) with ψ ≡ 0, and let v be the solution of
∂

∂t
v(t, x) = ∆αv(t, x)− g(x)(f̃)′(u(t, x))v(t, x),

v(0, x) = ϕ(x),
(3.1)

where f̃(x) = f(max{0, x}), for each x ∈ R. We readily see that ∂tu(t, x) = v(t, x) ≥ 0. We
start by bounding the following term∥∥∥∥StV (0)−

∫ t

0
St−s(gf ′(u(s))V (s)ds

∥∥∥∥
∞
≤ ‖StV (0)‖+

∫ t

0
‖St−s(gf ′(u(s))V (s))‖ ds

≤ ‖V (s)‖∞ +
∫ t

0
‖gf ′(u(s))V (s)‖ ds

≤ ‖ϕ‖∞ +
∫ t

0
‖g‖∞ ‖f

′(u(s))‖ ‖V (s)‖ ds

≤ ‖ϕ‖∞ + ‖g‖∞
∫ t

0
‖f ′‖[0,R]Rds

≤ ‖ϕ‖∞ + T ‖g‖∞ ‖f
′‖[0,R]R.

(3.2)

By taking T = 1
‖g‖∞‖f ′‖[0,R]R

, R = ‖ϕ‖∞ + 1 we have ‖(FV )(t)‖ ≤ R. By using Banach’s
contraction principle we obtain T ′ time of existence of a solution V for our new equation. To
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prove the positivity of our new solution, we begin by defining

h(t) = inf
x∈Rd

V (t, x). (3.3)

From this definition we derive the following lemmas,

Lemma 3.2. The function h defined above is continuous in [0, T ′].

Lemma 3.3. lim|x|→∞
∣∣V (t̃, x)

∣∣ = 0.

The proofs of these lemma are similar to those in section 2.3. We will now suppose h(t̃) < 0.
This implies there exists M > 0 such that

∣∣V (t̃, x)
∣∣ < −h(t̃

2 . (3.4)

for |x| > M . From this we can define

V (t̃, x̃) = inf
x∈Rd

V (t̃, x) = h(t̃). (3.5)

Let ξ = V (t̃, x̃) < 0. If t̃ = 0 this would imply ϕ(x̃) = V (0, x̃) = ξ < 0. Thus we must take t̃
such that t̃ ∈ (0, T ′]. Now we will define a new function h̃(t) = infx∈Rd V ′(t, x) with V ′ defined
as

V ′(t, x) = V (t, x)−K(t̃− t). (3.6)

for t ∈ [0, t̃] and K = − ξ
6t̃ . By the continuity of V the continuity of V ′ follows immediately.

Since V ′ is continuous in [0, t̃] we can find t̂ ∈ [0, t̃] such that

h̃(t̂) = inf
t∈[0,t̃]

V ′(t). (3.7)

By 3.3 we can see that lim|x|→∞ V ′(t̃, x) = −K(t̃− t̂). From this we can find M > 0 such that

V ′(t̂, x) > ξ

6 −K(t̃− t̂). (3.8)

On the other hand we know that limt→t̃ V (t, x̃) = ξ. Proceeding as before, this implies that
V (t, x̃) < ξ

2 in 0 < t− t̃ < δ for some δ > 0. This result leads to the following inequality

V (t, x̃) < ξ

2 < −Kt̃− (1
3(−ξ2)) = ξ

3 . (3.9)

Rearranging terms and using the definition of V ′ yield

V ′(t, x̃) < ξ

6 −K(t̃− t̂). (3.10)

Applying the definitions of t̂ and of V ′ we have the following inequality

h̃(t̂) ≤ h̃(t) ≤ V ′(t, x̃) < ξ

6 −K(t̃− t̂). (3.11)
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As an direct consequence we have that infx∈Rd V ′(t̂, x) < ξ
6 −K(t̃− t̂), this implies there exists

z ∈ Rd such that V ′(t̂, z) < ξ
6 −K(t̃ − t̂). Now we note, if t̂ = 0 this implies V ′(0, x̂) < ξ

6 < 0,
thus t̂ ∈ (0, t̃]. As a result we have

∂

∂t
V ′(t̂, x̂) = ∂

∂t
V (t̂, x̂) +K ≤ 0. (3.12)

Finally, this implies

0 > −K ≥ ∂

∂t
V (t̂, x̂) = ∆αV (t̂, x̂)− g(x̂)f̃(u(t̂, x̂)) + ϕ(x̂) ≥ 0. (3.13)

Since x̂ is global infimum of V ′. As a result we have that our solution is non-negative. Now,
considering the corresponding mild equation of (3.1), we deduce that

∂

∂t
u(t, x) ≤ Stϕ(x). (3.14)

From Proposition 1.18 (ii), it follows that there exists δ > 1 such that Stϕ(x) ≤ ct−d/α, for all
x ∈ Rd and t ≥ δ. If we take t > s ≥ δ then (3.14) results in

u(t, x)− u(s, x) ≤ αc

α− d

(
t1−d/α − s1−d/α

)
. (3.15)

Using now (1.34) and d > α, we reach that u(t, x) ≤ c(δ+ δ1−d/α holds for all x ∈ Rd and t ≥ δ.
This implies that limt→∞ u(t, x) =: u∞(x) exists and, moreover, one can easily prove that the
convergence is uniform in x. On the other hand, using (3.14) and Proposition 1.18(ii) we see
that limt→∞ ∂tu(t, x) = 0 holds uniformly in x. Thus, limt→∞∆αu(t, x) = g(x)f(u∞(x))−ϕ(x)
is uniform in x. Since ∆α is a closed operator by Proposition 1.27(ii), then u∞ ∈ D(∆α) is a
solution of (2). Moreover u∞ 6= 0 if ϕ 6= 0. The positivity of u(t, x) implies then that

lim sup
‖x‖→∞

u∞(x) ≤ lim sup
‖x‖→∞

lim sup
t→∞

∫ t

0
Ssφ(x)ds. (3.16)

Proposition 1.18(iv) implies that lim‖x‖→∞ u∞(x) = 0.

• Case 2: α = 2 and d ∈ {1, 2}. We show firstly that

lim
‖x‖→∞

u(t, x) = 0 uniformly in t > 0. (3.17)

By hypothesis, L = lim inf‖x‖→∞ g(x) > 0. Recall that R > 0 is such that supp(ϕ) ⊆ B(0, R)
and inf{g(x) : ‖x‖ > R} ≥ L/2. Set v(x) = χ(‖x‖), where χ : [R,∞) → R is the corresponding
solution of (1.13). Using (1), for all ‖x‖ > R and t > 0 the following holds:

∆(u(t, x)− v(x)) ≥ L

2 f(u(t, x))− L

2 f(v(x))− d− 1
‖x‖

χ′(‖x‖)

>
L

2 (f(u(t, x))− f(v(x))).
(3.18)

If there exists (t0, x0) ∈ (0,∞) × (Rd\B(0, R)) such that u(t0, x0) > v(x0), then there is x̃0 ∈
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B(x0, R̃) with R̃ = (‖x0‖ −R)/2, for which

u(t0, x̃0)− v(x̃0) = max{u(t0, x)− v(x) : x ∈ B(x0, R̃)}. (3.19)

As a consequence,

0 = ∆(u(t0, x̃0)− v(x̃0)) > L

2 (f(u(t0, x̃0))− f(v(x̃0))), (3.20)

and the strict monotonicity of f yields 0 > u(t0, x̃0) − v(x̃0) ≥ u(t0, x0) − v(x0) > 0. It follows
that

u(t, x) ≤ v(x), for all t > 0 and ‖x‖ > R. (3.21)

The desired uniform limits follow then from Proposition 1.15. Take now M > R and t > 0, and
let xt ∈ B(0,M) such that u(t, xt) = max{u(t, x) : ‖x‖ ≤ M}. If ‖xt‖ = M then (3.21) implies
that

u(t, x) ≤ max{v(x) : ‖x‖ = M}, for all ‖x‖ ≤M. (3.22)

In the case ‖xt‖ < M , we readily note that 0 ≤ ∂tu(t, xt) = ∆u(t, xt)− g(xt)f(u(t, x)) + ϕ(xt).
Moreover, notice that

u(t, x) ≤ f−1
(

‖ϕ‖∞
inf{g(x) : x ∈ Rd}

)
, for all t > 0 and ‖x‖ < M. (3.23)

The strict positivity of the infimum follows now from the fact that inf{g(x) : ‖x‖ > R} ≥ L/2,
and that g(x) > 0 for all x ∈ Rd. On the other hand, the identity lim‖x‖→∞ v(x) = 0 and
the expressions (3.21), (3.22) and (3.23) imply that sup{u(t, x) : t ≥ 0, x ∈ Rd} < ∞. Hence,
limt→∞ u(t, x) := u∞(x) exists in this case. Moreover, we claim that the convergence is uniform
on ‖x‖ ≤ M , with M > R. To prove that, we check firstly that {u(m, ·)}∞m=1 is equicontinuous
on B(0,M). Indeed, let m ∈ N be arbitrary but fixed, and let x, y ∈ Rd. Then

|u(m,x)− u(m, y)| ≤
∫ m

0

∫
Rd
|ϕ(z)− g(z)f(u(s, z))||pα(t− s, x− z)− pα(t− s, y − z)|dzds

≤ (‖ϕ‖∞ + ‖g‖∞f(c))
∫ m

0

∫
Rd
|pα(s, x− y + z)− pα(s, z)|dzds;

(3.24)
the equicontinuity of {u(m, ·)}∞m=1 follows now from Proposition 1.22. Since limm→∞ u(m,x) =
u∞(x), Theorem 7.5.6 in [3] implies that the convergence is uniform onB(0,M), so u is continuous
on Rd. Dini’s theorem implies next that the convergence limt→∞ u(t, x) = u∞(x) is uniform on
B(0,M), for each M > R. Now, we will check that the convergence is uniform in Rd. To that
end, let ε > 0. By (3.17), there exits Mε > R such that

|u(t, x)| < ε

2 , for all t > 0 and ‖x‖ > Mε. (3.25)

Moreover, the uniform convergence on B(0,M) guarantees that there exists tε > 0 for which

|u(t, x)− u∞(x)| < ε

2 , for all t > tε and ‖x‖ ≤Mε. (3.26)
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Propositions (3.25) and (3.26) yield |u(t, x)−u∞(x)| ≤ ε, for all t > tε and x ∈ Rd. To complete
the proof, we proceed now as in Case 1.

Let R > 0 be such that supp(ϕ) ⊆ B(0, R) and inf{g(x) : ‖x‖ > R} ≥ L/2. Define the function

F (t) =
∫ χ(R)

t

ds

(F (s))1/2 , 0 < t ≤ χ(R), (3.27)

where χ is the solution of (1.13) and

F (t) =
∫ t

0
f(s)ds, t ≥ 0. (3.28)

From (3.21), we readily check that u∞(x) ≤ χ(‖x‖), for all ‖x‖ ≥ R. The following result provides
other explicit bounds.

Theorem 3.4. Suppose that

(i) ψ,ϕ ∈ L1(Rd),

(ii) ψ ∈ D(∆α) ∩B(Rd) and ψ ≥ 0,

(iii) ϕ, g ∈ C(Rd) ∩B(Rd) and ϕ, g ≥ 0, and

(iv) f : [0,∞)→ R is convex with f(0) = 0.

and let α = 2 and d ∈ {1, 2}. If f ′(0+) > 0 then

u(t, x) ≤ exp
(
−1

2‖x‖
√
f ′(0+)

)
, for all ‖x‖ ≥ R and t > 0. (3.29)

If f ′(0+) = 0 then
u(t, x) ≤ F−1(

√
3‖x‖), for all ‖x‖ ≥ R and t > 0. (3.30)

As a consequence, if f ′(0+) > 0 then u∞ is always integrable. However, if f ′(0+) = 0 then u∞ is
integrable when

∫∞
R

F−1(r)rd−1dr <∞.

Proof. An application of L’Hôpital’s rule yields

lim
r→∞

(
χ′(r)
χ(r)

)2
= lim
r→∞

f(χ(r))
χ(r) . (3.31)

On the other hand, the convexity of f implies that limx↓0 f(x)/x = f ′(0+) ≥ 0.

• Case 1: f ′(0+) > 0. Since limr→∞ χ′(r)/χ(r) = −
√
f ′(0+), there is M > 0 large enough such

that
exp

(
−3

2r
√
f ′(0+)

)
< χ(r) < exp

(
−1

2r
√
f ′(0+)

)
, for all r > M. (3.32)

The integrability of u readily follows now.

• Case 2: f ′(0+) = 0. By L’Hôspital’s rule, limr→∞ (χ′(r))2
/F (χ(r)) = 2. So, for M > 0 large

enough,
−
√

3 (F (χ(r)))1/2
< χ′(r) < − (F (χ(r)))1/2 , for all r ≥M. (3.33)
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The comparison lemma for ordinary differential equations yields y(r) ≤ χ(r) ≤ z(r), for all
r ≥M . Here,

y′(r) = − (F (y(r)))1/2
, y(M) = χ(M), (3.34)

z′(r) = −
√

3 (F (z(r)))1/2
, z(M) = χ(M). (3.35)

Moreover, the solutions are given by y(r) = F−1(r) and z(r) = F−1(
√

3r). We may use now
L’Hôspital’s rule to see that limt↓0 F (t) =∞, so that y and z are well defined for all r ≥M . To
conclude the proof, it suffices to observe that (3.21) implies that u(t, x) ≤ v(x) = χ(‖x‖), for all
t > 0 and ‖x‖ > R.
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Conclusions and discussions

In this work, we studied the temporal monotonicity of the positive solutions of the parabolic semilinear
partial differential equation (1). Moreover, we used our results to establish the existence of solutions
for the elliptic equation (2). In particular, we observed that the source term f is fundamental in
order to guarantee the integrability of the solutions. In fact, the ordinary differential equation (1.13)
only involves such term. That fact was noted in one of the examples of this manuscript, in which
the integrability of u∞ only requires to impose conditions on β. Ultimately, all the goals established
at the beginning of this work were met and, more importantly, a new and innovative approach was
given in several of the arguments presented throughout this work. This work represents a contribution
in the study of partial differential equations with fractional diffusion. Currently, there has been an
increase in interest in the study and applications of partial differential equations with this operator.
As one of the problems which remain open after the conclusion of this work, it is still pending to
check if the integrability conditions for u∞ are necessary. Additionally, the case when d = 1 and
α ∈ [1, 2) still needs to be studied, and new techniques must be developed to tackle that case. This is
an interesting problem since the solution can be used to see how much time an (α, 1, β)-superprocess
spends in bounded Borel subset of Rd, see [14].
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[4] Jérôme Droniou and Cyril Imbert. Fractal first-order partial differential equations. Archive for
Rational Mechanics and Analysis, 182(2):299–331, 2006.

[5] Eugene B Dynkin et al. Superprocesses and partial differential equations. The Annals of Proba-
bility, 21(3):1185–1262, 1993.

[6] Stewart N Ethier and Thomas G Kurtz. Markov processes: characterization and convergence,
volume 282. John Wiley & Sons, 2009.

[7] Patricio Felmer and Ying Wang. Radial symmetry of positive solutions to equations involving the
fractional laplacian. Communications in Contemporary Mathematics, 16(01):1350023, 2014.

[8] Harley Flanders. Differentiation under the integral sign. The American Mathematical Monthly,
80(6):615–627, 1973.

[9] Gerald B Folland. Real analysis: modern techniques and their applications. Pure and Applied
Mathematics: A Wiley Series of Texts, Monographs and Tracts. John Wiley & Sons, New York,
second edition, 1999.

[10] Avner Friedman. Bounded entire solutions of elliptic equations. Pacific Journal of Mathematics,
44(2):497–507, 1973.

[11] Giulia Furioli, Tatsuki Kawakami, Bernhard Ruf, and Elide Terraneo. Asymptotic behavior and
decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity.
Journal of Differential Equations, 262(1):145–180, 2017.

[12] Yasuhiro Furusho. On decaying entire positive solutions of semilinear elliptic equations. Japanese
Journal of Mathematics. New series, 14(1):97–118, 1988.

37



[13] Kotaro Hisa and Kazuhiro Ishige. Existence of solutions for a fractional semilinear parabolic
equation with singular initial data. Nonlinear Analysis, 175:108–132, 2018.

[14] Ian Iscoe. A weighted occupation time for a class of measured-valued branching processes. Prob-
ability theory and related fields, 71(1):85–116, 1986.

[15] Bangti Jin, Raytcho Lazarov, Joseph Pasciak, and Zhi Zhou. Error analysis of a finite ele-
ment method for the space-fractional parabolic equation. SIAM Journal on Numerical Analysis,
52(5):2272–2294, 2014.

[16] Baiyu Liu and Li Ma. Radial symmetry results for fractional Laplacian systems. Nonlinear
Analysis: Theory, Methods & Applications, 146:120–135, 2016.

[17] L Mytnik and J Villa. Self-intersection local time of (\alpha, d,\beta) -superprocess. In Annales
de l’IHP Probabilités et statistiques, volume 43, pages 481–507, 2007.

[18] Amnon Pazy. Semigroups of linear operators and applications to partial differential equations,
volume 44. Springer Science & Business Media, New York, 2012.

[19] Lambertus A Peletier and James Serrin. Uniqueness of positive solutions of semilinear equations
in RN . Archive for Rational Mechanics and Analysis, 81(2):181–197, 1983.

[20] Sadao Sugitani. On nonexistence of global solutions for some nonlinear integral equations. Osaka
Journal of Mathematics, 12(1):45–51, 1975.

[21] Juan Luis Vázquez. Asymptotic behaviour for the fractional heat equation in the euclidean space.
Complex Variables and Elliptic Equations, 63(7-8):1216–1231, 2018.

38


	PORTADA
	Contents
	Resumen
	Abstract
	Introduction
	Background
	1. Preliminaries
	1.1 Elementary results
	1.2 Subfunctions and superfunctions
	1.3 Existence
	1.4 Semigroups
	1.5 The �-stable density
	1.6 The fractional Laplacian

	2. Existence, regularity and positivity ofsolutions
	2.1 Local existence
	2.2 Temporal regularity
	2.3 Positivity
	2.4 Global existence

	3. Integrability and asymptotic behavior
	Conclusions and discussions

