
CENTRO DE CIENCIAS BÁSICAS

DEPARTAMENTO DE MATEMÁTICAS Y FÍSICA

TESIS

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL
DIFFUSION: NUMERICAL METHODS AND APPLICATIONS TO IMAGE

DENOISING

PRESENTA

Joel Alba Pérez

PARA OPTAR POR EL GRADO DE MAESTRO EN CIENCIAS EN
MATEMÁTICAS APLICADAS

TUTOR

Dr. Jorge Eduardo Macías-Díaz

COMITÉ TUTORAL

Dr. José Antonio Guerrero Díaz de León (Co-tutor)
Dra. Stefania Tomasiello (Asesora)

Aguascalientes, Ags., April 17, 2019







UnlUERSIOaO aUTOnOma  
DE aGUaSCaUEnTES  

rOItMATc) DE (ARTA DF. VOTO ..\pnOIMTQR rQ 

M. en C. José de Jesús Ruiz Gallegos 
DECANO DEL CENTRO DE CIENCIAS BÁSICAS 
PRESENTE 

Por medio de la presente, en mi calidad de sinodal designado del estudiante JOEL ALBA PÉREZ con 
ID 128308 quien realizó la tesis titulada: PARABOLlC PARTIAL DIFFERENTIALEQUATlONS WITH 

FRACTIONAL DlfFUSION: NUMERICAL METHOOS ANO APPLlCATIONS TO H.1AGE OENOISING, y 
con fundamento en el Artículo 175, Apartado II del Reglamento General de Docencia, me permito 
emitir el VOTO APROBATORIO, para que él pueda proceder a imprimirla, y así continuar con el pro-
cedimiento administrati vo para la obtención del grado. 

Pongo lo anterior a su digna consideración y, sin otro particular por el momento, me permito e.n -
viarle un cordial saludo. 

ATENTAMENTE  
"Se Lumen Proferre"  

Aguascalien tes, Ags., a 22 de Enero de 2019  

Dra . Stefania Tomasiello 

c.c.p.- Interesado 
c.c.p.- Secretaría de Investigación y Posgrado 
c.c.p.- Consejero Académico 
c.c.p.- Minuta Secretario Técnico 





Acknowledgments

I thank the Universidad Autónoma de Aguascalientes to give me the opportunity to belong to this

program, is a big honor to study at this prestigious university. Also, I want to mention that this work

wouldn’t have been possible without the financial support of CONACYT. I want to thank my parents

Olivia and Mario, brothers Pepe, Diego and Tito d, aunts Güi and Irma and all my family to believe

in me in every moment, this work is for you. I want to highlight all the support that I received from

my advisor, Dr. Jorge Eduardo Macias Diaz, thank you so much to give me the opportunity to work

with you, I’m so thankful to have had you as a teacher and mentor, accept my heartfelt gratitude for

your time, patient, dedication, and knowledge.

Joel Alba Pérez



Contents

List of Tables 3

List of Figures 3

Resumen 5

Abstract 6

Introduction 7

1 Preliminaries 10
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Transform Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 From Discrete to Continuous Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Fractional three-dimensional lattice equation . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 A method for anomalously convective and diffusive problems 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Fractional centered differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Finite-difference scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Equivalent representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 A structure-preserving Bhattacharya method 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1



3.4 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Conclusions and discussions 59



List of Tables

1.1 Examples of Riesz fractional derivatives for some interaction terms coefficients. The

first column is the interaction term coefficient and the second column is the coefficient

and the Riesz fractional derivative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3



List of Figures

2.1 Snapshots of the approximate solution u of the model (2.4) as a function of (x,y) ∈
B = [−200,200] × [−200,200], for the times (a) t = 5, (b) t = 10, (c) t = 15, (d) t = 20,

(e) t = 25 and (f) t = 30. The model uses the parameters α1 = α2 = 2, λ1 = λ2 = 0,

p = 1, γ = 0.6, and f is given by (2.6). We employed homogeneous Dirichlet conditions

on the boundary of B, along with the initial profiles (2.99). Computationally, we let

hx1
= hx2

= 4 and τ = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Snapshots of the approximate solution u of the model (2.4) as a function of (x,y) ∈
B = [−200,200] × [−200,200], for the times (a) t = 5, (b) t = 10, (c) t = 15, (d) t =

20, (e) t = 25 and (f) t = 30. The model uses the parameters α1 = 1.9, α2 = 1.95,

β1 = 0.8, β2 = 0.9, λ1 = λ2 = 1, p = 1, γ = 0.6, and f is given by (2.6). We employed

homogeneous Dirichlet conditions on the boundary of B, along with the initial profiles

(2.99). Computationally, we let hx1
= hx2

= 4 and τ = 0.05. . . . . . . . . . . . . . . . . . 39

3.1 Snapshots of the approximate solution u of the model (3.5) as a function of (x,y) ∈ B =

[−200,200] × [−200,200], for the times (a) t = 200, (b) t = 300, (c) t = 400, (d) t = 500,

(e) t = 600 and (f) t = 700. The model uses the parameters α1 = α2 = 2, λ1 = λ2 = 0,

p = 1, κ = 1, and f is given by (??). We employed homogeneous Dirichlet conditions

on the boundary of B, along with the initial profiles (3.75). Computationally, we let

hx1
= hx2

= 4 and τ = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Snapshots of the approximate solution u of the model (3.5) as a function of (x,y) ∈
B = [−200,200] × [−200,200], for the times (a) t = 200, (b) t = 300, (c) t = 400, (d)

t = 500, (e) t = 600 and (f) t = 700. The model uses the parameters α1 = 1.9, α2 = 1.95,

β1 = 0.8, β2 = 0.9, λ1 = λ2 = 1, p = 1, κ = 1, and f is given by (??). We employed

homogeneous Dirichlet conditions on the boundary of B, along with the initial profiles

(3.75). Computationally, we let hx1
= hx2

= 4 and τ = 0.05. . . . . . . . . . . . . . . . . . 57

4



Resumen

En este manuscrito, trabajamos con las ecuaciones de Burgers–Fisher y Burgers–Huxley en multiples

dimensiones, las cuales son ecuaciones diferenciales parabólicas. En estas ecuaciones tomamos el tér-

mino de difusión y advección como fraccionario de tipo Riesz, y el término de reacción como no lin-

eal. Consideramos condiciones iniciales y de frontera como positivas y acotadas. Existen soluciones

analíticas de estas ecuaciones que son del tipo onda viajera, positivas y acotadas. Proponemos dos

métodos basados en diferencias finitas para aproximar las soluciones de estas ecuaciones. El primer

método es un método implícito el cual está basado en la técnica de Crank–Nikolson. El segundo

método es un método explicito el cual está basado en la técnica de Bhattacharya. Ambos métodos

se basan en el uso de las diferencias centradas fraccionarias, ya que éstas permiten aproximar la

derivada fraccionaria de Riesz. Para cada método se estudian sus propiedades estructurales (exis-

tencia, unicidad, positividad y acotación) como sus propiedades numéricas (consistencia, estabilidad

y convergencia). Por último, para cada método se hacen simulaciones, con el objetivo de ilustrar

las aproximaciones a las soluciones analíticas y, además, mostrar que los métodos son capaces de

preservar sus propiedades estructurales y numéricas.
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Abstract

In this manuscript, we work with the well–known Burgers–Fisher and Burgers–Huxley equations in

multiple dimensions, which are parabolic differential equations. In these equations, the diffusion

and advection terms are fractional of Riesz type, and the reaction term is nonlinear. We consider

the initial–boundary conditions as positive and bounded. We know that some analytical solutions of

these equations are traveling–wave solutions, positive and bounded. We propose two methods based

on finite differences to approximate the solutions of these equations. The first method is an implicit

method which is based on the Crank–Nicolson technique. The second method is an explicit method

which is based on the Bhattacharya approach. Both methods are based on the use of fractional cen-

tered differences, which help us to approximate the Riesz fractional derivatives. For each method, we

study the structural properties (existence, uniqueness, positivity and boundedness) and the numer-

ical properties (consistency, stability, and convergence). Finally, for each method, we perform some

simulations to depict the numerical approximations. Moreover, we show that all methods are capable

to preserve the structural properties.
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Introduction

Aims and scope

Partial differential equations have been a fundamental piece in the scientific and technological devel-

opment in the world. They allow us, in between other things, to study the structure and the behavior

of diverse physical phenomena in the nature. In this thesis, we work with Burgers’ equation who

was proposed as a model of turbulent fluid motion by J. M. Burgers in several articles [1]. We can

obtained the Burgers’ equation as result of combining nonlinear wave motion with linear diffusion

and is the simplest model for analyzing combined effect of nonlinear advection and diffusion [2]. In

recent years, there has been an interest in the Burgers’ equation, since, this equatuion is found natu-

rally in a number of diverse contexts [3]. Is for this reason that this equation is used to study the gas

dynamics [4] , traffic flow [5], acoustic [6], heat conduction [7], among others physical phenomena.

Fractional calculus is the field of mathematical analysis which deals with the investigation and

applications of integrals and derivatives of arbitrary order [8]. Recently, considerable interest in

fractional calculus has been stimulated by the applications found in numerical analysis and different

areas of physics and engineering [8]. Notable contributions to the fractional calculus were made

successively by Laplace, Fourier, Abel, Liouville, Riemann, Heaviside and – in the present century –

by Bateman, Hardy, Weyl, Riesz, and Courant, as well as by many pure and applied mathematicians

of lesser reknown [9]. Due to their contributions, we count with the Riemann–Liouville, Marchaud–

Hadamard, Weyl, Riesz, and Grünwald–Letnikov fractional derivatives in space who are defined in

[10] and the Caputo fractional derivative in time who is defined in [11]. In particular, this discipline

involves the notion and methods of solving of differential equations involving fractional derivatives

of the unknown function, called fractional differential equations [12].

The study of physical phenomena with long-range interactions has been an interesting topic in

last years due to their several applications. We can find applications in optical solitons [13], molecular

dynamics [14], among others. We follow the work made by Vasily E. Tarasov [15]. We considered a

discrete interacting particle system in one dimension, that is modeled by a discrete motion equation.

The objective is to obtain the continuous motion equation, where we can find the Riesz fractional

derivative. In this thesis, we use the Riesz fractional derivative due to his nature, moreover, this

derivative allows us to preserve the properties and features of the physical phenonema.

Image processing is an important and wide topic of investigation in computer science due to
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several different methods to restore the information on a digital picture. Moreover, the work of

Perona and Malik in anisotropic diffusion was the cornerstone for more development of this topic

[16]. In this thesis, we are interested in methods based on partial differential equations to image

denoising since are methods that preserve edges and features of the image. However, sometimes the

use of these methods presents drawbacks due to the selection of parameters in the partial differential

equation, in the discretization and the numerical scheme that we will use [17].

The purpose of this thesis is to apply a method based on Burgers–Fisher and Burger–Huxley equa-

tions in multiple dimensions where the diffusion, convection, and advection terms are fractionals of

Riesz type to image denoising. Moreover, we consider positive and bounded initial–boundary con-

ditions, and the rectangular domain is closed and bounded. We work with two discrete methods,

one based in Crank–Nikolson implicit technique and other in Bhattacharya explicit technique, both,

in finite differences. For each technique, we show the structural properties (numerical solutions ex-

ists and are unique, positive and bounded). Also, we show the numerical properties. The method

with Crank–Nikolson technique has quadratic consistency, is stable and has quadratic convergence.

The method with Bhattacharya technique has linear consistency, is stable ans has linear convergence.

Finally, we implement the methods in different images to appreciate the obtained results.

Work Organization

This thesis is sectioned as follows.

• Chapter 1 provides a way to obtain the Riesz fractional derivative in space. Indeed, we work

with a discrete system of interacting particles, where the distance between particles is uniform

and the particles are in fact oscillators. We can model the dynamic of this system using a dis-

crete equation of motion. Subsequently, we apply a serie of operations to discrete equation

motion to obtain a continuous equation motion, where we can find the Riesz fractional deriva-

tive in space.

• Chapter 2 presents two partial differential equations, the well know Burgers–Fisher and Burgers–

Huxley equations in two dimensions, where the diffusion and advection terms are fractionals

of Riesz type, and the initial–boundary conditions are positive and bounded. We use a lin-

ear three–steps Crank–Nikolson technique with fractional centered differences to get approx-

imations to analytical solutions [18] which are positive and bounded. It is worth mentioning

that the finite–difference method preserves the positivity and the boundedness of the approx-

imations. We show that our technique has quadratic consistency, is stable and has quadratic

convergence order.

• Chapter 3 shows a parabolic equation where the diffusion and advection terms are fractionals of

Riesz type. We work with the generalization of the Burgers–Fisher and Burgers–Huxley models.

We want to approximate the solutions of this models using a variable–step Bhattacharya–type

finite–difference scheme with the fractional centered differences. This technique is explicit

since we obtain the solutions in an easy way and preserves the positivity, boundedness and the

monotonicity of the approximations as the analytical solutions. Also, this technique is consis-

tency, stable and convergent.



• This thesis closes with a section of conclusions for each chapter and a list of relevant references.
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1. Preliminaries

1.1 Introduction

Derivatives are one of the most important tools in mathematics, which were developed by Isaac New-

ton and Gottfried Leibniz. Derivatives allow us study easy physical models as complicate physical

models using partial differential equations. Also, there exists models based in partial differential

equations to image restoration, as example we have the diffusion equation [19], [20].

Equations which involve derivatives or integrals of noninteger order are very successful in de-

scribing anomalous kinetics and transport and continuous time random walks. Usually, the fractional

equations for dynamics or kinetics apper as some phenomenological models. Recently, a method to

obtain fractional analogues of equations of motion was considered for sets of coupled particles with

long-range interaction. Examples of systems with interacting oscillators, spin or waves are used for

many applications in physics [21] , chemistry [22] and biology [23].

In this chapter we consider a physical discrete system of interacting particles, where the system

is modeled by a discrete motion equation. The aim is to obtain the continuous motion equation of

this physical system where we can find the Riesz fractional derivative in space, using the continuous

limit process. The continuous limit process is a transform that involves the Fourier series transform,

the limit when the distance between particle tends to zero and the inverse Fourier transform. We

define the concept of α-interactions, since the α-interaction give us the order in the Riesz fractional

derivative. Also, we generalize the physical discrete system in the three-dimension case to obtain the

continuous analogous.

1.2 Transform Operation

In this subsection we define the discrete model which describes the dynamic of the oscillators. Also,

we follow the concept of Fourier series transform and the inverse Fourier transform to define a trans-

form operation, this transform operation will help us to get the continuous model analogous to dis-

crete model.

Let t > 0, we consider a system of interacting particles called oscillators whose dynamics is de-
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scribed by the equations of motion

dun
dt

(t) = In(u(t)) +F(un(t)) (1.1)

for all n ∈ Z, where un are displacements from the equilibrium. The term F(un) which represent an

interaction of the oscillators un with an external force, the term In(u) for linear long-range interaction

is defined by

In(u) ≡
∞∑

m=−∞
m,n

J(n,m)[un −um] (1.2)

where J ∈ L2(Z) describes the dynamical between particles.

We consider a wide class of interactions (1.2) that create a possibility of presenting the continuous

medium equations with fractional derivatives. We need to define the operation which transforms the

discrete model (1.1) for un(t) into continuous medium equation for u(x, t). We assume that un(t) are

Fourier coefficients of some function û(k, t). Then we define the field û(k, t) on [−K/2,K/2] as

û(k, t) =
∞∑

n=−∞
un(t)e−ikxn = F∆{un(t)}, (1.3)

where xn = n∆x, ∆x = 2π/K is the distance between oscillators and

un(t) =
1
K

∫ K/2

−K/2
û(k, t)eikxndk = F −1

∆ {û(k, t)}. (1.4)

These equations are the basis for the Fourier transform, which is obtained by transforming from

a discrete variable to a continuous one in the limit ∆x −→ 0 (K −→ ∞). The Fourier transform can

be derived from (1.3) and (1.4) in the limit as ∆x −→ 0. Replace the discrete un(t) = (2π/K)u(xn, t)

with continuous u(x, t) while letting xn = n∆x = 2πn/K −→ x. Then change the sum to an integral and

equations (1.3), (1.4) become

ũ(k, t) =
∫ ∞
−∞
u(x, t)e−ikxdx = F {u(x, t)}, (1.5)

u(x, t) =
1

2π

∫ ∞
−∞
ũ(k, t)eikxdk = F −1{ũ(k, t)}. (1.6)

Here,

ũ(k, t) = Lũ(k, t) (1.7)

and L denotes the passage to the limit ∆x −→ 0 (K −→ ∞). Note that ũ(k, t) is a Fourier trans-

form of the field u(x, t) and û(k, t) is a Fourier series transform of un(t), where we can use un(t) =

(2π/K)u(n∆x, t). The function ũ(k, t) can be derived from û(k, t) in the limit ∆x −→ 0.

The map of a discrete model into the continuous one can be defined by the transform operation.

Definition 1.1. We define the transform operation T̂ as a combination of the following operations:

1. The Fourier series transform:

F∆ : un(t) −→ û(k, t) (1.8)
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2. The passage to the limit ∆x −→ 0:

L : û(k, t) −→ ũ(k, t) (1.9)

3. The inverse Fourier transform:

F −1 : ũ(k, t) −→ u(x, t) (1.10)

Then, the operation

T̂ = F −1LF∆ (1.11)

is called a transform operation, since it performs a transform of a discrete model of coupled oscillators

into the continuous medium model.

1.3 From Discrete to Continuous Equation

The main aim in this subsection is to define the concept of α-interaction to obtain the continuous

equation with Riesz fractional derivative from discrete equation (1.1), using the transform operator

(1.11) previously defined. Let us consider the interparticle interaction that is described by (1.2), then

for J ∈ L2(Z) and for all m,n ∈Z, the term J(n,m) satisfies the condition

J(n,m) = J(n−m) = J(m−n),
∞∑

k=−∞
|J(k)|2 <∞ (1.12)

and note that J(−k) = J(k) for all k ∈Z.

Definition 1.2. The interaction terms (1.2) and (1.12) in the equation of motion (1.1) are called α-

interaction if the function

Ĵα(k) =
∞∑

n=−∞
n,0

e−iknJ(n) = 2
∞∑
n=1

J(n)cos(kn) (1.13)

satisfies the condition

lim
k−→0

|Ĵα(k)− Ĵα(0)|
|k|α

= Aα (1.14)

where α > 0 and 0 < |Aα | <∞.

Condition (1.14) means that Ĵα(k)− Ĵα(0) =O(|k|α), i.e.

Ĵα(k)− Ĵα(0) = Aα |k|α +Rα(k), (1.15)

for k −→ 0, where

lim
k−→0

Rα(k)
|k|α

= 0 (1.16)

Proposition 1.1. The transform operation T̂ maps the discrete equations of motion

dun(t)
dt

=
∞∑

m=−∞
m,n

J(n,m)[un(t)−um(t)] +F(un(t)) (1.17)
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with noninteger α-interaction into the fractional continuous medium equations:

∂
∂t
u(x, t)−GαAα

∂α

∂|x|α
u(x, t)−F(u(x, t)) = 0 (1.18)

where ∂α/∂|x|α is the Riesz fractional derivative and Gα = |∆x|α is a finite parameter.

Proof. To derive the equation for the field û(k, t), we multiply equation (1.17) by e−ikn∆x, and summing

over n from −∞ to∞. Then,

∞∑
n=−∞

e−ikn∆x
dun(t)
dt

=
∞∑

n=−∞

∞∑
m=−∞
m,n

e−ikn∆xJ(n,m)[un −um] +
∞∑

n=−∞
e−ikn∆xF(un) (1.19)

The left-hand side of (1.19) gives

∞∑
n=−∞

e−ikn∆x
dun(t)
dt

=
d
dt

∞∑
n=−∞

e−ikn∆xun(t) =
dû(k, t)
dt

(1.20)

where û(k, t) is defined by (1.3). The second term on the right-hand side of (1.19) is

∞∑
n=−∞

e−ikn∆xF(un) = F∆{F(un)}. (1.21)

The first term on the right-hand side of (1.19) is

∞∑
n=−∞

∞∑
m=−∞
m,n

e−ikn∆xJ(n,m)[un −um] =
∞∑

n=−∞

∞∑
m=−∞
m,n

e−ikn∆xJ(n,m)un

−
∞∑

n=−∞

∞∑
m=−∞
m,n

e−ikn∆xJ(n,m)um.
(1.22)

The first term on the right-hand side of (1.22) gives

∞∑
n=−∞


∞∑

m=−∞
m,n

e−ikn∆xJ(n,m)un

 =
∞∑

n=−∞

e−ikn∆xun
∞∑

m=−∞
m,n

J(n,m)


=

∞∑
n=−∞

e−ikn∆xun
∞∑

m′=−∞
m′,0

J(m′)


=

∞∑
n=−∞

e−ikn∆xunĴα(0)

= û(k, t)Ĵα(0),

(1.23)

since m,n ∈ Z, we can take m′ ∈ Z such that m = m′ + n, and where we use (1.12) with J(n,m′ + n) =
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J(m′), the transform (1.3) and

Ĵα(k∆x) =
∞∑

n=−∞
n,0

e−ikn∆xJ(n) = F∆{J(n)}. (1.24)

Similarly, the second term on the right-hand side of (1.22) gives

∞∑
n=−∞


∞∑

m=−∞
m,n

e−ikn∆xJ(n,m)um

 =
∞∑

m=−∞


∞∑

n=−∞
n,m

e−ikn∆xJ(n,m)um


=

∞∑
m=−∞

um


∞∑

m=−∞
m,n

e−ikn∆xJ(n,m)


=

∞∑
m=−∞

um


∞∑

n′=−∞
n′,0

e−ik(n′+m)∆xJ(n′)


=

∞∑
m=−∞

um


∞∑

n′=−∞
n′,0

e−ikn
′∆xe−ikm∆xJ(n′)


=

∞∑
m=−∞

ume
−ikm∆x


∞∑

n′=−∞
n′,0

e−ikn
′∆xJ(n′)


=

∞∑
m=−∞

ume
−ikm∆x Ĵα(k∆x)

= û(k, t)Ĵα(k∆x)

(1.25)

sincem,n ∈Z, we can take n′ ∈Z such that n = n′+m, and where we use (1.12) with J(n′+m,m) = J(n′),

the transform (1.3) and (1.24).

As a result, equation (1.19) has the form

dû(k, t)
dt

= [Ĵα(0)− Ĵα(k∆x)]û(k, t) +F∆{F(un)}. (1.26)

where F∆{F(un)} is an operator notation for the Fourier series transform of F(un).

The Fourier series transform F∆ of (1.17) gives (1.26). We will be interested in the limit ∆x −→ 0.

Using (1.1), equation (1.26) can be written as

dû(k, t)
dt

− [−Aα |k∆x|α −Rα(k∆x)]û(k, t)−F∆{F(un)} = 0

then
dû(k, t)
dt

− |∆x|α[−Aα |k|α −Rα(k∆x)|∆x|−α]û(k, t)−F∆{F(un)} = 0

Finally, we have
dû(k, t)
dt

−Gα T̂α,∆(k)û(k, t)−F∆{F(un)} = 0 (1.27)
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where we use finite parameter Gα = |∆x|α and

T̂α,∆(k) = −Aα |k|α −Rα(k∆x)|∆x|−α . (1.28)

Note that Rα satisfies the condition

lim
∆x−→0

Rα(k∆x)
|∆x|α

= 0.

The expression for T̂α,∆(k) can be considered as a Fourier transform of the operator (1.2).

The passage to the limit ∆x −→ 0 for the third term of (1.27) gives

L : F∆F(un) −→LF∆F(un). (1.29)

Then,

LF∆{F(un)} = F {LF(un)} = F {F(Lun)} = F {F(u(x, t))} (1.30)

where we use LF∆ = F L.

As a result, equation (1.27) in the limit ∆x −→ 0 obtains

∂ũ(k, t)
∂t

−Gα T̂α(k)ũ(k, t)−F {F(u(x, t))} = 0, (1.31)

where

ũ(k, t) = Lû(k, t), T̂α(k) = LT̂α,∆(k) = −Aα |k|α .

The inverse Fourier transform of (1.31) gives

∂u(x, t)
∂t

−GαTα(x)u(x, t)−F(u(x, t)) = 0, (1.32)

where Tα(x) is an operator,

Tα(x) = F −1{T̂α(k)} = Aα
∂α

∂|x|α
. (1.33)

In (1.33), we used the connection [24] between the Riesz fractional derivative and its Fourier trans-

form |k|α←→−∂α/∂|x|α . As a result, we obtain continuous medium equations (1.18).

Example 1.1. In this example, we are interested to obtain the continuous motion equation where we

can find the Riesz fractional derivative considering the interaction term coefficient as J(n) = 1
n2 , then

the α-interaction is defined as follows

Jα(k) = 2
∞∑
n=1

cos(kn)
n2 =

1
6

(3k2 − 6πk + 2π2), 0 ≤ k ≤ 2π

thus

Aα = lim
k−→0

|Jα(k)− Jα(0)|
|k|α

= lim
k−→0

k2/2−πk
kα

= −π, if α = 1

and
∂
∂t
u(x, t) +πG1

∂
∂|x|

u(x, t)−F(u(x, t)) = 0

therefore, we have the Riesz fractional derivative of u(x, t) of order one with respect x.
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J(n) Tα(x)(
(−1)nπα+1

α+1

)
− (−1)nπ1/2

(α+1)|n|α+1/2L1(α + 3/2,1/2,πn) −∂α/∂|x|α
(−1)n

n2 −(1/2)∂2/∂x2

1
n2 −iπ∂/∂x

|n|−(β+1), (0 < β < 2,β , 1) −2Γ (−β)cos(πβ/2)∂β/∂|x|β
|n|−(β+1), (β > 2,β , 3,4, . . .) ζ(β − 1)∂2/∂x2

(−1)n

Γ (1+α/2+n)Γ (1+α/2−n) , (α > −1/2) − 1
Γ (α+1)∂

α/∂|x|α
(−1)n

a2−n2 − aπ
2sin(aπ)∂

2/∂x2

1
n! −2e∂2/∂x2

Table 1.1: Examples of Riesz fractional derivatives for some interaction terms coefficients. The first
column is the interaction term coefficient and the second column is the coefficient and the Riesz
fractional derivative.

Example 1.2. In this example, we are interested to obtain the continuous motion equation where we

can find the Riesz fractional derivative considering the interaction term coefficient as J(n) = 1
n! , then

the α-interaction is defined as follows

Jα(k) = 2
∞∑
n=1

cos(kn)
n!

= 2

 ∞∑
n=0

cos(kn)
n!

− 1

 = 2
[
ecos(k) cos(sin(k))− 1

]
thus

Aα = lim
k−→0

|Jα(k)− Jα(0)|
|k|α

= lim
k−→0

2ecos(k) cos(sin(k))− 2e
k2 = −2e, if α = 2

and
∂
∂t
u(x, t) + 2eG2

∂2

∂|x|2
u(x, t)−F(u(x, t)) = 0

therefore, we have the Riesz fractional derivative of u(x, t) of order two with respect x.

In table 1.1, we can find more examples about the Riesz fractional derivative. We are considering

more interaction term coefficients with its corresponding Riesz fractonal derivative.

1.4 Fractional three-dimensional lattice equation

In this part we consider the generalization of our system of interacting particles. We work the three-

dimensional case obtaining the continuous model with Riesz fractional derivative in each variable.

Then the dynamic of the particles is described by equations of motion

dun

dt
(t) =

∞∑
m=−∞
m,n

J(n,m)[un −um](t) +F(un(t)) (1.34)
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for all t > 0 and n = (n1,n2,n3) ∈Z3, and m = (m1,m2,m3) ∈Z3 where the coefficient satisfies J(n,m) =

J(n−m) = J(m−n). Analogously, we suppose that un(t) are Fourier coefficients of the function û(k, t):

û(k, t) =
∞∑

n=−∞
un(t)e−ikxn = F∆{un(t)}, (1.35)

where k = (k1, k2, k3) and

rn =
3∑
i=1

niai . (1.36)

Here, ai are the translational vectors of the lattice. The continuous medium model can be derived in

the limit |ai | −→ 0.

To derive the equation for û(k, t), we multiply (1.34) by e−ikrn , and summing over n. Then, we

obtain
dû(k, t)
dt

= [Ĵα(0)− Ĵα(ka)]û(k, t) +F∆{F(un)}, (1.37)

where F∆{F(un)} is an operator notation for the Fourier series transform of F(un) and

Ĵα(ka) =
∞∑

n=−∞
e−ikrnJ(n). (1.38)

Definition 1.3. For the three-dimensional lattice, we say that (1.38) is a α-interaction with α =

(α1,α2,α3), if satisfies the conditions

lim
ki−→0

|Ĵα(k)− Ĵα(0)|
|ki |αi

= Aαi , i = 1,2,3, (1.39)

where 0 < |Aαi | <∞.

Condition (1.39) means that

Ĵα(k)− Ĵα(0) =
3∑
i=1

Aαi |ki |
αi +

3∑
i=1

Rαi (k) (1.40)

where

lim
ki−→0

Rαi (k)
|ki |αi

= 0. (1.41)

Proposition 1.2. The transform operation T̂ defined in the previous section maps the discrete equations of
motion

dun
dt

(t) =
∞∑

m=−∞
m,n

J(n,m)[un −um](t) +F(un(t)) (1.42)

with noninteger α-interaction into the fractional continuous medium equations:

∂u(r, t)
∂t

= −
3∑
i=1

Aαi
∂αiu(r, t)
∂|x|αi

+F(u(r, t)). (1.43)

where we obtain the Riesz fractional derivative in each variable ∂α1 /∂xα1 , ∂α2 /∂yα2 and ∂α3 /∂zα3 .
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Proof. The proof of this proposition is analogous to proof of proposition 1.1.

1.5 Conclusion

In this chapter, we worked with a discrete system of particles which was modeled by a discrete mo-

tion equation. We defined a transform operation which help us to transform the discrete motion

equation to a continuos motion equation analogous. We defined the concept of α − intercation. In

the continuos motion equation we can find the Riesz fractional derivative of order α in space. We

extended the discrete system of particles to the three–dimensional case. This chapter is important

since we obtained the Riesz fractional derivative naturally, moreover, this derivative allows to keep

the features and structure of the physical phenomena that we are working.
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2. A method for anomalously

convective and diffusive problems

This chapter is motivated by a generalization of the well-known Burgers–Fisher and

Burgers–Huxley equations in multiple dimensions, considering Riesz fractional diffusion

and convection. Initial-boundary conditions, which are positive and bounded, are im-

posed on a closed and bounded rectangular domain. In this chapter we propose a finite-

difference method to approximate the positive and bounded solutions of the fractional

model. The methodology is a linear three-steps Crank–Nicolson technique which is based

on the use of fractional centered differences. The properties of fractional centered dif-

ferences are employed to establish the existence and the uniqueness of solutions of the

finite-difference method, as well as the capability of the technique to preserve the positiv-

ity and the boundedness of the approximations. We show in this chapter that the method

is capable of preserving some of the constant solutions of the continuous model. Addi-

tionally, we prove that our technique is a second-order consistent, stable and quadratically

convergent scheme. Suitable bounds for the numerical solutions are also derived in this

work. Finally, some illustrative simulations show that the method is able to preserve the

positivity and the boundedness of the numerical approximations, in agreement with the

analytic results proved in this chapter.

2.1 Introduction

Considering the before chapter, the use of Riesz fractional derivatives in the modeling of physical

problems through partial differential equations is justified mathematically in the continuous limit of

certain particle systems. Moreover, various fractional models from science and engineering are also

capable of preserving some physical quantities. As examples, we may consider some gradient and

Hamiltonian extensions of the Hemlholtz conditions for phase space and some fractional equivalents

of the Fokker–Planck equation for fractal media [25], continuous-limit approximations of systems

of coupled oscillators with power-law interactions [26] and mathematical models with fractional dy-

namics resulting in optimal control theory [27]. It is important to point out that some of these quanti-

ties are fractional forms of Hamiltonians [25], whence a natural direction of investigation in scientific

computing is the design of new computational techniques that preserve the relevant quantities of a

physical system described by fractional partial differential equations. It is worth pointing out that
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this task has been accomplished recently for fractional hyperbolic partial differential equations that

extend the well known sine-Gordon and nonlinear Klein–Gordon models from relativistic quantum

mechanics, which are models for which a Hamiltonian function exists [28].

The literature also has reports of methods for fractional partial differential equations that do not

necessarily preserve the structure of the solutions, but most of the methods proposed are numerically

efficient techniques. For example, some highly accurate numerical schemes have been proposed for

multi-dimensional space variable-order fractional Schrödinger equations [29] and some techniques

have been used to approximate the solutions of Riesz fractional advection-dispersion equations [30].

Other approximation methods based on Legendre polynomials have been designed to solve the frac-

tional two-dimensional heat conduction equation [31], to approximate the solutions of the multi-term

time-fractional wave-diffusion equation [32], to solve numerically the two-dimensional variable-

order fractional percolation equation in non-homogeneous porous media [33], to estimate the so-

lutions of (3+1)-dimensional generalized fractional KdV–Zakharov–Kuznetsov equations through an

improved fractional sub-equation method [34] and to solve fractional sub-diffusion equations with

variable coefficients [35]. As a conclusion, many reports show that the development of numerical

techniques to solve fractional partial differential equations has been a fruitful avenue of research,

but few reports have striven to design structure-preserving techniques for those systems.

In this work, the notion of ‘structure preservation’ not only refers to the capability of numerical

methods to preserve analogues of physical quantities. More generally, these concepts also refer to the

capacity of a computational technique to preserve mathematical features of the relevant solutions

of continuous systems. Such features may naturally arise from the physical context of the prob-

lem. A typical example is the condition of positivity (or non-negativity) of the solutions, which is a

natural requirement for problems in which the variables of interest are measured in absolute scales

[36]. Other characteristics include the boundedness [37], the monotonicity [38] and the convexity

of approximations [39]. In the present work, we will consider an initial-boundary-value problem

governed by a multidimensional parabolic equation with Riesz fractional diffusion and convection.

The problem is a generalization of various equations from mathematical physics, including the well

known Burgers–Fisher and the Burgers–Huxley models, which are equations for which there exist

positive and bounded solutions under suitable conditions. In this manuscript, we will propose a

structure-preserving and numerically efficient technique to approximate the solutions of that model

using fractional centered differences.

2.2 Preliminaries

2.2.1 Mathematical model

Throughout this work, we suppose that a,b,c,d ∈ R satisfy a < b and c < d, and we assume that

T > 0. Assume that B = (a,b) × (c,d) and define Ω = B × (0,T ). We will employ B and Ω to represent

respectively the closures of B and Ω under the standard topology of R3, and we will use ∂B to denote

the boundary of B. In this manuscript, u :Ω→R will represent a function, and let x = (x1,x2).

Definition 2.1. Let α > −1 and suppose that n is a nonnegative integer such that n − 1 < α ≤ n. The

Riesz fractional derivatives of u of order α with respect to x1 and with respect to x2 at the point (x, t)
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are defined respectively by

∂αu
∂|x1|α

(x, t) =
−1

2cos(πα2 )Γ (n−α)
∂n

∂xn1

∫ b

a

u(ξ,x2, t)dξ
|x1 − ξ |α+1−n , ∀(x, t) ∈Ω, (2.1)

∂αu
∂|x2|α

(x, t) =
−1

2cos(πα2 )Γ (n−α)
∂n

∂xn2

∫ d

c

u(x1,ξ, t)dξ
|x2 − ξ |α+1−n , ∀(x, t) ∈Ω. (2.2)

Here Γ is the gamma function defined by

Γ (z) =
∫ ∞

0
sz−1e−sds, ∀z > 0. (2.3)

For the remainder of this work, we will use αi , βi and λi to represent nonnegative real numbers

such that 1 < αi ≤ 2, 0 < βi < 1 for each i ∈ {1,2}. Let p ≥ 0, and let φ : B→R and ψ : ∂B× [0,T ]→R be

functions whose ranges are subsets of some closed and bounded interval I ⊆R. Assume additionally

that the compatibility condition φ(x) = ψ(x,0) holds for each x ∈ ∂B. With these conventions, the

problem under consideration in this work is the nonlinear initial-boundary-value problem

∂u
∂t

(x, t) =
2∑
i=1

∂αiu
∂|xi |αi

(x, t) +up(x, t)
2∑
i=1

λi
∂βiu

∂|xi |βi
(x, t) +u(x, t)f (u(x, t)), ∀(x, t) ∈Ω,

such that

 u(x,0) = φ(x), ∀x ∈ B,
u(x, t) = ψ(t), ∀(x, t) ∈ ∂B× [0,T ].

(2.4)

Here, f is in general a real-valued function defined on some open subinterval of [0,ρ], for some ρ > 0.

For practical purposes, we may assume that u(x, t) ∈ [0,ρ] for each (x, t) ∈Ω, and that f has the form

f (u(x, t)) = 1−up(x, t), ∀(x, t) ∈Ω, (2.5)

or

f (u(x, t)) = (1−up(x, t))(up(x, t)−γ), ∀(x, t) ∈Ω. (2.6)

The partial differential equation (2.4) is a convection-diffusion-reaction model that generalizes

many particular equations from mathematical physics. For instance, the convection term is a gener-

alized form of the corresponding term in the classical Burgers’ equation [40]. Meanwhile, the reaction

factor (2.5) was studied independently and simultaneously by R. A. Fisher [41] and A. N. Kolmogorov,

I. G. Petrovskii and N. Piskunov [42] in 1937 in the context of population dynamics, and the reaction

law (2.6) is a form of the Hodgkin–Huxley regime appearing in some studies on the electric activity

of nerves [43]. In view of these remarks, the model (2.4) with reaction factor f given by (2.5) is a frac-

tional generalized Burgers–Fisher equation, while the equation (2.4) with reaction (2.6) is a fractional

generalized Burgers–Huxley equation.

The following examples provide exact traveling-wave solutions of the one-dimensional Burgers–

Huxley and the Burgers–Fisher equations when p = 1. It is worth noting that these functions are

positive and bounded.

Example 2.1 (Burgers–Fisher equation). The one-dimensional partial differential equation of (2.4)

with reaction (2.5), α1 = 2, β1 = 1, λ = λ1 and p = 1 has traveling-wave solutions which are bounded
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within the interval (0,1), one example being the function

u(x, t) =
1
2
− 1

2
tanh

[λ
4

(
x −

(λ
2

+
2
λ

)
t
)]
, ∀(x, t) ∈R×R+. (2.7)

Clearly, this function is a traveling-wave front that connects asymptotically the stationary solutions

u = 0 and u = 1 of our model. Moreover, for every fixed x0 ∈ R, the function u(x0, t) is monotone in

time. Likewise, for every fixed t0 ∈R+, u(x, t0) is a monotone function in the variable x.

Example 2.2 (Burgers–Huxley equation). A one-dimensional form of our Burgers–Huxley model has

been investigated in the literature [18] when α1 = 2, β1 = 1, λ = λ1 and p = 1. In that case, the

Burgers–Huxley model has the traveling-wave solutions

u±(x, t) =
1
2

+
1
2

tanh
[
c±(x − v±1 t)

]
, ∀(x, t) ∈R×R+, (2.8)

and

u±(x, t) =
γ

2
+
γ

2
tanh

[
c±γ(x − v±2 t)

]
, ∀(x, t) ∈R×R+, (2.9)

where

c± =
λ±
√
λ2 + 8
8

, (2.10)

v±1 = −λ
2

+
(1− 2γ)(λ±

√
λ2 + 8)

4
, (2.11)

v±2 = −
γλ

2
−

(2−γ)(λ±
√
λ2 + 8)

4
(2.12)

(see [44]). These two solutions are monotone fronts that are bounded within (0,1) or within (0,γ),

respectively.

2.2.2 Fractional centered differences

In this work, we follow a finite-difference approach to approximate the solutions of (2.4), and use

fractional centered differences to approximate Riesz space-fractional derivatives. In the present sec-

tion, we recall the definition of fractional centered differences and record their most important prop-

erties [45].

Definition 2.2. For any function f : R→R, and any h > 0 and α > −1, the fractional centered difference
of order α of f at the point x is defined as

∆
(α)
h f (x) =

∞∑
k=−∞

g
(α)
k f (x − kh), ∀x ∈R, (2.13)

where

g
(α)
k =

(−1)kΓ (α + 1)
Γ (α2 − k + 1)Γ (α2 + k + 1)

, ∀k ∈Z. (2.14)

For computational purposes, it is convenient to possess an iterative formula to calculate the coef-
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ficients of the sequence (g(α)
k )∞k=−∞. Using induction one may readily check that

g
(α)
0 =

Γ (α + 1)
Γ (α/2 + 1)2 , (2.15)

g
(α)
k+1 =

(
1− α + 1

α/2 + k + 1

)
gk , ∀k ∈N∪ {0}. (2.16)

Lemma 2.1 (Wang et al. [46]). If 0 < α ≤ 2 and α , 1 then the coefficients (g(α)
k )∞k=−∞ satisfy:

(a) g(α)
0 > 0,

(b) g(α)
k = g(α)

−k < 0 for all k , 0, and

(c)
∞∑

k=−∞
g

(α)
k = 0. As a consequence, it follows that g(α)

0 = −
∞∑

k=−∞
k,0

g
(α)
k .

Lemma 2.2 (Wang et al. [46]). Let f ∈ C5(R), and assume that all its derivatives up to order five are
integrable. If 0 < α ≤ 2 and α , 1 then, for almost all x,

−
∆αh f (x)

hα
=
∂αf (x)
∂|x|α

+O(h2). (2.17)

2.3 Numerical method

2.3.1 Finite-difference scheme

Let Iq = {1, . . . , q} and Iq = Iq ∪ {0}, for each q ∈ N. In this work, we will follow a finite-difference

approach to solve the system (2.4). Let K,M,N ∈ N, and define the spatial partition norms hx1
=

(b − a)/M and hx2
= (d − c)/N in the x1 and the x2 directions, respectively. We will consider uniform

partitions of the intervals [a,b] and [c,d], respectively, of the forms

a = x1,0 < x1,1 < . . . < x1,m < . . . < x1,M = b, ∀m ∈ IM , (2.18)

c = x2,0 < x2,1 < . . . < x2,n < . . . < x2,N = d, ∀n ∈ IN . (2.19)

Let J = IM−1 × IN−1, J = IM × IN and ∂J = J ∩∂B. We will also fix a non-necessarily uniform partition

of [0,T ] consisting of K subintervals, namely,

0 = t0 < t1 < . . . < tk < . . . < tK = T , ∀k ∈ IK . (2.20)

Define τk = tk+1−tk , for each k ∈ IK−1. For each n ∈ IN andm ∈ IM , let vkm,n represent an approximation

to the exact value of the solution u of (2.4) at (x1,m,x2,n, tk), and define xm,n = (x1,m,x2,n) and φim,n =

φi(xm,n) for i = 0,1. Here φi will represent the exact solution of (2.4) at the time ti . Let ψkm,n =

ψ(xm,n, tk) for each (m,n) ∈ ∂J and k ∈ IK .

In the present work, we will employ the following discrete operators for each (m,n) ∈ J and k ∈

23



IK−1:

δ
(1)
t vkm,n =

vk+1
m,n − vk−1

m,n

2τk
, (2.21)

µ
(1)
t v

k
m,n =

vk+1
m,n + vk−1

m,n

2
. (2.22)

Obviously, these operators provide second-order approximations of the partial derivative of u with

respect to t at (xm,n, tk) and the value of u at that point. Without loss of generality in the next proofs

we consider a uniform partition of [0,T ].

Lemma 2.3. Let v ∈ C3(Ω) where Ω = B× (0,T ) with B = (a,b)× (c,d), then:

δ
(1)
t vkm,n =

∂v(x1,n,x2,m, tk)
∂t

+O(τ2) (2.23)

Proof. Expanding vk+1
m,n and vk−1

m,n in Taylor’s series with center in tk

vk+1
m,n = v(x1,m,x2,n, tk) +

∂v(x1,m,x2,n, tk)
∂t

(tk+1 − tk) +
∂2v(x1,m,x2,n, tk)

∂t2
(tk+1 − tk)2

2!

+
∂3v(x1,m,x2,n, t

∗)
∂t3

(tk+1 − tk)3

3!

(2.24)

and

vk−1
m,n = v(x1,m,x2,n, tk) +

∂v(x1,m,x2,n, tk)
∂t

(tk−1 − tk) +
∂2v(x1,m,x2,n, tk)

∂t2
(tk−1 − tk)2

2!

+
∂3v(x1,m,x2,n, t

∗∗)
∂t3

(tk−1 − tk)3

3!

(2.25)

where t∗ and t∗∗ are in (tk , tk+1) and (tk−1, tk), respectively. Also, as τ = tk+1 − tk and τ = tk − tk−1 then

in (2.24) and (2.25) we have:

vk+1
m,n = v(x1,m,x2,n, tk) +

∂v(x1,m,x2,n, tk)
∂t

τ +
∂2v(x1,m,x2,n, tk)

∂t2
τ2

2!

+
∂3v(x1,m,x2,n, t

∗)
∂t3

τ3

3!

(2.26)

and

vk−1
m,n = v(x1,m,x2,n, tk)−

∂v(x1,m,x2,n, tk)
∂t

τ +
∂2v(x1,m,x2,n, tk)

∂t2
τ2

2!

−
∂3v(x1,m,x2,n, t

∗∗)
∂t3

τ3

3!

(2.27)

Subtracting (2.27) from (2.26) and dividing it by 2τ , we have:

vk+1
m,n − vk−1

m,n

2τ
=

v(x1,m,x2,n, tk)
2τ

+
∂v(x1,m,x2,n, tk)

∂t
τ

2τ
+
∂2v(x1,m,x2,n, tk)

∂t2
τ2

4τ

+
∂3v(x1,m,x2,n, t

∗)
∂t3

τ3

12τ
−
v(x1,m,x2,n, tk)

2τ
+
∂v(x1,m,x2,n, tk)

∂t
τ

2τ

−
∂2v(x1,m,x2,n, tk)

∂t2
τ2

4τ
+
∂3v(x1,m,x2,n, t

∗∗)
∂t3

τ3

12τ

(2.28)
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removing some terms, we have:

vk+1
m,n − vk−1

m,n

2τ
=
∂v(x1,m,x2,n, tk)

∂t
+
∂3v(x1,m,x2,n, t

∗)
∂t3

τ2

12
+
∂3v(x1,m,x2,n, t

∗∗)
∂t3

τ2

12
(2.29)

thus ∣∣∣∣∣∣vk+1
m,n − vk−1

m,n

2τ
−
∂v(x1,m,x2,n, tk)

∂t

∣∣∣∣∣∣ =

∣∣∣∣∣∣∂3v(x1,m,x2,n, t
∗)

∂t3
+
∂3v(x1,m,x2,n, t

∗∗)
∂t3

∣∣∣∣∣∣ τ2

12

≤
[∣∣∣∣∣∣∂3v(x1,m,x2,n, t

∗)
∂t3

∣∣∣∣∣∣+

∣∣∣∣∣∣∂3v(x1,m,x2,n, t
∗∗)

∂t3

∣∣∣∣∣∣
]
τ2

12

(2.30)

sinceΩ ⊂R
3 is compact, then there exists a constant κ > 0 such that

∣∣∣∣∣∣∂3v(x1,x2, t)
∂t3

∣∣∣∣∣∣ ≤ κ for all (x1,x2, t)

in Ω then ∣∣∣∣∣∣vk+1
m,n − vk−1

m,n

2τ
−
∂v(x1,m,x2,n, tk)

∂t

∣∣∣∣∣∣ ≤ (κ+κ)
τ2

12
=
κ
6
τ2 (2.31)

therefore δ(1)
t vkm,n is a second-order consistency operator.

Lemma 2.4. Let v ∈ C3(Ω) where Ω = B× (0,T ) with B = (a,b)× (c,d), then:

µ
(1)
t v

k
m,n = v(x1,m,x2,n, tk) +O(τ2) (2.32)

Proof. Expanding vk+1
m,n and vk−1

m,n in Taylor’s series with center in tk

vk+1
m,n = v(x1,m,x2,n, tk) +

∂v(x1,m,x2,n, tk)
∂t

(tk+1 − tk) +
∂2v(x1,m,x2,n, t

∗)
∂t2

(tk+1 − tk)2

2!
(2.33)

and

vk−1
m,n = v(x1,m,x2,n, tk) +

∂v(x1,m,x2,n, tk)
∂t

(tk−1 − tk) +
∂2v(x1,m,x2,n, t

∗∗)
∂t2

(tk−1 − tk)2

2!
(2.34)

where t∗ and t∗∗ are in (tk , tk+1) and (tk−1, tk) respectively. Also, as τ = tk+1 − tk and τ = tk − tk−1 then in

(2.33) and (2.34) we have:

vk+1
m,n = v(x1,m,x2,n, tk) +

∂v(x1,m,x2,n, tk)
∂t

τ +
∂2v(x1,m,x2,n, t

∗)
∂t2

τ2

2!
(2.35)

and

vk−1
m,n = v(x1,m,x2,n, tk)−

∂v(x1,m,x2,n, tk)
∂t

τ +
∂2v(x1,m,x2,n, t

∗∗)
∂t2

τ2

2!
(2.36)

if we do the sum of (2.35) and (2.36), divided by 2, we have:

vk+1
m,n + vk−1

m,n

2
=

v(x1,m,x2,n, tk)
2

+
∂v(x1,m,x2,n, tk)

∂t
τ
2

+
∂2v(x1,m,x2,n, t

∗)
∂t2

τ2

4

+
v(x1,m,x2,n, tk)

2
−
∂v(x1,m,x2,n, tk)

∂t
τ
2

+
∂2v(x1,m,x2,n, t

∗∗)
∂t2

τ2

4

(2.37)
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removing some terms, we have:

vk+1
m,n + vk−1

m,n

2
= v(x1,m,x2,n, tk) +

∂2v(x1,m,x2,n, t
∗)

∂t2
τ2

4
+
∂2v(x1,m,x2,n, t

∗∗)
∂t2

τ2

4
(2.38)

thus ∣∣∣∣∣∣vk+1
m,n + vk−1

m,n

2
− v(x1,m,x2,n, tk)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∂2v(x1,m,x2,n, t
∗)

∂t2
+
∂2v(x1,m,x2,n, t

∗∗)
∂t2

∣∣∣∣∣∣ τ2

4

≤
[∣∣∣∣∣∣∂2v(x1,m,x2,n, t

∗)
∂t2

∣∣∣∣∣∣+

∣∣∣∣∣∣∂2v(x1,m,x2,n, t
∗∗)

∂t2

∣∣∣∣∣∣
]
τ2

4

(2.39)

sinceΩ ⊂R
3 is compact, then there exists a constant κ > 0 such that

∣∣∣∣∣∣∂2v(x1,x2, t)
∂t2

∣∣∣∣∣∣ ≤ κ for all (x1,x2, t)

in Ω then ∣∣∣∣∣∣vk+1
m,n + vk−1

m,n

2
− v(x1,m,x2,n, tk)

∣∣∣∣∣∣ ≤ (κ+κ)
τ2

4
=
κ
2
τ2 (2.40)

therefore µ(1)
t v

k
m,n is a second-order consistency operator.

Let 0 < α ≤ 2 with α , 1. For each (m,n) ∈ J and each k ∈ IK we define the linear operators

δ
(α)
x1 v

k
m,n = − 1

hαx1

M∑
j=0

g
(α)
m−jv

k
j,n, (2.41)

δ
(α)
x2 v

k
m,n = − 1

hαx2

N∑
j=0

g
(α)
n−jv

k
m,j . (2.42)

In light of Lemma 2.2, these operators yield second-order approximations of the fractional derivatives

of u of order α with respect to x1 and x2, respectively, at the point (xm,n, tk). With this nomenclature,

the finite-difference method to approximate the solutions of (2.4) is given by

δ
(1)
t vkm,n =

2∑
i=1

µ
(1)
t δ

(αi )
xi v

k
m,n + (vkm,n)p

2∑
i=1

λiµ
(1)
t δ

(βi )
xi v

k
m,n + f (vkm,n)µ(1)

t v
k
m,n, ∀(m,n,k) ∈ J × IK−1,

such that


v0
m,n = φ0

m,n, ∀(m,n) ∈ J,
v1
m,n = φ1

m,n, ∀(m,n) ∈ J,
vkm,n = ψkm,n, ∀(m,n,k) ∈ ∂J × IK ,

(2.43)

2.3.2 Equivalent representations

The purpose of this section is to provide alternative representations of the finite-difference scheme

(2.43). To that end, we will require additional nomenclature. Throughout this work we will convey

that

R
(α)
xi = τkh

−α
xi , (2.44)
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for each i = 1,2 and each α ∈ (0,1)∪ (1,2]. Here, we are dropping the dependence of R(α)
x1 and R(α)

x2

on k for the sake of briefness. To build the alternative representation, first, we substitute the discrete

operators (2.21) and (2.22) in (2.43), then:

vk+1
m,n − vk−1

m,n

2τk
= µ

(1)
t

 −1

hα1
x1

M∑
i=0

g
(α1)
m−i v

k
i,n

+µ(1)
t

 −1

hα2
x2

N∑
i=0

g
(α2)
n−i v

k
m,i

+λ1

(
vkm,n

)p
µ

(1)
t

 −1

h
β1
x1

M∑
i=0

g
(β1)
m−iv

k
i,n


+λ2

(
vkm,n

)p
µ

(1)
t

 −1

h
β2
x2

N∑
i=0

g
(β2)
n−i v

k
m,i

+ f
(
vkm,n

)
µ

(1)
t v

k
m,n

(2.45)

reordering, we have:

vk+1
m,n − vk−1

m,n

2τk
=
−1

hα1
x1

M∑
i=0

g
(α1)
m−i

[
µ

(1)
t v

k
i,n

]
+
−1

hα2
x2

N∑
i=0

g
(α2)
n−i

[
µ

(1)
t v

k
m,i

]
+λ1

(
vkm,n

)p −1

h
β1
x1

M∑
i=0

g
(β1)
m−i

[
µ

(1)
t v

k
i,n

]
+λ2

(
vkm,n

)p −1

h
β2
x2

N∑
i=0

g
(β2)
n−i

[
µ

(1)
t v

k
m,i

]
+ f

(
vkm,n

)[
µ

(1)
t v

k
m,n

]
(2.46)

applying the discrete operator µ(1)
t , we have:

vk+1
m,n − vk−1

m,n

2τk
=
−1

hα1
x1

M∑
i=0

g
(α1)
m−i

vk+1
i,n + vk−1

i,n

2

− 1

hα2
x2

N∑
i=0

g
(α2)
n−i

vk+1
m,i + vk−1

m,i

2


−λ1

(
vkm,n

)p 1

h
β1
x1

M∑
i=0

g
(β1)
m−i

vk+1
i,n + vk−1

i,n

2

−λ2

(
vkm,n

)p 1

h
β2
x2

N∑
i=0

g
(β2)
n−i

vk+1
m,i + vk−1

m,i

2


+f

(
vkm,n

)vk+1
m,n + vk−1

m,n

2


(2.47)

distributing some terms, we have:

vk+1
m,n − vk−1

m,n

τk
=
−1

hα1
x1

M∑
i=0

g
(α1)
m−i v

k+1
i,n −

1

hα1
x1

M∑
i=0

g
(α1)
m−i v

k−1
i,n −

1

hα2
x2

N∑
i=0

g
(α2)
n−i v

k+1
m,i −

1

hα2
x2

N∑
i=0

g
(α2)
n−i v

k−1
m,i

−λ1

(
vkm,n

)p 1

h
β1
x1

M∑
i=0

g
(β1)
m−iv

k+1
i,n −λ1

(
vkm,n

)p 1

h
β1
x1

M∑
i=0

g
(β1)
m−iv

k−1
i,n

−λ2

(
vkm,n

)p 1

h
β2
x2

N∑
i=0

g
(β2)
n−i v

k+1
m,i λ2

(
vkm,n

)p 1

h
β2
x2

N∑
i=0

g
(β2)
n−i v

k−1
m,i

+f
(
vkm,n

)
vk+1
m,n + f

(
vkm,n

)
vk−1
m,n

(2.48)
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defining as R(α)
xi = τkh−αxi , we have:

vk+1
m,n − vk−1

m,n = −R(α1)
x1

M∑
i=0

g
(α1)
m−i v

k+1
i,n −R

(α1)
x1

M∑
i=0

g
(α1)
m−i v

k−1
i,n −R

(α2)
x2

N∑
i=0

g
(α2)
n−i v

k+1
m,i −R

(α2)
x2

N∑
i=0

g
(α2)
n−i v

k−1
m,i

−λ1

(
vkm,n

)p
R

(β1)
x1

M∑
i=0

g
(β1)
m−iv

k+1
i,n −λ1

(
vkm,n

)p
R

(β1)
x1

M∑
i=0

g
(β1)
m−iv

k−1
i,n

−λ2

(
vkm,n

)p
R

(β2)
x2

N∑
i=0

g
(β2)
n−i v

k+1
m,i −λ2

(
vkm,n

)p
R

(β2)
x2

N∑
i=0

g
(β2)
n−i v

k−1
m,i

+τkf
(
vkm,n

)
vk+1
m,n + τkf

(
vkm,n

)
vk−1
m,n

(2.49)

reording the terms, in the left-side the term with vk+1
m,n and in the right-side the term with vk−1

m,n in each

sum, thus:1− τkf (
vkm,n

)
+

2∑
i=1

R
(αi )
xi g

(αi )
0 +

(
vkm,n

)p 2∑
i=1

λiR
(βi )
xi g

(βi )
0

vk+1
m,n

+
M∑

i=0,i,m

[
λ1

(
vkm,n

)p
R

(β1)
x1 g

(β1)
m−i +R(α1)

x1 g
(α1)
m−i

]
vk+1
i,n +

N∑
i=0,i,n

[
λ2

(
vkm,n

)p
R

(β2)
x2 g

(β2)
n−i +R(α2)

x2 g
(α2)
n−i

]
vk+1
m,i

=

1 + τkf
(
vkm,n

)
−

2∑
i=1

R
(αi )
xi g

(αi )
0 −

(
vkm,n

)p 2∑
i=1

λiR
(βi )
xi g

(βi )
0

vk−1
m,n

−
M∑

i=0,i,m

[
λ1

(
vkm,n

)p
R

(β1)
x1 g

(β1)
m−i +R(α1)

x1 g
(α1)
m−i

]
vk−1
i,n −

N∑
i=0,i,n

[
λ2

(
vkm,n

)p
R

(β2)
x2 g

(β2)
n−i +R(α2)

x2 g
(α2)
n−i

]
vk−1
m,i

(2.50)

now, for each (m,n) ∈ J and k ∈ IK−1, let us define

akm,n = 1− τkf (vkm,n) +
2∑
i=1

R
(αi )
xi g

(αi )
0 + (vkm,n)p

2∑
i=1

λiR
(βi )
xi g

(βi )
0 , (2.51)

b
k,xi
m,n,j =

 −λ1R
(β1)
x1 g

(β1)
m−j (v

k
m,n)p −R(α1)

x1 g
(α1)
m−j , if i = 1 and j ∈ IM

−λ2R
(β2)
x2 g

(β2)
n−j (vkm,n)p −R(α2)

x2 g
(α2)
n−j , if i = 2 and j ∈ IN ,

(2.52)

ckm,n = 1 + τkf (vkm,n)−
2∑
i=1

R
(αi )
xi g

(αi )
0 − (vkm,n)p

2∑
i=1

λiR
(βi )
xi g

(βi )
0 = 2− akm,n. (2.53)

It is easy to see that for each (m,n,k) ∈ J × IK−1, the following hold:

akm,n = 1− τkf (vkm,n)− bk,x1
m,n,m − b

k,x2
m,n,n, (2.54)

ckm,n = 1 + τkf (vkm,n) + bk,x1
m,n,m + bk,x2

m,n,n, (2.55)

ckm,n = 2− akm,n. (2.56)
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With this notation, the difference equations of (2.43) may be equivalently rewritten as the following

Crank–Nicolson-type linear system, whose recursive equations are valid for each (m,n,k) ∈ J × IK−1:

akm,nv
k+1
m,n −

M∑
j=0
j,m

b
k,x1
m,n,jv

k+1
j,n −

N∑
j=0
j,n

b
k,x2
m,n,jv

k+1
m,j = ckm,nv

k−1
m,n +

M∑
j=0
j,m

b
k,x1
m,n,jv

k−1
j,n +

N∑
j=0
j,n

b
k,x2
m,n,jv

k−1
m,j ,

such that


v0
m,n = φ0

m,n, ∀(m,n) ∈ J,
v1
m,n = φ1

m,n, ∀(m,n) ∈ J,
vkm,n = ψkm,n, ∀(m,n,k) ∈ ∂J × IK ,

(2.57)

Alternatively, a matrix representation of (2.57) is readily at hand. To that end, for each k ∈ IK we

order lexicographically the set {vkm,n : (m,n) ∈ J}, along with the initial and the boundary conditions,

into the (M+1)×(N +1)-dimensional real vectors vk , v0, v1 and ψk , respectively, for each k ∈ IK . More

precisely, for each j ∈ IM define the (N + 1)-dimensional vectors

vkj = (vkj,0,v
k
j,1, . . . , v

k
j,N−1,v

k
j,N )>, (2.58)

φij = (φij,0,φ
i
j,1, . . . ,φ

,
j,N−1φ

i
j,N )>, i = 0,1, (2.59)

ψkj =

 (ψkj,0,ψ
k
j,1, . . . ,ψ

k
j,N−1,ψ

k
j,N )>, if j ∈ {0,M},

(ψkj,0,0, . . . ,0,ψ
k
j,N )>, if j ∈ IM−1.

(2.60)

Then

vk = vk0 ⊕ v
k
1 ⊕ · · · ⊕ v

k
M−1 ⊕ v

k
M , (2.61)

φi = φi0 ⊕φ
i
1 ⊕ · · · ⊕φ

i
M−1 ⊕φ

i
M , i = 0,1, (2.62)

ψk = ψk0 ⊕ψ
k
1 ⊕ · · · ⊕ψ

k
M−1 ⊕ψ

k
M . (2.63)

where ⊕ represents the vector operation of juxtaposition.

Let I represent the identity matrix of size (N + 1)× (N + 1), and define the following real matrices

of sizes (N + 1)× (N + 1):

Bkm,j =



0 0 0 · · · 0 0 0

0 b
k,x1
m,1,j 0 · · · 0 0 0

0 0 b
k,x1
m,2,j · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · b
k,x1
m,N−2,j 0 0

0 0 0 · · · 0 b
k,x1
m,N−1,j 0

0 0 0 · · · 0 0 0


, (2.64)
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Ckm =



1 0 0 · · · 0 0

−bk,x2
m,1,0 akm,1 −bk,x2

m,1,2 · · · −bk,x2
m,1,N−1 −bk,x2

m,1,N

−bk,x2
m,2,0 −bk,x2

m,2,1 akm,2 · · · −bk,x2
m,2,N−1 −bk,x2

m,2,N
...

...
...

. . .
...

...

−bk,x2
m,N−2,0 −bk,x2

m,N−2,1 −bk,x2
m,N−2,2 · · · −bk,x2

m,N−2,N−1 −bk,x2
m,N−2,N

−bk,x2
m,N−1,0 −bk,x2

m,N−1,1 −bk,x2
m,N−1,2 · · · akm,N−1 −bk,x2

m,N−1,N

0 0 0 · · · 0 1


. (2.65)

Let Ak be the (M + 1)(N + 1)× (M + 1)(N + 1) block matrix defined by

Ak =



I 0 0 · · · 0 0

−Bk1,0 Ck1 −Bk1,2 · · · −Bk1,M−1 −Bk1,M
−Bk2,0 −Bk2,1 Ck2 · · · −Bk2,M−1 −Bk2,M
...

...
...

. . .
...

...

−BkM−2,0 −BkM−2,1 −BkM−2,2 · · · −BkM−2,M−1 −BkM−2,M

−BkM−1,0 −BkM−1,1 −BkM−1,2 · · · CkM−1 −BkM−1,M

0 0 0 · · · 0 I


. (2.66)

Here the zeros represent zero matrices of sizes (N + 1)× (N + 1).

On the other hand, let us define the matrix Dkm,j of size (N + 1)× (N + 1) by

Dkm,j =



0 0 0 · · · 0 0 0

b
k,x2
m,1,0 ckm,1 b

k,x2
m,1,2 · · · b

k,x2
m,1,N−2 b

k,x2
m,1,N−1 b

k,x2
m,1,N

b
k,x2
m,2,0 b

k,x2
m,2,1 ckm,2 · · · b

k,x2
m,2,N−2 b

k,x2
m,2,N−1 b

k,x2
m,2,N

...
...

...
. . .

...
...

...

b
k,x2
m,N−2,0 b

k,x2
m,N−2,1 b

k,x2
m,N−2,2 · · · ckm,N−2 b

k,x2
m,N−2,N−1 b

k,x2
m,N−2,N

b
k,x2
m,N−1,0 b

k,x2
m,N−1,1 b

k,x2
m,N−1,2 · · · b

k,x2
m,N−1,N−2 ckm,N−1 b

k,x2
m,N−1,N

0 0 0 · · · 0 0 0


. (2.67)

In turn, we introduce the (M + 1)(N + 1)× (M + 1)(N + 1) block matrix

Ek =



0 0 0 · · · 0 0

Bk1,0 Dk1 Bk1,2 · · · Bk1,M−1 Bk1,M
Bk2,0 Bk2,1 Dk2 · · · Bk2,M−1 Bk2,M
...

...
...

. . .
...

...

BkM−2,0 BkM−2,1 BkM−2,2 · · · BkM−2,M−1 BkM−2,M

BkM−1,0 BkM−1,1 BkM−1,2 · · · DkM−1 BkM−1,M

0 0 0 · · · 0 0


. (2.68)

With this notation, the finite-difference method (2.43) can be in vector form as the recursive sys-
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tem
Akvk+1 = Ekvk−1 +ψk , ∀k ∈ IK−1,

such that

 v0 = v0,

v1 = v1.

(2.69)

In the following sections, we will establish the main properties of this technique. Among other

features, we will establish the existence and the uniqueness of the numerical solutions under suitable

conditions of the parameters. Structural and numerical properties of (2.69) will be proved also, and

numerical simulations based on an implementation of (2.69) will illustrate the validity of our results.

2.4 Structural properties

In this stage of our work, we prove the most important structural properties of the finite-difference

method (2.43). Concretely, we will show that the method has a unique solution under appropriate

conditions, and that the method is capable of preserving the positivity and the boundedness of the

approximations. The cornerstone of our discussion will be the concept of Minkowski matrices, which

are defined next.

Definition 2.3. A square real matrix is a Z-matrix if all its off-diagonal entries are less than or equal

to zero.

Definition 2.4. We say that a square real matrix A is a Minkowski matrix if the following three prop-

erties are satisfied:

(i) A is a Z-matrix,

(ii) all the diagonal entries of A are positive, and

(iii) there exists a diagonal matrix D with positive diagonal elements, such that AD is strictly diag-

onally dominant.

Definition 2.5. We say that a (not necessarily square) real matrix A is nonnegative if every entry of A

is a nonnegative number; such fact will be denoted by A ≥ 0. If ρ is any real number, we say that A

is bounded from above by ρ if every entry of A is less than or equal to ρ, a fact that will be represented

by A ≤ ρ. If ρ > 0 then we use the notation 0 ≤ A ≤ ρ to represent that A ≥ 0 and A ≤ ρ.

Obviously, an n-dimensional real vector v satisfies v ≤ ρ if and only if ρe − v > 0, where e is

the n-dimensional vector all of whose components are equal to 1. In our investigation, Minkowski

matrices will be important in view that they are nonsingular. Moreover, if A is a Minkowski matrix

then A−1 ≥ 0 (see [47] and references therein).

Lemma 2.5. Let k ∈ IK−1 and suppose that vk ≥ 0. If τkf (vkm,n) < 1 for each (m,n) ∈ J then the matrix in
(2.66) is a Minkowski matrix.

Proof. Note that the off-diagonal entries of Ak are equal to zero, or of the form −bk,xim,n,j for suitable

(m,n) ∈ J with j ∈ IM \ {m} if i = 1, and j ∈ IN \ {n} if i = 2. Using Lemma 2.4(b), it readily follows that

−bk,x1
m,n,j = λ1R

(β1)
x1 g

(β1)
m−j (v

k
m,n)p +R(α1)

x1 g
(α1)
m−j ≤ 0, ∀(m,n,j) ∈ J × (IM \ {m}). (2.70)
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Similarly, −bk,x2
m,n,j for each (m,n,j) ∈ J × (IN \ {n}). This implies that Ak is a Z-matrix. On the other

hand, the diagonal entries of that matrix are either equal to 1, or of the form akm,n for some (m,n) ∈ J .
By Lemma 2.4(a) and the hypotheses, it follows that akm,n > 1− τkf (vkm,n) ≥ 0 for each (m,n) ∈ J , which

means that the property (ii) of Definition 2.4 holds. Finally, note that some rows have entries all

equal to zero except at the diagonal which is equal to 1, so the condition of strict diagonal dominance

is satisfied for those rows. For the remaining rows, the diagonal entry is of the form akm,n for some

(m,n) ∈ J , while the nonzero off-diagonal entries are equal to −bk,x1
m,n,j for j ∈ IM \ {m}, and −bk,x2

m,n,j for

j ∈ IN \ {n}. Using properties (a), (b) and (c) of Lemma 2.4, it follows that

M∑
j=0
j,m

|bk,x1
m,n,j |+

N∑
j=0
j,n

|bk,x2
m,n,j | = −λ1R

(β1)
x1 (vkm,n)p

M∑
j=0
j,m

g
(β1)
m−j −R

(α1)
x1

M∑
j=0
j,m

g
(α1)
m−j −λ2R

(β2)
x2 (vkm,n)p

N∑
j=0
j,n

g
(β2)
n−j

−R(α2)
x2

N∑
j=0
j,n

g
(α2)
n−j

≤ λ1R
(β1)
x1 (vkm,n)pg(β1)

0 +R(α1)
x1 g

(α1)
0 +λ2R

(β2)
x2 (vkm,n)pg(β2)

0 +R(α1)
x2 g

(α2)
0

< akm,n

(2.71)

for each (m,n) ∈ J . This means that Ak is strictly diagonally dominant. Since all the properties of

Definition 2.4 are satisfied, we conclude that Ak is a Minkowski matrix.

For the sake of simplicity, we will use f (vk) to represent the sequence (f (vkm,n))(m,n)∈J , for each

k ∈ IK . The following result establishes conditions under which the system (2.43) yields solutions

at each iteration. Its proof is a direct consequence of the previous lemma and the properties of

Minkowski matrices.

Theorem 2.1 (Existence and uniqueness). Let k ∈ IK−1, and assume that vk ≥ 0. If τkf (vk) < 1 then the
recursive equation of (2.69) has a unique solution.

Proof. By Lemma 2.5, the matrix Ak is a Minkowski matrix, so it is nonsingular. It follows that the

vector equation Akvk+1 = Ekvk−1 +ψk has a unique solution, as desired.

The next result summarizes the most important structural properties of the finite-difference scheme

(2.43).

Theorem 2.2 (Positivity and boundedness). Let k ∈ IK−1, ρ > 0 and s = sup[0,ρ] |f |. Suppose that 0 ≤
vk ≤ ρ,

sτk ≤ R
(α1)
x1

M∑
j=0

g
(α1)
m−j +R(α2)

x2

N∑
j=0

g
(α2)
n−j , ∀(m,n) ∈ J, (2.72)

and

sτk +
2∑
i=1

R
(αi )
xi g

(αi )
0 + ρp

2∑
i=1

λiR
(βi )
xi g

(βi )
0 < 1 (2.73)

are satisfied. If 0 ≤ ψk ≤ ρ then 0 ≤ vk+1 ≤ ρ.

Proof. Note that the inequality (2.73) implies that τkf (vk) < 1, so Ak is a Minkowski matrix and the

method yields a unique solution vk+1. To establish the positivity of the approximation at the time
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tk+1, note firstly that the off-diagonal entries of Ek are zero, or of the form b
k,xi
m,n,j for some (m,n) ∈ J

and j ∈ IM \ {m} in the case that i = 1, and j ∈ IN \ {n} if i = 2. The proof of Lemma 2.5 shows that the

off-diagonal entries of Ek are nonnegative in any case. Meanwhile, the components in the diagonal of

Ek are zero, or of the form ckm,n for some (m,n) ∈ J . Clearly,

ckm,n ≥ 1− τk |f (vkm,n)| −
2∑
i=1

R
(αi )
xi g

(αi )
0 − ρp

2∑
i=1

λiR
(βi )
xi g

(βi )
0 > 0, ∀(m,n) ∈ J. (2.74)

This implies that Ek ≥ 0. Moreover, the vector Ekvk−1 +ψk ≥ 0, and it follows that

vk+1 = (Ak)−1(Ekvk−1 +ψk) ≥ 0. (2.75)

In order to establish the boundedness, we let e be the vector of the same dimension as vk+1 all of

whose entries are equal to 1, and let uk+1 = ρe − vk+1 Substituting into the recursive vector equation

of (2.69), we readily obtain

Akuk+1 = ρAke −Ekvk−1 −ψk . (2.76)

Let f be the vector on the right-hand side of (2.76). The components of f are of the form ρ −ψkj,n for

(j,n) ∈ {0,M} × IN or (j,n) ∈ IM−1 × {0,N } (yielding nonnegative expressions), or of the form

fm,n = ρ

akm,n −
M∑
j=0
j,m

b
k,x1
m,n,j −

N∑
j=0
j,n

b
k,x2
m,n,j

− ckm,nvk−1
m,n −

M∑
j=0
j,m

b
k,x1
m,n,jv

k−1
j,n −

N∑
j=0
j,n

b
k,x2
m,n,jv

k−1
m,j

≥ 2ρ

1− ckm,n −
M∑
j=0
j,m

bk,x1
m,n,j −

N∑
j=0
j,n

bk,x2
m,n,j

 = 2ρ

−τkf (vkm,n)−
M∑
j=0

bk,x1
m,n,j −

N∑
j=0

bk,x2
m,n,j


≥ 2ρ

−sτk +R(α1)
x1

M∑
j=0

g
(α1)
m−j +R(α2)

x2

N∑
j=0

g
(α2)
n−j

 ≥ 0,

(2.77)

for suitable (m,n) ∈ J . Here, we have used Lemma 2.4 and the inequality (2.72). As a consequence,

note that f ≥ 0. This and the fact that Ak is a Minkowski matrix imply that uk+1 ≥ 0 or, equivalently,

that vk+1 ≤ ρ, as desired.

We would like to examine now the feasibility of the constraints in Theorem 2.2. In a first stage,

note that the inequality (2.72) may be multiplied on both sides by τ−1
k to obtain

s ≤ h−α1
x1

M∑
j=0

g
(α1)
m−j + h−α2

x2

N∑
j=0

g
(α2)
n−j , (2.78)

which is satisfied for sufficiently small values of hx1
and hx2

. Having chosen the spatial step-sizes that

satisfy (2.72), note that the inequality (2.73) is equivalent to the condition

τk

s+
2∑
i=1

g
(αi )
0 h−αixi + ρp

2∑
i=1

λig
(βi )
0 h

−βi
xi

 < 1, (2.79)
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which holds for sufficiently small values of τk .

The following result establishes the existence of a constant solution for (2.43), which is also a

constant solution of the continuous model (2.4). The proof is straightforward in light of the vector

form of the scheme given by (2.69), Lemma 2.5 and mathematical induction.

Theorem 2.3 (Constant solution). Consider the problem (2.43) with homogeneous initial and boundary
conditions. Then the constant sequence of zero vectors is the unique solution of the finite-difference method.

2.5 Numerical results

In this section, we prove the main numerical properties of our finite-difference scheme, namely, the

second-order consistency, the stability and the quadratic convergence of the method. In the following,

we will assume that the range of the solution u of (2.4) is a subset of [0,ρ] and that f is a smooth

function defined on [0,ρ], where ρ > 0. Moreover, we define the following continuous and discrete

functionals, respectively:

Lu(x, t) =
∂u
∂t

(x, t)−
2∑
i=1

∂αiu
∂|xi |αi

(x, t)−up(x, t)
2∑
i=1

λi
∂βiu

∂|xi |βi
(x, t)−u(x, t)f (u(x, t)), (2.80)

Lukm,n = δ
(1)
t vkm,n −

2∑
i=1

µ
(1)
t δ

(αi )
xi v

k
m,n − (vkm,n)p

2∑
i=1

λiµ
(1)
t δ

(βi )
xi v

k
m,n − f (vkm,n)µ(1)

t v
k
m,n, (2.81)

for each (x, t) ∈Ω and (m,n,k) ∈ J × IK−1. Moreover, we will employ h to represent the vector (hx1
,hx2

).

Theorem 2.4 (Consistency). Let u ∈ C5(Ω), and suppose that the range of u is a subset of [0,ρ]. If τ < 1 and
f ∈ C1([0,ρ]) then there exists a constant C > 0 independent of h and τ such that for each (m,n,k) ∈ J×IK−1,∣∣∣Lukm,n −Lu(xm,n, tk)

∣∣∣ ≤ C(τ2 + ‖h‖2). (2.82)

Proof. We employ here the usual argument with Taylor polynomials and the identity (2.17). Note that

the condition on the continuous differentiability of u implies that there exist constantsC1,C
(αi )
2 ,C

(βi )
3 ,C4 >

0 for i ∈ {1,2} such that

∣∣∣∣∣δ(1)
t ukm,n −

∂u
∂t

(xm,n, tk)
∣∣∣∣∣ ≤ C1τ

2, (2.83)∣∣∣∣∣µ(1)
t δ

(αi )
xi u

k
m,n −

∂αiu
∂|xi |αi

(xm,n, tk)
∣∣∣∣∣ ≤ C

(αi )
2 (τ2 + h2

xi ), i = 1,2, (2.84)∣∣∣∣∣∣(ukm,n)pµ(1)
t δ

(βi )
xi u

k
m,n −up(xm,n, tk)

∂βiu

∂|xi |βi
(xm,n, tk)

∣∣∣∣∣∣ ≤ |ukm,n|p
∣∣∣∣∣∣µ(1)
t δ

(βi )
xi u

k
m,n −

∂βiu

∂|xi |βi
(xm,n, tk)

∣∣∣∣∣∣
≤ C

(βi )
3 (τ2 + h2

xi ), i = 1,2, (2.85)∣∣∣∣f (ukm,n)µ(1)
t u

k
m,n −u(xm,n, tk)f (u(xm,n, tk))

∣∣∣∣ = |f (ukm,n)||µ(1)
t u

k
m,n −u(xm,n, tk)|

≤ C4τ
2, (2.86)
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for all (m,n,k) ∈ J × IK−1. The conclusion of this theorem is readily reached using the triangle

inequality and defining the constant C = max{C1,C
(α1)
2 ,C

(α2)
2 ,λ1C

(β1)
3 ,λ2C

(β2)
3 ,C4}.

The following lemma will be a useful tool to show that the method (2.43) is stable and quadrati-

cally convergent. In the next results, for each v ∈Rm we let

‖v‖∞ = max {|vi | : i = 1, . . . ,m} . (2.87)

Lemma 2.6 (Chen et al. [48]). Let A be a real matrix of size m×m that satisfies

m∑
j=1
j,i

|aij | ≤ |aii | − 1, ∀i ∈ {1, . . . ,m}. (2.88)

Then ‖v‖∞ ≤ ‖Av‖∞ is satisfied for all v ∈Rm.

Lemma 2.7. Let k ∈ IK−1 and ρ > 0. Let s = sup[0,ρ] |f | and suppose that 0 ≤ vk ≤ ρ. If (2.72) and (2.73)

are satisfied, then ‖v‖∞ ≤ ‖Akv‖∞ holds for any v ∈R(M+1)(N+1).

Proof. In light of Lemma 2.6, we only need to show that the matrix Ak satisfies the inequality (2.88).

As in the proof of Lemma 2.5, we note that some rows of the matrix Ak have all entries equal to zero

except at the diagonal, which is equal to 1. In those cases, the inequality of Lemma 2.6 is trivially

satisfied. For the remaining rows, the diagonal is of the form akm,n for some (m,n) ∈ J , while the

nonzero off-diagonal components are equal to −bk,x1
m,n,j for j ∈ IM \{m}, and −bk,x2

m,n,j for j ∈ IN \{n}. Using

the inequality (2.72), we obtain

|akm,n| − 1 = −τkf (vkm,n) +
2∑
i=1

R
(αi )
xi g

(αi )
0 + (vkm,n)p

2∑
i=1

λiR
(βi )
xi g

(βi )
0

≥

−sτk +R(α1)
x1

M∑
j=0

g
(α1)
m−j +R(α2)

x2

N∑
j=0

g
(α2)
n−j

+λ1R
(β1)
x1 (vkm,n)p

M∑
j=0

g
(β1)
m−j

+λ2R
(β2)
x2 (vkm,n)p

N∑
j=0

g
(β2)
n−j +

M∑
j=0
j,m

b
k,x1
m,n,j +

N∑
j=0
j,n

b
k,x2
m,n,j

≥
M∑
j=0
j,m

|bk,x1
m,n,j |+

N∑
j=0
j,n

|bk,x2
m,n,j |.

(2.89)

Thus the inequality (2.88) holds for each row of Ak . The conclusion of the present lemma readily

follows now.

Lemma 2.7 will be employed next to calculate some a priori bounds for the numerical solutions

of (2.43) and to establish the stability of the method in some particular scenarios. Recall that for each

real matrix E of size q × q, the infinity norm of E is given by

‖E‖∞ = sup {‖Ev‖∞ : v ∈Rq such that ‖v‖∞ = 1} = max
1≤i≤q

q∑
j=1

|eij |. (2.90)

35



Lemma 2.8. Let k ∈ IK−1 and suppose that (2.72) and (2.73) are satisfied. Then Ek ≥ 0 and ‖Ek‖∞ < 1.

Proof. We had already established that Ek ≥ 0 in the proof of Theorem 2.2. On the other hand, using

(2.72) it is easy to check that

ckm,n +
M∑
j=0
j,m

b
k,x1
m,n,j +

N∑
j=0
j,n

b
k,x2
m,n,j ≤ 1 + τkf (vkm,n)−R(α1)

x1

M∑
j=0

g
(α1)
m−j −R

(α2)
x2

N∑
j=0

g
(α2)
n−j < 1 (2.91)

for each (m,n) ∈ J . We conclude that ‖Ek‖∞ < 1, as desired.

Lemma 2.7 will be employed next to calculate some a priori bounds for the numerical solutions

of (2.43) and to establish the stability of the method in some particular scenarios.

Theorem 2.5 (A priori bounds). Let ρ > 0, and let s = sup[0,ρ] |f |. Let (vk)Kk=0 be a solution of (2.69) which
is bounded in [0,ρ], and suppose that (2.72) and (2.73) are satisfied for each k ∈ IK−1. Then for each k ∈N
with k < N/2,

‖v2k‖∞ ≤

 k∏
l=1

‖E2l−1‖∞

‖v0‖∞ +
k∑
l=1

‖ψ2l−1‖∞
k∏

j=l+1

‖E2j−1‖∞

 , (2.92)

‖v2k+1‖∞ ≤

 k∏
l=1

‖E2l‖∞

‖v1‖∞ +
k∑
l=1

‖ψ2l‖∞
k∏

j=l+1

‖E2j‖∞

 . (2.93)

Proof. Notice that the assumptions of Lemma 2.7 are satisfied for each k ∈ IK−1. Using that lemma,

we obtain that

‖vk+1‖∞ ≤ ‖Akvk+1‖∞ = ‖Ekvk−1 +ψk‖∞ ≤ ‖Ek‖∞‖vk−1‖∞ + ‖ψk‖∞, ∀k ∈ IK−1. (2.94)

The conclusions of the theorem readily follow now using a recursive argument.

Under the assumptions of Lemma 2.8 and Theorem 2.5, the conclusion of the last theorem can be

substantially simplified. Indeed, if homogeneous Dirichlet conditions are considered at the boundary

of the spatial domain, then ‖vk‖∞ ≤max{‖v0‖∞,‖v1‖∞} for each k ∈ IK .

We establish next the properties of stability and convergence for our method in some particular

scenarios.

Theorem 2.6 (Stability). Let ρ > 0 and p = 0, and assume that |f | = s ∈ R. Let (uk)Kk=0 and (vk)Kk=0 be
solutions of (2.43) bounded in [0,ρ] for the initial-boundary data (φ1

u ,φ
2
u ,ψ) and (φ1

v ,φ
2
v ,ψ), respectively.

If (2.72) and (2.73) hold for each k ∈ IK−1, then

‖uk − vk‖∞ ≤max {‖u0 − v0‖∞,‖u1 − v1‖∞} , ∀k ∈ IK . (2.95)

Proof. The hypotheses guarantee that the matrices Ak and Ek are all identical to some constant matri-

ces A and E, respectively, for each k ∈ IK−1. Note that the inequality (2.95) is trivially satisfied when

k ∈ {0,1}, so suppose that it holds for some k ∈ {1, . . . ,K − 1}. Lemmas 2.7 and 2.8 yield then

‖uk+1 − vk+1‖∞ ≤ ‖A(uk+1 − vk+1)‖∞ ≤ ‖E(uk−1 − vk−1)‖∞ ≤ ‖uk−1 − vk−1‖∞. (2.96)
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The conclusion of this result follows now by induction.

Theorem 2.7 (Convergence). Let ρ > 0 and p = 0, and suppose that u ∈ C5(Ω) is a solution of (2.4) which
is bounded in [0,ρ]. Let τ < 1 and suppose that |f | = s ∈ R. Let (vk)Kk=0 be a solution of (2.43) which is
bounded in [0,ρ], and suppose that (2.72) and (2.73) hold for each k ∈ IK . Then there exists a constant
κ ∈R independent of τ and h such that

‖uk − vk‖∞ ≤ κ(τ2 + ‖h‖2), ∀k ∈ IK . (2.97)

Proof. Let εk = uk − vk for each k ∈ IK . Beforehand, note that the exact and the numerical solutions

coincide for the initial-boundary data, which means in particular that ‖ε0‖∞ = ‖ε1‖∞ = 0. Using

Theorem 2.4 together with Lemmas 2.7 and 2.8, we obtain

‖εk+1‖∞ ≤ ‖A(uk+1 − vk+1)‖∞ ≤ ‖E(uk−1 − vk−1)‖∞ + ‖Auk+1 −Euk−1 −ψk‖∞
= ‖εk−1‖∞ + τ‖Luk −Luk‖∞ ≤ ‖εk−1‖∞ + τC(τ2 + ‖h‖2),

(2.98)

which yields that ‖εk+1‖∞ − ‖εk−1‖∞ ≤ τC(τ2 + ‖h‖2) for each k ∈ IK−1. The conclusion of this results

readily follows from this inequality with κ = TC.

Finally, we provide some computer simulations to show that the finite-difference method (2.43) is

capable of preserving the main analytical features of the solutions of interest of (2.4). Concretely, we

illustrate the capability of the method to preserve the positivity and the boundedness. The simula-

tions were obtained using our own implementation of the method in ©Matlab 8.5.0.197613 (R2015a),

on a ©Sony Vaio PCG-5L1P laptop computer with Kubuntu 16.04 as operating system. In terms of

computational times, we are aware that better results may be obtained with more modern equipment

and more modest Linux/Unix distributions.

Example 2.3. Let us consider the continuous model (2.4) with parameters α1 = α2 = 2, λ1 = λ2 = 0, p =

1, γ = 0.6, and f is given by (2.6). We will consider the spatial domain B = (−200,200)× (−200,200) ⊆
R

2, and the computational constants hx1
= hx2

= 4 and τ = 0.05. Let us fix homogeneous Dirichlet

conditions on the boundary of B, and consider the initial profiles

φ1(x,y) = φ2(x,y) =

 0.2, if (x,y) = (0,0),

0, otherwise.
(2.99)

Notice that we consider a problem without convective effects and with partial derivatives of integer

order. In such situation, the classical solution of the initial-boundary-value problem (2.4) is nonneg-

ative and bounded from above by γ . Figure 2.1 shows snapshots of the approximate solution u as a

function of x and y, for the times (a) t = 5, (b) t = 10, (c) t = 15, (d) t = 20, (e) t = 25 and (f) t = 30. The

solutions suggest that the method is capable of preserving the positivity and the boundedness of the

approximations, in agreement with Theorem 2.2.

Example 2.4. Let us consider the same problem as in Example 2.3, using the constants α1 = 1.9,

α2 = 1.95, β1 = 0.8, β2 = 0.9, λ1 = λ2 = 1, p = 1 and γ = 0.6, together with the same computational

parameters and the same initial-boundary conditions as in the previous example. The results of our

simulations are shown in Figure 2.2. In this case, anomalous diffusion and convection are considered
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Snapshots of the approximate solution u of the model (2.4) as a function of (x,y) ∈ B =
[−200,200] × [−200,200], for the times (a) t = 5, (b) t = 10, (c) t = 15, (d) t = 20, (e) t = 25 and (f)
t = 30. The model uses the parameters α1 = α2 = 2, λ1 = λ2 = 0, p = 1, γ = 0.6, and f is given by (2.6).
We employed homogeneous Dirichlet conditions on the boundary of B, along with the initial profiles
(2.99). Computationally, we let hx1

= hx2
= 4 and τ = 0.05.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Snapshots of the approximate solution u of the model (2.4) as a function of (x,y) ∈ B =
[−200,200]×[−200,200], for the times (a) t = 5, (b) t = 10, (c) t = 15, (d) t = 20, (e) t = 25 and (f) t = 30.
The model uses the parameters α1 = 1.9, α2 = 1.95, β1 = 0.8, β2 = 0.9, λ1 = λ2 = 1, p = 1, γ = 0.6, and
f is given by (2.6). We employed homogeneous Dirichlet conditions on the boundary of B, along with
the initial profiles (2.99). Computationally, we let hx1

= hx2
= 4 and τ = 0.05.
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in the x and y directions. It is worth pointing out that the properties of positivity and boundedness

of the approximate solutions are preserved, in agreement with Theorem 2.2.

It is important to mention that we have conducted more simulations with different model param-

eters and different initial-boundary conditions. The results are not presented in this work in view of

their repetitiveness: they also confirm the capability of the finite-difference method (2.43) to preserve

the analytical features of the solutions of interest of (2.4), namely, the positivity and the boundedness

of the solutions.
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3. A structure-preserving

Bhattacharya method

In this chapter, we investigate a parabolic equation with nonlinear reaction, and frac-

tional diffusion and advection terms of the Riesz type. The model under investigation is a

fractional generalization of the well-known Burgers–Fisher and Burgers–Huxley models

from population and fluid dynamics, which are equations that admit positive, bounded

and monotone solutions, some of them being traveling waves. A variable-step Bhattacharya-

type finite-difference scheme based on fractional centered differences is proposed to ap-

proximate the solutions of the parabolic partial differential equation. The method is an

explicit technique which, under suitable parameter conditions, is capable of preserving

the positivity, the boundedness and the monotonicity of the approximations. Moreover,

the method preserves the constant solutions of the fractional partial differential equation

under investigation. The properties of consistency, stability and convergence of the tech-

nique are established thoroughly in this manuscript along with some a priori bounds for

the numerical solutions. Some illustrative simulations are carried out in order to show

that the method preserves these features of the approximations.

3.1 Introduction

Nonlinear advection-diffusion-reaction equations have been extensively investigated (both analyti-

cally and numerically) in the specialized literature during the past decades. Computationally, many

different numerical approaches have been followed to approximate the solutions of those systems

[49]. As a result, many finite-difference methodologies have been reported in the literature. In fact,

various different approaches have been followed to develop schemes for advection-diffusion-reaction

equations, one of them being the exponential method proposed by M. C. Bhattacharya around 1985

to solve some simple diffusion models [50]. This exponential approach was later used in some ap-

plications [51] and extended to the investigation of more complicated partial differential equations

[52, 53]. Various hybrid methods that employ the Laplace transform were designed at that time with

the help of the exponential method [54, 55]. Nowadays this exponential approach has been extended

to more complicated nonlinear systems. For instance, the Korteweg–de Vries equation has been in-

vestigated under this methodology for small times [56]. It is worth recalling that implicit [57] and

Crank–Nicolson [58] forms of the exponential method have been proposed for the solutions of the

41



one-dimensional Burgers’ equation. More complicated models were investigated later on, like the

Burgers–Huxley equation [59] and the generalized Huxley and Burgers–Huxley equations [60]. It is

important to mention that this method has been used mainly due to the simplicity of its implementa-

tion, especially the explicit forms of this technique. This is probably why some further variations of

this technique have been developed, like some logarithmic versions of the original method proposed

by Bhattacharya [61].

In spite of these facts, it is well known that this method presents various important shortcomings.

Firstly, this technique is highly sensitive with respect to approximations which are close to zero. Good

approximations are obtained in the case of positive solutions, and early studies suggested that the

method could be indeed a convergent technique in those cases [51]. However, this singular character

in Bhattacharya’s approach has been perhaps one of the most important limitations in the applica-

bility of the technique. Nevertheless, it is worth noting that some corrections have been proposed in

order to avoid the high sensitivity with respect to zero approximations. In light of this correction,

explicit methods have been designed to solve the Burgers–Fisher equation [62], some complex thin-

film models [63] and advection-diffusion equations governing the distribution of probability of some

random variables [38] among other physical systems. Other important limitation of the exponential

approach has been the lack of studies that guarantee the preservation of important features of the

solutions. More precisely, there have been very few studies in which the structure-preserving capa-

bilities of Bhattacharya-type methods have been analyzed. It is important to remember here that the

design of structure-preserving techniques (also called dynamically consistent techniques if we follow

the nomenclature proposed by R. E. Mickens [64]) has been an important avenue of investigation in

numerical analysis. Structure-preserving techniques have been proposed as a need to guarantee that

the numerical methods reflect the physical context of the problems. Using this perspective, methods

that preserve the energy of Hamiltonian systems have been proposed [65]. Other works report on

discretizations that preserve the positivity of nonlinear systems describing the dynamics of chemi-

cal processes [66], the positivity of Poisson integrators for the Lotka–Volterra equations [67], or the

boundedness and monotonicity of solitary-wave solutions of the Burgers–Huxley equation [68].

Indeed, some reports by the author of the present manuscript have focused on the capability of the

Bhattacharya approach to preserve the structure of the solutions of some advection-diffusion-reaction

systems [62, 63, 38]. However, the investigation of the numerical efficiency of this methodology has

been left without investigation. Unfortunately, there are very few reports that focus on the study of

the properties of stability, consistency and convergence of the Bhattacharya methodology. Moreover,

in light of the interest that fractional models have gathered in recent years, it is worth noting that

this exponential approach has not been extended yet to the fractional scenario. In view of these facts,

the goal of the present manuscript is to investigate numerically a general parabolic partial differen-

tial equation with nonlinear reaction term which considers the presence of fractional diffusion and

advection. We will use Riesz space-fractional derivatives in our model, and the Bhattacharya per-

spective will be employed to provide a finite-difference discretization based on fractional centered

differences [45]. The method derived in this manuscript will have the following characteristics, which

will depend on some analytical features of the reaction term:

• the method preserves the positivity,

• it also preserves the boundedness of the approximations,
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• it is an explicit finite-difference technique,

• it is a non-singular extension of the Bhattacharya approach,

• the existence and uniqueness of approximations is guaranteed,

• it preserves the constant solutions of the continuous model,

• it is a stable technique,

• the consistency of the method is guaranteed under suitable analytical conditions and

• a priori bounds are provided for the method.

3.2 Preliminaries

Throughout this work, we will suppose that a, b, c and d are real numbers satisfying a < b and c < d,

also we will assume that T > 0. We will let Ω = B × (0,T ) with B = (a,b) × (c,d), and use Ω and B to

represent respectively the closures ofΩ and B under the standard topology of R3, and we will use ∂B

to denote the boundary of B. In this manuscript u : Ω→ R will represent a function. Moreover, for

the sake of simplicity, let x = (x1,x2) and we define u(x, t) = 0 for each x ∈ Bc and each t ∈ [0,T ].

Definition 3.1. Let α > −1 and suppose that n is a nonnegative integer such that n − 1 < α ≤ n. The

Riesz space-fractional derivative of u of order α at the point (x, t)is defined by

∂αu
∂|x|α

(x, t) =
−1

2cos(πα2 )Γ (n−α)
∂n

∂xn

∫ ∞
−∞

u(ξ, t)dξ
|x − ξ |α+1−n , ∀(x, t) ∈Ω. (3.1)

Here Γ is the gamma function defined in (2.3).

Definition 3.2. Suppose that α > −1 and that n ≥ 0 is an integer such that n− 1 < α ≤ n. The left and

the right Riemann–Liouville fractional derivatives in space of order α of u at (x, t) are given by

−∞D
α
x u(x, t) =

1
Γ (n−α)

∂n

∂xn

∫ x

−∞

u(ξ, t)dξ
(x − ξ)α+1−n , (3.2)

xD
α
+∞u(x, t) =

(−1)n

Γ (n−α)
∂n

∂xn

∫ ∞
x

u(ξ, t)dξ
(ξ − x)α+1−n , (3.3)

respectively.

It is important to point out that the Riesz space-fractional derivative becomes the one-dimensional

spatial Laplacian operator in the case when α = 2. Note also that the differential operator (3.1) can

be expressed in terms of the Riemann–Liouville fractional derivatives as

∂αu
∂|x|α

(x, t) = − 1
2cos(πα2 )

(−∞D
α
x +x D

α
+∞)u(x, t), ∀(x, t) ∈Ω. (3.4)

For the remainder of this work and unless we say otherwise, we will use αi , βi , γ and λi to repre-

sent real numbers such that 1 < αi ≤ 2, 0 < βi < 1 and 0 < γ < 1, let p ∈N, and i = 1,2. Let φ : B→ R
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and ψ : ∂B × (0,T ) → R be functions whose ranges are subsets of some closed and bounded inter-

val I ⊆ R, and assume additionally that the compatibility conditions φ(x) = ψ(x,0) are satisfied for

each x ∈ ∂B. With these conventions, the problem under consideration in this work is the nonlinear

initial-boundary-value problem

∂u
∂t

(x, t) =
2∑
i=1

∂αiu
∂|xi |αi

(x, t)−up(x, t)
2∑
i=1

λi
∂βiu

∂|xi |βi
(x, t) +u(x, t)f (u(x, t)), ∀(x, t) ∈Ω,

such that

 u(x,0) = φ(x), ∀x ∈ B,
u(x, t) = ψ(t), ∀(x, t) ∈ ∂B× (0,T ).

(3.5)

Here, f is in general a real-valued function defined as (2.5) or (2.6) in chapter 2.

An alternative form of the partial differential equation in (3.5) is readily at hand. Indeed, suppose

that u is a positive solution of (3.5), and let κ ∈R+. Divide both sides of the Burgers–Fisher equation

by u(x, t) + κ and use the chain rule on the left-hand side to obtain the following equivalent initial-

boundary-value problem:

∂
∂t

ln(u(x, t) +κ) =
1

u(x, t) +κ

 2∑
i=1

∂αiu
∂|xi |αi

(x, t)−up(x, t)
2∑
i=1

λi
∂βiu

∂|xi |βi
(x, t) +u(x, t)f (u(x, t))

,
such that

 u(x,0) = φ(x), ∀x ∈ B,
u(x, t) = ψ(t), ∀(x, t) ∈ ∂B× (0,T ).

(3.6)

for each (x, t) ∈Ω. This equivalent form will be useful to provide an exponential discretization of our

initial-boundary-value problem.

3.3 Numerical model

In this work we follow a finite difference approach to approximate the solutions of (3.5), and use

fractional centered differences and their properties defined in chapter 2 with the objective to approx-

imate Riesz space-fractional derivatives.

Let Iq = {1, . . . , q} and Iq = Iq ∪ {0}, for each q ∈ N. Assume that M,N,K ∈ N and use a space

partition norm hx1
= (b − a)/M of the interval [a,b] and hx2

= (d − c)/N of the interval [c,d]. More

precisely, for each m ∈ {0,1, . . . ,M} and for each n ∈ {0,1, . . . ,N } we define x1,m = a +mhx1
and x2,n =

a+nhx2
. Let J = IM−1 × IN−1, J = IM × IN and ∂J = J ∩∂B. Also, we will use a (not necessarily uniform)

partition 0 = t0 < t1 < . . . < tK = T of the interval [0,T ], and define the constants τk = tk+1 − tk , for each

k ∈ {0,1, . . . ,K − 1}. Moreover, for each m ∈ {0,1, . . . ,M}, each n ∈ {0,1, . . . ,N } and each k ∈ {0,1, . . . ,K}
define ukm,n = u(xm,n, tk) with xm,n = (x1,m,x2,n). Under these circumstances, note that

∂αu
∂|x1|α

(xm,n, tk) = − 1
hαx1

m∑
i=m−M

gαi u
k
m−i,n +O(h2) = − 1

hαx1

M∑
i=0

gαm−iu
k
m,i +O(h2), (3.7)
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∂αu
∂|x2|α

(xm,n, tk) = − 1
hαx2

n∑
i=n−N

gαi u
k
m,n−i +O(h2) = − 1

hαx2

N∑
i=0

gαn−iu
k
i,n +O(h2), (3.8)

for each m ∈ IM−1, each n ∈ IN−1, each k ∈ IK−1 and each 0 < α ≤ 2 with α , 1. In the following, we

will consider the discrete operators

δtu
k
m,n =

uk+1
m,n −ukm,n
τk

, (3.9)

δαx1
ukm,n = − 1

hαx1

M∑
i=0

gαm−iu
k
i,n, (3.10)

δαx2
ukm,n = − 1

hαx2

N∑
i=0

gαn−iu
k
m,i . (3.11)

Using this nomenclature, the fully discrete model used in this work to approximate the solutions of

(3.6) is given by the discrete system of equations

δt ln(ukm,n +κ) = (ukm,n +κ)−1

 2∑
i=1

δαixi u
k
m,n − (ukm,n)p

2∑
i=1

λiδ
βi
xi u

k
m,n +ukm,nf (ukm,n)

 ,
such that

 u0
m,n = φ(xm,n), ∀(m,n) ∈ J,
ukm,n = ψ(xkm,n), ∀(m,n,k) ∈ ∂J × IK .

(3.12)

for each m ∈ IM−1, each n ∈ IN−1 and each k ∈ IK−1.

Clearly, the discrete fractional model (3.12) is computationally a two-step exponential discretiza-

tion of the continuous system (3.6) that considers a variable step-size in time. Moreover, it can be

explicitly and equivalently rewritten as

uk+1
m,n = (ukm,n +κ)exp


τk

(∑2
i=1 δ

αi
xi u

k
m,n − (ukm,n)p

∑2
i=1λiδ

βi
xi u

k
m,n +ukm,nf (ukm,n)

)
ukm,n +κ

−κ,
such that

 u0
m,n = φ(xm,n), ∀(m,n) ∈ J,
ukm,n = ψ(xkm,n), ∀(m,n,k) ∈ ∂J × IK .

(3.13)

for each m ∈ IM−1, each n ∈ IN−1 and each k ∈ IK−1.

Here, it is important to observe that uk+1
m,n = Fum,n,k(u

k
m,n), where

Fum,n,k(w) = g(w)exp(ϕ(w))−κ, (3.14)

and the functions g and ϕ are given by

g(w) = w+κ, ∀w ∈R, (3.15)

ϕ(w) = τk

wf (w) + cwp+1 +
[
dkm,n,x1

+ dkm,n,x2

]
wp − ew − f km,n,x1

− f km,n,x2

w+κ

 , (3.16)
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∀w ∈R \ {−κ} and for the constants c = λ1g
β1
0 h
−β1
x1 +λ2g

β2
0 h
−β2
x2 , e = gα1

0 h−α1
x1 + gα2

0 h−α2
x2 and

dkm,n,x1
=
λ1

h
β1
x1

M∑
i=0
i,m

g
β1
m−iu

k
i,n, f km,n,x1

=
1

hα1
x1

M∑
i=0
i,m

gα1
m−iu

k
i,n. (3.17)

dkm,n,x2
=
λ2

h
β2
x2

N∑
i=0
i,n

g
β2
n−iu

k
m,i , f km,n,x2

=
1

hα2
x2

N∑
i=0
i,n

gα2
n−iu

k
m,i . (3.18)

Remark 3.1. Note that we use the letter ‘f ’ for two different mathematical objects. Throughout this

work f will represent the factor function of (3.5), while f km,n,xj will represent the constant defined

above and which depends on m, n, k and j = 1,2. The difference between both notations should be

clear from the context.

Finally, for the sake of convenience we will use

uk = (uk0,0,u
k
0,1, . . . ,u

k
0,N , u

k
1,0,u

k
1,1, . . . ,u

k
1,N , . . . , u

k
M,0,u

k
M,1, . . . ,u

k
M,N ), (3.19)

for each k ∈ IK . Moreover, for any real (M + 1)(N + 1)-dimensional vector u we use u > 0 to represent

the fact that each component of u is positive. If s is any real number we use u < s to denote that each

component of u is less than s. Also 0 < u < s will represent that u > 0 and u < s. If u and v are real

vectors of the same dimension we will use u < v to mean that v − u > 0. As expected, 0 < u < v < s

means that u > 0, u < v and v < s are all satisfied.

3.4 Structural properties

In this section, we prove the most important properties of (3.12). More precisely, we wish to show

that the method yields a unique solution under suitable conditions, that it preserves the positivity,

the boundedness and the monotonicity of the approximations, and that the constant solutions of (3.5)

are also solutions of (3.12). Throughout we will suppose that κ is a positive constant unless we say

otherwise.

In a first stage, we establish here a theorem on the existence an uniqueness of the solutions of

(3.12) as well as a result on the constant solutions of our numerical method.

Theorem 3.1 (Existence and uniqueness). Let k ∈ {0,1, . . . ,K − 1}. If uk > 0 and κ > 0 then (3.12) yields
a unique solution uk+1.

Proof. Note that ukm,n+κ > 0 for eachm ∈ {1, . . . ,M−1} and n ∈ {1, . . . ,N −1}. As a consequence, the real

number uk+1
m,n = Fum,n,k(u

k
m,n) is defined uniquely, whence the conclusion of the theorem follows.

Theorem 3.2 (Constant solutions). The constant sequence (0)Kk=0 consisting of zero vectors of dimension
(M + 1)× (N + 1) is a solution of (3.13) if φ,ψ ≡ 0.

Proof. By assumption u0 = 0, so suppose that uk = 0 for some k ∈ {0,1, . . . ,K − 1}. Note then that

uk+1
m,n = Fum,n,k(0) = 0 readily holds for each m ∈ {1, . . . ,M − 1} and n ∈ {1, . . . ,N − 1}. The result readily

follows by induction.
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In the following theorem, we will consider the infinite system described by

uk+1
m,n = Fum,n,k(u

k
m,n), ∀(m,n) ∈Z×Z,∀k ∈ {0,1, . . . ,K − 1},

such that u0
m,n = φ(xm,n), ∀(m,n) ∈Z×Z,

(3.20)

where Fum,n,k is defined as in (3.14), and the parameters c and e are as before. For each m ∈ Z, each

n ∈Z and each k ∈ {0,1, . . . ,K −1} the constants dkm,n,x1
, dkm,n,x2

, f km,n,x1
and f km,n,x2

are respectively given

in this case by

dkm,n,x1
=
λ1

h
β1
x1

∞∑
i=−∞
i,m

g
β1
m−iu

k
i,n, f km,n,x1

=
1

hα1
x1

∞∑
i=−∞
i,m

gα1
m−iu

k
i,n. (3.21)

dkm,n,x2
=
λ2

h
β2
x2

∞∑
i=−∞
i,n

g
β2
n−iu

k
m,i , f km,n,x2

=
1

hα2
x2

∞∑
i=−∞
i,n

gα2
n−iu

k
m,i . (3.22)

Theorem 3.3 (Constant solutions). Let s , −κ be root of f , and let ε be the two-sided infinite sequence all
of whose terms are equal to s. Then (ε)Kk=0 is a solution of (3.20) with φ ≡ s.

Proof. The proof is done by induction again. By hypothesis uk = ε when k = 0, so let us suppose that

it is also true for some k ∈ {0,1, . . . ,K −1}. Note then that for each (m,n) ∈Z×Z, Lemma ?? guarantees

that

ϕ(s) =
τn
s+κ

sf (s) +

 λ1

h
β1
x1

g
β1
0 +

λ2

h
β2
x2

g
β2
0

sp+1 +

 λ1

h
β1
x1

∞∑
i=−∞
i,m

g
β1
m−i +

λ2

h
β2
x2

∞∑
i=−∞
i,n

g
β2
n−i

sp+1


− τn
s+κ


[
gα1

0

hα1
x1

+
gα2

0

hα2
x2

]
s+

 1

hα1
x1

∞∑
i=−∞
i,m

gα1
m−i +

1

hα2
x2

∞∑
i=−∞
i,n

gα2
n−i

s


=
τn
s+κ

λ1s
p+1

h
β1
x1

∞∑
i=−∞

g
β1
m−i +

λ2s
p+1

h
β2
x2

∞∑
i=−∞

g
β2
n−i −

s

hα1
x1

∞∑
i=−∞

gα1
m−i −

s

hα2
x2

∞∑
i=−∞

gα2
n−i

 = 0

(3.23)

As a consequence,

uk+1
m,n = Fum,n,k(s) = g(s)exp(ϕ(s))−κ = s, ∀(m,n) ∈Z×Z. (3.24)

It follows that uk+1 = ε, and the conclusion of the theorem is reached by induction.

We will need the following lemma to establish the capability of the method (3.12) to preserve

the positivity and the boundedness. The proof is a straightforward application of the mean value

theorem of one-variable real analysis.

Lemma 3.1. Let κ be a real number and suppose that F,g,ϕ : [0,1]→ R are functions such that F(w) =

g(w)exp(ϕ(w))−κ for each w ∈ [0,1]. Then F is increasing in [0,1] if g and ϕ are differentiable functions
satisfying

g ′(w) + g(w)ϕ′(w) > 0, (3.25)
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for each 0 < w < 1.

The following result is the cornerstone of this work.

Lemma 3.2. Let κ > 0 and s ∈ (0,1], and let k ∈ {0,1, . . . ,K − 1}. Suppose that f and f ′ are bounded on
[0, s], and let K0 be a bound common to both functions. Define

B0 = (1 + 2κ)K0 + (κ+ 1)
(
gα1

0

hα1
x1

+
gα2

0

hα2
x2

)
+ [(2p − 1) + (2p+ 1)κ]

 |λ1|g
β1
0

h
β1
x1

+
|λ2|g

β2
0

h
β2
x2

 , (3.26)

and assume that 0 < uk < s. If τkB0 < κ holds then Fum,n,k : [0, s]→ R is an increasing function for each
m ∈ {1, . . . ,M − 1} and each n ∈ {1, . . . ,N − 1}.

Proof. Let K0 be a common bound for f and f ′ on [0, s], and let H(w) = g ′(w) + g(w)ϕ′(w) for each

w ∈ [0, s]. After differentiating and simplifying algebraically, we readily check that

H(w) =
G(w)
w+κ

, (3.27)

where
G(w) = w+κ+ τk

{
w(w+κ)f ′(w) +κf (w) + cpwp+1

+
[(
dkm,n,x1

+ dkm,n,x2

)
(p − 1) +κ(p+ 1)c

]
wp

+κ
(
dkm,n,x1

+ dkm,n,x2

)
pwp−1 −κe+ f km,n,x1

+ f km,n,x2

}
.

(3.28)

Here we are omitting again the dependence of H and G on m, n and k. In light of Lemma 3.1, the

function Fum,n,k is increasing in [0, s] if H is positive on [0, s] or, equivalently, if G is positive. Note that

the following inequalities are satisfied:

(a) |w(w+κ)f ′(w)| ≤ (1 +κ)K0.

(b) |κf (w)| ≤ κK0.

(c) |pcwp+1| ≤ p
(
|λ1|g

β1
0 h
−β1
x1 + |λ2|g

β2
0 h
−β2
x2

)
.

(d) |
(
dkm,n,x1

+ dkm,n,x2

)
(p − 1)wp | ≤ −(p − 1)

|λ1|h
−β1
x1

M∑
i=0
i,m

g
β1
m−i + |λ2|h

−β2
x2

N∑
i=0
i,n

g
β2
n−i


≤ (p − 1)

(
|λ1|h

−β1
x1 g

β1
0 + |λ2|h

−β2
x2 g

β2
0

)
.

(e) |κ(p+ 1)cwp | ≤ κ(p+ 1)
(
|λ1|h

−β1
x1 g

β1
0 + |λ2|h

−β2
x2 g

β2
0

)
.

(f) Similarly to (d), |κdnj pw
p−1| ≤ pκ

(
|λ1|h

−β1
x1 g

β1
0 + |λ2|h

−β2
x2 g

β2
0

)
.

(g) |κe| = κ
(
gα1

0 h−α1
x1 + gα2

0 h−α2
x2

)
.

(h) Similarly to (d), |f km,n,x1
| ≤ gα1

0 h−α1
x1 .

(i) Similarly to (d), |f km,n,x2
| ≤ gα2

0 h−α2
x2 .
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As a consequence of these bounds and the hypotheses, note that G(w) ≥ κ−τkB0 > 0 for each w ∈ [0, s].

So the function G is positive on [0, s] and Lemma 3.1 guarantees now that Fum,n,k is increasing on [0, s],

as desired.

In the following, we will use the notation Rh to represent the range of any real function h. The

next result summarizes the capability of the finite-difference method (3.12) to preserve the positivity

and the boundedness of the approximations. To that end, it is important to note beforehand that the

constants f km,n,x1
and f km,n,x2

are negative when uk > 0, for each k ∈ {0,1, . . . ,K}, each m ∈ {1, . . . ,M − 1}
and each n ∈ {1, . . . ,N − 1}.

Theorem 3.4 (Positivity and boundedness). Let κ > 0, λ1 < 0, λ2 < 0 and s ∈ (0,1], and assume that f
and f ′ are bounded on [0, s]. Let B0 be as in Lemma 3.2, and Rφ,Rψ ⊆ (0, s). If f (s) = 0 and τnB0 < κ for
each k ∈ {0,1, . . . ,K − 1} then there is a unique solution (uk)Kk=0 of (3.12) that satisfies

0 < uk < s, ∀k ∈ {0,1, . . . ,K}. (3.29)

Proof. We proceed inductively. Note that the conclusion is true when n = 0 by hypothesis, so assume

that it is valid for some k ∈ {0,1, . . . ,K − 1} and let m ∈ {1, . . . ,M − 1} and n ∈ {1, . . . ,N − 1}. Obviously

Lemma 3.2 guarantees that the function Fum,n,k is increasing on [0, s]. Moreover, note that

Fum,n,k(0) = κexp

−τk
(
f km,n,x1

+ f km,n,x2

)
κ

−κ > κe0 −κ = 0. (3.30)

On the other hand, define gkm,n = csp+1 +
(
dkm,n,x1

+ dkm,n,x2

)
sp − es− f km,n,x1

− f km,n,x2
. Using the properties

of Lemma ?? we obtain that

gkm,n =
λ1s

p

h
β1
x1

gβ1
0 s+

M∑
i=0
i,m

g
β1
m−iu

k
i,n

+
λ2s

p

h
β2
x2

gβ2
0 s+

N∑
i=0
i,n

g
β2
n−iu

k
m,i


− 1

hα1
x1

gα1
0 s+

M∑
i=0
i,m

gα1
m−iu

k
i,n

− 1

hα2
x2

gα2
0 s+

N∑
i=0
i,n

gα2
n−iu

k
m,i

 < 0.

(3.31)

As a consequence,

Fum,n,k(s) = (s+κ)exp

τkgkm,ns+κ

−κ < (s+κ)e0 −κ = s. (3.32)

Summarizing, we have established that the function Fum,n,k : [0, s] → R is increasing, and that 0 <

Fum,n,k(0) < Fum,n,k(s) < s. The fact that 0 < ukm,n < s implies that uk+1
m,n = Fum,n,k(u

k
m,n) belongs to (0, s)

for each m ∈ {1, . . . ,M − 1} and each n ∈ {1, . . . ,N − 1}. Using the boundary data leads to obtain that

0 < uk+1 < s, and the result follows now from induction.

We would like to establish not that the finite-difference method (3.12) is capable to preserve the

monotonicity of the approximations, but the method (3.12) is two–dimensional, in this case, we will

consider (3.12) one–dimensional to monotonicity makes sense. In the statement of our next result, we

will consider two sets of initial-boundary conditions which will be denoted by (φu ,ψu) and (φv ,ψv),
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respectively. The corresponding numerical solutions obtained through (3.12) will be denoted by

(uk)Kk=0 and (vk)Kk=0, respectively.

Theorem 3.5 (Monotonicity). Let κ > 0, λ < 0 and s ∈ (0,1], and assume that f and f ′ are bounded on
[0, s]. Let B0 be as in Lemma 3.2, and let Rφz ,Rψz1 ,Rψz2 ⊆ (0, s) for z = u,v. Suppose that f (s) = 0 and
τnB0 < κ, and that the following are satisfied:

(a) φu(w) < φv(w) for each w ∈ [0, s], and

(b) ψui (t) < ψvi (t) for each t ∈ [0,T ] and i = 1,2.

Then there exist unique solutions (un)Nn=0 and (vn)Nn=0 of (3.12) corresponding to (φu ,ψu1 ,ψ
u
2 ) and (φv ,ψv1 ,ψ

v
2),

respectively, and they satisfy
0 < un < vn < s, ∀n ∈ {0,1, . . . ,N }. (3.33)

Proof. Beforehand note that Theorem 2.2 guarantees the existence and the uniqueness of the solutions

(un)Nn=0 and (vn)Nn=0, and that they satisfy the inequalities 0 < un < s and 0 < vn < s for each n ∈
{0,1, . . . ,N }. It remains to prove that un < vn is also satisfied (which is true for n = 0 by hypothesis),

so suppose that this inequality holds for some n ∈ {0,1, . . . ,N − 1} and fix j ∈ {1, . . . ,M − 1}. Let Ψj :

R
M+1→R be given by

Ψj (w) = wjf (wj ) + c(wj )
p+1 + dj (wj )

p − ewj − fj , (3.34)

for each w = (w0,w1, . . . ,wM ) ∈ [0, s]M+1. Here the parameters c and e are as before, and we use the

constants

dj =
λ

hβ

M∑
k=0
k,j

g
β
j−kwk , fj =

1
hα

M∑
k=0
k,j

gαj−kwk . (3.35)

A simple calculation shows that if k ∈ {0,1, . . . ,M} and w ∈ (0, s)M+1 then

∂Ψj
∂wk

(w) =

λg
β
j−k

hβ
(wj )

p −
gαj−k
hα

 > 0, if k , j. (3.36)

This implies in particular that for each v,w ∈ (0, s)M+1 satisfying vk < wk for each k , j, and vj =

wj then Ψj (v) < Ψj (w). Let vnu = (vn0 ,v
n
1 , . . . , v

n
j−1,u

n
j ,v

n
j+1, . . . , v

n
M ) now. The following identities and

inequalities are now trivial in light of these facts and Lemma 3.2, and they are satisfied for each

j ∈ {1, . . . ,M − 1}:

un+1
j = Fuj,n(unj ) = (unj +κ)exp

τnΨj (un)

unj +κ

−κ
< (unj +κ)exp

τnΨj (vnu )

unj +κ

−κ = Fvj,n(unj ) < Fvj,n(vnj ) = vn+1
j .

(3.37)

This and the boundary conditions imply that un+1 < vn+1. The conclusion of the theorem is reached

now using induction.

The following corollaries are easy consequences of Theorem 3.5.
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Corollary 3.1 (Temporal monotonicity). Let κ > 0, λ < 0 and s ∈ (0,1], and assume that f and f ′ are
bounded on [0, s]. Let B0 be as in Lemma 3.2, and let Rφ,Rψ1

,Rψ2
⊆ (0, s). Suppose that f (s) = 0 and

τnB0 < κ. Then
0 < un < un+1 < 1, ∀n ∈ {0,1, . . . ,N − 1} (3.38)

whenever 0 < u0 < u1 < 1 and the functions ψ1 and ψ2 are increasing.

Definition 3.3. A real vector u = (u0,u1, . . . ,uM ) is increasing if uj < uj+1 for each j ∈ {0,1, . . . ,M − 1}.
If −u is increasing then we say that u is decreasing.

Corollary 3.2 (Spatial monotonicity). Let κ > 0, λ < 0 and s ∈ (0,1], and assume that f and f ′ are
bounded on [0, s]. Let B0 be as in Lemma 3.2, and let Rφ,Rψ1

,Rψ2
⊆ (0, s). Suppose that f (s) = 0 and

τnB0 < κ.

(a) If φ, ψ1 and ψ2 are increasing, and if un0 < u
n
1 and unM−1 < u

n
M for each n ∈ {0,1 . . . ,N } then un is

increasing for all n ∈ {0,1, . . . ,N }.

(b) If φ, ψ1 and ψ2 are decreasing, and if un1 < u
n
0 and unM < unM−1 for each n ∈ {0,1 . . . ,N } then un is

decreasing for all n ∈ {0,1, . . . ,N }.

3.5 Numerical results

The present section is devoted to establish some numerical properties of (3.12) and to provide simu-

lations that illustrate the capability of the method to preserve the positivity, the boundedness and the

monotonicity of the approximations. In a first stage, we show that our method is consistent with the

partial differential equation of (3.5). To that end, we introduce the continuous and discrete operators

Lu(x, t) = (u(x, t) +κ)
∂
∂t

ln(u(x, t) +κ)−
2∑
i=1

∂αiu
∂|xi |αi

(x, t) (3.39)

+up(x, t)
2∑
i=1

λi
∂βiu

∂|xi |βi
(x, t)−u(x, t)f (u(x, t)),

Lukm,n = (ukm,n +κ)δt ln(ukm,n +κ)−
2∑
i=1

δαixi u
k
m,n + (ukm,n)p

2∑
i=1

λiδ
βi
xi u

k
m,n,

−ukm,nf (ukm,n), (3.40)

defined for each (x, t) ∈ Ω, each m ∈ {1, . . . ,M − 1}, each n ∈ {1, . . . ,N − 1} and each k ∈ {0,1, . . . ,K − 1}.
Also, we will employ the symbols ‖ · ‖2 and ‖ · ‖∞ to represent the Euclidean norm and the maximum

norm in R
(M+1)(N+1), respectively.

Theorem 3.6 (Consistency). If u ∈ C5,5,2
x1,x2,t

(Ω) is a positive function and κ > 0 then there exists a constant
C0 > 0 which is independent of hx1

, hx2
and τk such that for each m ∈ {1, . . . ,M − 1}, each n ∈ {1, . . . ,N − 1}

and each k ∈ {1, . . . ,K − 1}, ∣∣∣Lu(xm,n, tk)−Lukm,n
∣∣∣ ≤ C0(τk + h2

x1
+ h2

x2
). (3.41)

Proof. We employ here Lemma ?? and the usual argument with Taylor polynomials. Using the hy-

potheses on the continuous differentiability of u there exist positive constants C1, C2, C3, C4 and C5

51



such that ∣∣∣∣∣(u(xm,n, tk) +κ)
∂
∂t

ln(u(xm,n, tk) +κ)− (ukm,n +κ)δt ln(ukm,n +κ)
∣∣∣∣∣ ≤ C1τk , (3.42)∣∣∣∣∣ ∂α1u

∂|x1|α1
(xm,n, tk)− δ

α1
x1 u

k
m,n

∣∣∣∣∣ ≤ C2h
2
x1
, (3.43)∣∣∣∣∣ ∂α2u

∂|x2|α2
(xm,n, tk)− δ

α2
x2 u

k
m,n

∣∣∣∣∣ ≤ C3h
2
x2
, (3.44)∣∣∣∣∣∣up(xm,n, tk)

∂β1u

∂|x1|β1
(xm,n, tk)− (ukm,n)pδβ1

x1u
k
m,n

∣∣∣∣∣∣ ≤ C4h
2
x1
, (3.45)∣∣∣∣∣∣up(xm,n, tk)

∂β2u

∂|x2|β2
(xm,n, tk)− (ukm,n)pδβ2

x2u
k
m,n

∣∣∣∣∣∣ ≤ C5h
2
x2
, (3.46)

for each m ∈ {1, . . . ,M − 1}, each n ∈ {1, . . . ,N − 1} and each k ∈ {1, . . . ,K − 1}. Note also that

|u(xm,n, tk)f (u(xm,n, tk))−ukm,nf (ukm,n)| = 0. (3.47)

The conclusion of this theorem is readily reached using the triangle inequality and defining the con-

stant C0 = max{C1,C2,C3|λ1|C4, |λ2|C5}.

Next, we tackle the problem of stability of the method (3.12). In the following, for any real num-

bers x and y we use x∨ y to represent the maximum of x and y.

Theorem 3.7 (Stability). Let κ > 0, λ1 < 0, λ2 < 0 and s ∈ (0,1], and let f and f ′ be bounded on [0, s]

with f (s) = 0. Let B0 be as in Lemma 3.2 and τkB0 < κ for each k ∈ {0,1, . . . ,K − 1}. There exists a constant
C such that for any sets of initial-boundary conditions (φu ,ψu) and (φv ,ψv) with ranges bounded in (0, s),
the corresponding solutions satisfy

‖uk − vk‖∞ ≤ C‖u0 − v0‖∞, ∀k ∈ {0,1, . . . ,K}. (3.48)

Proof. The hypotheses guarantee the existence and the uniqueness of the solutions (uk)Kk=0 and (vk)Kk=0,

satisfying 0 < uk < s and 0 < vk < s for each k ∈ {0,1, . . . ,K}. To derive the constant C, let us define

the function Φkm,n : [0, s](M+1)(N+1) → R for each m ∈ {1, . . . ,M − 1}, each n ∈ {1, . . . ,N − 1} and each

k ∈ {0,1, . . . ,K − 1} by

Φkm,n(u) = (um,n +κ)exp
(
τkΨ (u)
um,n +κ

)
−κ, ∀u ∈ [0, s](M+1)(N+1). (3.49)

Here we are using the nomenclature employed in Theorem 3.5. It is obvious that each of the func-

tions Φkm,n is of class C1([0, s](M+1)(N+1)), so the numbers Cm,n,k = max[0,s](M+1)(N+1) ‖∇Φkm,n‖2 exist in

R. Moreover, the mean value theorem guarantees that for each u,v ∈ [0, s](M+1)(N+1) there exists

ξ ∈ [0, s](M+1)(N+1) such that

|Φkm,n(u)−Φkm,n(v)| ≤ ‖∇Φkm,n(ξ)‖2‖u − v‖2 ≤ Cm,n,k
√

(M + 1)(N + 1)‖u − v‖∞. (3.50)

52



As a consequence, note that for each m ∈ {1, . . . ,M − 1} and each n ∈ {1, . . . ,N − 1},

|uk+1
m,n − vk+1

m,n | = |Φkm,n(uk)−Φkm,n(vk)| ≤ Ck‖uk − vk‖∞, (3.51)

where

Ck = 1∨max{Cm,n,k
√

(M + 1)(N + 1) : 1 ≤m ≤M − 1, 1 ≤ n ≤N − 1}. (3.52)

It is clear then that ‖uk+1 − vk+1‖∞ ≤ Ck‖uk − vk‖∞ for each k ∈ {0,1, . . . ,K − 1}. Using recursion we

obtain that the inequality ‖uk − vk‖∞ ≤ C‖u0 − v0‖∞ is satisfied for each k ∈ {0,1, . . . ,K}, where

C = (M + 1)K/2(N + 1)K/2
K−1∏
k=0

Ck , (3.53)

as desired.

Next, we tackle the property of convergence of the numerical model (3.12).

Theorem 3.8 (Convergence). Let u ∈ C5,5,2
x1,x2,t

(Ω) be a solution of (3.5) satisfying 0 ≤ u(x, t) ≤ 1 for each
Ω. Let (vk)Kk=0 be a solution of (3.13) satisfying 0 ≤ vk ≤ 1, for each k ∈ {0,1, . . . ,K}. If

exp(τk/λ)− 1 ≤ 2τk/λ, (3.54)

then there exists a constant C′ independent of τk , hx1
and hx2

, such that the following is satisfied for each
k ∈ {0,1, . . . ,K}:

‖uk − vk‖∞ ≤ C′(τk + h2
x1

+ h2
x2

) (3.55)

Proof. Throughout, we will use the notation used in Theorem 3.7. Let ekm,n = ukm,n − vkm,n for each m ∈
{0,1, . . . ,M}, n ∈ {0,1, . . . ,N } and k ∈ {0,1, . . . ,K}. The exact solution u(x, t) of (3.5) satisfies the finite–

difference method (3.13) in the point (xm,n, tk) with truncation error Rkn,m, for eachm ∈ {0,1, . . . ,M−1},
n ∈ {0,1, . . . ,N − 1} and k ∈ {0,1, . . . ,K − 1}. We have that the exact and the numerical solutions satisfy

the equations

(ukm,n +λ)Lukm,n = Rkm,n, (3.56)

(vkm,n +λ)Lvkm,n = 0, (3.57)

respectively, for each m ∈ {0,1, . . . ,M − 1}, n ∈ {0,1, . . . ,N − 1} and k ∈ {0,1, . . . ,K − 1}. By Theorem 3.6,

there exists C0 > 0 such that
∣∣∣Rkm,n∣∣∣ ≤ C0(τk +h2

x1
+h2

x2
) for each m,n and k. Equations (3.56) and (3.57)

could be seen as

uk+1
m,n = (ukm,n +λ)exp

 τkRkm,n
ukm,n +λ

exp
(
ϕ(ukm,n)

)
−λ, (3.58)

vk+1
m,n = (vkm,n +λ)exp

(
ϕ(vkm,n)

)
−λ, (3.59)

for each m ∈ {0,1, . . . ,M −1}, n ∈ {0,1, . . . ,N −1} and k ∈ {0,1, . . . ,K −1}. Subtracting these identities, we
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obtain

∣∣∣ek+1
m,n

∣∣∣ ≤ (ukm,n +λ)

exp

 τkRkm,n
ukm,n +λ

− 1

exp
(
ϕ(ukm,n)

)
+
∣∣∣Φkm,n(u)−Φkm,n(v)

∣∣∣
≤ (λ+ 1)Dkm,n

[
exp(τkR

k
m,n/λ)− 1

]
+Cm,n,k‖uk − vk‖2

≤ DτkR
k
m,n +C‖ek‖∞, (3.60)

where

ek = (ek0,0, e
k
0,1, . . . , e

k
0,N , e

k
1,0, e

k
1,1, . . . , e

k
1,N , . . . , e

k
M,0, e

k
M,1, . . . , e

k
M,N ), (3.61)

Dkm,n = max
{
exp

(
ϕ(ukm,n)

)
: u ∈ [0,1](M+1)(N+1)

}
, (3.62)

for each m ∈ {0,1, . . . ,M − 1}, n ∈ {0,1, . . . ,N − 1} and k ∈ {0,1, . . . ,K − 1}, and

C = max
{
Cm,n,k

√
(M + 1)(N + 1) :m = 1, . . . ,M − 1;n = 1, . . . ,N − 1;k = 1, . . . ,K − 1

}
, (3.63)

D = max

2(λ+ 1)Dkm,n
λ

:m = 1, . . . ,M − 1;n = 1, . . . ,N − 1;k = 1, . . . ,K − 1

 . (3.64)

Here, Φkm,n and Cm,n,k are as in the proof of Theorem 3.7. Moreover, all the constants Cm,n,k are

elements of [0,1], whence is follows that 0 ≤ C ≤ 1. Therefore, by Theorem 3.6 and by the inequality

(3.60), we have that

‖ek+1‖∞ − ‖ek‖∞ ≤ ‖ek+1‖∞ −C‖ek‖∞ (3.65)

≤ C0Dτk(τk + h2
x1

+ h2
x2

) (3.66)

≤ C0Dτk(τ + h2
x1

+ h2
x2

) (3.67)

(3.68)

for each k ∈ {0,1, . . . ,K − 1} and

τ = max {τk : k = 0,1, . . . ,K − 1} . (3.69)

Taking summation on both sides of this inequality and using the exactness of the numerical initial

conditions, we have

‖el+1‖∞ = ‖el+1‖∞ − ‖e0‖∞ ≤ C0DT (τ + h2
x1

+ h2
x2

) ≤ C′(τ + h2
x1

+ h2
x2

), (3.70)

for each l ∈ 0,1, . . . ,K − 1, where we have used C′ = C0DT .

Recall that K0 represented a common bound for f and f ′ in the context of Lemma 3.2. This

notation will be observed in the next result, which provides some a priori bound for the numerical

solutions of (3.12).
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Theorem 3.9 (A priori bounds). Let κ > 0, λ < 0 and s ∈ (0,1], and let f and f ′ be bounded on [0, s] with
f (s) = 0. Let B0 be as in Lemma 3.2 and τkB0 < κ for each k ∈ {0,1, . . . ,K −1}. If Rφ,Rψ1

,Rψ2
⊆ (0, s) then

there exists a constant C > 1 such that

‖uk‖∞ ≤ C‖u0‖∞ +κ(C − 1), ∀k ∈ {0,1, . . . ,K}. (3.71)

Proof. Beforehand note that the hypotheses and Theorem 3.1 guarantee the existence and the unique-

ness of positive and bounded solutions for (3.12). On the other hand, observe that δαixi u
k
m,n ≤ g

αi
0 /h

αi
xi

and δβixi u
k
m,n ≤ g

βi
0 /h

βi
xi hold for each m ∈ {0,1, . . . ,M −1}, n ∈ {0,1, . . . ,N −1}, k ∈ {1, . . . ,K −1} and i = 1,2.

Note then that

exp(φ(ukm,n)) = exp


τk

(∑2
i=1 δ

αi
xi u

k
m,n − (ukm,n)p

∑2
i=1λiδ

βi
xi u

k
m,n +ukm,nf (ukm,n)

)
ukm,n +κ


= exp

τk∑2
i=1 δ

αi
xi u

k
m,n

ukm,n +κ

exp

−τk(ukm,n)p
∑2
i=1λiδ

βi
xi u

k
m,n

ukm,n +κ


exp

τkukm,nf (ukm,n)

ukm,n +κ


≤ exp

τk 2∑
i=1

gαi0

hαixi

exp

τk 2∑
i=1

|λi |g
βi
0

h
βi
xi

exp
(
τkf (ukm,n)

)
≤ Ck ,

(3.72)

where

Cn = exp

τk
 2∑
i=1

gαi0

hαixi
+

2∑
i=1

|λi |g
βi
0

h
βi
xi

+K0


 . (3.73)

LetC =
∏K−1
k=0 Ck , and observe that the following is satisfied for eachm ∈ {0,1, . . . ,M−1}, n ∈ {0,1, . . . ,N−

1} and each k ∈ {1, . . . ,K − 1}:

uk+1
m,n = (ukm,n +κ)exp

(
φ(ukm,n)

)
−κ ≤ Ckukm,n +κ(Ck − 1) ≤ Ck‖uk‖∞ +κ(Ck − 1). (3.74)

Once that this inequality is established, it is easy to prove now the validity of the conclusion of this

theorem using induction.

In this part, we do some computer simulations to show that the finite-difference method (3.12) is

capable of preserving the main analytical features of the solutions of interest of (3.5). Concretely, we

illustrate the capability of the method to preserve the positivity and the boundedness. The simula-

tions were obtained using our own implementation of the method in ©Matlab 8.1.0.604 (R2013a), on

a ©ASUS Tp501ua laptop computer with Windows 10 as operating system.

Example 3.1. Let us consider the continuous model (3.5) with parameters α1 = α2 = 2, λ1 = λ2 = 0,

p = 1, κ = 1, and f is given by (??). We will consider the spatial domain B = (−200,200)×(−200,200) ⊆
R

2, and the computational constants hx1
= hx2

= 1 and τ = 0.05. Let us fix homogeneous Dirichlet

conditions on the boundary of B, and consider the initial profiles

φ1(x,y) = φ2(x,y) =

 0.2, if (x,y) = (0,0),

0, otherwise.
(3.75)
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Figure 3.1: Snapshots of the approximate solution u of the model (3.5) as a function of (x,y) ∈ B =
[−200,200]× [−200,200], for the times (a) t = 200, (b) t = 300, (c) t = 400, (d) t = 500, (e) t = 600 and
(f) t = 700. The model uses the parameters α1 = α2 = 2, λ1 = λ2 = 0, p = 1, κ = 1, and f is given
by (??). We employed homogeneous Dirichlet conditions on the boundary of B, along with the initial
profiles (3.75). Computationally, we let hx1

= hx2
= 4 and τ = 0.05.
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Figure 3.2: Snapshots of the approximate solution u of the model (3.5) as a function of (x,y) ∈ B =
[−200,200]× [−200,200], for the times (a) t = 200, (b) t = 300, (c) t = 400, (d) t = 500, (e) t = 600 and
(f) t = 700. The model uses the parameters α1 = 1.9, α2 = 1.95, β1 = 0.8, β2 = 0.9, λ1 = λ2 = 1, p = 1,
κ = 1, and f is given by (??). We employed homogeneous Dirichlet conditions on the boundary of B,
along with the initial profiles (3.75). Computationally, we let hx1

= hx2
= 4 and τ = 0.05.
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We can note that we consider a problem without convective effects and with partial derivatives of

integer order. In such situation, the classical solution of the initial-boundary-value problem (3.5) is

nonnegative and bounded. Figure 3.1 shows snapshots of the approximate solution u as a function

of x and y, for the times (a) t = 200, (b) t = 300, (c) t = 400, (d) t = 500, (e) t = 600 and (f) t = 700. The

solutions suggest that the method is capable of preserving the positivity and the boundedness of the

approximations, in agreement with Theorem 3.4.

Example 3.2. Let us consider the same problem as in Example 3.1, using the constants α1 = 1.9,

α2 = 1.95, β1 = 0.8, β2 = 0.9, λ1 = λ2 = 1, p = 1 and κ = 1, together with the same computational

parameters and the same initial-boundary conditions as in the previous example. The results of our

simulations are shown in Figure 2.2. In this case, anomalous diffusion and convection are considered

in the x and y directions. It is worth pointing out that the properties of positivity and boundedness

of the approximate solutions are preserved, in agreement with Theorem 3.4.

It is important to mention that we have conducted more simulations with different model param-

eters and different initial-boundary conditions. The results are not presented in this work in view of

their repetitiveness: they also confirm the capability of the finite-difference method (3.12) to preserve

the analytical features of the solutions of interest of (3.5), namely, the positivity and the boundedness

of the solutions.
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4. Conclusions and discussions

In chapter 1, we worked with a discrete system formed by interacting particles. We considered the

particles are arranged in a linear pattern and the distance between particle is the same. This system

was modeled by a discrete motion equation. We defined the concept of α-interaction. We defined a

transform operation to obtain the continuous motion equation of the discrete system. The transform

operation is the continuous limit process that involves the Fourier series transform, the limit when

the distance between particles tends to zero and the inverse Fourier transform. In the continuous

motion equation, we found the Riesz fractional derivative in space. We considered the generalization

of the discrete system in the three-dimensional case.

In chapter 2, we investigated numerically a multidimensional generalization of the well–known

Burgers–Fisher and Burgers–Huxley equations with anomalous diffusion and convection terms. The

fractional derivatives considered are of the Riesz type, and the model was discretized using fractional

centered differences in a linear approach. The method proposed in this work is a Crank–Nicolson–

type implicit finite–difference scheme which is capable of preserving many features of some solutions

of the Burgers–Fisher and the Burgers–Huxley models with derivatives of integer order. For instance,

the methodology proposed in this work is capable of preserving the positivity and the boundedness

of the approximations. A theorem on the existence and the uniqueness of approximations was also

established in this work using the theory of Minkowski matrices. Moreover, the technique has the

same constant solutions as its continuous counterpart. The consistency, the stability and the conver-

gence of the technique were proved thoroughly in this work. As two of the most important results,

we showed that the method is quadratically convergent and unconditionally stable under suitable

scenarios. Moreover, we derived suitable a priori bounds for the numerical solutions of our finite–

difference–scheme. Simulations carried out with a computational implementation of our method

show that the technique is capable of preserving the analytical features of the solutions.

In chapter 3, we investigated numerically a generalization of the well-known the Burgers–Fisher

and Burgers–Huxley equations with fractional diffusion and advection terms. The fractional deriva-

tives considered are of the Riesz type, and the model was discretized using fractional centered differ-

ences and an exponential approach. The method proposed in this work is an explicit finite-difference

scheme which is capable of preserving many features of some solutions of the Burgers–Fisher and
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Burgers–Huxley models with derivatives of integer order. For instance, the methodology proposed

in this work is capable of preserving the positivity, the boundedness and the monotonicity of the

approximations. Moreover, we observed that our the technique and its continuous counterpart both

have the same constant solutions. We showed in this work the numerical properties of our technique

which are consistency, stability and convergence, along with some a priori bounds for the numerical

solutions. We did some simulations of our technique using a computational implementation to show

that our technique is capable of preserving the structural properties of the solutions.

Finally, we would like to add that the initial objective of this work was to apply fractional methods

to the processing of images. We applied the methods reported in this thesis, but the results that we

obtained did not yield satisfactory outcomes. More precisely, we expected to obtain better results than

those reported on the literature, however, that was not the case. We are convinced that the problem

lies in our use of the diffusion factors. We would expect to have better results using different diffusion

coefficients. Such task could be the topic of research in a future doctoral dissertation.
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