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Resumen

En este documento, trabajamos con varios modelos: la ecuación sine-Gordon, además de una ecuación
de onda no lineal con p dimensiones espaciales, amortiguamiento y derivadas espaciales fraccionarias
y finalmente el caso p = 2 para un método particular. El primer modelo tuvo fines prácticos pues
sirvió de base para el desarrollo numérico de los siguientes modelos, sine-Gordon se caracteriza por
tener una función densidad de energía constante, usamos un método de discretización explícito que
nos permite conservar las cantidades antes mencionadas con un buen orden de consitencia, que además
es estable y convergente. Usando estas ideas, usamos la generalización de la ecuación de onda con p
dimensiones espaciales y derivadas fraccionarias al estilo de Riesz de ordenes en (1, 2], una función de
densidad de energía propuesta en la literatura, además del método de diferencias centradas fraccionarias
para aproximar las derivadas de Riesz y notamos que las propiedades descritas en sine-Gordon siguen
presentes, aumentando la disipación de la energía si consideramos un término de amortiguamiento, un
orden cuadrático de consitencia, estabilidad y convergencia además de existencia de una solución al ser
un método explícito, para este método se desarrolló un código de Matlab en el caso unidimensional,
presentamos además algunas simulaciones. En el último modelo consideramos la misma ecuación con
p = 2 dimensiones espaciales, aplicamos un operador compacto en el sentido de análisis funcional, el
cual acelera el método hacia la solución, como el método es implícito demostramos existencia de una
solución bajo ciertas condiciones, mostrando estabilidad, consistencia y convergencia.
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Abstract

In this document, we work with several models: The sine-Gordon equation, a nonlinear wave equation
with p spatial dimensions and fractional derivatives and finally the case p = 2 for a particular method.
The first model has practical meaning, because it worked as inspiration for the following methods, the
sine-Gordon equation is characterized for having an energy density function which conserves the energy
through time, we use an explicit discretization method which allows us to keep such quantity with a
good order of consistency, besides it is stable and convergent. We use the ideas from sine-Gordon to
work with a generalization of the wave equation, considering p spatial dimensions and Riesz fractional
derivatives of orders in (1, 2], an energy density function proposed in the literature, and an explicit
method with fractional centered differences for the Riesz derivatives, we notice that the properties
present on sine-Gordon still remain, besides when we add a damping constant, the energy dissipates.
We obtained a method with quadratic order of consistency, proved stability and convergence, and a
solution for the method always exist since it is explicit. For this method, we developed a Matlab
code for the unidimensional case and shown some simulations. In the last model, we consider the
same equation but with p = 2, we apply a compact operator, in the functional analysis sense, which
accelerates the method towards the solution, since the method is implicit we proved the existence of a
solution under some conditions, stability, consistency, and convergence.
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Introduction

Humankind has the desire to predict, predict movement, reactions, events, and even life fit into the
description, mathematics help to fulfill that desire, with mathematics we can create a model, and
a model predicts. Differential equations have helped when algebraic and transcendental equations
could not keep going, an example of a model with differential equations is the wave equation, which
is represented mathematically with a partial differential equation described first by Jean Le Rond
d’Alembert in 1747 [1] and also developed by Euler, Bernoulli, and Lagrange. Ever since, waves have
been found in all kinds of physical phenomena.

In some cases it is complicated to find the analytical solution of a differential equation, which is why
there are some special techniques developed to approximate the solution, such techniques are called
numerical methods. Numerical methods have been used previous its formal definition by investigators
like Newton, Jacobi, Runge, and Kutta but some of the firsts researchers to talk about rounding errors
are John Von Neumann and Herman Goldstine in 1947 [2] they worked with the inverse of matrices of
high order. To find numerical methods that preserve some quantities is not an easy task, but definitely
worth, since some physical phenomena are easier to study by a special quantity that depends on the
system instead of the solution of the actual system. A good example of this is the phenomenon called
Supratransmission.

Nonlinear supratransmission is a physical phenomenon that has been investigated in various non-
linear regimes. This process consists in the sudden increase in the amplitude of wave signals that
propagate in a semi-infinite discrete nonlinear chain when one of the ends is perturbed by a har-
monic disturbance irradiating at a frequency in the forbidden band gap. The existence of a nonlinear
supratransmission threshold for the energy administered into finite chains has been established in
continuous-limit cases, though numerical predictions are also available for both continuous and dis-
crete systems. In fact, media governed by spatially discrete sine-Gordon and Klein-Gordon chains [3],
double sine-Gordon systems [4], Fermi–Pasta–Ulam discrete chains [5], Bragg media in the nonlinear
Kerr regime [6] and continuous media described by undamped sine-Gordon equations [7] have been
identified as systems that exhibit the presence of nonlinear supratransmission. In most of these cases,
the occurrence of this phenomenon has been predicted with a good degree of approximation.

Many of the partial differential equations that appear in the investigation of wave phenomena have
been extended to account for nonlocal effects. Problems that only considered local contributions to
the dynamics of discrete or continuous systems have been extended to account for global influences.
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In such way, various classical models from mathematical physics that were traditionally described by
partial differential equations have been formulated using derivatives of fractional order under different
approaches [8]. As expected, among those models that have been extended to the fractional scenario
are the classical sine-Gordon and nonlinear Klein–Gordon equations [9].

Here, it is important to point out that the Riesz definition of spatial derivatives of fractional
order has been extensively employed in order to account physically for anomalous diffusion [10] and
to provide pertinent conservation laws and Hamiltonian equations [11]. In view of these remarks, a
natural question that arises is whether the process of nonlinear supratransmission is present in Riesz
space-fractional sine-Gordon equations.

The design of techniques to approximate the solution of physical systems has been largely enriched
with the study of partial differential equations of fractional orders. Indeed, fractional calculus has found
interesting applications in many fields of the natural sciences and engineering, including the theory
of viscoelasticity [12], the theory of thermo-elasticity [13], financial problems under a continuous time
frame [14], self-similar protein dynamics [15] and quantum mechanics [16]. Distributed-order fractional
diffusion-wave equations are used in groundwater flow modeling to and from wells [17]. A vast amount
of nonequivalent approaches have been followed, and new criteria of fractional differentiation have
been proposed constantly in the last decades. However, the problem in those cases is the common
lack of a physically meaningful formulation of the Euler–Lagrange formality for fractional variational
systems [18]. As expected, this has been a major problem in the design of energy-preserving method
for fractional partial differential equations.

This thesis starts with the non-fractional wave equation, studying a method first developed by
Vázquez, principal source of inspiration for the fractional wave equation method, this work had a warm
up purpose. Then we aimed to study the p spatial dimension wave equation with Riesz derivatives
in space, this method conserves the energy of the system which allows us to study even further the
properties of this particular equation. Last but not least we used a compact operator in the sense of
functional analysis to reach for the solution of the equation with much better accuracy. It is worth
mention that for practical reasons, some of the definitions in Chapter 1 and Chapter 2 will be written
again in Chapter 2 and Chapter 3, as well as some theorems.

Summary

This thesis is sectioned as follows.

• Chapter 1 provides a full development study of the well known Fei and Vázquez article [19] using
the sine-Gordon wave equation and an explicit method to solve it, such method preserves the
quantity of energy through time and also has a quadratic order of consistency, allowing us to
take this idea into the fractional system.

• In Chapter 2 we generalize the idea from Chapter 1, instead of using the sine-Gordon wave equa-
tion, we use a generalized equation, with p spatial dimensions, we also changed the differential
operators in time to Riesz operators of order α ∈ (1, 2] this equation comes with an extension
of the energy functional proposed in the literature [9]. The Riesz fractional differential operator
has a square root, this is a cornerstone in our investigation, we study some theorems which allow



us to make sure that our discrete model has important properties like conservation of energy in
the damped scenario, square root of the discrete Riesz operator and a good enough order of con-
sistency, this model is based in fractional centered differences. Then we proved some important
numerical properties of our model such as the existence of a solution, (which was an implicit
property since the system is explicit) stability, and convergence. Finally, we provided a MatLab
code used for simulation.

• In Chapter 3, we investigate numerically a model governed by a two dimensional wave equation,
but in this case we used a compact operator to accelerate the method towards the solution, this
is a substantial improvement over the scheme proposed in Chapter 2, we did notice that the
use of this operator has an important impact on the properties of the solution to exist, also the
reason for two instead of p spatial dimensions is the complexity of the method every time we
added a dimension, we proved that this scheme preserves variational properties as in the previous
chapter and also the scheme is stable an convergent. Then we do simulations to illustrate the
preservation of the Hamiltonian in the equation, this last chapter is a continuation of Chapter 2.

• This thesis closes with a section of conclusions for each chapter and a list of relevant references.
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1. Energy Conserving Scheme for the
sine-Gordon Equation

The sine-Gordon equation is a second-order partial differential equation which possesses an
important property: the energy of the system is constant through time, with that special interest,
in this chapter we developed a numerical method that preserves the energy, also we provide proof
that the method is second order consistent, stable and converges under suitable conditions, this
chapter is the base of our investigation, since further investigations and analysis are first used in
this part of the thesis.

1.1 Introduction

This chapter is motivated by the nonlinear sine-Gordon equation from quantum mechanics, which
is one of the basic equations of modern nonlinear wave theory and it arises in many different areas
of physics, such as Josephson junction theory, field theory, and lattices theory. This equation was
introduced and studied by Edmond Bour in 1862 [20], as the result of the study of deformation of
surfaces. The equation has constant energy through time under suitable conditions, one of our goals
is to find a finite difference scheme that preserves the energy, a pioneer in this topic is L. Vazquez and
coworkers, they proposed some schemes in 1991 [19], we used one of those schemes because it conserves
the energy and is also completely explicit. The reason for the development of the numerical analysis
of the scheme is as practice for the fractional scheme.

1.2 Preliminaries

In this section we will consider T ∈ R+, let us define the next system

∂2u

∂t2
(x, t)− ∂2u

∂x2 (x, t) + sin(u(x, t)) = 0, ∀x ∈ R,

such that

 u(x, 0) = φ(x), ∀x ∈ R,
∂u

∂t
(x, 0) = ψ(x), ∀x ∈ R.

(1.1)

For each pair f, g ∈ L2(R), the inner product of f and g is the function of t defined by

〈f, g〉x =
∫ ∞
−∞

f(x, t)g(x, t)dx, ∀t ∈ [0, T ]. (1.2)
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In turn, the Euclidean norm of f ∈ L2(R) is the function of t defined by ‖f‖x,2 =
√
〈f, f〉. The set of

all functions f : R → R such that f(·, t) ∈ L1(R) for each t ∈ [0, T ] will be denoted by Lx,1(R), and
for each such f we define its norm as the function of t given by

‖f‖x,1 =
∫ ∞
−∞
|f(x, t)|dx, ∀t ∈ [0, T ]. (1.3)

The literature on mathematical physics proved that the model (1.1) has an infinite number of conserved
quantities, among the conserved quantities is the Hamiltonian

H(x, t) = 1
2

(
∂u

∂t
(x, t)

)2
+ 1

2

(
∂u

∂x
(x, t)

)2
+G(u(x, t)), (1.4)

which integrating in R gives us the energy of the system

E(t) =
∫ ∞
−∞

[
1
2

(
∂u

∂t
(x, t)

)2
+ 1

2

(
∂u

∂x
(x, t)

)2
+G(u(x, t))

]
dx, (1.5)

with G(u(x, t)) defined as
G(u(x, t)) = 1− cos(u(x, t)). (1.6)

Here we provide a small proof for the conservation of the energy.

Theorem 1.1. The just defined functional of energy is constant through time.

E(t) =
∫ ∞
−∞

[
1
2

(
∂u

∂t
(x, t)

)2
+ 1

2

(
∂u

∂x
(x, t)

)2
+G(u(x, t))

]
dx = C. (1.7)

Proof.

d

dt
E(t) = d

dt

∫ ∞
−∞

[
1
2

(
∂u

∂t
(x, t)

)2
+ 1

2

(
∂u

∂x
(x, t)

)2
+G(u(x, t))

]
dx

=
∫ ∞
−∞

[
1
2
∂

∂t

(
∂u

∂t
(x, t)

)2
+ 1

2
∂

∂t

(
∂u

∂x
(x, t)

)2
+ ∂

∂t
(1− cos(u(x, t)))

]
dx

=
∫ ∞
−∞

[
1
22∂u

∂t
(x, t)∂

2u

∂t2
(x, t) + 1

22∂u
∂x

(x, t) ∂
2u

∂x∂t
(x, t) + sin(u(x, t))∂u

∂t
(x, t)

]
dx

=
∫ ∞
−∞

[
∂u

∂t
(x, t)∂

2u

∂t2
(x, t)− ∂2u

∂x2 (x, t)∂u
∂t

(x, t) + ∂u

∂t
(x, t)sin(u(x, t))

]
dx

=
∫ ∞
−∞

∂u

∂t
(x, t)

[
∂2u

∂t2
(x, t)− ∂2u

∂x2 (x, t) + sin(u(x, t))
]
dx

=
∫ ∞
−∞

∂u

∂t
(x, t) [0] dx = 0.

In the following sections, we will develop a numerical method to approximate both the solutions of
(1.1) and the energy function (1.5) in such way that the discrete version of Theorem 1.1 is still satisfied.
Various additional numerical properties of our methodology will be derived in the way, including the
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consistency, the stability and the convergence of the method.

1.3 Numerical method

For the remainder of this chapter we let h > 0 and τ > 0 be fixed step-sizes in space and time,
respectively, and assume that N = T/τ and M = (b − a)/h are positive integers. Consider uniform
partitions of [a, b] and [0, T ], respectively, given by xj = a + jh and tn = nτ for each j ∈ JM =
{0, 1, . . . ,M} and each n ∈ IN = {0, 1, . . . , N}. In this chapter, the symbol vnj will represent a
numerical approximation to the exact value of unj = u(xj , tn), that is, the solution of the initial-
boundary-value problem (1.1) at the point (xj , tn), for each j ∈ JM and n ∈ IN . Moreover, we will
use the discrete linear operators

µtu
n
j =

un+1
j + unj

2 , (1.8)

δ
(1)
t unj =

un+1
j − unj

τ
, (1.9)

δ
(2)
t unj =

un+1
j − 2unj + un−1

j

τ2 , (1.10)

δ(1)
x unj =

unj+1 − unj
h

, (1.11)

δ(2)
x unj =

unj+1 − 2unj + unj−1

h2 , (1.12)

δ
(1)
u,tG(unj ) =


G(un+1

j )−G(unj )
un+1
j − unj

, if un+1
j 6= unj ,

G′(unj ), if un+1
j = unj ,

(1.13)

for each j ∈ JM and n ∈ IN−1.
After this, using the defined nomenclature, the finite-difference method to approximate the solution

of (1.1) is given by

µtδ
(2)
t un+1

j − µtδ(2)
x un+1

j + δ
(1)
u,tG(unj ) = 0. (1.14)

Note that the scheme is completely explicit, un+3
j can be directly calculated from the difference equation

(1.14), and the starting data u1
j , u2

j , and u3
j . The scheme is also spatially and temporally symmetric,

and the consistency of the operators can be proved by Taylor expansion, which will be the next thing
we show.

Lemma 1.2. Let u ∈ C4
t (R) then

µtδ
(2)
t un+1

j =
un+3
j − (un+2

j + un+1
j ) + unj

2τ2 = ∂2u

∂t2

(
jh,

(
n+ 3

2τ
))

+O
(
τ2) . (1.15)
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Proof. We use Taylor’s expansion

un+3
j = u(xj , tn+ 3

2
) + ∂

∂t
u(xj , tn+ 3

2
)(tn+3 − tn+ 3

2
) + ∂2

∂t2
u(xj , tn+ 3

2
)
(tn+3 − tn+ 3

2
)2

2

+ ∂3

∂t3
u(xj , tn+ 3

2
)
(tn+3 − tn+ 3

2
)3

6 + ∂4

∂t4
u(xj , t1∗)

(tn+3 − t1∗)4

24 , (1.16)

un+2
j = u(xj , tn+ 3

2
) + ∂

∂t
u(xj , tn+ 3

2
)(tn+2 − tn+ 3

2
) + ∂2

∂t2
u(xj , tn+ 3

2
)
(tn+2 − tn+ 3

2
)2

2

+ ∂3

∂t3
u(xj , tn+ 3

2
)
(tn+2 − tn+ 3

2
)3

6 + ∂4

∂t4
u(xj , t2∗)

(tn+2 − t2∗)4

24 , (1.17)

un+1
j = u(xj , tn+ 3

2
) + ∂

∂t
u(xj , tn+ 3

2
)(tn+1 − tn+ 3

2
) + ∂2

∂t2
u(xj , tn+ 3

2
)
(tn+1 − tn+ 3

2
)2

2

+ ∂3

∂t3
u(xj , tn+ 3

2
)
(tn+1 − tn+ 3

2
)3

6 + ∂4

∂t4
u(xj , t3∗)

(tn+1 − t3∗)4

24 , (1.18)

unj = u(xj , tn+ 3
2
) + ∂

∂t
u(xj , tn+ 3

2
)(tn − tn+ 3

2
) + ∂2

∂t2
u(xj , tn+ 3

2
)
(tn − tn+ 3

2
)2

2

+ ∂3

∂t3
u(xj , tn+ 3

2
)
(tn − tn+ 3

2
)3

6 + ∂4

∂t4
u(xj , t4∗)

(tn − t4∗)4

24 , (1.19)

then substituting we get

un+3
j − (un+2

j + un+1
j ) + unj

2τ2 = 1
2
∂2

∂t2
u(xj , tn+ 3

2
)

(
3
2

2 −
(

1
2

2 + 1
2

2
)

+ 3
2

2
)
τ2

2τ2

+
4∑
i=1

∂4

∂t4
u(xj , ti∗)

(tn − ti∗)4

24 ∗ 2τ2 (1.20)

= ∂2

∂t2
u(xj , tn+ 3

2
) +

4∑
i=1

∂4

∂t4
u(xj , ti∗)

(tn − ti∗)4

48τ2 ,

finally using u ∈ C4
t (R) we obtain

∣∣∣∣µtδ(2)
t un+1

j − ∂2

∂t2
u(xj , tn+ 3

2
)
∣∣∣∣ =

∣∣∣∣∣
4∑
i=1

∂4

∂t4
u(xj , ti∗)

(tn − ti∗)4

48τ2

∣∣∣∣∣
≤ 1

48τ2

((
3τ
2

)4 ∣∣∣∣ ∂4

∂t4
u(xj , t1∗)

∣∣∣∣+
(τ

2

)4
∣∣∣∣ ∂4

∂t4
u(xj , t2∗)

∣∣∣∣
)

+ 1
48τ2

((
−τ
2

)4 ∣∣∣∣ ∂4

∂t4
u(xj , t3∗)

∣∣∣∣+
(
−3τ

2

)4 ∣∣∣∣ ∂4

∂t4
u(xj , t4∗)

∣∣∣∣
)

≤ Cτ2. (1.21)
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Lemma 1.3. Let u ∈ C4,4
x,t (R) then

µtδ
(2)
x un+1

j =
un+2
j+1 − 2un+2

j + un+2
j−1

2τ2 −
un+1
j+1 − 2un+1

j + un+1
j−1

2τ2

= ∂2u

∂x2

(
jh,

(
n+ 3

2τ
))

+O
(
ταhβ−2) . (1.22)

Proof. We omitted the Taylor extension due the long terms in it, but after the eliminations and since
u ∈ C4,4

x,t (R) we get

∣∣∣∣µtδ(2)
x un+1

j − ∂2u

∂x2

(
jh,

(
n+ 3

2τ
))∣∣∣∣ ≤ 1

48h2

[
4C1h

4 + 4C2

(τ
2

)
h3 + 4C3

(τ
2

)2
h2

+ 4C2

(τ
2

)3
h+ 4C2

(τ
2

)4
]
, (1.23)

where we notice that the sum of powers in each term inside the brackets is equal to 4, and h2 in the
denominator, using this ∣∣∣∣µtδ(2)

x un+1
j − ∂2u

∂x2

(
jh,

(
n+ 3

2τ
))∣∣∣∣ ≤ Cταhβ−2 (1.24)

with α ≥ 0, β ≥ 0 integers, α+ β = 4.

Lemma 1.4. Let G ∈ C3 (R), u ∈ C3
t (R) and un+2

j 6= un+1
j , then

δ
(1)
u,tG(un+1

j ) =
G(un+1

j )−G(unj )
un+1
j − unj

= sin
(
u

(
jh,

(
n+ 3

2τ
)))

+O
(
τ2) . (1.25)

Proof. We use Taylor’s expansions:

G(un+2
j ) = G(un+ 3

2
j ) +G′(un+ 3

2
j ) ∂

∂t
u
n+ 3

2
j (tn+2 − tn+ 3

2
)

+ 1
2

[
G′′(un+ 3

2
j )

(
∂

∂t
u
n+ 3

2
j

)2
+G′(un+ 3

2
j ) ∂

2

∂t2
u
n+ 3

2
j

]
(tn+2 − tn+ 3

2
)2 (1.26)

+ 1
6

[
G′′′(u1∗

j )
(
∂

∂t
u1∗
j

)3
+ 3G′′(u1∗

j ) ∂
∂t
u1∗
j

∂2

∂t2
u1∗
j +G′(u1∗

j ) ∂
3

∂t3
u1∗
j

]
(t1∗ − tn+ 3

2
)3,

G(un+1
j ) = G(un+ 3

2
j ) +G′(un+ 3

2
j ) ∂

∂t
u
n+ 3

2
j (tn+1 − tn+ 3

2
)

+ 1
2

[
G′′(un+ 3

2
j )

(
∂

∂t
u
n+ 3

2
j

)2
+G′(un+ 3

2
j ) ∂

2

∂t2
u
n+ 3

2
j

]
(tn+1 − tn+ 3

2
)2 (1.27)

+ 1
6

[
G′′′(u2∗

j )
(
∂

∂t
u2∗
j

)3
+ 3G′′(u2∗

j ) ∂
∂t
u2∗
j

∂2

∂t2
u2∗
j +G′(u2∗

j ) ∂
3

∂t3
u2∗
j

]
(t2∗ − tn+ 3

2
)3,

14



then after some calculations:

∣∣∣δ(1)
u,tG(un+1

j )−G′(un+ 3
2

j )
∣∣∣ ≤ τ3

6

∣∣∣G′′′(u1∗
j )
(
∂
∂tu

1∗
j

)3 + 3G′′(u1∗
j ) ∂∂tu

1∗
j

∂2

∂t2u
1∗
j +G′(u1∗

j ) ∂
3

∂t3u
1∗
j

∣∣∣∣∣un+2
j − un+1

j

∣∣
+ τ3

6

∣∣∣G′′′(u2∗
j )
(
∂
∂tu

2∗
j

)3 + 3G′′(u2∗
j ) ∂∂tu

2∗
j

∂2

∂t2u
2∗
j +G′(u2∗

j ) ∂
3

∂t3u
2∗
j

∣∣∣∣∣un+2
j − un+1

j

∣∣ ,

(1.28)

finally if G ∈ C3 (Ω), u ∈ C3
t (Ω) and un+2

j 6= un+1
j

∣∣∣δ(1)
u,tG(un+1

j )−G′(un+ 3
2

j )
∣∣∣ ≤ τ2

6

∣∣∣G′′′(u1∗
j )
(
∂
∂tu

1∗
j

)3 + 3G′′(u1∗
j ) ∂∂tu

1∗
j

∂2

∂t2u
1∗
j +G′(u1∗

j ) ∂
3

∂t3u
1∗
j

∣∣∣∣∣ ∂
∂tu

n+1
j

∣∣
+ τ2

6

∣∣∣G′′′(u2∗
j )
(
∂
∂tu

2∗
j

)3 + 3G′′(u2∗
j ) ∂∂tu

2∗
j

∂2

∂t2u
2∗
j +G′(u2∗

j ) ∂
3

∂t3u
2∗
j

∣∣∣∣∣ ∂
∂tu

n+1
j

∣∣
≤ 3Cτ2. (1.29)

Therefore the truncation error for the system is O
(
τ2 + h2) provided τ

h ≤ C, C a constant.

1.4 Energy invariants

In this section we show that the finite-difference method (1.14) satisfies physical properties similar to
those satisfied by (1.1). More precisely, we will propose a numerical energy functional associated to the
scheme (1.14) that is preserved under suitable parameter conditions. For that reason we will suppose
that the initial boundary conditions satisfy u(x, 0) = φ(x) = 0, ∀x ∈ R,

∂u

∂t
(x, 0) = ψ(x) = 0, ∀x ∈ R.

(1.30)

Throughout this section, we will employ the spatial mesh

Rh {(xj)|xj = kh, for each j ∈ JM−1} , (1.31)

Let Vh be the real vector space of all real grid functions on Rh. For any u ∈ Vh and j ∈ JM−1

convey that uj = u(xj). Moreover, define respectively the inner product 〈·, ·〉 : Vh × Vh → R and the

15



norm ‖ · ‖1 : Vh → R by

〈u, v〉 = h
∑

j∈JM−1

ujvj , (1.32)

‖u‖1 = h
∑

j∈JM−1

|uj |, (1.33)

for any u, v ∈ Vh. The Euclidean norm induced by 〈·, ·〉 will be denoted by ‖ · ‖2. In the following, we
will represent the solutions of the finite-difference method (1.14) by (vn)Nn=0, where we convey that
vn = (vnj )j∈JM for each n ∈ IN .

It is important to note here that the operator δ(2)
x unj has the next property:

Lemma 1.5. The operator δ(2)
x unj satisfies〈

δ(1)
x unj , δ

(1)
x vnj

〉
=
〈
−δ(2)

x unj , v
n
j

〉
, (1.34)

when unM = un0 = un−1 = 0.

Proof.

〈
δ(1)
x unj , δ

(1)
x unj

〉
= h

M−1∑
j=0

(
unj+1 − unj

h

)2

= 1
h

M−1∑
j=0

(
unj+1 − unj

) (
unj+1

)
−
(
unj+1 − unj

) (
unj
)

= 1
h

M−1∑
j=0

(
unj+1 − unj

) (
unj+1

)
−
(
unj+1 − 2unj + unj−1

) (
unj
)

+
(
−unj + unj−1

) (
unj
)

= −h
M−1∑
j=0

(
unj+1 − 2unj + unj−1

)
h2

(
unj
)

+ 1
h

M−1∑
j=0

(
unj+1 − unj

) (
unj+1

)
+
(
−unj + unj−1

) (
unj
) (1.35)

=
〈
−δ(2)

x unj , u
n
j

〉
+ 1
h

 M∑
j=1

(
unj − unj−1

) (
unj+1

)
+
M−1∑
j=0

(
−unj + unj−1

) (
unj
)

=
〈
−δ(2)

x unj , u
n
j

〉
+ (unM )2 − (un0 )2 − unMunM−1 + un0u

n
1 ,

by making unM = un0 = un−1 = 0 then we get:

〈
δ(1)
x unj , δ

(1)
x unj

〉
=
〈
−δ(2)

x unj , u
n
j

〉
. (1.36)

Following the same idea, then
〈
δ

(1)
x unj , δ

(1)
x vnj

〉
=
〈
−δ(2)

x unj , v
n
j

〉
, finally we can assure δ(1)

x unj is the

square root operator of −δ(2)
x unj .

16



For the scheme there is a discrete Hamiltonian operator for each 1 ≤ n ≤ N − 1 and 1 ≤ j ≤M − 1 :

Hn
j = 1

2

(
un+1
j − unj

) (
unj − u

n−1
j

)
τ2 + 1

2

((
unj+1 − unj

)
h2

)2

+G(unj )

= 1
2
(
δtu

n ∗ δtun−1)+ 1
2(δxun)2 +G(unj ), (1.37)

subsequently summing over j and multiplying by h, we get the also constant discrete energy operator
for each 1 ≤ n ≤ N − 1:

En = h
M−1∑
j=0

1
2

(
un+1
j − unj

) (
unj − u

n−1
j

)
τ2 + 1

2

((
unj+1 − unj

)
h2

)2

+G(unj )


= 1

2 〈δtu
n, δtu

n−1〉+ 1
2‖δxu

n‖2
2 + ‖G(un)‖1. (1.38)

Now we calculate the next inner products:

〈
δ

(1)
t un+1

j , µtδ
(2)
t un+1

j

〉
= 1

2

〈
δ

(1)
t un+1

j , δ
(2)
t

(
un+2
j + un+1

j

)〉
= 1

2

〈
δ

(1)
t un+1

j ,
un+3
j −

(
un+2
j + un+1

j

)
+ unj

τ2

〉

= 1
2

〈
δ

(1)
t un+1

j ,

(
un+3
j − un+2

j

)
τ2 −

(
un+1
j − unj

)
τ2

〉
(1.39)

= 1
2τ

〈
δ

(1)
t un+1

j , δ
(1)
t un+2

j − δ(1)
t unj

〉
= 1

2τ

[〈
δ

(1)
t un+2

j , δ
(1)
t un+1

j

〉
−
〈
δ

(1)
t un+1

j , δ
(1)
t unj

〉]
,

we ought to remember that
〈
−δ(2)

x unj , v
n
j

〉
=
〈
δ

(1)
x unj , δ

(1)
x vnj

〉
.

〈
δ

(1)
t un+1

j ,−µtδ(2)
x un+1

j

〉
= 1

2τ

〈
−δ(2)

t

(
un+2
j + un+1

j

)
,
(
un+2
j − un+1

j

)〉
= 1

2τ

〈
δ

(1)
t

(
un+2
j + un+1

j

)
, δ

(1)
t

(
un+2
j − un+1

j

)〉
= 1

2τ [
〈
δ

(1)
t un+2

j , δ
(1)
t un+2

j

〉
−
〈
δ

(1)
t un+2

j , δ
(1)
t un+1

j

〉
(1.40)

+
〈
δ

(1)
t un+1

j , δ
(1)
t un+2

j

〉
−
〈
δ

(1)
t un+1

j , δ
(1)
t un+1

j

〉
]

= 1
2τ

[∥∥∥δ(1)
t un+2

j

∥∥∥2

2
−
∥∥∥δ(1)
t un+1

j

∥∥∥2

2

]
,
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〈
δ

(1)
t un+1

j , µtδ
(1)
u,tu

n+1
j

〉
= h

M−1∑
j=2

(
un+2
j − un+1

j

τ

)(
G(un+1

j )−G(unj )
un+2
j − un+1

j

)

= h
M−1∑
j=2

(
G(un+1

j )−G(unj )
τ

)
= h

τ

M−1∑
j=2

(
G(un+1

j )−G(unj )
)

(1.41)

= 1
τ

[∥∥G(un+2
j )

∥∥
1 −

∥∥G(un+1
j )

∥∥
1

]
.

The next theorem establishes the existence of invariants for the discrete system.

Theorem 1.6 (Dissipation of energy). Let (vn)Nn=0 be a solution of (1.14), the energy of the system
is:

En = h
M−1∑
j=0

1
2

(
vn+1
j − vnj

) (
vnj − v

n−1
j

)
τ2 + 1

2

((
vnj+1 − vnj

)
h2

)2

+G(vnj )

 . (1.42)

Then δtEn+1 = 0 for n ∈ IN−1.

Proof. Let Θn+1
j represent the left-hand side of the difference equations in (1.14) for each n ∈ IN−1,

and let Θn+1 = (Θn+1
j )j∈JM . Suppose that (vn)Nn=0 is a solution of (1.14). Calculating the inner

product of Θn+1 with δ(1)
t vn+1, using the identities above and collecting terms, we note that

0 = 〈Θn+1, δ
(1)
t vn+1〉 = 〈µtδ(2)

t vn+1 − µtδ(2)
x vn+1 + δ

(1)
v,tG(vn+1), δ(1)

t vn+1〉
= 〈µtδ(2)

t vn+1, δ
(1)
t vn+1〉+ 〈−µtδ(2)

x vn+1, δ
(1)
t vn+1〉+ 〈δ(1)

v,tG(vn+1), δ(1)
t vn+1〉

= 1
2τ

[〈
δ

(1)
t vn+2, δ

(1)
t vn+1

〉
−
〈
δ

(1)
t vn+1, δ

(1)
t vn

〉]
+ 1

2τ

[∥∥∥δ(1)
t vn+2

∥∥∥2

2
−
∥∥∥δ(1)
t vn+1

∥∥∥2

2

]
+ 1
τ

[∥∥G(vn+2)
∥∥

1 −
∥∥G(vn+1)

∥∥
1

]
= δtE

n+1 ∀n ∈ IN−1,

(1.43)
so the conclusion of this result is obtained.

Theorem 1.7. The discrete quantities (1.38) may be rewritten alternatively as

En = 1
2µt‖δ

(1)
t vn−1‖2

2 −
τ2

4 ‖δ
(2)
t vn‖2

2 + 1
2‖δxv

n‖2
2 + ‖G(vn)‖1 , ∀n ∈ IN−1. (1.44)

Proof. Note that

〈δtvn, δtvn−1〉 = ‖δ(1)
t vn‖2

2 −
1
τ2 〈v

n+1 − vn, vn+1 − 2vn + vn−1〉

= ‖δ(1)
t vn‖2

2 − τ2‖δ(2)
t vn‖2

2 −
1
τ2 〈v

n − vn−1, vn+1 − 2vn + vn−1〉

= ‖δ(1)
t vn‖2

2 + ‖δ(1)
t vn−1‖2

2 − τ2‖δ(2)
t vn‖2

2 − 〈δtvn, δtvn−1〉,

(1.45)

holds for each n ∈ IN−1. It follows that

〈δtvn, δtvn−1〉 = µt‖δ(1)
t vn−1‖2

2 −
τ2

2 ‖δ
(2)
t vn‖2

2, ∀n ∈ IN−1, (1.46)

whence the conclusion of the theorem is reached.
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1.5 Auxiliary lemmas

In this section, we prove some propositions needed to establish the properties of numerical efficiency
of the finite-difference method (1.14), we will use the fact that nτ < T . To start with, we will require
the following elementary facts which will be employed in the sequel without an explicit reference:

(A) If v and w are real vectors of the same dimension then |2〈v, w〉| ≤ ‖v‖2
2 + ‖w‖2

2.

(B) As a consequence, ‖v + w‖2
2 ≤ 2‖v‖2

2 + 2‖w‖2
2 for any two real vectors v and w of the same

dimension.

(C) More generally, if k ∈ N and v1, . . . , vk are real vectors of the same dimension then

∥∥∥∥∥
k∑

n=1
vn

∥∥∥∥∥
2

2

≤ k
k∑

n=1
‖vn‖2

2. (1.47)

(D) If (vn)Nn=0 is a finite sequence in Vh and n ∈ IN then vn = v0 + τ

n−1∑
k=0

δ
(1)
t vk. It follows that

‖vn‖2
2 ≤ 2‖v0‖2

2 + 2Tτ
n−1∑
k=0
‖δ(1)
t vk‖2

2, ∀n ∈ IN . (1.48)

Proof. (A) We notice that:

‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉+ 2〈v, w〉+ 〈w,w〉 ≥ 0,

‖v − w‖2 = 〈v − w, v − w〉 = 〈v, v〉 − 2〈v, w〉+ 〈w,w〉 ≥ 0.

Then

‖v‖2 + ‖w‖2 ≥ −2〈v, w〉,

‖v‖2 + ‖w‖2 ≥ 2〈v, w〉.

By the definition of absolute value we get the result

|2〈v, w〉| ≤ ‖v‖2
2 + ‖w‖2

2 (1.49)

(B) Now by using (A), we obtain

‖v + w‖2 = 〈v, v〉+ 2〈v, w〉+ 〈w,w〉 ≤ 2‖v‖2 + 2‖w‖2. (1.50)

(C) By generalizing like in (A), we obtain

∥∥∥∥∥
k∑
i=1

vi

∥∥∥∥∥
2

=
k∑
i=1
‖vi‖2 + 2 [〈v1, v2〉+ ...+ 〈v1, vk〉+ 〈v2, v3〉

+ ...+ 〈v2, vk〉+ ...+ 〈vk, vk〉] , (1.51)
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we notice that each vj appears exactly k− 1 times inside the brackets, by applying (A) in every
one of them we get∥∥∥∥∥

k∑
i=1

vi

∥∥∥∥∥
2

=
k∑
i=1
‖vi‖2 + (k − 1)

k∑
i=1
‖vi‖2 = k

k∑
i=1
‖vi‖2

. (1.52)

(D) Finally we just make some calculations:

vn = τ

[
v0

τ
+ v1 − v0

τ
+ v2 − v1

τ
+ ...+ vn−1 − vn−2

τ
+ vn − vn−1

τ

]
= v0 + τ

n−1∑
k=0

δ
(1)
t vk, (1.53)

using (C)

‖vn‖2
2 =

∥∥∥∥∥v0 + τ

n−1∑
k=0

δ
(1)
t vk

∥∥∥∥∥
2

2

≤ 2
∥∥v0∥∥2

2 + 2

∥∥∥∥∥τ
n−1∑
k=0

δ
(1)
t vk

∥∥∥∥∥
2

2

≤ 2
∥∥v0∥∥2

2 + 2nτ2
n−1∑
k=0

∥∥∥δ(1)
t vk

∥∥∥2

2
, (1.54)

but in our hypothesis we have nτ ≤ T so

‖vn‖2
2 ≤ 2

∥∥v0∥∥2
2 + 2Tτ

n−1∑
k=0

∥∥∥δ(1)
t vk

∥∥∥2

2
. (1.55)

Lemma 1.8. Let G ∈ C2(R) and G′′ ∈ L∞(R), and suppose that (un)Nn=0, (vn)Nn=0 and (Rn)Nn=0

are sequences in Vh. Let εn = vn − un and G̃n = δv,tG(vn) − δw,tG(wn) for each n ∈ IN−1 and let
k ∈ IN−1. Then the following is satisfied.

(a)
‖G̃n‖2

2 ≤ 2(‖εn‖2
2 + ‖εn−1‖2

2), ∀n ∈ IN−1. (1.56)

(b)

2
k∑

n=1
|〈Rn, δ(1)

t εn−1〉| ≤
k∑

n=1

(
‖Rn‖2

2 + ‖δ(1)
t εn−1‖2

2

)
, ∀k ∈ IN−1. (1.57)

(c)

2
k∑

n=1

∣∣∣〈G̃n, δ(1)
t εn−1〉

∣∣∣ ≤ 8k‖ε0‖2
2 +

(
8T 2 + 1

) k−1∑
n=0
‖δ(1)
t εn‖2

2, ∀k ∈ IN−1. (1.58)

Proof.

(a) As a consequence of the Mean Value Theorem and a direct integration we obtain that |G̃nj | ≤
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(|εn+1
j | + |εnj |) for each j ∈ JM and each n ∈ IN−1. Raising both sides of this inequality to the

second power and using the inequalities at the beginning of this section we readily reach.

(b) Note that for each n ∈ IN−1,

2|〈Rn, δ(1)
t εn−1〉| ≤ ‖Rn‖2

2 + ‖δ(1)
t εn−1‖2

2, (1.59)

then summing from 1 to k we get:

2
k∑

n=1
|〈Rn, δ(1)

t εn−1〉| ≤
k∑

n=1

(
‖Rn‖2

2 + ‖δ(1)
t εn−1‖2

2

)
. (1.60)

(c) Using the inequality (2.2) and the remarks at the beginning of the present section we obtain that

‖G̃n‖2
2 ≤ 2

(
‖εn‖2

2 + ‖εn−1‖2
2
)
≤ 2

(
2‖ε0‖2

2 + 2Tτ
n−1∑
k=0
‖δ(1)
t εk‖2

2 + 2‖ε0‖2
2 + 2Tτ

n−2∑
k=0
‖δ(1)
t εk‖2

2

)

≤ 2
(

4‖ε0‖2
2 + 2Tτ

n−1∑
k=0
‖δ(1)
t εk‖2

2 + 2Tτ
n−1∑
k=0
‖δ(1)
t εk‖2

2

)

= 8‖ε0‖2
2 + 8Tτ

n−1∑
k=0
‖δ(1)
t εk‖2

2,

(1.61)
for each k ∈ IN−1. Now we evaluate the sum:

k∑
n=1

∣∣∣〈G̃n, δ(1)
t εn−1〉

∥∥∥ ≤
k∑

n=0

(
‖G̃n‖2 + ‖δtεn−1‖2

2

)
≤

k∑
n=1

(
8‖ε0‖2

2 + 8Tτ
n−1∑
l=0
‖δ(1)
t εl‖2

2

)
+

k∑
n=1
‖δtεn−1‖2

2

= 8k‖ε0‖2
2 + 8Tτ

k−1∑
n=0

n−1∑
l=0
‖δ(1)
t εl‖2

2 +
k−1∑
n=0
‖δtεn‖2

2

≤ 8k‖ε0‖2
2 + 8Tτ

k−1∑
n=0

k−1∑
l=0
‖δ(1)
t εl‖2

2 +
k−1∑
n=0
‖δtεn‖2

2

= 8k‖ε0‖2
2 + 8Tτk

k−1∑
n=0
‖δ(1)
t εl‖2

2 +
k−1∑
n=0
‖δtεn‖2

2

= 8k‖ε0‖2
2 + 8T 2

k−1∑
n=0
‖δ(1)
t εl‖2

2 +
k−1∑
n=0
‖δtεn‖2

2

= 8k‖ε0‖2
2 +

(
8T 2 + 1

) k−1∑
n=0
‖δ(1)
t εl‖2

2,

(1.62)

which is what we wanted to prove.

Let G ∈ C2(R) and G′′ ∈ L∞(R), and suppose that (un)Nn=0, (vn)Nn=0 and (Rn)Nn=0 are sequences
in Vh. As in our last result, let εn = vn − un and G̃n = δv,tG(vn) − δw,tG(wn) for each n ∈ IN−1.
Suppose also that

µtδ
2
t ε
n−1 − µtδ2

xε
n−1 + G̃n = Rn, ∀n ∈ IN−1. (1.63)
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Using this identity and mathematical induction it follows that

δ
(2)
t εk = (−1)k−1δ

(2)
t ε1 + δ2

xε
k + (−1)k−1δ2

xε
1 + 2

k∑
n=2

(−1)n−1
[
γδ

(1)
t εn + G̃n −Rn

]
, ∀k ∈ IN−2.

(1.64)
Moreover, calculating the square of the Euclidean norm of δ(2)

t εk, using the inequalities at the beginning
of this section

‖δ(2)
t εk‖2

2 ≤ 4‖δ(2)
t ε1‖2

2 + 4‖δ2
xε

1‖2
2 + 4‖δ2

xε
k‖2

2 + 4(4)

∥∥∥∥∥
k∑

n=1
G̃n −Rn

∥∥∥∥∥
2

2

≤ 4‖δ(2)
t ε1‖2

2 + 4‖δ2
xε

1‖2
2 + 4‖δ2

xε
k‖2

2 + 16

2

∥∥∥∥∥
k∑

n=1
G̃n

∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥
k∑

n=1
Rn

∥∥∥∥∥
2

2


≤ 4‖δ(2)

t ε1‖2
2 + 4‖δ2

xε
1‖2

2 + 4‖δ2
xε
k‖2

2 + 32
(
k

k∑
n=1

∥∥∥G̃n∥∥∥2

2
+ k

k∑
n=1
‖Rn‖2

2

)

= 4‖δ(2)
t ε1‖2

2 + 4‖δ2
xε

1‖2
2 + 4‖δ2

xε
k‖2

2 + 32k
k∑

n=1

(∥∥∥G̃n∥∥∥2

2
+ ‖Rn‖2

2

)
.

(1.65)

Multiplying by τ2

2 , applying some definitions and simplifying

τ2

2 ‖δ
(2)
t εk‖2

2 ≤ 2τ2‖δ(2)
t ε1‖2

2 + 2τ2‖δ2
xε

1‖2
2 + 2τ2‖δ2

xε
k‖2

2 + 16kτ2
k∑

n=0

(
‖G̃n‖2

2 + ‖Rn‖2
2

)
≤ 2τ2

∥∥∥δ1
t

(
ε1−ε0

τ

)∥∥∥2

2
+ 2τ2

∥∥∥∥δx( εkj−εkj−1
h

)∥∥∥∥2

2
+ 2τ2

∥∥∥δx ( ε1
j−ε

1
j−1
h

)∥∥∥2

2

+16kτ2
k∑

n=0

(
‖G̃n‖2

2 + ‖Rn‖2
2

)
≤ 2τ

2

τ2

(
2‖δ1

t ε
1‖2

2 + 2‖δ1
t ε

0‖2
2
)

+ 2 τ
2

h2

(
2‖δxεk‖2

2 + 2‖δxεk‖2
2
)

+2 τ
2

h2

(
2‖δxε1‖2

2 + 2‖δxε1‖2
2
)

+ 16kτ2
k∑

n=0

(
‖G̃n‖2

2 + ‖Rn‖2
2

)
≤ 4‖δ1

t ε
1‖2

2 + 4‖δ1
t ε

0‖2
2 + 2a‖δxεk‖2

2 + 2a‖δxε1‖2
2

+16Tτ
k∑

n=0

(
‖G̃n‖2

2 + ‖Rn‖2
2

)
.

(1.66)

Applying Lemma 1.8 (a) and simplifying we readily obtain that

≤ 4‖δ1
t ε

1‖2
2 + 4‖δ1

t ε
0‖2

2 + 2a‖δxεk‖2
2 + 2a‖δxε1‖2

2

+16Tτ
k∑

n=0
‖Rn‖2

2 + 16Tτ
k∑

n=0

(
8‖ε0‖2

2 + 8Tτ
n−1∑
i=0
‖δtεi‖2

2

)
≤ 4‖δ1

t ε
1‖2

2 + 4‖δ1
t ε

0‖2
2 + 2a‖δxεk‖2

2 + 2a‖δxε1‖2
2

+16Tτ
k∑

n=0
‖Rn‖2

2 + 16Tτ
(

8k‖ε0‖2
2 + 8Tτk

k∑
n=0
‖δtεi‖2

2

)
≤ 4‖δ1

t ε
1‖2

2 + 4‖δ1
t ε

0‖2
2 + 2a‖δxεk‖2

2 + 2a‖δxε1‖2
2

+16Tτ
k∑

n=0
‖Rn‖2

2 + 128T 2‖ε0‖2
2 + 128T 3τ

k∑
n=0
‖δtεn‖2

2.

(1.67)
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This inequality will be used in the following section to establish the stability and the convergence of
the finite-difference method (1.14).

The following result will be useful to prove the stability and convergence properties of (1.14). It is
obviously a discrete version of the well-known Gronwall inequality.

Lemma 1.9 (Pen-Yu [21]). Let (ωn)Nn=0 and (ρn)Nn=0 be finite sequences of nonnegative mesh functions,
and suppose that there exists C ≥ 0 such that

ωk ≤ ρk + Cτ
k−1∑
n=0

ωk, ∀k ∈ IN−1. (1.68)

Then ωn ≤ ρneCnτ for each n ∈ IN .

1.6 Numerical results

The main numerical properties of the finite-difference method (1.14) as well as some illustrative com-
putational simulations are presented in this stage. Here we show that our scheme is a consistent, stable
and convergent technique under suitable conditions on the parameters of the model. In a first stage,
we show that (1.14) is a second-order consistent technique, and that the discrete energy density (1.37)
also provides a consistent approximation to the continuous Hamiltonian (1.4). For practical purposes
we define the following continuous and discrete functionals:

Lu(x, t) = ∂2u

∂t2
(x, t)− ∂2u

∂x2 (x, t) + sin(u(x, t)) ∈ Ω, (1.69)

Lunj = µtδ
(2)
t un+1

j − µtδ(2)
x un+1

j + δ
(1)
u,tG(unj ), ∀(j, n) ∈ J × IN−2. (1.70)

Theorem 1.10 (Consistency). If u ∈ C4(R) then there exist constants C,C ′ > 0 which are independent
of h and τ such that for each j ∈ JM and each n ∈ IN−2,∣∣Lunj − Lu(xj , tn)

∣∣ ≤ C(τ2 + h2), (1.71)∣∣Hunj −Hu(xj , tn)
∣∣ ≤ C

′
(τ + h2). (1.72)

Proof. We employ here the usual arguments with Taylor polynomials shown in Section 1.3. Using the
hypotheses of continuous differentiability, there exist constants C1, C2, C3, C4 ∈ R such that∣∣∣∣µtδ(2)

t unj −
∂2u

∂t2
(xj , tn+ 1

2
)
∣∣∣∣ ≤ C1τ

2, (1.73)∣∣∣∣µtδ2
xu

n
j −

∂2u

∂x2 (xj , tn+ 1
2
)
∣∣∣∣ ≤ C2(τ2 + h2), (1.74)∣∣∣∣δ(1)

t unj −
∂u

∂t
(xj , tn+ 1

2
)
∣∣∣∣ ≤ C3τ

2, (1.75)∣∣∣δ(1)
u,tG(unj )−G′(u(xj , tn+ 1

2
))
∣∣∣ ≤ C4τ

2, (1.76)

for each j ∈ JM and each n ∈ IN−2. The first inequality in the conclusion of this theorem is readily
reached using the triangle inequality and defining C = max{C1, C2, γC3, C4}. To establish the second
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inequality, note that the consistency of the forward-difference operators, the Mean Value Theorem and
the smoothness of the function u guarantee that there exists a constant C5 independent of τ such that∣∣∣∣∣δ(1)

t unj δ
(1)
t un−1

j −
(
∂u

∂t
(xj , tn)

)2
∣∣∣∣∣ ≤ ∣∣∣δ(1)

t un−1
j

∣∣∣ ∣∣∣∣δ(1)
t unj −

∂u

∂t
(xj , tn)

∣∣∣∣
+

∣∣∣∣∂u∂t (xj , tn)
∣∣∣∣ ∣∣∣∣δ(1)

t un−1
j − ∂u

∂t
(xj , tn)

∣∣∣∣ ≤ C5τ, (1.77)

for each j ∈ JM and each n ∈ IN−1. Likewise, there exist constants C6 such that∣∣∣∣unj δ2
xu

n
j − u(xj , tn)∂

2u

∂x2 (xj , tn)
∣∣∣∣ ≤ C6h

2, (1.78)

for each j ∈ JM and each n ∈ IN−1. The second inequality of the conclusion follows again using the
triangle inequality and letting C ′ = max{C5, C6}.

We turn our attention to the stability and the convergence properties of (1.14). In the following,
the constants C1, C2 and C3 are as in Lemma 1.8, and (φv, ψv) and (φw, ψw) will denote two sets of
initial conditions of (1.14).

Theorem 1.11 (Stability). Let G ∈ C2(R) and G′′ ∈ L∞(R), and suppose that τ and h satisfy

τ

h
= γ0 ≤

√
a√
8
, a < 1. (1.79)

Let v = (vn)Nn=0 and w = (wn)Nn=0 be solutions of (1.14) for (φv, ψv) and (φw, ψw), respectively, and
let εn = vn − wn for each n ∈ IN . Then there exist constants C4, C5 ∈ R+ independent of v and w
such that

‖δ(2)
t εn‖2

2 + 2(1− a)‖δ1
xε
n‖2

2 ≤ C4

(
‖ε0‖2

2 + ‖δ(1)
t ε0‖2

2 + ‖δ(1)
t ε1‖2

2 + ‖δ1
xε

1‖2
2

)
eC5nτ , ∀n ∈ IN−1.

(1.80)

Proof. Let τ
h = γ0 ≤

√
a

2 with a < 1. Obviously, the sequence (εn)Nn=0 satisfies the initial-boundary-
value problem

µtδ
(2)
t εnj − µtδ(2)

x εnj + δ
(1)
v,tG(vnj )− δw,tG(wnj ) = 0, ∀(j, n) ∈ J × IN−2,

such that


ε0
j = φv(xj)− φw(xj), ∀j ∈ J,
δtε

0
j = ψv(xj)− ψw(xj), ∀j ∈ J,

εnj = 0, ∀(j, n) ∈ ∂J × IN .

(1.81)

For the sake of convenience, let G̃nj = δ
(1)
v,tG(vnj )− δw,tG(wnj ) for each j ∈ J and each n ∈ IN−1. From

the identities preceding Theorem 1.6 and those after its proof, we readily obtain that

〈
µtδ

(2)
t εn, δ

(1)
t εn

〉
= 1

2δ
(1)
t µt‖δ(1)

t εn−1‖2
2 −

τ2

4 δ
(1)
t ‖δ

(2)
t εn‖2

2,

〈−µtδ2
xε
n, δ

(1)
t εn〉 = 1

2δ
(1)
t ‖δ1

xε
n‖2

2, ∀i ∈ IN−1, (1.82)

|2〈G̃n, δ(1)
t εn〉| ≤ 2

(
‖εn+1‖2

2 + ‖εn‖2
2 + ‖δ(1)

t εn‖2
2

)
, (1.83)
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for each n ∈ IN−1 and for some C1 ∈ R+. Let k ∈ IN−1. Taking the inner product of δ(1)
t εn with both

sides of the respective difference equation of (1.81), substituting the identities above, calculating then
the sum of the resulting identity for all n ∈ Ik, multiplying by 2τ on both sides, applying Lemma 1.8
and simplifying algebraically yields

‖δ(1)
t εk‖2

2 + 2‖δ1
xε
k‖2

2 = −‖δtεk−1‖2
2 + τ2‖δ2

t ε
k‖2

2 + ‖δtε1‖2
2 + ‖δtε0‖2

2

−τ2‖δ2
t ε

0‖2
2 + ‖δxε1‖2

2 + 2τ
k∑

n=1

∣∣∣〈G̃n −Rn, δ(1)
t εn〉

∣∣∣
≤ τ2‖δ2

t ε
k‖2

2 + ‖δtε1‖2
2 + ‖δtε0‖2

2 + ‖δxε1‖2
2

+2τ
k∑

n=1

∣∣∣〈G̃n, δ(1)
t εn〉

∣∣∣+ 2τ
k∑

n=1

∣∣∣〈Rn, δ(1)
t εn〉

∣∣∣
≤ 2a‖δxεk‖2

2 + 8‖δtε1‖2
2 + 8‖δtε0‖2

2 + 2a‖δxε1‖2
2 + ‖δtε1‖2

2 + ‖δtε0‖2
2

+‖δxε1‖2
2 + 256T 2‖ε0‖2 + 32Tτ

k∑
n=1
‖Rn‖2

2 + 256T 3τ
k−1∑
n=0
‖δtεn‖2

2

+2τ
(

8k‖ε0‖2
2 + (8T 2 + 1)

k−1∑
n=0
‖δtεn‖2

2

)
+ 2τ

(
k∑

n=1
‖Rn‖2

2 + ‖δtεn−1‖2
2

)
.

(1.84)
Now taking the derivate with respect the space to the other side of the inequality, with Rn = 0 and
simplifying we get:

‖δ(1)
t εk‖2

2 + 2(1− a)‖δ1
xε
k‖2

2 ≤ 9‖δtε1‖2
2 + 9‖δtε0‖2

2 + 2(1− a)‖δxε1‖2
2 + 16T (16T + 1)‖ε0‖2

+ τ(128T 3 + 2T 2 + 1)
k∑

n=1
‖δtεn‖2

2

≤ C4
(
‖δtε1‖2

2 + ‖δtε0‖2
2 + ‖δxε1‖2

2 + ‖ε0‖2
)

+ C5

k∑
n=1

(
τ‖δtεn‖2

2 + 2(1− a)‖δxεk‖2
2
)
,

(1.85)
where

C4 = max{9, 2(1− 2a), 16T (16T − 1)}, (1.86)

C5 = 2(128T 3 + 2T 2 + 1). (1.87)

(1.88)

Then we can rename elements

ωk ≤ ρ+ C5τ
k−1∑
n=0

ωn, (1.89)

where

ρ = C4
(
‖δtε1‖2

2 + ‖δtε0‖2
2 + ‖δxε1‖2

2 + ‖ε0‖2
)
, (1.90)

ωn = ‖δ(1)
t εn‖2

2 + 2(1− a)‖δxεn‖2
2, ∀n ∈ IN−1. (1.91)

We note that the hypotheses of Lemma 1.9 are readily satisfied with C = C5 and ρk = ρ for each
k ∈ I, whence the conclusion of Theorem 1.11 follows.
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Note that the inequality (1.79) is satisfied for sufficiently small values of τ and of the components
of h. Finally, we tackle the problem of the convergence of the numerical method (1.14). The proof of
the following result is similar to that of Theorem 1.11. For that reason we provide only a sketch of the
proof.

Theorem 1.12 (Convergence). Let u ∈ C5(R) be a solution of (1.1) with G ∈ C2(R) and G′′ ∈ L∞(R),
and let (vn)Nn=0 be a solution of (1.14) for the initial conditions (φ, ψ). Assume that εn = vn − un for
each n ∈ IN . If (1.79) holds then the method (1.14) is convergent of order O(τ2 + h2).

Proof. Let a be as in the proof of Theorem 1.11, and let Rnj be the truncation error at the point (xj , tn)
for each j ∈ J and each n ∈ IN . Then (εn)Nn=0 satisfies

µtδ
(2)
t εnj − µtδ2

xε
n
j + δ

(1)
v,tG(vnj )− δw,tG(wnj ) = Rnj , ∀(j, n) ∈ J × IN−2,

such that
{

ε0j = δtε
0
j = 0, ∀j ∈ J,

εnj = 0, ∀(j, n) ∈ ∂J × IN .
(1.92)

Following the proof of Theorem 1.11, let G̃nj = δ
(1)
v,tG(vnj )−δw,tG(wnj ) for each j ∈ J and each n ∈ IN−1.

Proceeding as in the proof of that theorem, we readily obtain

‖δ(1)
t εk‖2

2 + 2(1− a)‖δ1
xε
k‖2

2 ≤ ρ+ C5τ

k−1∑
n=0

ωn, (1.93)

where

ρ = C4

(
‖δtε1‖2

2 + ‖δtε0‖2
2 + ‖δxε1‖2

2 + ‖ε0‖2 + τ

k∑
n=1
‖Rn‖2

2

)
, (1.94)

ωn = ‖δ(1)
t εn‖2

2 + 2(1− a)‖δxεn‖2
2, ∀n ∈ IN−1. (1.95)

then the hypotheses of Lemma 1.9 are satisfied. Using the conclusion of that result, the consistency
property of our method and the homogeneous initial-boundary conditions of (1.92) we obtain that

‖δ(1)
t εk‖2

2 + 2(1− a)‖δ1
xε
k‖2

2 ≤ C4e
C5kττ

k−1∑
n=0
‖Rn‖2

2 ≤ C6(τ2 + h2)2, ∀k ∈ IN−1. (1.96)

Here C6 = C4C
2eC5TT and C is the constant of Theorem 1.10. The conclusion of the theorem readily

follows from the last inequality.
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2. Energy Conserving Scheme for the
Fractional Wave Equation

In this chapter, we investigate numerically a model governed by a multidimensional nonlinear
wave equation with damping and fractional diffusion. The governing partial differential equation
considers the presence of Riesz space-fractional derivatives of orders in (1, 2], and homogeneous
Dirichlet boundary data are imposed on a closed and bounded spatial domain. The model under
investigation possesses an energy function which is preserved in the undamped regime. In the
damped case, we establish the property of energy dissipation of the model using arguments from
functional analysis. Motivated by these results, we propose an explicit finite-difference discretiza-
tion of our fractional model based on the use of fractional centered differences. Associated to
our discrete model, we also propose a discretization of the energy quantity. We establish that
the discrete energy is conserved in the undamped regime, and that it dissipates in the damped
scenario. Among the most important numerical features of our scheme, we show that the method
has a consistency of second order, that it is stable and that it has a quadratic order of convergence.
Some one- and two-dimensional simulations are shown in this chapter to illustrate the fact that
the technique is capable of preserving the discrete energy in the undamped regime. For the sake of
convenience, we provide a Matlab implementation of our method for the one-dimensional scenario.

2.1 Introduction

In the last decades, the investigation of physical media described by systems with long-range inter-
actions has been a fruitful avenue of research. In particular, a wide variety of physical phenomena
described by linear systems with long-range interactions have been reported in the literature. One of
the typical examples in classical physics is the linear interaction of particles in a three-dimensional
gravitational system [22]. Other examples are the interactions of vortices in two dimensions, engi-
neering problems on elasticity arising from the study of planar stress, systems of electric charges and
systems that consider dipolar forces [23]. Moreover, there are several well-characterized cases of long-
range interactions involved in the activation and the repression of transcription in chromosomal and
gene regulation [24], and many other applications have been proposed to polymer science (including
some applications to microscopic models of polymer dynamics and rheological constitutive equations),
to regular variations in thermodynamics and to Hamiltonian chaotic systems [25]. It is worth pointing
out that various works have been devoted to the physical and mathematical investigation of generalized
forms of these models [26, 27], including systems which exhibit the presence of the phenomenon of non-
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linear supratransmission of energy in fractional sine-Gordon-type equations [28], models of Josephson
transmission lines [29] and extensions of the Fermi–Pasta–Ulam chains [30]. Additionally, some mod-
els of oscillators with long-range interactions possess conservation laws that resemble those quantities
preserved by classical systems [31, 11].

It is important to recall that certain long-range interactions (namely, the so-called α-interactions)
yield fractional derivatives in some continuous-limit process. This process involves the Fourier series
transform, the inverse Fourier transform and the limiting process when the distance between consec-
utive particles tends to zero [32]. In such way, fractional models in the form of ordinary or partial
differential equations are obtained from discrete physical systems. In fact, there are various types of
long-range interactions which lead to systems that include fractional derivatives of the Riesz type.
From this perspective, the use of the Riesz differential operator is physically justified, at least as the
continuous limit of physically meaningful discrete systems appearing in various branches of sciences.
Obviously, this fact has encouraged the mathematical modeling using fractional differential equations,
as well as the analytical and the physical investigation of these models. Needless to mention that
the specialized literature has benefited from the investigation of fractional equations. Indeed various
interesting reports have been published on the existence and the uniqueness of solutions of fractional
forms of parabolic models, like the porous media equation [33], the nonlinear diffusion equation in
multiple dimensions [34] and nonlinear degenerate diffusion equations in bounded domains [35].

On the other hand, the recent advances of fractional calculus have led to the development of numer-
ical techniques to approximate the solution of fractional partial differential equations. As examples,
numerical models have been proposed to solve a time-space fractional Fokker–Planck equation with
variable force field and diffusion [36] and nonlinear fractional-order Volterra integro-differential equa-
tions [37]. Some fractional models that extend well-known equations from mathematical physics have
been the motivation to develop suitable numerical schemes. For instance, some highly accurate nu-
merical schemes have been proposed for variable-order fractional Schrödinger equations [38], a new
technique based on Legendre polynomials has been reported to solve the fractional two-dimensional
heat equation [39], some improvements of the sub-equation method have been designed to solve a
(3 + 1)-dimensional generalization of the Korteweg–de Vries–Zakharov–Kuznetsov equation [40] and
some novel methods have been constructed to approximate the solutions of a two-dimensional variable-
order fractional percolation equation in non-homogeneous porous media [41]. Like these reports, the
literature shows that the numerical investigation of fractional partial differential equations has been
a fruitful avenue of current research in numerical analysis [42]. However, it is important to point out
that the design of structure-preserving methods to solve such models is still a direction of research
which has not been sufficiently exploited.

In this context, the notion of structure-preserving method refers to those numerical techniques
which are capable of preserving physical features of the solutions of interest. As opposed to numerical
efficiency which is typically associated to the computational properties inherent to those techniques
(consistency, stability and convergence), the properties of preservation of the structure of solutions
depend on each physical problem itself. As examples of those properties, we can quote the conservation
of physical quantities like energy, momentum or mass [43]. Mathematical characteristics such as
positivity, boundedness, monotonicity and convexity are also considered in this chapter as structural
properties [44]. Some structure-preserving methods have been designed for the numerical solution of
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partial differential equations of fractional order. For instance, some energy-preserving schemes have
been proposed for the nonlinear fractional Schrödinger equation [45], and some finite-difference scheme
based on fractional centered differences has been used to approximate positive and bounded solutions
of a fractional population model [46]. However, it is important to note that there are very few reports
in the literature on energy-conserving methods for fractional partial differential equations which are
consistent, stable and convergent. In particular, fractional extensions of hyperbolic models like the
sine-Gordon and the Klein–Gordon equations have been practically left without investigation. This is
a topic that merits deeper investigation in view of all the potential applications of those equations to
the continuous mathematical modeling of nonlinear systems with long-range interactions [32, 47, 48].

The purpose of the present chapter is to study numerically a multidimensional Riesz space-fractional
generalization of the nonlinear and damped wave equation that extends various models from math-
ematical physics, including the sine-Gordon and the Klein–Gordon equations. It is well known that
these two models possess an energy functional that dissipates or is conserved, depending on suitable
analytical and parameter conditions. Thus the design of dissipation and conserving schemes to approx-
imate its solution is pragmatically justified. The method reported in this chapter has some associated
energy density functionals along with a function of total energy which is capable of resembling this
property of the continuous model. Moreover, we will show that our methodology is an explicit tech-
nique which is second-order consistent, stable and quadratically convergent. Some simulations will be
provided to illustrate the capability of the scheme to preserve the energy when the damping coefficient
is equal to zero. Evidently, the explicit nature of our approach makes the technique an ideal tool
in the investigation of multidimensional systems governed by Riesz space-fractional nonlinear wave
equations.

2.2 Preliminaries

In this chapter we let p ∈ N, T ∈ R+ and γ ∈ R+ ∪ {0}. Let us define the set In = {1, . . . , n} for
each natural number n, and let In = In ∪ {0}. Suppose that ai, bi ∈ R satisfy ai < bi for each i ∈ Ip.
Throughout we will assume that 1 < αi ≤ 2 for each i ∈ Ip, and we let B =

∏p
i=1(ai, bi) ⊆ RP and

Ω = B × (0, T ) ⊆ Rp+1. We introduce the symbols B and Ω to denote the closures of B and Ω in
Rp+1 under the standard topology, respectively, and let ∂B represent the boundary of B. Assume that
G : R → R and that φ, ψ : B → R are sufficiently smooth functions that satisfy φ(x) = ψ(x) = 0 for
each x ∈ ∂B. Additionally, we will suppose that G is nonnegative and that u : Ω→ R is a sufficiently
smooth function that satisfies the initial-boundary-value problem

∂2u

∂t2
(x, t)−

p∑
i=1

∂αiu

∂|xi|αi
(x, t) + γ

∂u

∂t
(x, t) +G′(u(x, t)) = 0, ∀(x, t) ∈ Ω,

such that


u(x, 0) = φ(x), ∀x ∈ B,
∂u

∂t
(x, 0) = ψ(x), ∀x ∈ B,

u(x, t) = 0, ∀(x, t) ∈ ∂B × (0, T ).

(2.1)
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Here we assume that x = (x1, x2, . . . , xp) ∈ Rp, and the Riesz differential operators are defined for
each i ∈ Ip by

∂αiu

∂|xi|αi
(x, t) = −1

2 cos(παi2 )Γ(2− αi)
∂2

∂x2
i

∫ bi

ai

u(x1, . . . , xi−1, ξ, xi+1, . . . , xp, t)
|xi − ξ|αi−1 dξ, ∀(x, t) ∈ Ω. (2.2)

Let Lx,2(Ω) denote the set of all functions f : Ω→ R such that f(·, t) ∈ L2(B) for each t ∈ [0, T ].
For each pair f, g ∈ Lx,2(Ω), the inner product of f and g is the function of t defined by

〈f, g〉x =
∫
B

f(x, t)g(x, t)dx, ∀t ∈ [0, T ]. (2.3)

In turn, the Euclidean norm of f ∈ Lx,2(Ω) is the function of t defined by ‖f‖x,2 =
√
〈f, f〉. The set

of all functions f : Ω→ R such that f(·, t) ∈ L1(B) for each t ∈ [0, T ] will be denoted by Lx,1(Ω), and
for each such f we define its norm as the function of t given by

‖f‖x,1 =
∫
B

|f(x, t)|dx, ∀t ∈ [0, T ]. (2.4)

The literature on mathematical physics has proposed various functionals to calculate the energy of
one-dimensional systems governed by (2.1) when γ = 0 (see [11], for instance). For purposes of this
chapter, we will use the following dimensional extension of the energy integral employed in [9]:

E(t) = 1
2

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
+ 1

2

p∑
i=1

〈
u,− ∂αiu

∂|xi|αi

〉
x

+ ‖G(u)‖x,1 , ∀t ∈ [0, T ]. (2.5)

It is important to note here that the Riesz fractional derivative of order αi in the ith component is a
self-adjoint and negative operator [49] for each i ∈ Ip. This fact implies that the additive inverse of
the Riesz fractional derivative has a unique square root operator [50] which will be denoted by Ξαixi .
Moreover, the following holds for any two functions u and v:〈

− ∂αiu

∂|xi|αi
, v

〉
x

=
〈
Ξαixiu,Ξ

αi
xi v
〉
x
. (2.6)

The next result is now easy to verify.

Lemma 2.1. The energy function (2.5) may be rewritten alternatively as

E(t) = 1
2

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
+ 1

2

p∑
i=1

∥∥Ξαixiu
∥∥2
x,2 + ‖G(u)‖x,1 , (2.7)

for each t ∈ (0, T ).

Obviously, the associated energy density is defined for each (x, t) ∈ Ω by

H(x, t) = 1
2

[
∂u

∂t
(x, t)

]2
− 1

2

p∑
i=1

u(x, t) ∂αiu

∂|xi|αi
(x, t) +G(u(x, t))

= 1
2

[
∂u

∂t
(x, t)

]2
+ 1

2

p∑
i=1

[
Ξαixiu(x, t)

]2 +G(u(x, t)).
(2.8)
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The following result is the cornerstone of our investigation. It is a generalization of Theorem 1.1 of
[51], which is a result valid for fractional wave equations in one spatial variable. A proof is provided
here for completeness.

Theorem 2.2 (Macías-Díaz [51]). If u is a solution of (2.1) then

E ′(t) = −γ
∥∥∥∥∂u∂t

∥∥∥∥2

x,2
, ∀t ∈ (0, T ). (2.9)

Proof. Note that the following hold:

1
2
d

dt

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
= 1

2
d

dt

∫
B

(
∂u

∂t
(ξ, t)

)2
dξ = 1

2

∫
B

∂

∂t

(
∂u

∂t
(ξ, t)

)2
dξ

= 1
2

∫
B

2
(
∂u

∂t
(ξ, t)

)(
∂2u

∂t2
(ξ, t)

)
dξ =

∫
B

(
∂u

∂t
(ξ, t)

)(
∂2u

∂t2
(ξ, t)

)
dξ

=
〈
∂u

∂t
,
∂2u

∂t2

〉
, (2.10)

1
2
d

dt
‖Ξαixiu‖

2
x,2 = 1

2
d

dt

∫
B

(
Ξαixiu(ξ, t)

)2
dξ = 1

2

∫
B

∂

∂t

(
Ξαixiu(ξ, t)

)2
dξ

= 1
2

∫
B

2
(
Ξαixiu(ξ, t)

)( ∂

∂t
Ξαixiu(ξ, t)

)
dξ =

〈
∂

∂t

(
Ξαixiu

)
,Ξαixiu

〉
x

=
〈

Ξαixi

(
∂u

∂t

)
,Ξαixiu

〉
x

=
〈
∂u

∂t
,− ∂αiu

∂|xi|αi

〉
, ∀i ∈ Ip, (2.11)

d

dt
‖G(u)‖x,1 = d

dt

∫ b

a

G(u(ξ, t))dξ =
∫ b

a

∂

∂t
G(u(ξ, t))dξ

=
∫ b

a

G′(u(ξ, t))
(
∂

∂t
u(ξ, t)

)
dξ =

〈
∂u

∂t
,G′(u)

〉
. (2.12)

Taking derivative with respect to t on both sides of (2.7), using the identities above and the partial
differential equation of (2.1), and simplifying algebraically we obtain

E ′(t) = d

dt

(
1
2

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
+ 1

2

p∑
i=1

∥∥Ξαixiu
∥∥2
x,2 + ‖G(u)‖x,1

)

= 1
2
d

dt

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
+ 1

2
d

dt

p∑
i=1

∥∥Ξαixiu
∥∥2
x,2 + d

dt
‖G(u)‖x,1

=
∫
B

(
∂u

∂t
(ξ, t)

)(
∂2u

∂t2
(ξ, t)

)
dξ −

∫
B

∂u

∂t
(ξ, t)

p∑
i=1

∂αiu

∂|xi|αi
(ξ, t)dξ +

∫
B

∂u

∂t
(ξ, t)G′(u(ξ, t))dξ

=
∫
B

∂u

∂t
(ξ, t)

[
∂2u

∂t2
(ξ, t)−

p∑
i=1

∂αiu

∂|xi|αi
(ξ, t) +G′(u(ξ, t))

]
dξ = −γ

∫
B

[
∂u

∂t
(ξ, t)

]2
dξ,

(2.13)
whence the result readily follows.

Corollary 2.3. If u is a solution of (2.1) then

E(t) = E(0)− γ
∫ t

0

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
dt, ∀t ∈ [0, T ]. (2.14)
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In particular, if γ = 0 then the system (2.1) is conservative.

In the following section, we will propose an explicit numerical method to approximate the solutions
of (2.1) and the energy function (2.5). Our numerical technique will satisfy discrete versions of Theorem
2.2 and Corollary 2.3, along with the numerical properties of consistency, stability and convergence.

2.3 Numerical method

For the remainder of the chapter we let hi and τ be positive step-sizes for each i ∈ Ip, and assume
that N = T/τ and Mi = (bi − ai)/hi are positive integers for each i ∈ Ip. Consider uniform partitions
of [ai, bi] and [0, T ] given by

xi,ji = ai + jihi, ∀i ∈ Ip,∀ji ∈ IMi
, (2.15)

tn = nτ, ∀n ∈ IN . (2.16)

Let J =
∏p
i=1 IMi−1 and J =

∏p
i=1 IMi

, and let ∂J represent the boundary of the mesh J . Define
xj = (x1,j1 , . . . , xp,jp) for each multi-index j = (j1, . . . , jp) ∈ J . In this manuscript, the symbol vnj
will represent a numerical approximation to the exact value of unj = u(xj , tn) for each j ∈ J and each
n ∈ IN . Define the discrete linear operators

µtu
n
j =

un+1
j + unj

2 , (2.17)

δ
(1)
t unj =

un+1
j − unj

τ
, (2.18)

δ
(2)
t unj =

un+1
j − 2unj + un−1

j

τ2 , (2.19)

δ
(1)
u,tG(unj ) =


G(un+1

j )−G(unj )
un+1
j − unj

, if un+1
j 6= unj ,

G′(unj ), if un+1
j = unj ,

(2.20)

for each j ∈ J and n ∈ IN−1.

Definition 2.4. For any function f : R → R, any h > 0 and any α > −1 we define the fractional
centered difference of order α of f at the point x as

∆α
hf(x) =

∞∑
k=−∞

g
(α)
k f(x− kh), ∀x ∈ R, (2.21)

where
g

(α)
k = (−1)kΓ(α+ 1)

Γ(α2 − k + 1)Γ(α2 + k + 1) , ∀k ∈ N ∪ {0}. (2.22)

Lemma 2.5 (Çelik and Duman [52]). If 1 < α ≤ 2 then

(i) g(α)
0 ≥ 0,

(ii) g(α)
k = g

(α)
−k < 0 for all k ≥ 1, and
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(iii)
∑∞
k=−∞ g

(α)
k = 0.

Proof. We first notice that:

g
(α)
k+1 = (−1)k+1Γ(α+ 1)

Γ(α2 − (k + 1) + 1)Γ(α2 + (k + 1) + 1) , ∀k ∈ N ∪ {0}

= (−1)(−1)kΓ(α+ 1)
Γ(α2 − k)Γ(α2 + k + 2) = (−1)(−1)kΓ(α+ 1)

Γ(α2 − k)(α2 + k + 1)Γ(α2 + k + 1)

=
(α2 − k)(−1)(−1)kΓ(α+ 1)

(α2 − k)Γ(α2 − k)(α2 + k + 1)Γ(α2 + k + 1) =
(k − α

2 )(−1)kΓ(α+ 1)
Γ(α2 − k + 1)(α2 + k + 1)Γ(α2 + k + 1)

=
(k − α

2 )
(α2 + k + 1)g

(α)
k =

(α2 + k + 1)− (α+ 1)
(α2 + k + 1) g

(α)
k =

(
1− α+ 1

α
2 + k + 1

)
g

(α)
k . (2.23)

(i) We know γ(z) > 0 for z > 0, and 1 < α < 2 then 3
2 < α

2 + 1 < 5
2 because of that Γ

(
α
2 + 1

)
> 0,

with this in mind we calculate gα0 :

g
(α)
0 = (−1)0Γ(α+ 1)

Γ(α2 − 0 + 1)Γ(α2 + 0 + 1) = Γ(α+ 1)
Γ(α2 + 1)2 ≥ 0. (2.24)

(ii) Now we evaluate g(α)
−k :

g
(α)
−k = (−1)−kΓ(α+ 1)

Γ(α2 − (−k) + 1)Γ(α2 + (−k) + 1)

= (−1)kΓ(α+ 1)
Γ(α2 + k + 1)Γ(α2 − k + 1) = g

(α)
k , ∀k ∈ N ∪ {0}. (2.25)

We notice that 1 < α < 2 then 2 < α+ 1 < 3, after some calculations

2k − 1
2k + 3 > 1− α+ 1

α
2 + k + 1 >

k − 1
k + 2 . (2.26)

With the last inequality, when k = 0 then 1− α+1
α
2 +k+1 is bounded between − 1

3 and − 1
2 , and when k > 0

it will be bounded by positive numbers, in that way

g
(α)
k+1 =

(
1− α+ 1

α
2 + k + 1

)
g

(α)
k = ... =

=
(

1− α+ 1
α
2 + k + 1

)
...

(
1− α+ 1

α
2 + 1 + 1

)(
1− α+ 1

α
2 + 0 + 1

)
g

(α)
0 , (2.27)

where only
(

1− α+1
α
2 +0+1

)
< 0 and all other terms are positive, so g(α)

−(k+1) = g
(α)
k+1 ≤ 0 with k ≥ 0.

(iii) from Çelik and Duman [52] we get the next equation:

∣∣∣2 sin
(z

2

)∣∣∣α =
∞∑

k=−∞

(−1)kΓ(α+ 1)eikz

Γ(α2 − k + 1)Γ(α2 + k + 1) , (2.28)
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Figure 2.1: Forward-difference stencil for the approximation to the exact solution of the one-
dimensional form of (2.1) at the time tn, using the finite-difference scheme (2.33). The black cir-
cles represent the known approximations at the times tn−1, tn and tn+1, while the cross denotes the
unknown approximation at the time tn+2.

substituting g(α)
k and z = 0,

0 =
∣∣∣∣2 sin

(
0
2

)∣∣∣∣α =
∞∑

k=−∞
g

(α)
k eik∗0 =

∞∑
k=−∞

g
(α)
k . (2.29)

As a consequence, the series on the right-hand side of (2.21) converges absolutely for any f ∈
L1(R) ∩ L∞(R). It is easy to see that any f ∈ C5(R) for which all of its derivatives up to order five
belong to L1(R), satisfies

− 1
hα

∆α
hf(x) = ∂αf(x)

∂|x|α
+O(h2), ∀x ∈ R, (2.30)

whenever 1 < α ≤ 2 (see [52]). Moreover, if u ∈ C5(B) then

∂αiu

∂|xi|αi
(xj , tn) = δ(αi)

xi unj +O(h2), ∀i ∈ Ip,∀(j, n) ∈ J × IN , (2.31)

where

δ(αi)
xi unj = − 1

hαii

Mi∑
k=0

g
(αi)
ji−ku(x1,j1 , . . . , xi−1,ji−1 , xi,k, xi+1,ji+1 , . . . , xp,jp , tn). (2.32)

With this nomenclature, the finite-difference method to approximate the solution of (2.1) on Ω is
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given by

µtδ
(2)
t vnj −

p∑
i=1

µtδ
(αi)
xi vnj + γδ

(1)
t vnj + δ

(1)
v,tG(vnj ) = 0, ∀(j, n) ∈ J × IN−2,

such that


v0
j = φ(xj), ∀j ∈ J,
δtv

0
j = ψ(xj), ∀j ∈ J,

vnj = 0, ∀(j, n) ∈ ∂J × IN .

(2.33)

For illustration purposes, Figure 2.1 shows the forward-difference stencil in the case that p = 1 using
the conventions M = M1 and xj = x1,j . Note in general that this scheme is an explicit four-step
method, so we can calculate the numerical approximation vn+2

j if we have the values of vn+1
j , vnj and

vn−1
j , because:

vn+2
j − vn+1

j − vnj + vn−1
j

2τ −
p∑
i=1

µtδ
(αi)
xi vnj + γδ

(1)
t vnj + δ

(1)
v,tG(vnj ) = 0, ∀(j, n) ∈ J × IN−2. (2.34)

so the numerical approximation to the solution at the node xj and time tn+2 is given by the formula

vn+2
j = vn+1

j + vnj − vn−1
j + 2τ

[
p∑
i=1

µtδ
(αi)
xi vnj − γδ

(1)
t vnj − δ

(1)
v,tG(vnj )

]
, ∀(j, n) ∈ J × IN−2. (2.35)

2.4 Energy invariants

In this section we show that the finite-difference method (2.33) satisfies physical properties similar to
those satisfied by (2.1). More precisely, we will propose a numerical energy functional associated to the
scheme (2.33) that is preserved under suitable parameter conditions. For the remainder of this chapter
we will let h = (h1, . . . , hp) and h∗ =

∏p
i=1 hi, and employ the spatial mesh Rh = {xj}j∈J ⊆ Rp.

Let Vh be the real vector space of all real grid functions on Rh. For any u ∈ Vh and j ∈ I convey
that uj = u(xj). Moreover, define respectively the inner product 〈·, ·〉 : Vh × Vh → R and the norm
‖ · ‖1 : Vh → R by

〈u, v〉 = h∗
∑
j∈I

ujvj , (2.36)

‖u‖1 = h∗
∑
j∈I
|uj |, (2.37)

for any u, v ∈ Vh. The Euclidean norm induced by 〈·, ·〉 will be denoted by ‖ · ‖2. In the following, we
will represent the solutions of the finite-difference method (2.33) by (vn)Nn=0, where we convey that
vn = (vnj )j∈J for each n ∈ IN . The next theorem will be helpful in the demonstration of (2.38).

Theorem 2.6 (Gershgorin’s Circle). If Ri =
∑
j 6=i |aij | and D(aij , Ri) = {x ∈ C : |aii − x| < Ri}

then each eigenvalue is inside the set D(aij , Ri) for aii,∈ {1, ...,m} .
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Lemma 2.7 (Macías-Díaz [51]). If i ∈ Ip then the following are satisfied for the matrix

A(αi)
xi =


g

(αi)
0 g

(αi)
−1 · · · g

(αi)
2−Mi

g
(αi)
1 g

(αi)
0 · · · g

(αi)
3−Mi

...
...

. . .
...

g
(αi)
Mi−2 g

(αi)
Mi−3 · · · g

(αi)
0

 . (2.38)

(a) A(αi)
xi is Hermitian.

(b) A(αi)
xi is strictly diagonally dominant.

(c) All the eigenvalues of A(αi)
xi are positive real numbers bounded from above by 2g(αi)

0 .

(d) A(αi)
xi is positive-definite.

Proof.

(a) We know A
(αi)
xi = [aij ] is a real matrix, we then just have to prove that aij = aji,∀i 6= j, but

aij = gαi−j if i > j and aij = gαj−i if i < j we also know by the previous lemma gαi−j = gα−(i−j) =
gαj−i then aij = aji,∀i 6= j, so A(αi)

xi is an Hermitian matrix.

(b) The proof continues straight forward from lemma (2.5).

(c) For this part of the proof we need Theorem 2.6, then we define Ri as in the theorem

Ri =
∑
j 6=i
|aij | =

∑
j 6=i

∣∣gαi−j∣∣ ≤∑
j 6=i
−gαi−j = gα0 = |gα0 | , (2.39)

if λ is an eigenvalue of A(αi)
xi then |λ− gα0 | ≤ Ri and

0 < g0 −Ri ≤ λ ≤ g0 +Ri < 2gα0 (2.40)

∴ λ > 0. (2.41)

(d) A(αi)
xi is a symmetric matrix with positive eigenvalues, then A(αi)

xi is a positive matrix.

Before we state our next result, we require some additional notation. Let v be a grid function,
let j ∈ J and i ∈ Ip. If k ∈ IMi−1 then we define respectively the real constant and the (Mi − 1)-
dimensional real vector

vj|ji=k = v(x1,j1 , . . . , xi−1,ji−1 , xi,k, xi+1,ji+1 , . . . , xp,jp), (2.42)

vj|ji = (vj|ji=1, vj|ji=2, . . . , vj|ji=Mi−1)>. (2.43)

These conventions will be required in the next lemma, whose proof will require a well-known result on
the existence and the uniqueness of square-root operators from functional analysis [50].
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Lemma 2.8. For each i ∈ Ip there exists a unique positive linear operator Λ(αi)
xi : Vh → Vh such that〈

−δ(αi)
xi u, v

〉
=
〈

Λ(αi)
xi u,Λ(αi)

xi v
〉
, (2.44)

for each u, v ∈ Vh.

Proof. Note firstly that if u, v ∈ Vh and if i ∈ Ip then

〈u,−δ(αi)
xi v〉 = −h∗

∑
j∈J

ujδ
(αi)
xi vj = h∗

hαi

∑
j∈J

Mi−1∑
k=1

ujg
(αi)
ji−kvj|ji=k

= h∗
hαi

M1−1∑
j1=1

· · ·
Mi−1−1∑
ji−1=1

Mi+1−1∑
ji+1=1

· · ·
Mp−1∑
jp=1

Mi−1∑
ji=1

Mi−1∑
k=1

ujg
(αi)
ji−kvj|ji=k

= h∗
hαi

M1−1∑
j1=1

· · ·
Mi−1−1∑
ji−1=1

Mi+1−1∑
ji+1=1

· · ·
Mp−1∑
jp=1

u>j|jiA
(αi)
xi vj|ji .

(2.45)

Using the symmetry of the matrix A(αi)
xi we observe that

〈u,−δ(αi)
xi v〉 = 〈u,−δ(αi)

xi v〉>

= h∗
hαi

M1−1∑
j1=1

· · ·
Mi−1−1∑
ji−1=1

Mi+1−1∑
ji+1=1

· · ·
Mp−1∑
jp=1

v>j|jiA
(αi)
xi uj|ji = 〈−δ(αi)

xi u, v〉, (2.46)

holds for each u, v ∈ Vh, which means that −δ(αi)
xi is a self-adjoint operator for each i ∈ Ip. On the

other hand, the fact that the matrix A(αi)
xi is positive definite implies that u>j|jiA

(αi)
xi uj|ji ≥ 0 for each

u ∈ RMi−1 and i ∈ Ip. As a consequence we note that 〈u,−δ(αi)
xi u〉 ≥ 0 for each u ∈ Vh, which means

that −δ(αi)
xi is positive. We conclude that there exists a unique positive linear square-root operator

Λ(αi)
xi for −δ(αi)

xi which satisfies the conclusion of the theorem.

The next theorem establishes the existence of invariants for the discrete system (2.33).

Theorem 2.9 (Dissipation of energy). Let (vn)Nn=0 be a solution of (2.33), and define

En = 1
2 〈δ

(1)
t vn, δ

(1)
t vn−1〉+ 1

2

p∑
i=1
‖Λ(αi)

xi vn‖2
2 + ‖G(vn)‖1 , ∀n ∈ IN−1. (2.47)

Then δtEn = −γ‖δ(1)
t vn‖2

2 for each n ∈ IN−2.

Proof. Recall that G is a nonnegative function and note that the following hold for each n ∈ IN−2:

〈µtδ(2)
t vn, δ

(1)
t vn〉 = 〈δ(2)

t µtv
n, δ

(1)
t vn〉 = 〈δ(2)

t

(
vn+1 + vn

2

)
, δ

(1)
t vn〉 = 1

2 〈δ
(2)
t vn+1 + δ

(2)
t vn, δ

(1)
t vn〉

= 1
2

〈
vn+2 − 2vn+1 + vn

τ2 + vn+1 − 2vn + vn−1

τ2 , δ
(1)
t vn

〉
= 1

2τ 〈
vn+2 − vn+1 − vn + vn−1

τ
, δ

(1)
t vn〉 = 1

2τ 〈
vn+2 − vn+1

τ
− vn − vn−1

τ
, δ

(1)
t vn〉

= 1
2τ 〈δ

(1)
t vn+1 − δ(1)

t vn−1, δ
(1)
t vn〉 = 1

2τ

[
〈δ(1)
t vn+1, δ

(1)
t vn〉 − 〈δ(1)

t vn, δ
(1)
t vn−1〉

]
,

(2.48)
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〈−µtδ(αi)
xi vn, δ

(1)
t vn〉 = 〈−δ(αi)

xi µtv
n, δ

(1)
t vn〉 = 〈−δ(αi)

xi

(
vn+1 + vn

2

)
,

(
vn+1 − vn

τ

)
〉

= 1
2τ 〈−δ

(αi)
xi

(
vn+1 + vn

)
,
(
vn+1 − vn

)
〉

= 1
2τ 〈Λ

(αi)
xi

(
vn+1 + vn

)
,Λ(αi)

xi

(
vn+1 − vn

)
〉

= 1
2τ

[
〈Λ(αi)

xi vn+1,Λ(αi)
xi vn+1〉 − 〈Λ(αi)

xi vn+1,Λ(αi)
xi vn〉

+ 〈Λ(αi)
xi vn,Λ(αi)

xi vn+1〉 − 〈Λ(αi)
xi vn,Λ(αi)

xi vn〉
]

= 1
2τ

[
〈Λ(αi)

xi vn+1,Λ(αi)
xi vn+1〉 − 〈Λ(αi)

xi vn,Λ(αi)
xi vn〉

]
= 1

2τ

[
‖Λ(αi)

xi vn+1‖2
2 − ‖Λ(αi)

xi vn‖2
2

]
, ∀i ∈ Ip,

(2.49)

〈δ(1)
v,tG(vn), δ(1)

t vn〉 = 〈G(vn+1)−G(vn)
vn+1 − vn

,
vn+1 − vn

τ
〉 = h∗

∑
j∈I

G(vn+1
j )−G(vnj )
vn+1
j − vnj

vn+1
j − vnj

τ

= h∗
∑
j∈I

G(vn+1
j )−G(vnj )

τ
= 1
τ

h∗∑
j∈I

G(vn+1
j )− h∗

∑
j∈I

G(vnj )


= 1

τ

[
‖G(vn+1)‖1 − ‖G(vn)‖1

]
.

(2.50)

Let Θn
j represent the left-hand side of the difference equations in (2.33) for each j ∈ J and each

n ∈ IN−2, and let Θn = (Θn
j )j∈J . Suppose that (vn)Nn=0 is a solution of (2.33). Calculating the inner

product of Θn with δ(1)
t vn, using the identities above and collecting terms, we note that

0 = 〈Θn, δ
(1)
t vn〉 = 〈µtδ(2)

t vn − µtδ(αi)
xi vn + δ

(1)
v,tG(vn), δ(1)

t vn〉
= 〈µtδ(2)

t vn, δ
(1)
t vn〉+ 〈−µtδ(αi)

xi vn, δ
(1)
t vn〉+ 〈δ(1)

v,tG(vn), δ(1)
t vn〉

= 1
2τ

[
〈δ(1)
t vn+1, δ

(1)
t vn〉 − 〈δ(1)

t vn, δ
(1)
t vn−1〉

]
+ 1

2τ

p∑
i=1

[
‖Λ(αi)

xi vn+1‖2
2 − ‖Λ(αi)

xi vn‖2
2

]
+ 1

τ

[
‖G(vn+1)‖1 − ‖G(vn)‖1

]
+ γ

∥∥∥δ(1)
t vn

∥∥∥2

2
= δtE

n + γ‖δ(1)
t vn‖2

2, ∀n ∈ IN−2,

(2.51)

whence the conclusion of this result is obtained.

Corollary 2.10. If (vn)Nn=0 is a solution of (2.33) then

En = E1 − γτ
n−1∑
k=1
‖δ(1)
t vk‖2

2, ∀n ∈ IN−2. (2.52)

In particular, the quantities En are invariants of (2.33) when γ = 0.

Proof. It readily follows from Theorem 2.9.

Theorem 2.9 and Corollary 2.10 are clearly the discrete counterparts of Theorem 2.2 and Corollary
2.3, respectively, and they indicate that our method is a dissipation-preserving technique. Moreover,
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it is important to point out that the energy quantity En defined in Theorem 2.9 has associated the
following discrete energy density functions:

Hn
j = 1

2

(
δ

(1)
t vnj

)(
δ

(1)
t vn−1

j

)
− 1

2v
n
j

p∑
i=1

δ(αi)
xi vnj +G(vnj )

= 1
2

(
δ

(1)
t vnj

)(
δ

(1)
t vn−1

j

)
+ 1

2

p∑
i=1

∣∣∣Λ(αi)
xi vnj

∣∣∣2 +G(vnj ), ∀(j, n) ∈ J × IN−2.

(2.53)

Theorem 2.11. The discrete quantities (2.47) may be rewritten alternatively as

En = 1
2µt‖δ

(1)
t vn−1‖2

2 −
τ2

4 ‖δ
(2)
t vn‖2

2 + 1
2

p∑
i=1
‖Λ(αi)

xi vn‖2
2 + ‖G(vn)‖1 , ∀n ∈ IN−2. (2.54)

Proof. Note that

〈δtvn, δtvn−1〉 = ‖δ(1)
t vn‖2

2 + 〈v
n+1 − vn

τ
,
vn − vn−1

τ
〉 − 〈v

n+1 − vn

τ
,
vn+1 − vn

τ
〉

= ‖δ(1)
t vn‖2

2 −
1
τ2

[
〈vn+1 − vn, vn+1 − vn〉 − 〈vn+1 − vn, vn − vn−1〉

]
= ‖δ(1)

t vn‖2
2 −

1
τ2 〈v

n+1 − vn, vn+1 − 2vn + vn−1〉

= ‖δ(1)
t vn‖2

2 − τ2‖δ(2)
t vn‖2

2 −
1
τ2 〈v

n+1 − vn, vn+1 − 2vn + vn−1〉

+ 1
τ2 〈v

n+1 − 2vn + vn−1, vn+1 − 2vn + vn−1〉

= ‖δ(1)
t vn‖2

2 − τ2‖δ(2)
t vn‖2

2 −
1
τ2 〈v

n − vn−1, vn+1 − 2vn + vn−1〉

= ‖δ(1)
t vn‖2

2 + ‖δ(1)
t vn−1‖2

2 − τ2‖δ(2)
t vn‖2

2

− 1
τ2 〈v

n − vn−1, vn+1 − 2vn + vn−1〉 − 〈v
n − vn−1

τ
,
vn − vn−1

τ
〉

= ‖δ(1)
t vn‖2

2 + ‖δ(1)
t vn−1‖2

2 − τ2‖δ(2)
t vn‖2

2

− 1
τ2

[
〈vn − vn−1, vn+1 − 2vn + vn−1〉+ 〈vn − vn−1, vn − vn−1〉

]
= ‖δ(1)

t vn‖2
2 + ‖δ(1)

t vn−1‖2
2 − τ2‖δ(2)

t vn‖2
2 − 〈

vn − vn−1

τ
,
vn+1 − vn

τ
〉

= ‖δ(1)
t vn‖2

2 + ‖δ(1)
t vn−1‖2

2 − τ2‖δ(2)
t vn‖2

2 − 〈δtvn−1, δtv
n〉,

(2.55)

holds for each n ∈ IN−1. It follows that

〈δtvn, δtvn−1〉 = µt‖δ(1)
t vn−1‖2

2 −
τ2

2 ‖δ
(2)
t vn‖2

2, ∀n ∈ IN−1, (2.56)

whence the conclusion of the theorem is reached.

2.5 Auxiliary lemmas

In this section, we prove some propositions needed to establish the properties of numerical efficiency of
the finite-difference method (2.33). To start with, we will require the following elementary facts which
will be employed in the sequel without an explicit reference:

(A) If v and w are real vectors of the same dimension then |2〈v, w〉| ≤ ‖v‖2
2 + ‖w‖2

2.
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(B) As a consequence, ‖v + w‖2
2 ≤ 2‖v‖2

2 + 2‖w‖2
2 for any two real vectors v and w of the same

dimension.

(C) More generally, if k ∈ N and v1, . . . , vk are real vectors of the same dimension then

∥∥∥∥∥
k∑

n=1
vn

∥∥∥∥∥
2

2

≤ k
k∑

n=1
‖vn‖2

2. (2.57)

(D) If (vn)Nn=0 is a finite sequence in Vh and n ∈ IN then vn = v0 + τ
n−1∑
k=0

δ
(1)
t vk. It follows that

‖vn‖2
2 ≤ 2‖v0‖2

2 + 2Tτ
n−1∑
k=0
‖δ(1)
t vk‖2

2, ∀n ∈ IN . (2.58)

The following lemma summarizes some important properties of the operators δ(αi)
xi introduced in

Section 2.3 along with their respective square roots.

Lemma 2.12. Let v ∈ Vh and i ∈ Ip.

(a) ‖Λ(αi)
xi v‖2

2 ≤ 2g(αi)
0 h∗h

−αi‖v‖2
2.

(b) ‖δ(αi)
xi v‖2

2 = ‖Λ(αi)
xi Λ(αi)

xi v‖2
2.

(c) ‖δ(αi)
xi v‖2

2 ≤ 2g(αi)
0 h∗h

−αi‖Λ(αi)
xi v‖2

2 ≤ 4
(
g

(αi)
0 h∗h

−αi
)2
‖v‖2

2. It follows then that

p∑
i=1
‖δ(αi)
xi v‖2

2 ≤ 2h∗
p∑
i=1

g
(αi)
0 h−αi‖Λ(αi)

xi v‖2
2 ≤ 4h2

∗‖v‖2
2

p∑
i=1

(g(αi)
0 h−αi)2. (2.59)

Proof.

(a) The properties of the matrix A(αi)
xi summarized in Lemma 2.7 guarantee that v>j|jiA

(αi)
xi vj|ji ≤

2g(αi)
0 ‖vj|ji‖2

2 holds for each j ∈ J . Moreover, Lemma 2.8 yields

‖Λ(αi)
xi v‖2

2 = 〈Λ(αi)
xi v,Λ(αi)

xi v〉 = 〈v,−δ(αi)
xi v〉

= h∗
hαi

M1−1∑
j1=1

· · ·
Mi−1−1∑
ji−1=1

Mi+1−1∑
ji+1=1

· · ·
Mp−1∑
jp=1

v>j|jiA
(αi)
xi vj|ji

≤ 2g(αi)
0

h∗
hαi

M1−1∑
j1=1

· · ·
Mi−1−1∑
ji−1=1

Mi+1−1∑
ji+1=1

· · ·
Mp−1∑
jp=1

‖vj|ji‖
2
2

= 2g(αi)
0 h∗h

−αi‖v‖2
2.

(2.60)

(b) Using Lemma 2.8 we readily check that

‖δ(αi)
xi v‖2

2 = 〈−δ(αi)
xi v,−δ(αi)

xi v〉 = 〈Λ(αi)
xi v,−δ(αi)

xi Λ(αi)
xi v〉

= 〈Λ(αi)
xi Λ(αi)

xi v,Λ(αi)
xi Λ(αi)

xi v〉 = ‖Λ(αi)
xi Λ(αi)

xi v‖2
2. (2.61)
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(c) This property is a consequence of (a) and (b), it is easy to verify

‖δ(αi)
xi v‖2

2 = ‖Λ(αi)
xi Λ(αi)

xi v‖2
2 ≤ 2g(αi)

0 h∗h
−αi‖Λ(αi)

xi v‖2
2 ≤

(
2g(αi)

0 h∗h
−αi
)2
‖v‖2

2. (2.62)

We get the desired result by taking the sum over i.

For the remainder of this chapter, we let α = (α1, . . . , αp), and define the constant g(α)
h =

2h∗max{g(αi)
0 h−αi : i ∈ Ip}. In light of the last lemma, it is clear that g(α)

h is a positive number
such that

p∑
i=1
‖δ(αi)
xi v‖2

2 ≤ g
(α)
h

p∑
i=1
‖Λ(αi)

xi v‖2
2 ≤

(
g

(α)
h ‖v‖2

)2
. (2.63)

Lemma 2.13. Let G ∈ C2(R) and G′′ ∈ L∞(R), and suppose that (un)Nn=0, (vn)Nn=0 and (Rn)Nn=0 are
sequences in Vh. Let εn = vn − un and G̃n = δv,tG(vn) − δw,tG(wn) for each n ∈ IN−1. Then the
following are satisfied.

(a) There exists a constant C0 ∈ R+ that depends only on G such that

‖G̃n‖2
2 ≤ C0(‖εn+1‖2

2 + ‖εn‖2
2), ∀n ∈ IN−1. (2.64)

(b) There exists C1 ∈ R+ depending only on G such that

2|〈Rn − G̃n, δ(1)
t εn〉| ≤ 2‖Rn‖2

2 + C1

(
‖εn+1‖2

2 + ‖εn‖2
2 + ‖δ(1)

t εn‖2
2

)
, ∀n ∈ IN−1. (2.65)

(c) There exist C2, C3 ∈ R+ that depend only on G such that for each k ∈ IN−1,

2τ
k∑

n=1

∣∣∣〈Rn − G̃n, δ(1)
t εn〉

∣∣∣ ≤ 2τ
k∑

n=0
‖Rn‖2

2 + C2‖ε0‖2
2 + C3τ

k∑
n=0
‖δ(1)
t εn‖2

2. (2.66)

(d) For each k ∈ IN−1,

kτ2
k∑

n=1
‖G̃n‖2

2 ≤ 4C0T
2‖ε0‖2

2 + 4C0T
3τ

k∑
n=0
‖δ(1)
t εn‖2

2. (2.67)

Proof. Let C ′0 = sup{|G′′(u)| : u ∈ R}.

(a) As a consequence of the Mean Value Theorem and a direct integration we obtain that |G̃nj | ≤
C ′0(|εn+1

j |+ |εnj |) for each j ∈ J and each n ∈ IN−1. Raising both sides of this inequality to the
second power and using the inequalities at the beginning of this section we get

‖G̃n‖2
2 ≤ 2C ′0(‖εn+1‖2

2 + ‖εn‖2
2), (2.68)

the result is reached with C0 = 2C ′0.
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(b) Note that for each n ∈ IN−1,

2|〈Rn − G̃n, δ(1)
t εn〉| ≤ ‖Rn − G̃n‖2

2 + ‖δ(1)
t εn‖2

2

≤ 2‖Rn‖2
2 + 2‖G̃n‖2

2 + ‖δ(1)
t εn‖2

2

≤ 2‖Rn‖2
2 + 2C0

(
‖εn+1‖2

2 + ‖εn‖2
2
)

+ ‖δ(1)
t εn‖2

2,

(2.69)

then we choose C1 = max{4C ′0, 1}

2|〈Rn − G̃n, δ(1)
t εn〉| ≤ 2‖Rn‖2

2 + C1

(
‖εn+1‖2

2 + ‖εn‖2
2 + ‖δ(1)

t εn‖2
2

)
. (2.70)

(c) Using the inequality (2.65) and the remarks at the beginning of the present section we obtain
that

2τ
k∑

n=1

∣∣∣〈Rn − G̃n, δ(1)
t εn〉

∣∣∣
≤ 2τ

k∑
n=1
‖Rn‖2

2 + C1τ
k+1∑
n=1

[
‖εn+1‖2

2 + ‖εn‖2
2 + ‖δ(1)

t εn‖2
2

]
≤ 2τ

k∑
n=1
‖Rn‖2

2 + 2C1τ

[
k+1∑
n=1
‖εn‖2

2 +
k∑

n=1
‖δ(1)
t εn‖2

2

]

≤ 2τ
k∑

n=0
‖Rn‖2

2 + 2C1τ

[
k+1∑
n=1

(
2‖ε0‖2

2 + 2Tτ
n−1∑
l=0
‖δ(1)
t εl‖2

2

)
+

k∑
n=1
‖δ(1)
t εn‖2

2

]

≤ 2τ
k∑

n=0
‖Rn‖2

2 + 2C1τ

[
2(k + 1)‖ε0‖2

2 + 2Tτk
k∑

n=0
‖δ(1)
t εn‖2

2 +
k∑

n=1
‖δ(1)
t εn‖2

2

]

≤ 2τ
k∑

n=0
‖Rn‖2

2 + 4C1T‖ε0‖2
2 + 2C1τ(2T 2 + 1)

k∑
n=0
‖δ(1)
t εn‖2

2,

(2.71)

for each k ∈ IN−1. The conclusion of this result follows for C2 = 4C1T and C3 = 2C1(2T 2 + 1).

(d) Note that (2.64) and the remarks at the beginning of this section imply that for each k ∈ IN−1,

kτ2
k∑

n=1
‖G̃n‖2

2 ≤ C0kτ
2
k+1∑
n=1

(
‖εn+1‖2

2 + ‖εn‖2
2
)
≤ 2C0kτ

2
k+1∑
n=1
‖εn‖2

2 ≤ 2C0Tτ
k+1∑
n=1
‖εn‖2

2

≤ 2C0Tτ
k+1∑
n=1

(
2‖ε0‖2

2 + 2Tτ
n−1∑
l=0
‖δ(1)
t εl‖2

2

)

≤ 4C0T
2‖ε0‖2

2 + 4C0T
3τ

k∑
n=0
‖δ(1)
t εn‖2

2.

(2.72)
Which is the stated in the Lemma.

Let G ∈ C2(R) and G′′ ∈ L∞(R), and suppose that (un)Nn=0, (vn)Nn=0 and (Rn)Nn=0 are sequences
in Vh. As in our last result, let εn = vn − un and G̃n = δv,tG(vn) − δw,tG(wn) for each n ∈ IN−1.
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Suppose also that

µtδ
2
t ε
n −

p∑
i=1

µtδ
(αi)
xi εn + γδ

(1)
t εn + G̃n = Rn, ∀n ∈ IN−1. (2.73)

Using this identity it follows that

δ
(2)
t εk+1 = −δ(2)

t εk +
∑p
i=1 δ

(αi)
xi εk+1 +

∑p
i=1 δ

(αi)
xi εk − 2

[
γδ

(1)
t εk + G̃k −Rk

]
,

δ
(2)
t εk = −δ(2)

t εk−1 +
∑p
i=1 δ

(αi)
xi εk +

∑p
i=1 δ

(αi)
xi εk−1 − 2

[
γδ

(1)
t εk−1 + G̃k−1 −Rk−1

]
.

(2.74)

Substituting δ(2)
t εk from the second equation into the first one:

δ
(2)
t εk+1 = −δ(2)

t εk−1 +
∑p
i=1 δ

(αi)
xi εk+1 −

∑p
i=1 δ

(αi)
xi εk−1

−2
[
γ
(
δ

(1)
t εk − δ(1)

t εk−1
)

+
(
G̃k − G̃k−1

)
−
(
Rk −Rk−1)] , (2.75)

with this idea, we apply mathematical induction:

δ
(2)
t εk+1 = (−1)kδ(2)

t ε1 +
p∑
i=1

δ(αi)
xi εk+1 + (−1)k+1

p∑
i=1

δ(αi)
xi ε1

+ 2
k∑

n=1
(−1)n

[
γδ

(1)
t εn + G̃n −Rn

]
, ∀k ∈ IN−2.

(2.76)

Moreover, calculating the square of the Euclidean norm of δ(2)
t εk+1, multiplying by τ2 and simplifying

τ2‖δ(2)
t εk+1‖2

2 = τ2

∥∥∥∥∥δ(2)
t ε1 +

p∑
i=1

δ(αi)
xi εk+1 +

p∑
i=1

δ(αi)
xi ε1 + 2

k∑
n=1

[
γδ

(1)
t εn + G̃n −Rn

]∥∥∥∥∥
2

2

≤ 5τ2‖δ(2)
t ε1‖2

2 + 5τ2

∥∥∥∥∥
p∑
i=1

δ(αi)
xi εk+1

∥∥∥∥∥
2

2

+ 5τ2

∥∥∥∥∥
p∑
i=1

δ(αi)
xi ε1

∥∥∥∥∥
2

2

+5(2γτ)2

∥∥∥∥∥
k∑

n=1
δ

(1)
t εn

∥∥∥∥∥
2

2

+ 5(2τ)2

∥∥∥∥∥
k∑

n=1
G̃n −Rn

∥∥∥∥∥
2

2

≤ 5τ2‖δ(2)
t ε1‖2

2 + 5τ2p

p∑
i=1

∥∥∥δ(αi)
xi εk+1

∥∥∥2

2
+ 5τ2p

p∑
i=1

∥∥∥δ(αi)
xi ε1

∥∥∥2

2

+20γ2τ2k
k∑

n=1

∥∥∥δ(1)
t εn

∥∥∥2

2
+ 20τ2

[
2k

k∑
n=1

∥∥∥G̃n∥∥∥2

2
+ 2k

k∑
n=1
‖Rn‖2

2

]
.

(2.77)

Using (2.63) we get

τ2‖δ(2)
t εk+1‖2

2 ≤ 5τ2‖δ(2)
t ε1‖2

2 + 5pτ2g
(α)
h

p∑
i=1
‖Λ(αi)

xi ε1‖2
2 + 5pτ2g

(α)
h

p∑
i=1
‖Λ(αi)

xi εk+1‖2
2

+20γ2Tτ
k∑

n=1
‖δ(1)
t εn‖2

2 + 40kτ2
k∑

n=1

(
‖G̃n‖2

2 + ‖Rn‖2
2

)
.

(2.78)

43



Then the inequalities at the beginning of this section, applying Lemma 2.13 (a), we readily obtain that

τ2‖δ(2)
t εk+1‖2

2

≤ 5τ2

∥∥∥∥∥δ(1)
t ε1 − δ(1)

t ε0

τ

∥∥∥∥∥
2

2

+ 5pτ2g
(α)
h

p∑
i=1
‖Λ(αi)

xi ε1‖2
2 + 5pτ2g

(α)
h

p∑
i=1
‖Λ(αi)

xi εk+1‖2
2

+20γ2Tτ
k∑

n=1
‖δ(1)
t εn‖2

2 + 40Tτ
k∑

n=1
‖Rn‖2

2 + 40
(

4C0T
2‖ε0‖2

2 + 4C0T
3τ

k∑
n=0
‖δ(1)
t εn‖2

2

)

≤ 160C0T
2‖ε0‖2

2 + 20µt‖δ(1)
t ε0‖2

2 + 5pτ2g
(α)
h

p∑
i=1
‖Λ(αi)

xi ε1‖2
2 + 5pτ2g

(α)
h

p∑
i=1
‖Λ(αi)

xi εk+1‖2
2

+40Tτ
k∑

n=1
‖Rn‖2

2 + 20(8C0T
2 + γ2)Tτ

k∑
n=0
‖δ(1)
t εn‖2

2.

(2.79)

This inequality will be used in the following section to establish the stability and the convergence of
the finite-difference method (2.33).

The following result will be useful to prove the stability and convergence properties of (2.33). It is
obviously a discrete version of the well-known Gronwall inequality.

Lemma 2.14 (Pen-Yu [21]). Let (ωn)Nn=0 and (ρn)Nn=0 be finite sequences of nonnegative mesh func-
tions, and suppose that there exists C ≥ 0 such that

ωk ≤ ρk + Cτ
k−1∑
n=0

ωk, ∀k ∈ IN−1. (2.80)

Then ωn ≤ ρneCnτ for each n ∈ IN .

2.6 Numerical results

The main numerical properties of the finite-difference method (2.33) as well as some illustrative com-
putational simulations are presented in this stage. Here we show that our scheme is a consistent, stable
and convergent technique under suitable conditions on the parameters of the model. In a first stage,
we show that (2.33) is a second-order consistent technique, and that the discrete energy density (2.53)
also provides a consistent approximation to the continuous Hamiltonian (2.8). For practical purposes
we define the following continuous and discrete functionals:

Lu(x, t) = ∂2u

∂t2
(x, t)−

p∑
i=1

∂αiu

∂|xi|αi
(x, t) + γ

∂u

∂t
(x, t) +G′(u(x, t)), ∀(x, t) ∈ Ω, (2.81)

Lunj = µtδ
(2)
t unj −

p∑
i=1

µtδ
(αi)
xi unj + γδ

(1)
t unj + δ

(1)
u,tG(unj ), ∀(j, n) ∈ J × IN−2. (2.82)

Lemma 2.15 (Brouwer’s fixed-point theorem). Let VR be a finite-dimensional vector space, and 〈·, ·〉
an inner product on V. Suppose that f : VR → VR is continuous, and that there is λ > 0 such that
〈f(w), w〉 ≥ 0, for each w ∈ V with ‖w‖ = λ. There exists w ∈ V with ‖w‖ ≤ λ satisfying f(w) = 0.
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In the following, for each w ∈ Vh and j ∈ J , we define

δ
(1)
w,v,tG

n
j (w) =


2
[
G( 1

2 (wj + vnj ))−G(µtvn−1
j )

]
wj − vn−1

j

, if wj 6= µtv
n−1
j ,

G′(µtvn−1
j ), if wj = µtv

n−1
j .

Define the vector
δ

(1)
w,v,tG

n(w) = (δ(1)
w,v,tG

n
j (w))j∈J .

Note that δ(1)
w,v,tG

n(w) is a continuous operator on Vh.

Theorem 2.16 (Solubility). If G′ ∈ L∞(R) then the method is solvable for any set of initial conditions.

Proof. There exists K > 0 such that ‖δ(1)
w,v,tG

n(w)‖2 ≤ K, for any w ∈ V and n ∈ IN−1. Let
f : Vh → Vh be the continuous function whose jth component is given by

fj(w) = 1
τ2 (wj − 2vnj + vn−1

j )−
∑
i∈Ip

δ(α)
xi v

n
j + γ

2τ (wj − vn−1
j ) + δ

(1)
w,v,tG

n
j .

Using Cauchy–Schwarz and the lemmas, we obtain

〈f(w), w〉 ≥ 1
τ2 ‖w‖2

(
‖w‖2 − 2‖vn‖2 − ‖vn−1‖2

)
+
∑
i∈Ip

〈w,−δ(α)
xi v

n〉

+ γ

2τ ‖w‖2
(
‖w‖2 − ‖vn−1‖2

)
−K‖w‖2

≥ 1
2τ2 ‖w‖2

[
(2 + γτ)‖w‖ − 4‖vn‖ − (2 + γτ)‖vn−1‖ − 2τ2K

]
−
∑
i∈Ip

‖Λ(α)
xi w‖2‖δxivn‖2

≥ 2 + γτ

2τ2 ‖w‖2 (‖w‖2 − λ).

Here,

λ = ‖vn−1‖2 +
(4 + g

(α)
h )‖vn‖2 + 2τ2K

2 + γτ
.

Clearly λ > 0, and 〈f(w), w〉 ≥ 0 for each w ∈ Vh with ‖w‖2 = λ. The conclusion follows from
Brouwer’s fixed-point theorem.

Theorem 2.17 (Consistency). If u ∈ C5(Ω) then there exist constants C,C ′ > 0 which are independent
of h and τ such that for each j ∈ J and each n ∈ IN−2,∣∣Lunj − Lu(xj , tn)

∣∣ ≤ C(τ2 + ‖h‖2
2), (2.83)∣∣Hunj −Hu(xj , tn)

∣∣ ≤ C ′(τ + ‖h‖2
2). (2.84)

Proof. We employ here the usual arguments with Taylor polynomials and the identity (2.31). Using
the hypotheses of continuous differentiability, there exist constants C1, C2,i, C3, C4 ∈ R for i ∈ Ip such
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that ∣∣∣∣µtδ(2)
t unj −

∂2u

∂t2
(xj , tn+ 1

2
)
∣∣∣∣ ≤ C1τ

2, (2.85)∣∣∣∣µtδ(αi)
xi unj −

∂αiu

∂|x|αi
(xj , tn+ 1

2
)
∣∣∣∣ ≤ C2,i(τ2 + h2

i ), (2.86)∣∣∣∣δ(1)
t unj −

∂u

∂t
(xj , tn+ 1

2
)
∣∣∣∣ ≤ C3τ

2, (2.87)∣∣∣δ(1)
u,tG(unj )−G′(u(xj , tn+ 1

2
))
∣∣∣ ≤ C4τ

2, (2.88)

for each j ∈ J and each n ∈ IN−2. The first inequality in the conclusion of this theorem is readily
reached using the triangle inequality and defining C = max{C1, γC3, C4} ∨ max{C2,i : i ∈ Ip}. To
establish the second inequality, note that the consistency of the forward-difference operators, the
Mean Value Theorem and the smoothness of the function u guarantee that there exists a constant C5

independent of τ such that∣∣∣∣∣δ(1)
t unj δ

(1)
t un−1

j −
(
∂u

∂t
(xj , tn)

)2
∣∣∣∣∣ ≤ ∣∣∣δ(1)

t un−1
j

∣∣∣ ∣∣∣∣δ(1)
t unj −

∂u

∂t
(xj , tn)

∣∣∣∣
+

∣∣∣∣∂u∂t (xj , tn)
∣∣∣∣ ∣∣∣∣δ(1)

t un−1
j − ∂u

∂t
(xj , tn)

∣∣∣∣ ≤ C5τ, (2.89)

for each j ∈ J and each n ∈ IN−1. Likewise, there exist constants C6,i for each i ∈ Ip such that∣∣∣∣unj δ(αi)
xi unj − u(xj , tn) ∂αiu

∂|xi|αi
(xj , tn)

∣∣∣∣ ≤ C6,ih
2
i , (2.90)

for each j ∈ I and each n ∈ IN−1. The second inequality of the conclusion follows again using the
triangle inequality and letting C ′ = 1

2 (C5 ∨max{C6,i : i ∈ Ip}).

We turn our attention to the stability and the convergence properties of (2.33). In the following,
the constants C1, C2 and C3 are as in Lemma 2.13, and (φv, ψv) and (φw, ψw) will denote two sets of
initial conditions of (2.1).

Theorem 2.18 (Stability). Let G ∈ C2(R) and G′′ ∈ L∞(R), and suppose that τ and h satisfy

5
2pτ

2g
(α)
h < 1. (2.91)

Let v = (vn)Nn=0 and w = (wn)Nn=0 be solutions of (2.33) for (φv, ψv) and (φw, ψw), respectively, and
let εn = vn−wn for each n ∈ IN . Then there exist constants C4, C5 ∈ R+ and 0 < η0 < 1 independent
of v and w such that

1
2‖δ

(2)
t εn‖2

2 +(1−η0)
p∑
i=1
‖Λ(αi)

xi εn‖2
2 ≤ C4

(
‖ε0‖2

2 + µt‖δ(1)
t ε0‖2

2 +
p∑
i=1
‖Λ(αi)

xi ε1‖2
2

)
eC5nτ , ∀n ∈ IN−1.

(2.92)

Proof. Let η0 satisfy 5
2pτ

2g
(α)
h < η0 < 1. Obviously, the sequence (εn)Nn=0 satisfies the initial-boundary-
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value problem

µtδ
(2)
t εnj −

p∑
i=1

µtδ
(αi)
xi εnj + γδ

(1)
t εnj + δ

(1)
v,tG(vnj )− δw,tG(wnj ) = 0, ∀(j, n) ∈ J × IN−2,

such that


ε0
j = φv(xj)− φw(xj), ∀j ∈ J,
δtε

0
j = ψv(xj)− ψw(xj), ∀j ∈ J,

εnj = 0, ∀(j, n) ∈ ∂J × IN .

(2.93)

For the sake of convenience, let G̃nj = δ
(1)
v,tG(vnj )− δw,tG(wnj ) for each j ∈ J and each n ∈ IN−1. From

the identities preceding Theorem 2.9 and those after the proof of Corollary 2.10, we readily obtain
that 〈

µtδ
(2)
t εn, δ

(1)
t εn

〉
= 1

2δ
(1)
t µt‖δ(1)

t εn−1‖2
2 −

τ2

4 δ
(1)
t ‖δ

(2)
t εn‖2

2,

〈−µtδ(αi)
xi εn, δ

(1)
t εn〉 = 1

2δ
(1)
t ‖Λ(αi)

xi εn‖2
2, ∀i ∈ IN−1, (2.94)

|2〈G̃n, δ(1)
t εn〉| ≤ C1

(
‖εn+1‖2

2 + ‖εn‖2
2 + ‖δ(1)

t εn‖2
2

)
,

for each n ∈ IN−1 and for some C1 ∈ R+. Let k ∈ IN−1. Taking the inner product of δ(1)
t εn with both

sides of the respective difference equation of (2.93)

〈
µtδ

(2)
t εn, δ

(1)
t εn

〉
+

p∑
i=1
〈−µtδ(αi)

xi εn, δ
(1)
t εn〉+ γ

〈
δ

(1)
t εn, δ

(1)
t εn

〉
+ 〈G̃n, δ(1)

t εn〉 = 0, (2.95)

substituting the identities above

1
2δ

(1)
t µt‖δ(1)

t εn−1‖2
2 −

τ2

4 δ
(1)
t ‖δ

(2)
t εn‖2

2 + 1
2

p∑
i=1

δ
(1)
t ‖Λ(αi)

xi εn‖2
2 + γ‖δ(1)

t εn‖2
2 + 〈G̃n, δ(1)

t εn〉 = 0, (2.96)

multiplying by 2τ on both sides and substituting the definition of δ(1)
t vn

0 =
(
µt‖δ(1)

t εn‖2
2 − µt‖δ

(1)
t εn−1‖2

2

)
− τ2

2

(
‖δ(2)
t εn+1‖2

2 − ‖δ
(2)
t εn‖2

2

)
(2.97)

+
p∑
i=1

(
‖Λ(αi)

xi εn+1‖2
2 − ‖Λ(αi)

xi εn‖2
2

)
+ 2τγ‖δ(1)

t εn‖2
2 + 2τ〈G̃n, δ(1)

t εn〉,

calculating then the sum of the resulting identity for all n ∈ Ik

0 =
(
µt‖δ(1)

t εk‖2
2 − µt‖δ

(1)
t ε0‖2

2

)
− τ2

2

(
‖δ(2)
t εk+1‖2

2 − ‖δ
(2)
t ε0‖2

2

)
(2.98)

+
p∑
i=1

(
‖Λ(αi)

xi εk+1‖2
2 − ‖Λ(αi)

xi ε1‖2
2

)
+

k∑
n=1

[
2τγ‖δ(1)

t εn‖2
2 + 2τ〈G̃n, δ(1)

t εn〉
]
,
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from the equation above we obtain

1
2‖δ

(1)
t εk+1‖2

2 +
p∑
i=1
‖Λ(αi)

xi εk+1‖2
2 = −1

2‖δ
(1)
t εk‖2

2 + τ2

2 ‖δ
(2)
t εk+1‖2

2 −
τ2

2 ‖δ
(2)
t ε0‖2

2 + µt‖δ(1)
t ε0‖2

2

+
p∑
i=1
‖Λ(αi)

xi ε1‖2
2 − 2τγ

k∑
n=1
‖δ(1)
t εn‖2

2 − 2τ
k∑

n=1
〈G̃n, δ(1)

t εn〉

≤ µt‖δ(1)
t ε0‖2

2 +
p∑
i=1
‖Λ(αi)

xi ε1‖2
2 + τ2

2 ‖δ
(2)
t εk+1‖2

2 + 2τ
k∑

n=1
〈G̃n, δ(1)

t εn〉,

(2.99)
by definition of absolute value and applying Lemma 2.13 with Rn = 0 and simplifying algebraically
yields

1
2‖δ

(1)
t εk+1‖2

2 +
p∑
i=1
‖Λ(αi)

xi εk+1‖2
2

≤ µt‖δ(1)
t ε0‖2

2 +
p∑
i=1
‖Λ(αi)

xi ε1‖2
2 + τ2

2 ‖δ
(2)
t εk+1‖2

2 + 2τ
k∑

n=1

∣∣∣〈G̃n, δ(1)
t εn〉

∣∣∣
≤ µt‖δ(1)

t ε0‖2
2 +

p∑
i=1
‖Λ(αi)

xi ε1‖2
2 +

(
80C0T

2‖ε0‖2
2 + 10µt‖δ(1)

t ε0‖2
2

+ .
5p
2 τ

2g
(α)
h

p∑
i=1
‖Λ(αi)

xi ε1‖2
2 + 5p

2 τ
2g

(α)
h

p∑
i=1
‖Λ(αi)

xi εk+1‖2
2

+ 10(8C0T
2 + γ2)Tτ

k∑
n=0
‖δ(1)
t εn‖2

2) +
(
C2‖ε0‖2

2 + C3τ

k∑
n=0
‖δ(1)
t εn‖2

2

)

≤ (80C0T
2 + C2)‖ε0‖2

2 + 11µt‖δ(1)
t ε0‖2

2 + (1 + η0)
p∑
i=1
‖Λ(αi)

xi ε1‖2
2

+ 5p
2 τ

2g
(α)
h

p∑
i=1
‖Λ(αi)

xi εk+1‖2
2 + (C3 + 10(8C0T

2 + γ2)T )τ
k∑

n=0
‖δ(1)
t εn‖2

2

≤ C4

(
‖ε0‖2

2 + µt‖δ(1)
t ε0‖2

2 +
p∑
i=1
‖Λ(αi)

xi ε1‖2
2

)
+ 5p

2 τ
2g

(α)
h

p∑
i=1
‖Λ(αi)

xi εk+1‖2
2

+ (C3 + 10(8C0T
2 + γ2)T )τ

k∑
n=0
‖δ(1)
t εn‖2

2
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2pτ

2g
(α)
h

p∑
i=1
‖Λ(αi)

xi εk+1‖2
2 + C5τ

2

k∑
n=0
‖δ(1)
t εn‖2

2

≤ ρ+ 5
2pτ

2g
(α)
h

p∑
i=1
‖Λ(αi)

xi εk+1‖2
2 + C5τ

k∑
n=0

(
1
2‖δ

(1)
t εn‖2

2 + (1− η0)
p∑
i=1
‖Λ(αi)

xi εn‖2
2

)

≤ ρ+ 5
2pτ

2g
(α)
h

p∑
i=1
‖Λ(αi)

xi εk+1‖2
2 + C5τ

k∑
n=0

ωn, ∀k ∈ IN−1,

(2.100)
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where

C4 = max{C2 + 80C0T
2, 11, 1 + η0}, (2.101)

C5 = 2C3 + 20(8C0T
2 + γ2)T, (2.102)

ρ = C4

(
‖ε0‖2

2 + µt‖δ(1)
t ε0‖2

2 +
p∑
i=1
‖Λ(αi)

xi ε1‖2
2

)
, (2.103)

ωn = 1
2‖δ

(1)
t εn‖2

2 + (1− η0)
p∑
i=1
‖Λ(αi)

xi εn‖2
2, ∀n ∈ IN−1. (2.104)

Subtracting the second term on the right-hand side of (2.100)

‖δ(1)
t εk+1‖2

2 +
(

1− 5
2pτ

2
) p∑
i=1
‖Λ(αi)

xi εk+1‖2
2 ≤ ρ+ C5τ

k∑
n=0

ωn, ∀k ∈ IN−1, (2.105)

we note that the hypotheses of Lemma 2.14 are readily satisfied with C = C5 and ρk = ρ for each
k ∈ IN−1, whence the conclusion of Theorem 2.18 follows.

Note that the inequality (2.91) is satisfied for sufficiently small values of τ and of the components
of h. Finally, we tackle the problem of the convergence of the numerical method (2.33). The proof of
the following result is similar to that of Theorem 2.18.

Theorem 2.19 (Convergence). Let u ∈ C5(Ω) be a solution of (2.1) with G ∈ C2(R) and G′′ ∈ L∞(R),
and let (vn)Nn=0 be a solution of (2.33) for the initial conditions (φ, ψ). Assume that εn = vn − un for
each n ∈ IN . If (2.91) holds then the method (2.33) is convergent of order O(τ2 + ‖h‖2).

Proof. Let η0 be as in the proof of Theorem 2.18, and let Rnj be the truncation error at the point
(xj , tn) for each j ∈ J and each n ∈ IN . Then (εn)Nn=0 satisfies

µtδ
(2)
t εnj −

p∑
i=1

µtδ
(αi)
xi εnj + γδ

(1)
t εnj + δ

(1)
v,tG(vnj )− δw,tG(wnj ) = Rnj , ∀(j, n) ∈ J × IN−2,

such that
{

ε0j = δtε
0
j = 0, ∀j ∈ J,

εnj = 0, ∀(j, n) ∈ ∂J × IN .

(2.106)

Following the proof of Theorem 2.18, let G̃nj = δ
(1)
v,tG(vnj )−δw,tG(wnj ) for each j ∈ J and each n ∈ IN−1.

Proceeding as in the proof of that theorem

1
2‖δ

(1)
t εk+1‖2

2 +
p∑
i=1
‖Λ(αi)

xi εk+1‖2
2

≤ µt‖δ(1)
t ε0‖2

2 +
p∑
i=1
‖Λ(αi)

xi ε1‖2
2 + τ2

2 ‖δ
(2)
t εk+1‖2

2 + 2τ
k∑

n=1

∣∣∣〈G̃n −Rn, δ(1)
t εn〉

∣∣∣, (2.107)
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we readily obtain

1
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+ .
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2 + γ2)T )τ

k∑
n=0
‖δ(1)
t εn‖2

2
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h

p∑
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(α)
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xi εk+1‖2
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2‖δ

(1)
t εn‖2

2 + (1− η0)
p∑
i=1
‖Λ(αi)

xi εn‖2
2

)

≤ ρk+1 + 5
2pτ

2g
(α)
h

p∑
i=1
‖Λ(αi)

xi εk+1‖2
2 + C5τ

k∑
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ωn, ∀k ∈ IN−1,

(2.108)
where C5 is as before, and

C4 = max{C2 + 80C0T
2, 11, 1 + η0, 20T + 2}, (2.109)

ρk = C4

(
‖ε0‖2

2 + µt‖δ(1)
t ε0‖2

2 +
p∑
i=1
‖Λ(αi)

xi ε1‖2
2 + τ

k−1∑
n=0
‖Rn‖2

2

)
, ∀k ∈ IN−1, (2.110)

ωk = 1
2‖δ

(1)
t εk‖2

2 + (1− η0)
p∑
i=1
‖Λ(αi)

xi εk‖2
2, ∀k ∈ IN−1. (2.111)

Subtracting the second term of the right-hand side of (2.108)

‖δ(1)
t εk+1‖2

2 +
(

1− 5
2pτ

2
) p∑
i=1
‖Λ(αi)

xi εk+1‖2
2 ≤ ρk+1 + C5τ

k∑
n=0

ωn, ∀k ∈ IN−1, (2.112)

then the hypotheses of Lemma 2.14 are satisfied. Using the conclusion of that result, the consistency
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property of our method and the homogeneous initial-boundary conditions of (2.106) we obtain that

1
2‖δ

(1)
t εk‖2

2 +
p∑
i=1
‖Λ(αi)

xi εk‖2
2 ≤ C4e

C5kττ
k−1∑
n=0
‖Rn‖2

2 ≤ C6(τ2 + ‖h‖2
2)2, ∀k ∈ IN−1. (2.113)

Here C6 = C4C2eC5TT and C is the constant of Theorem 2.17. The conclusion of the theorem readily
follows from the last inequality.

Finally, we provide some numerical approximations of the solution of problem (2.1) that show the
capability of (2.33) to preserve the energy. The simulations were obtained using an implementation of
our method in c©Matlab 8.5.0.197613 (R2015a) on a c©Sony Vaio PCG-5L1P laptop computer with
Kubuntu 16.04 as operating system. In terms of computational times, we are aware that better results
may be obtained with more modern equipment and more modest Linux/Unix distributions.

In a first stage, we consider undamped and damped one-dimensional forms of problem (2.1).

Example 2.20 (One-dimensional problem). Let 0 < ω < 1. In this example, we let G(u) = 1 − cosu
for all u ∈ R, and use the exact solution of the classical sine-Gordon equation described by

ϕ(x, t) = 4 arctan
( √

1− ω2 cosωt
ω cosh

√
1− ω2x

)
, ∀(x, t) ∈ R× (R+ ∪ {0}), (2.114)

to prescribe the initial conditions. Computationally, we consider the domain Ω = (−30, 30)× (0, 100),
h1 = 0.5 and τ = 0.05. Figure 2.2 shows the numerical solution (left column) and the associated energy
density (right column) of the problem (2.1) obtained using (2.33) and (2.53), respectively, for ω = 0.9
and γ = 0. Various derivative orders were used, namely, α1 = 2 (top row), α1 = 1.6 (middle row) and
α1 = 1.2 (bottom row). The insets of the graphs of the right column represent the discrete dynamics
of the total energy (2.47) of the system. The results show that the discrete total energy is conserved,
in agreement with the theory established in this chapter and numerical results obtained through an
implicit nonlinear numerical method [51]. We have used different computational parameters and the
results (not presented here in view of their redundancy) show that the discrete total energy is likewise
conserved. This qualitative behavior is in agreement with Theorem 2.9.

Example 2.21 (One-dimensional problem). Consider now the same problem as in Example 2.20, but
letting γ = 0.05. The results of the simulations are shown in Figure 2.3. Obviously, in this case the
quantities En are not conserved in view of the presence of a nonzero damping term. These results are
in qualitative agreement with Theorem 2.9 and with the numerical simulations obtained in [51].

We consider now the problem (2.1) in two spatial dimensions.

Example 2.22 (Two-dimensional problem). Let Ω = (−5, 5) × (−5, 5) × (0, 10), and define G(u) =
1−cosu for each u ∈ R. Consider the two-dimensional form of (2.1) with the initial conditions obtained
using by ϕ(x2 + y2, t), where ϕ is defined by (2.114) with ω = 0.8. Under these circumstances, Figure
2.4 shows snapshots of the approximate solution of (2.1) at the times (a) t = 0.22, (b) t = 0.34, (c)
t = 0.46, (d) t = 0.58, (e) t = 0.70 and (f) t = 0.82. The model parameters employed in this example
were α1 = 1.8, α2 = 1.6 and γ = 0. Numerically, we used the method (2.33) with M1 = M2 = 100
and N = 500. The solutions appear to follow almost a periodic behavior. Moreover, Figure 2.5 shows
the dynamics of the energy for various values of α1 and α2, and different damping coefficients, namely,
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Graphs of the numerical solution (left column) and the associated energy density (right
column) of the one-dimensional problem (2.1) with G(u) = 1−cosu obtained using (2.33) and (2.53) on
Ω = (−30, 30)× (0, 100). The initial data were provided by (2.114) with ω = 0.9, and the parameters
employed were γ = 0, h1 = 0.5 and τ = 0.05. Various derivative orders were used, namely, α1 = 2
(top row), α1 = 1.6 (middle row) and α1 = 1.2 (bottom row). The insets of the graphs of the right
column represent the discrete dynamics of the total energy (2.47) of the system.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Graphs of the numerical solution (left column) and the associated energy density (right
column) of the one-dimensional problem (2.1) with G(u) = 1−cosu obtained using (2.33) and (2.53) on
Ω = (−30, 30)× (0, 100). The initial data were provided by (2.114) with ω = 0.9, and the parameters
employed were γ = 0.05, h1 = 0.5 and τ = 0.05. Various derivative orders were used, namely, α1 = 2
(top row), α1 = 1.6 (middle row) and α1 = 1.2 (bottom row). The insets of the graphs of the right
column represent the discrete dynamics of the total energy (2.47) of the system.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: (Color online). Graphs of the approximate solution of (2.1) in two spatial dimensions at
the times (a) t = 0.22, (b) t = 0.34, (c) t = 0.46, (d) t = 0.58, (e) t = 0.70 and (f) t = 0.82. The model
parameters employed were α1 = 1.8, α2 = 1.6, γ = 0, G(u) = 1 − cosu, B = (−5, 5) × (−5, 5) and
T = 10. Meanwhile, the initial conditions were provided by ϕ(x2 + y2, t), where ϕ is given by (2.114)
with ω = 0.8. Numerically, we used the method (2.33) with M1 = M2 = 100 and N = 500.
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(a) α1 = 1.8, α2 = 1.8. (b) α1 = 1.8, α2 = 1.6.

(c) α1 = 1.8, α2 = 1.2. (d) α1 = 1.6, α2 = 1.6.

(e) α1 = 1.6, α2 = 1.2. (f) α1 = 1.2, α2 = 1.2.

Figure 2.5: (Color online). Graphs of the energy dynamics of the solution of (2.1) in two spatial
dimensions using various sets of the parameters α1 and α2, G(u) = 1−cosu, B = (−5, 5)×(−5, 5) and
T = 10. The initial conditions were provided by ϕ(x2 +y2, t), where ϕ is given by (2.114) with ω = 0.8,
and various damping coefficients were considered, namely, γ = 0 (solid), γ = 0.01 (dashed), γ = 0.02
(dashed-dotted) and γ = 0.03 (dotted). Numerically, we used the method (2.33) with M1 = M2 = 100
and N = 500.
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γ = 0 (solid), γ = 0.01 (dashed), γ = 0.02 (dashed-dotted) and γ = 0.03 (dotted). The results illustrate
the fact that the total energy of the system is conserved in the case when γ = 0, while the system is
dissipative if γ = 0. The results are in agreement with the theorems derived in this chapter.

2.7 Computer implementation

In this appendix, we provide a Matlab code of the numerical method (2.33) for the one-dimensional
scenario. It is worth noting that its implementation is straightforward, and it requires input and output
constants, which refer to the computational and model parameters described in the manuscript. The
code uses the functions exact and G, which are used to prescribe the initial conditions and the potential
function G, respectively.

Input (a,b,T,M,N,alpha,gama).
a= a1, b= b1, T= t,
M= M1, N= N , alpha= α, gama= γ.

Output [x,u,H,t,E]. The first three variables are vectors of lengths equal to M + 1, while the
last two are vectors of lengths N + 1. These vectors are defined as

x(j)= xj−1 for each j ∈ {1, . . . ,M + 1},
u(j)= vNj−1 for each j ∈ {1, . . . ,M + 1},
H(j)= HN

j−1 for each j ∈ {1, . . . ,M + 1},
t(n)= tn−1 for each n ∈ {1, . . . , N + 1},
E(n)= En−1 for each n ∈ {1, . . . , N + 1}.

Code.

function [x,u,H,t,E]=fracwave(a,b,T,M,N,alpha,gama)

function y=exact(t)

y=4.*atan(sqrt(1-omega^2)*cos(omega.*t)./cosh((1-omega^2).*x)./omega);

end

function y=G(z)

y=1-cos(z);

end

omega=0.8;

h=(b-a)/M;

tau=T/N;

r=2*gama*tau;

R=2*tau^2;

x=a:h:b;

t=0:tau:T;

u1=exact(t(1));
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u2=exact(t(2));

u3=exact(t(3));

u=zeros(size(u1));

E=zeros(size(t));

H=u;

g=zeros(size(u1));

g(1)=tau^2*gamma(alpha+1)/gamma(0.5*alpha+1)^2/h^alpha;

for k=1:M

g(k+1)=(1-(alpha+1)/(0.5*alpha+k+1))*g(k);

end

frac1=zeros(size(u));

for j=2:M

for k=1:M+1

frac1(j)=frac1(j)+g(abs(j-k)+1)*u2(k);

end

end

for n=4:N

for j=2:M

frac2=0;

for k=1:M+1

frac2=frac2+g(abs(j-k)+1)*u3(k);

end

u(j)=u3(j)+u2(j)-u1(j)-(frac1(j)+frac2)-r*(u3(j)-u2(j))...

-R*(G(u3(j))-G(u2(j)))/(u3(j)-u2(j));

H(j)=0.5*(u3(j)-u2(j))*(u2(j)-u1(j))/tau/tau...

+0.5*u2(j)*frac1(j)/tau/tau+G(u2(j));

frac1(j)=frac2;

end

E(n)=h*sum(H);

u1=u2;

u2=u3;

u3=u;

end

end
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3. High Order of Accuracy Scheme for
the Fractional Wave Equation

In this final chapter, we consider a general class of damped wave equations in two spatial
dimensions. The model considers the presence of Riesz space-fractional derivatives as well as a
generic nonlinear potential. The system has an associated positive energy functional when damping
is not present, in which case, the model is capable of preserving the energy throughout time.
Meanwhile, the energy of the system is dissipated in the damped scenario. In this chapter, the Riesz
space-fractional derivatives are approximated through second-order accurate fractional centered
differences. A high-order compact difference scheme with fourth order accuracy in space and
second order in time is proposed. Some associated discrete quantities are introduced to estimate
the energy functional. We prove that the numerical method is capable of conserving the discrete
variational structure under the same conditions for which the continuous model is conservative.
The positivity of the discrete energy of the system is also discussed. The properties of consistency,
solvability, stability and convergence of the proposed method are rigorously proved. We provide
some numerical simulations that illustrate the agreement between the physical properties of the
continuous and the discrete models.

3.1 Introduction

Derivatives and integrals of non-integer order are currently used in many applications in mechanics
and physics. In particular, they have been employed in the description of anomalous kinetics and
transport in walks [53, 54] and to obtain fractional analogues of equations of motion was proposed for
sets of point-particles with long-range interactions [55, 32]. This procedure is helpful in the analysis
of the dynamics of some discrete Hamiltonian systems of oscillators [31, 11]. On the other hand, the
design of structure-preserving schemes to solve multi-dimensional problems has been the main topic
of study in various reports [56, 57, 58, 59]. In a broad sense, ‘structure preservation’ refers to the
capacity of a computational technique to preserve mathematical features of the relevant solutions of
continuous systems. The condition of positivity, which is a natural requirement for problems in which
the variables of interest are measured in absolute scales [60, 61, 62, 63], is one of those mathematical
features. Boundedness is another characteristic in problems where there exist natural limitations
of growth, particularly in models that describe the dynamics of populations under limited resources
[64, 65]. Monotonicity is another property [44, 66].
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3.2 Preliminaries

Throughout this Chapter, we let T, κ ∈ R+ and γ ∈ R+∪{0}, and suppose that ai, bi ∈ R satisfy ai < bi,
for each i ∈ {1, 2}. Let us define B = (a1, b1) × (a2, b2) ⊆ R2, and let Ω = B × (0, T ) ⊆ R3. We will
employ the symbols B, Ω and ∂B to represent respectively the closures of B and Ω, and the boundary
of B under the standard topology of R3. Throughout, we will observe the convention x = (x1, x2) ∈ R2.
Assume that G : R→ R is a function, and that φ, ψ : B → R satisfy φ(x) = ψ(x) = 0 for each x ∈ ∂B.
Moreover, suppose that G is nonnegative, that G′′ is bounded and that u : Ω → R is a sufficiently
smooth function. We will assume that u(x, t) = 0 for each t ∈ [0, T ] and x ∈ R2 \B.

Definition 3.1. Let α > −1 and suppose that n is a nonnegative integer such that n − 1 < α ≤ n.
The Riesz fractional derivatives of u of order α with respect to x1 and with respect to x2 at the point
(x, t) are respectively defined by

∂αu(x, t)
∂|x1|α

= −1
2 cos(πα2 )Γ(n− α)

∂n

∂xn1

∫ ∞
−∞

u(ξ, x2, t)dξ
|x1 − ξ|α+1−n , ∀(x, t) ∈ Ω, (3.1)

∂αu(x, t)
∂|x2|α

= −1
2 cos(πα2 )Γ(n− α)

∂n

∂xn2

∫ ∞
−∞

u(x1, ξ, t)dξ
|x2 − ξ|α+1−n , ∀(x, t) ∈ Ω. (3.2)

Here Γ is the usual Gamma function defined on R \ {n ∈ Z : n ≤ 0}.

Throughout, assume that 1 < αi ≤ 2 for each i ∈ {1, 2}. In this chapter, we will investigate
numerically the following two-dimensional initial-boundary-value problem

∂2u(x, t)
∂t2

− κ
(
∂α1u(x, t)
∂|x1|α1

+ ∂α2u(x, t)
∂|x2|α2

)
+ γ

∂u(x, t)
∂t

+G′(u(x, t)) = 0, ∀(x, t) ∈ Ω,

such that


u(x, 0) = φ(x), ∀x ∈ B,
∂u

∂t
(x, 0) = ψ(x), ∀x ∈ B,

u(x, t) = 0, ∀(x, t) ∈ ∂B × (0, T ).

(3.3)

Denote the Riesz derivative of u of order αi with respect to xi by Dαixi , for each i ∈ {1, 2}. For
each such i, note that −Dαixi has a unique square-root [50, 49], which is denoted by Ξαixi and satisfies
〈−Dαixi u, v〉x = 〈Ξαixiu,Ξ

αi
xi v〉x for any two functions u and v. With these conventions, we use the

following positive energy function [67]:

E(t) = 1
2

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
+ 1

2

2∑
i=1

∥∥Ξαixiu
∥∥2
x,2 + ‖G(u)‖x,1 , ∀t ∈ (0, T ). (3.4)

Theorem 3.2 (Macías-Díaz [68]). If u is a solution of (3.3) then

E(t) = E(0)− γ
∫ t

0

∥∥∥∥∂u∂t
∥∥∥∥2

x,2
dt, ∀t ∈ [0, T ]. (3.5)

As a consequence, E ′(t) = −γ‖ut‖2
x,2 for each t ∈ (0, T ), so that the system (3.3) is conservative if

γ = 0.
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3.3 Numerical method

For any natural number n, we let In = {1, . . . , n} and In = In∪{0}. For the remainder of this chapter,
we let h1, h2 ∈ R+ be fixed step-sizes in the x1- and x2-directions, respectively, and let τ ∈ R+ be the
temporal step-size. Moreover, assume that N = T/τ and Mi = (bi − ai)/hi are positive integers for
each i ∈ I2. We will consider uniform partitions of [ai, bi] for i ∈ I2, and of [0, T ], respectively, given
by

xi,ji = ai + jihi, ∀i ∈ I2,∀ji ∈ IMi , (3.6)

tn = nτ ∀n ∈ IN . (3.7)

Let J = IM1−1 × IM2−1 and J = IM1 × IM2 , and let ∂J = {j ∈ J : xj ∈ ∂B}. Define xj =
(x1,j1 , x2,j2) for each bi-index j = (j1, j2) ∈ J . For each (j, n) ∈ J × IN , the symbol vnj will represent
an approximation to the value unj = u(xj , tn).

We will use the discrete average operators

µtu
n
j =

un+1
j + unj

2 = u(xj , tn) +O(τ), (3.8)

µ
(1)
t unj =

un+1
j + un−1

j

2 = u(xj , tn) +O(τ2), (3.9)

and the discrete difference operators

δtu
n
j =

un+1
j − unj

τ
= ∂u(xj , tn)

∂t
+O(τ), (3.10)

δ
(1)
t unj =

un+1
j − un−1

j

2τ = ∂u(xj , tn)
∂t

+O(τ2), (3.11)

δ
(2)
t unj =

un+1
j − 2unj + un−1

j

τ2 = ∂2u(xj , tn)
∂t2

+O(τ2), (3.12)

for each (j, n) ∈ J × IN−1. Also, the following estimates G′(u(xj , tn)) with an order of consistency
equal to O(τ2):

δ
(1)
u,tG(unj ) =


G(un+1

j )−G(un−1
j )

un+1
j − un−1

j

, if un+1
j 6= un−1

j ,

G′(unj ), if un+1
j = un−1

j .

(3.13)

Definition 3.3. For any function f : R → R, any h > 0 and any α > −1, the fractional centered
difference of order α of f at the point x is given by

∆α
hf(x) =

∞∑
k=−∞

g
(α)
k f(x− kh), ∀x ∈ R, (3.14)

whenever the right-hand side of this expression converges. The coefficients of the sequence (g(α)
k )∞k=−∞

are defined by

g
(α)
k = (−1)kΓ(α+ 1)

Γ(α2 − k + 1)Γ(α2 + k + 1) , ∀k ∈ N ∪ {0}. (3.15)
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Lemma 3.4 (Çelik and Duman [52]). If 1 < α ≤ 2 then the sequence (g(α)
k )∞k=−∞ satisfies

(i) g(α)
0 ≥ 0,

(ii) g(α)
k = g

(α)
−k < 0 for all k ≥ 1, and

(iii)
∑∞
k=−∞ g

(α)
k = 0.

As a consequence of Lemma 3.4, the series in the right-hand side of (3.14) converges absolutely
for any bounded function f ∈ L1(R). With this notation, it is easy to see that any f ∈ C5(R) for
which all of its derivatives up to order five belong to L1(R), the number −h−α∆α

hf(x) approximates
quadratically the derivative of f of order α at the point x whenever 1 < α ≤ 2 (see [52]). Under these
circumstances, if u ∈ C5(B) then

∂αiu

∂|xi|αi
(xj , tn) = δ(αi)

xi unj +O(h2
i ), ∀i ∈ I2,∀(j, n) ∈ J × IN , (3.16)

where

δ(α1)
x1

unj = − 1
hα1

1

M1∑
k=0

g
(α1)
j1−ku(xk,j2 , tn), ∀(j, n) ∈ J × IN , (3.17)

δ(α2)
x2

unj = − 1
hα2

2

M2∑
k=0

g
(α2)
j2−ku(xj1,k, tn), ∀(j, n) ∈ J × IN . (3.18)

For the remainder of this chapter, we will let h = (h1, h2) and h∗ = h1h2. Let α = (α1, α2), and
define the spatial mesh Rh = {xj}j∈J ⊆ R2. Let Vh be the vector space of all real functions on Rh.
For any u ∈ Vh and j ∈ J , let uj = u(xj).

Definition 3.5. Define respectively the inner product 〈·, ·〉 : Vh×Vh → R and the norm ‖·‖1 : Vh → R
by

〈u, v〉 = h∗

M−1∑
j=1

ujvj , ‖u‖1 = h∗

M−1∑
j=1
|uj |, (3.19)

for any u, v ∈ Vh. The Euclidean norm induced by 〈·, ·〉 will be denoted by ‖ · ‖2.

Definition 3.6. The spatial compact difference operators in the x1- and the x2-directions are the
functions A(α1)

x1 ,A(α2)
x2 : Vh → Vh defined, respectively, by

A(α1)
x1

νj = α1

24 νj1−1,j2 +
(

1− α1

12

)
νj1,j2 + α1

24 νj1+1,j2 , ∀ν ∈ Vh,∀j ∈ J, (3.20)

A(α2)
x2

νj = α2

24 νj1,j2−1 +
(

1− α2

12

)
νj1,j2 + α2

24 νj1,j2+1, ∀ν ∈ Vh,∀j ∈ J. (3.21)

At the boundary of J , we conveniently define these operators as zero. Moreover, we introduce the
linear operators A(α)

h = A(α1)
x1 A(α2)

x2 and Λh = c(A(α2)
x2 δ

(α1)
x1 + Aα1

x1
δ

(α2)
x2 ) on Vh.

We will require the following results in the sequel.

Lemma 3.7 (Macías-Díaz [69]). For each i ∈ I2, there exists a unique positive self-adjoint (square
root) operator Λ(αi)

xi : Vh → Vh, such that 〈−δ(αi)
xi u, v〉 = 〈Λ(αi)

xi u,Λ(αi)
xi v〉, for each u, v ∈ Vh.
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Define the constant g(α)
h = 2h∗(g(α1)

0 h−α1
1 + g

(α2)
0 h−α2

2 ). Using this convention, the following result
summarizes some easy properties of the operators δ(αi)

xi and their respective square roots.

Lemma 3.8 (Macías-Díaz [67]). Let v ∈ Vh and i ∈ I2. Then

(a) ‖Λ(αi)
xi v‖2

2 ≤ 2g(αi)
0 h∗h

−αi
i ‖v‖2

2,

(b) ‖δ(αi)
xi v‖2

2 = ‖Λ(αi)
xi Λ(αi)

xi v‖2
2,

(c) ‖δ(αi)
xi v‖2

2 ≤ 2g(αi)
0 h∗h

−αi
i ‖Λ(αi)

xi v‖2
2 ≤ 4

(
g

(αi)
0 h∗h

−αi
i

)2
‖v‖2

2,

(d)
∑
i∈Ip

‖δ(αi)
xi v‖2

2 ≤ 2h∗
∑
i∈Ip

g
(αi)
0 h−αii ‖Λ(αi)

xi v‖2
2 ≤ 4h2

∗‖v‖2
2
∑
i∈Ip

(g(αi)
0 h−αii )2 and

(e)
∑
i∈Ip

‖δ(αi)
xi v‖2

2 ≤ g
(α)
h

∑
i∈Ip

‖Λ(αi)
xi v‖2

2 ≤
(
g

(α)
h ‖v‖2

)2
.

It is important to recall that the compact operators satisfy ‖A(α1)
x1 v‖2 ≤ ‖v‖2 and ‖A(α2)

x2 v‖2 ≤ ‖v‖2,
for each v ∈ Vh. As a consequence, 〈Λhv, w〉 ≤ cg(α)

h ‖v‖2‖w‖2 for each v, w ∈ Vh.

Lemma 3.9 (Zhao et al. [70]).

(1) For any v ∈ Vh we have ‖A(α)
h v‖2 ≤ ‖v‖2 and 1

3‖v‖
2
2 ≤ 〈A

(α)
h v, v〉 ≤ ‖v‖2

2.

(2) There is a unique operator Λ
1
2
h : Vh → Vh such that 〈−Λhv, v〉 = 〈Λ

1
2
h v,Λ

1
2
h v〉 = ‖Λ

1
2
h v‖2

2, for each
v ∈ Vh.

The following result will be useful to obtain a compact discretization of (3.3).

Lemma 3.10 (Li and Zeng [71]). Let 1 < αi ≤ 2 for each i ∈ I2. Let u ∈ C7
x(Ω), and assume that all

the spatial derivatives of u up to order seven belong to L1(R). Then

δ(αi)
xi u(xi) = A(αi)

xi

[
∂αiu(x, t)
∂|xi|αi

]
+O(h4

i ), (3.22)

for each (x, t) ∈ Ω and i ∈ I2.

Apply the operator A(α)
h on both sides of the partial differential equation of (3.3)

A(α)
h

(
∂2u(x, t)
∂t2

− κ
(
∂α1u(x, t)
∂|x1|α1

+ ∂α2u(x, t)
∂|x2|α2

)
+ γ

∂u(x, t)
∂t

+G′(u(x, t))
)

= A(α)
h (0) , (3.23)

then rearrange the left side of the equation as follows, using the definition of A(α)
h :

A(α)
h

(
∂2u(x, t)
∂t2

− γ ∂u(x, t)
∂t

)
− κ

(
A(α)
h

∂α1u(x, t)
∂|x1|α1

+ A(α)
h

∂α2u(x, t)
∂|x2|α2

)
+ A(α)

h G′(u(x, t))

A(α)
h

(
∂2u(x, t)
∂t2

− γ ∂u(x, t)
∂t

)
− κ

(
A(α1)
x1

A(α2)
x2

∂α1u(x, t)
∂|x1|α1

+ A(α1)
x1

A(α2)
x2

∂α2u(x, t)
∂|x2|α2

)
+ A(α)

h G′(u(x, t))

A(α)
h

(
∂2u(x, t)
∂t2

− γ ∂u(x, t)
∂t

)
− κ

(
A(α2)
x2

A(α1)
x1

∂α1u(x, t)
∂|x1|α1

+ A(α1)
x1

A(α2)
x2

∂α2u(x, t)
∂|x2|α2

)
+ A(α)

h G′(u(x, t)),

(3.24)
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we use Lemma 3.10

A(α)
h

(
∂2u(x, t)
∂t2

− γ ∂u(x, t)
∂t

)
− κ

(
A(α2)
x2

δ(α1)
x1

u(x1) + A(α1)
x1

δ(α2)
x2

u(x2)
)

+ A(α)
h G′(u(x, t)) = 0,

(3.25)
and substitute the partial derivatives with respect to time by their second-order discrete approxima-
tions.

A(α)
h

(
δ

(2)
t vnj + γδ

(1)
t vnj

)
− κ

(
A(α2)
x2

δ(α1)
x1

µ
(1)
t vnj + A(α1)

x1
δ(α2)
x2

µ
(1)
t vnj

)
+ A(α)

h δ
(1)
v,tG(vnj ) = 0. (3.26)

In such way, we obtain the following scheme to approximate the solution of (3.3) on Ω:

A(α)
h

(
δ

(2)
t vnj + γδ

(1)
t vnj

)
− Λhµ(1)

t vnj + A(α)
h δ

(1)
v,tG(vnj ) = 0, ∀(j, n) ∈ J × IN−1,

such that


v0
j = φ(xj), ∀j ∈ J,
δtv

0
j = ψ(xj), ∀j ∈ J,

vnj = 0, ∀(j, n) ∈ ∂J × IN .

(3.27)

This scheme is a three-level method, meaning that the approximation at the first time-level is required.
In our implementation, we used side-by-side Taylor expansions with the approximations for the initial-
boundary conditions in (3.27) and (3.3) in order to evaluate the approximation at the first time-level.
In that way, we obtain

v1
j = φ(xj) + τψ(xj) + cτ2

2!

(
∂α1u

∂|x1|α1
+ ∂α2u

∂|x2|α1

)
φ(xj) +G′(φ(xj))− γφ(xj), ∀j ∈ J. (3.28)

Let us represent the solutions of (3.27) by (vn)Nn=0, where we convey that vn = (vnj )j∈J for each
n ∈ IN . Moreover, let δ(1)

v,tG(vn) = (δ(1)
v,tG(vnj ))j∈J . With this notation, the first thing we notice is:

A(α2)
x2

A(α2)
x2

νj = A(α2)
x2

(α2

24 νj1,j2−1 +
(

1− α2

12

)
νj1,j2 + α2

24 νj1,j2+1

)
= α1α2

242 νj1−1,j2−1 +
(

1− α1

12

) α2

24 νj1,j2−1 + α1α2

242 νj1+1,j2−1

+ α1

24

(
1− α2

12

)
νj1−1,j2 +

(
1− α1

12

)(
1− α2

12

)
νj1,j2 + α1

24

(
1− α2

12

)
νj1+1,j2

+ α1α2

242 νj1−1,j2+1 +
(

1− α1

12

) α2

24 νj1,j2+1 + α1α2

242 νj1+1,j2+1,

(3.29)
then we define a = α1α2

242 , b =
(
1− α1

12
)
α2
24 , c = α1

24
(
1− α2

12
)
and d =

(
1− α1

12
) (

1− α2
12
)
, along with the

matrices:

A =



d b 0 · · · 0
b d b · · · 0

. . . . . . . . .
0 · · · b d b

0 · · · 0 b d


, B =



c a 0 · · · 0
a c a · · · 0

. . . . . . . . .
0 · · · a c a

0 · · · 0 a c


. (3.30)
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Ordering νnj1,j2
in a column vector lexicographically, A(α2)

x2
A(α2)
x2

νn = Mνn with:

M =



A B 0 · · · 0
B A B · · · 0

. . . . . . . . .
0 · · · B A B

0 · · · 0 B A


. (3.31)

It is easy to see that the system of difference equations of the method at the time tn can be expressed
in vector form as

M
(
δ

(2)
t vn + γδ

(1)
t vn

)
− Λhµ(1)

t vn + M
(
δ

(1)
v,tG(vn)

)
= 0, ∀n ∈ IN−1, (3.32)

where M is a tridiagonal block matrix which is symmetric and positive-definite. As a consequence, M
is nonsingular and its inverse H is a symmetric positive-definite real matrix, which means that it has
a Cholesky decomposition H = RR>. In light of these facts, the finite-difference scheme (3.32) can
be reformulated as

δ
(2)
t vn + γδ

(1)
t vn −RR>Λhµ(1)

t vn + δ
(1)
v,tG(vn) = 0. (3.33)

Theorem 3.11. Let (vn)Nn=0 be solution of the system (3.27). For each n ∈ IN−1, let

En = 1
2‖δtv

n‖2
2 + 1

2µt‖RΛ
1
2
h v

n‖2
2 + µt ‖G(vn)‖1 . (3.34)

If n ∈ IN−1 then δtE
n−1 = −γ‖δ(1)

t vn‖2
2, so the quantities En are invariants of (3.27) when γ = 0.

As a consequence,

En = E0 − γτ
n∑
k=1

∥∥∥δ(1)
t vk

∥∥∥2

2
, ∀n ∈ IN−1. (3.35)

Proof. The proof hinges on Lemma 3.9 and the following algebraic identities:

〈
δ

(2)
t vn, δ

(1)
t vn

〉
=

〈
vn+1 − 2vn + vn−1

τ2 ,
vn+1 − vn−1

2τ

〉
= 1

2τ

〈
vn+1 − vn

τ
− vn − vn−1

τ
,
vn+1 − vn

τ
+ vn − vn−1

τ

〉
= 1

2τ
〈
δtv

n − δtvn−1, δtv
n + δtv

n−1〉
= 1

2τ
(
〈δtvn, δtvn〉 −

〈
δtv

n−1, δtv
n
〉
−
〈
δtv

n, δtv
n−1〉

−
〈
δtv

n−1, δtv
n−1〉) = 1

2τ
(
‖δtvn‖2

2 − ‖δtvn−1‖2
2
)
, (3.36)

(3.37)
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〈
−RR>Λhµ(1)

t vn, δ
(1)
t vn

〉
=

〈
−ΛhRR>µ(1)

t vn, δ
(1)
t vn

〉
=

〈
Λ

1
2
hRR>µ(1)

t vn,Λ
1
2
h δ

(1)
t vn

〉
=
〈

RΛ
1
2
hµ

(1)
t vn,RΛ

1
2
h δ

(1)
t vn

〉
=

〈
RΛ

1
2
h

(
vn+1 + vn−1

2

)
,RΛ

1
2
h

(
vn+1 − vn−1

2τ

)〉
= 1

4τ

(〈
RΛ

1
2
h v

n+1,RΛ
1
2
h v

n+1
〉
−
〈

RΛ
1
2
h v

n+1,RΛ
1
2
h v

n−1
〉

+
〈

RΛ
1
2
h v

n−1,RΛ
1
2
h v

n+1
〉
−
〈

RΛ
1
2
h v

n−1,RΛ
1
2
h v

n−1
〉)

= 1
2τ

[
‖RΛ

1
2
h v

n+1‖2
2 + ‖RΛ

1
2
h v

n‖2
2

2 −
‖RΛ

1
2
h v

n‖2
2 − ‖RΛ

1
2
h v

n−1‖2
2

2

]

= 1
2τ

[
µt‖RΛ

1
2
h v

n‖2
2 − µt‖RΛ

1
2
h v

n−1‖2
2

]
, (3.38)

〈δ(1)
v,tG(vn), δ(1)

t vn〉 = 〈G(vn+1)−G(vn−1)
vn+1 − vn−1 ,

vn+1 − vn

2τ 〉

= h∗
∑
j∈I

G(vn+1
j )−G(vn−1

j )
vn+1
j − vn−1

j

vn+1
j − vn−1

j

2τ

= h∗
∑
j∈I

G(vn+1
j )−G(vn−1

j )
2τ = 1

2τ

h∗∑
j∈I

G(vn+1
j )− h∗

∑
j∈I

G(vn−1
j )


= 1

τ

[
‖G(vn+1)‖1 + ‖G(vn)‖1

2 − ‖G(vn)‖1 + ‖G(vn−1)‖1

2

]
= 1

τ

[
µt‖G(vn)‖1 − µt‖G(vn−1)‖1

]
. (3.39)

Let Θn be the real vector consisting of the left-hand sides of the difference equations in (3.27) for each
n ∈ IN−1, and suppose that (vn)Nn=0 is a solution of the method. Calculating the inner product of Θn

with δ(1)
t vn, using the identities above and simplifying

〈Θn, δ
(1)
t vn〉 = 〈δ(2)

t vn + γδ
(1)
t vn −RR>Λhµ(1)

t vn + δ
(1)
v,tG(vn), δ(1)

t vn〉

= 〈δ(2)
t vn, δ

(1)
t vn〉+ 〈γδ(1)

t vn, δ
(1)
t vn〉+ 〈−RR>Λhµ(1)

t vn, δ
(1)
t vn〉+ 〈δ(1)

v,tG(vn), δ(1)
t vn〉

= 1
2τ
(
‖δtvn‖2

2 − ‖δtvn−1‖2
2
)

+ γ‖δ(1)
t vn‖2

2 + 1
2τ

[
µt‖RΛ

1
2
h v

n‖2
2 − µt‖RΛ

1
2
h v

n−1‖2
2

]
+ 1
τ

[
µt‖G(vn)‖1 − µt‖G(vn−1)‖1

]
= 1

τ

[(
1
2‖δtv

n‖2
2 + 1

2µt‖RΛ
1
2
h v

n‖2
2 + µt‖G(vn)‖1

)
−
(

1
2‖δtv

n−1‖2
2 + 1

2µt‖RΛ
1
2
h v

n−1‖2
2 + µt‖G(vn−1)‖1

)]
+ γ‖δ(1)

t vn‖2
2

= δtE
n−1 + γ

∥∥∥δ(1)
t vn

∥∥∥
2
, (3.40)

note that 0 = 〈0, δ(1)
t vn〉 = 〈Θn, δ

(1)
t vn〉 = δtE

n−1 + γ
∥∥∥δ(1)
t vn

∥∥∥2

2
, whence the conclusion follows.
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Theorem 3.11 is clearly the discrete counterpart of Theorem 3.2. Moreover, the quantities En are
nonnegative, for each n ∈ IN−1. This is in obvious agreement with the expressions (3.4).

3.4 Numerical results

In this section, we prove the most important numerical properties of our method. Firstly, we establish
next that the finite-difference method (3.27) is solvable. For each w ∈ Vh and (j, n) ∈ J × IN−1, let

δ
(1)
w,v,tG

n
j (w) =


G(wj)−G(vn−1

j )
wj − vn−1

j

, if wj 6= vn−1
j ,

G′(vnj ), if wj = vn−1
j .

(3.41)

Note that δ(1)
w,v,tG

n(w) = (δ(1)
w,v,tG

n
j (w))j∈J is a continuous operator on Vh when G is differentiable on

all of R.

Theorem 3.12. Let G be differentiable on R, with G′ ∈ L∞(R). If 2 + τγ − 3τ2cg
(α)
h > 0 then the

compact difference method (3.27) has a solution for any set of initial conditions.

Proof. The approximations v0 and v1 exist, so let us assume that vn−1 and vn have been obtained for
some n ∈ IN−1. Since δ(1)

w,v,tG
n is continuous and G′ is bounded then the operator δ(1)

w,v,tG
n is likewise

bounded in V. Let f : Vh → Vh be the continuous function whose jth component fj : Vh → R is given
by

fj(w) = A(α)
h

(
w − 2vnj + vn−1

j

τ2 + γ
w − vn−1

j

2τ

)
−Λh

(
w + vn−1

j

2

)
+Aδ(1)

w,v,tG
n
j (w), ∀w ∈ Vh,∀j ∈ J.

(3.42)
Using the Cauchy–Schwarz inequality and the results of Section 3.3

〈f(w), w〉 = 〈A(α)
h

w − 2vnj + vn−1
j

τ2 , w〉+ 〈γ
w − vn−1

j

2τ , w〉 − 〈Λh

(
w + vn−1

j

2

)
, w〉+ 〈Aδ(1)

w,v,tG
n
j (w), w〉

= 1
τ2 〈A

(α)
h w − 2vnj + vn−1

j , w〉+ γ

2τ 〈w − v
n−1
j , w〉

− 1
2 〈Λh

(
w + vn−1

j

)
, w〉+ 〈Aδ(1)

w,v,tG
n
j (w), w〉

≥ ‖w‖2

[
1
τ2

(
‖w‖2 − 2‖vn‖2 − ‖vn−1‖2

)]
+ ‖w‖2

[ γ
2τ
(
‖w‖2 − ‖vn−1‖2

)]
−‖w‖2

[
1
2
(
‖Λhw‖2 + ‖Λhvn−1‖2

)]
− ‖w‖2

[
‖Aδ(1)

w,v,tG
n
j (w)‖2

]
≥ ‖w‖2

[
1
τ2

(
1
3‖w‖2 − 2‖vn‖2 − ‖vn−1‖2

)]
+ ‖w‖2

[
γ

2τ

(
1
3‖w‖2 − ‖vn−1‖2

)]
−‖w‖2

[
cg

(α)
h

2
(
‖w‖2 + ‖vn−1‖2

)]
− ‖w‖2

[
‖Aδ(1)

w,v,tG
n
j (w)‖2

]
,

(3.43)
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it follows that there exists K ≥ 0 such that

〈f(w), w〉 ≥ ‖w‖2

[
1
τ2

(
1
3‖w‖2 − 2‖vn‖2 − ‖vn−1‖2

)
+ γ

2τ

(
1
3‖w‖2 − ‖vn−1‖2

)
−
cg

(α)
h

2
(
‖w‖2 + ‖vn−1‖2

)
−K

]

= ‖w‖2

6τ2

[
6
(

1
3‖w‖2 − 2‖vn‖2 − ‖vn−1‖2

)
+ 3γτ

(
1
3‖w‖2 − ‖vn−1‖2

)
−3τ2cg

(α)
h

(
‖w‖2 + ‖vn−1‖2

)
− 6τ2K

]
= ‖w‖2

6τ2

[(
2 + γτ − 3τ2cg

(α)
h

)
‖w‖2 −

(
12‖vn‖2 +

(
6 + 3γτ + 3τ2cgh

)
‖vn−1‖2 + 6τ2K

)]
=

2 + τγ − 3τ2cg
(α)
h

6τ2 ‖w‖2 [‖w‖2 − λ] , ∀w ∈ Vh,
(3.44)

where

λ =
12‖vn‖2 + (6 + 3τγ + 3τ2cg

(α)
h )‖vn−1‖2 + 6τ2K

2 + τγ − 3τ2cg
(α)
h

. (3.45)

Clearly, λ > 0 and 〈f(w), w〉 ≥ 0 for each w ∈ Vh with ‖w‖2 = λ. By Brouwer’s fixed-point theorem
[72], there is vn+1 ∈ Vh with ‖vn+1‖2 ≤ λ, such that f(vn+1) = 0. The conclusion of the theorem
follows now by induction.

Theorem 3.13. If u ∈ C7,4
x,t (Ω) then the scheme (3.27) has local truncation error of order O(τ2 +h4

1 +
h4

2).

Proof. The proof follows from a standard application of Taylor’s theorem on each of the discrete
operators of the numerical model (3.27), the smoothness of u, the triangle inequality and Lemma
3.10.

Theorem 3.14. If (vn)Nn=0 is solution of (3.27) then there is C ∈ R+ such that ‖vn‖2
2 ≤ 2‖v0‖2

2 +
4T 2E0, for each n ∈ IN−1.

Proof. Using the Cauchy–Schwarz inequality, we obtain

‖vn‖2
2 =

∥∥∥∥∥v0 + τ
n−1∑
k=0

vn − vn−1

τ

∥∥∥∥∥
2

2

≤ 2‖v0‖2
2 + 2τ2

∥∥∥∥∥
n−1∑
k=0

δtv
k

∥∥∥∥∥
2

2

≤ 2‖v0‖2
2 + 2nτ2

n−1∑
k=0
‖δtvk‖2

2 = 2‖v0‖2
2 + 4Tτ

n−1∑
k=0

1
2‖δtv

k‖2
2

≤ 2‖v0‖2
2 + 4Tτ

n−1∑
k=0

(
1
2‖δtv

k‖2
2 + 1

2µt‖RΛ
1
2
h v

n‖2
2 + µt ‖G(vn)‖1

)

≤ 2‖v0‖2
2 + 4Tτ

(
n−1∑
k=0

Ek

)
≤ 2‖v0‖2

2 + 4Tτ
(
nE0)

≤ 2‖v0‖2
2 + 4T 2E0, (3.46)
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the last part of the proof since:

Ek = E0 − γτ
k∑
i=1

∥∥∥δ(1)
t vk

∥∥∥2

2
,

n−1∑
k=0

Ek = nE0 − γτ
n−1∑
k=0

k∑
i=1

∥∥∥δ(1)
t vk

∥∥∥2

2
≤ nE0,

(3.47)

for each n ∈ IN−1. The conclusion of this result is reached now.

Lemma 3.15 (Pen-Yu [21]). Let (ωn)Nn=0, (ρn)Nn=0 ⊆ Vh be nonnegative functions, and let C ≥ 0 be
such that

ωn ≤ ρn + Cτ
n−1∑
k=0

ωk, ∀n ∈ IN . (3.48)

Then ωn ≤ ρneCnτ for each n ∈ IN .

Lemma 3.16 (Macías-Díaz [68]). Let G ∈ C2(R) and G′′ ∈ L∞(R), and let (un)Nn=0, (vn)Nn=0 and
(Rn)Nn=0 be sequences in Vh. Let εn = vn − un and G̃n = δv,tG(vn) − δw,tG(wn) for each n ∈ IN .
There are C2, C3 ∈ R+ depending only on G with

2τ

∣∣∣∣∣
k∑

n=1
〈Rn − G̃n, δ(1)

t εn〉

∣∣∣∣∣ ≤ 2τ
k∑

n=0
‖Rn‖2

2 + C2‖ε0‖2
2 + C3τ

k∑
n=0
‖δtεn‖2

2, (3.49)

for each k ∈ IN−1.

In the following, the constants C1, C2 and C3 are as in the previous lemma.

Theorem 3.17 (Stability). Let G ∈ C2(R) and G′′ ∈ L∞(R), and suppose that τ, h ∈ R+ satisfy
C3τ < 1. Let v = (vn)Nn=0 and w = (wn)Nn=0 be solutions of (3.27) for (φv, ψv) and (φw, ψw),
respectively, and let εn = vn − wn for each n ∈ IN . Then there exist C4, C5 ∈ R+ independent of v
and w such that

‖δtεn‖2
2 ≤ C4

(
‖δtε0‖2

2 + µt‖RΛ
1
2
h ε

0‖2
2 + ‖ε0‖2

2

)
eC5nτ , ∀n ∈ IN−1. (3.50)

Proof. Beforehand, let η0 ∈ R+ satisfy C3τ < η0 < 1. Note that (εn)Nn=0 satisfies the initial-boundary-
value problem

δ
(2)
t εn + γδ

(1)
t εn −HΛhµ(1)

t εn + δ
(1)
v,tG(vn)− δ(1)

w,tG(wn) = 0, ∀n ∈ IN−1,

such that


ε0
j = φv(xj)− φw(xj), ∀j ∈ J,
δtε

0
j = ψv(xj)− ψw(xj), ∀j ∈ J,

εnj = 0, ∀(j, n) ∈ ∂J × IN .

(3.51)

For the sake of convenience, let G̃nj = δ
(1)
v,tG(vnj )− δw,tG(wnj ) for each (j, n) ∈ J × IN−1. It is easy to
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see that 〈
δ

(2)
t εn, δ

(1)
t εn

〉
= 1

2τ
(
‖δtεn‖2

2 − ‖δtεn−1‖2
2
)
, ∀n ∈ IN−1, (3.52)〈

−HΛhµ(1)
t εn, δ

(1)
t εn

〉
= 1

2τ

[
µt‖RΛ

1
2
h ε

n‖2
2 − µt‖RΛ

1
2
h ε

n−1‖2
2

]
, ∀n ∈ IN−1, (3.53)

|2〈G̃n, δ(1)
t εn〉| ≤ C1

(
‖δtεn‖2

2 + ‖δtεn−1‖2
2 + ‖εn+1‖2

2 + ‖εn−1‖2
2
)
, ∀n ∈ IN−1.(3.54)

Letting k ∈ IN−1, taking the inner product of δ(1)
t εn with both sides of the respective difference

equation of (3.51)

〈δ(2)
t εn, δ

(1)
t εn〉+ γ〈δ(1)

t εn, δ
(1)
t εn〉 − 〈HΛhµ(1)

t εn, δ
(1)
t εn〉+ 〈G̃n, δ(1)

t εn〉 = 0, (3.55)

substituting the identities above

1
2τ
(
‖δtεn‖2

2 − ‖δtεn−1‖2
2
)

+ γ‖δ(1)
t εn‖2

2 + 1
2τ

[
µt‖RΛ

1
2
h ε

n‖2
2 − µt‖RΛ

1
2
h ε

n−1‖2
2

]
+ 〈G̃n, δ(1)

t εn〉 = 0,
(3.56)

multiplying by 2τ on both sides

‖δtεn‖2
2 − ‖δtεn−1‖2

2 + 2γτ‖δ(1)
t εn‖2

2 + µt‖RΛ
1
2
h ε

n‖2
2 − µt‖RΛ

1
2
h ε

n−1‖2
2 + 2τ〈G̃n, δ(1)

t εn〉 = 0, (3.57)

calculating then the sum of the resulting identity for all n ∈ Ik

‖δtεk‖2
2 − ‖δtε0‖2

2 + 2γτ
k∑
i=1
‖δ(1)
t εn‖2

2 + µt‖RΛ
1
2
h ε

k‖2
2 − µt‖RΛ

1
2
h ε

0‖2
2 + 2τ

k∑
i=1
〈G̃n, δ(1)

t εn〉 = 0, (3.58)

applying Lemma 3.16 with Rn = 0 and simplifying algebraically, we obtain

‖δtεk‖2
2 = ‖δtε0‖2

2 − 2γτ
k∑
i=1
‖δ(1)
t εn‖2

2 − µt‖RΛ
1
2
h ε

k‖2
2

+µt‖RΛ
1
2
h ε

0‖2
2 − 2τ

k∑
i=1
〈G̃n, δ(1)

t εn〉

≤ ‖δtε0‖2
2 + µt‖RΛ

1
2
h ε

0‖2
2 + 2τ

∣∣∣∣∣
k∑
i=1
〈G̃n, δ(1)

t εn〉

∣∣∣∣∣
≤ ‖δtε0‖2

2 + µt‖RΛ
1
2
h ε

0‖2
2 + C2‖ε0‖2

2 + C3τ
k∑

n=0
‖δtεn‖2

2. (3.59)

Subtract C3τ‖δtεk‖2
2 on both ends of this inequality and notice then that the left-hand side that results

satisfies that (1− η0)‖δtεk‖2
2 ≤ (1− c3τ)‖δtεk‖2

2.

(1− η0)‖δtεk‖2
2 ≤ (1− c3τ)‖δtεk‖2

2 ≤ ‖δtε0‖2
2 + µt‖RΛ

1
2
h ε

0‖2
2 + C2‖ε0‖2

2 + C3τ
k−1∑
n=0
‖δtεn‖2

2. (3.60)
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Dividing next by 1− η0, by making C4 = max{ 1
1−η0

, C2
1−η0
} and C5 = C3

1−η0
we get that:

‖δtεk‖2
2 ≤ C4

(
‖δtε0‖2

2 + µt‖RΛ
1
2
h ε

0‖2
2 + ‖ε0‖2

2

)
+ C5τ

k−1∑
n=0
‖δtεn‖2

2. (3.61)

The conclusion of this theorem is reached now using Lemma 3.15.

Under the assumptions of Theorem 3.17, we readily establish the uniqueness of the numerical
solutions.

Corollary 3.18. Let G ∈ C2(R) and G′′ ∈ L∞(R), and assume that C3τ < 1 holds. If v and w are
solutions of (3.27) corresponding to the same set of initial data then v = w.

The proof of the following result is similar to that of Theorem 3.17. We provide only an abridged
proof.

Theorem 3.19. Let u ∈ C7,4
x,t (Ω) be a solution of (3.3) with G ∈ C2(R) and G′′ ∈ L∞(R), and let

(vn)Nn=0 be a solution of (3.27). If C3τ < 1 then (3.27) is convergent of order O(τ2 + h4
1 + h4

2).

Proof. Let η0 ∈ R+ be as in the proof of Theorem 3.17, and let Rnj be the truncation error at the
point (xj , tn), for each (j, n) ∈ J × IN . Let εn = vn − un for each n ∈ IN . Then (εn)Nn=0 satisfies

δ
(2)
t εn + γδ

(1)
t εn −HΛhµ(1)

t εn + δ
(1)
v,tG(vn)− δ(1)

u,tG(un) = Rn, ∀n ∈ IN−1,

such that
{

ε0j = δtε
0
j = 0, ∀j ∈ J,

εnj = 0, ∀(j, n) ∈ ∂J × IN .
(3.62)

Following the proof of Theorem 3.17, let G̃nj = δ
(1)
v,tG(vnj ) − δu,tG(unj ) for each (j, n) ∈ J × IN−1.

Proceeding as in the proof of that theorem

‖δtεk‖2
2 = ‖δtε0‖2

2 − 2γτ
k∑
i=1
‖δ(1)
t εn‖2

2 − µt‖RΛ
1
2
h ε

k‖2
2 + µt‖RΛ

1
2
h ε

0‖2
2 − 2τ

k∑
i=1
〈G̃n −Rn, δ(1)

t εn〉

≤ ‖δtε0‖2
2 + µt‖RΛ

1
2
h ε

0‖2
2 + 2τ

∣∣∣∣∣
k∑
i=1
〈G̃n −Rn, δ(1)

t εn〉

∣∣∣∣∣
≤ ‖δtε0‖2

2 + µt‖RΛ
1
2
h ε

0‖2
2 + C2‖ε0‖2

2 + 2τ
k∑

n=0
‖Rn‖2

2 + C3τ
k∑

n=0
‖δtεn‖2

2, (3.63)

and defining C4 and C5 as follows C4 = max{ C2
1−η0

, 2
1−η0
}, C5 = C3

1−η0
, then

‖δtεk‖2
2 ≤ C4

(
‖δtε0‖2

2 + µt‖RΛ
1
2
h ε

0‖2
2 + ‖ε0‖2

2 + τ
k∑

n=0
‖Rn‖2

2

)
+ C5τ

k∑
n=0
‖δtεn‖2

2, ∀k ∈ IN−1.

(3.64)
Let C be the constant of Lemma 3.16, and let C6 = C4C

2eC5TT . Lemmas 3.16 and 3.15, and the
initial-boundary conditions in (3.62) imply now that ‖δtεk‖2

2 ≤ C6(τ2 +h4
1 +h4

2) for each k ∈ IN−1. It
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Numerical solution (left column) and numerical energy density (right column) of the one-
dimensional problem (3.3) versus x and t over the domain Ω = (−20, 20) × (0, 20). The set of initial
conditions (3.66) were employed, together with γ = 0 and various orders of differentiation, namely,
α1 = 2 (top row), α1 = 1.7 (middle row) and α1 = 1.4 (bottom row). The insets represent the
corresponding dynamics of the total energy of the system. The approximations were obtained using
the scheme (3.27) with h1 = 0.1 and τ = 0.01.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Numerical solution (left column) and numerical energy density (right column) of the one-
dimensional problem (3.3) versus x and t over the domain Ω = (−20, 20) × (0, 20). The set of initial
conditions (3.66) were employed, together with γ = 0.1 and various orders of differentiation, namely,
α1 = 2 (top row), α1 = 1.7 (middle row) and α1 = 1.4 (bottom row). The insets represent the
corresponding dynamics of the total energy of the system. The approximations were obtained using
the scheme (3.27) with h1 = 0.1 and τ = 0.01.
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follows that

‖εk‖2
2 ≤ 2‖ε0‖2

2 + 2Tτ
k−1∑
n=0
‖δtεk‖2

2 ≤ 2T 2C6(τ2 + h4
1 + h4

2)2, ∀k ∈ IN . (3.65)

It follows that there is K ≥ 0 such that ‖εk‖2 ≤ K(τ2 + h4
1 + h4

2) for each k ∈ IN , as proposed.

Finally, we provide some illustrative simulations to show the energetic performance of our method-
ology.

Example 3.20. Consider the one-dimensional form of problem (3.3) and G(u) = 1 − cosu, defined on
the spatial interval B = [−20, 20] and with T = 20. Clearly, the resulting problem is governed by a
damped fractional sine-Gordon equation. As initial profile, we will use

φ(x) = exp(−x2), ∀x ∈ B, (3.66)

and zero initial velocities. Computationally, we will employ the method (3.27) with h = 0.1 and
τ = 0.01. Figure 3.1 shows the solution of the system when γ = 0 (left column) and the corresponding
energy density (right column) versus x and t. Various values of α were used to that effect, namely,
α = 2 (top row), α = 1.7 (middle row) and α = 1.4 (bottom row). The insets depict the corresponding
dynamics of the total energy of the system. The results for the non-fractional system are clearly in
good agreement with those obtained in [73, 74]. Moreover, the energy of the system is conserved at
all time, in agreement with Theorem 3.11. Figure 3.2 shows the same set of simulations using γ = 0.1.
The results show that the method is a dissipative technique in this case, in agreement with Theorem
3.11.
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Conclusions and discussions

Chapter 1 In this chapter, we considered the sine-Gordon wave equation, one of the classical nonlin-
ear wave equations from quantum mechanics. The model under investigation is defined on the real line,
and it considers the presence of a nonlinear potential function according to mathematical physics. We
show here that the model possesses energy functionals which are preserved under suitable assumptions
on the boundary conditions and the parameters of the model.

Since it is difficult to solve the equation under some conditions, we chose a numerical method to
approximate a solution proposed by L. Vázquez, which is explicit and we proved that it conserves
the energy, the method uses finite-difference operators of quadratic order, then we showed that the
operator used to approximate the second derivate has a square root under some assumptions which
helped us to prove that the discrete energy is conserved in concordance with the continuous case. We
established that the method is consistent, stable and convergent.

Chapter 2 In this chapter, we investigated a fractional generalization of the sine-Gordon equation,
considering damping, a general value for G and multiple spatial dimensions. This model is defined on
a closed and bounded interval of Rp+1, and it considers the presence of a general nonlinear potential
function that generalizes many particular models from mathematical physics, including the sine-Gordon
equation from Chapter 1. Moreover, we considered a space-fractional extension of the wave equation
using Riesz fractional derivatives of orders in (1, 2]. We show here that the multidimensional model
under investigation possesses energy functionals which are preserved under suitable assumptions on
the boundary conditions and the parameters of the model. We designed a numerical technique that is
capable to preserve the proposed discrete energy function.

The numerical method is based on the use of fractional centered differences, which provide second-
order consistent approximations of fractional-order derivatives. Using operator theory, we show that
the multidimensional discrete fractional Laplacian is a positive and self-adjoint operator, then the
existence of a square root readily follows. This fact is employed then to propose a discrete energy
functional of the numerical method which, under suitable conditions on the boundary conditions and
the model parameters, is preserved at each discrete time. Additionally, the method is a second-order
consistent discretization of the problem under investigation, and the simulations provided in this work
show that the energy is conserved throughout time when the assumptions of the relevant theorems
on energy preservation are satisfied. For the sake of convenience, a computer implementation of our
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method in the one-dimensional case is provided.

Chapter 3 In this chapter, we considered a two-dimensional damped fractional extension of the
classical nonlinear two-dimensional damped wave equation. The model under investigation is defined
on a closed and bounded interval of the real line, and it considers the presence of a general nonlinear
potential function. The method provides fourth-order in space and second-order in time consistent
approximations of fractional-order derivatives. The reason we use two spatial dimensions falls in the
growing complexity every time we added a dimension, unlike Chapter 2 when we were able to provide
a general scenario. The properties found in Chapter 2 are present in this method as well, with the
difference that this method is implicit, we provided a proof of the existence of a solution under certain
assumptions. Additionally, the method is a high-order consistent discretization of the problem under
investigation, and the simulations provided in this work show that the energy is conserved throughout
time when the assumptions of the relevant theorems on energy preservation are satisfied.

It is important to mention that the methodology proposed in this chapter has the advantage over
the method of Chapter 2, of having a higher rate of convergence, we were able to do this by applying
a compact operator to the equation. The conditions to guarantee the stability of the present scheme
are also relatively flexible, and the positivity of the energy functionals are always guaranteed.
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