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TESIS

STRUCTURE-PRESERVING METHODS FOR RIESZ
SPACE-FRACTIONAL SINE-GORDON EQUATIONS

PRESENTA

Luis Fernando Mart́ınez Álvarez
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Resumen

En este caṕıtulo investigamos numéricamente un modelo gobernado por una ecuación de onda no lineal

multidimensional con amortiguamiento y difusión fraccionaria. La ecuación en cuestión es una ecuación

diferencial parcial que considera la presencia de derivadas fraccionarias de Riesz de órdenes en (1, 2], aśı

como una condición de Dirichlet homogénea sobre un dominio espacial cerrado y acotado. El modelo

de investigación posee una función de enerǵıa que se conserva en el régimen sin amortiguamiento. En el

caso amortiguado, establecemos la propiedad de disipación de enerǵıa del modelo usando argumentos

de análisis funcional. Motivados por estos resultados, proponemos una discretización expĺıcita en difer-

encias finitas de nuestro modelo fraccionario, basado en el uso de diferencias centradas fraccionadas.

Asociado a nuestro modelo discreto, también proponemos discretizaciones de las cantidades de enerǵıa.

Más aún, establecemos el hecho que en el régimen sin amortiguamiento se conserva la enerǵıa discreta,

y que se disipa en el escenario amortiguado. Entre las más importantes caracteŕısticas numéricas de

nuestro esquema, se muestra que el método tiene una consistencia de segundo orden, que es estable y

que tiene un orden cuadrático de convergencia. En esta tesis se muestran algunas simulaciones de una

y dos dimensiones para ilustrar el hecho de que la técnica es capaz de preservar la enerǵıa discreta en

el régimen sin amortiguamiento.
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Abstract

In this chapter, we investigate numerically a model governed by a multidimensional nonlinear wave

equation with damping and fractional diffusion. The governing partial differential equation considers

the presence of Riesz space-fractional derivatives of orders in (1, 2], and homogeneous Dirichlet bound-

ary data are imposed on a closed and bounded spatial domain. The model under investigation possesses

an energy function which is preserved in the undamped regime. In the damped case, we establish the

property of energy dissipation of the model using arguments from functional analysis. Motivated by

these results, we propose an explicit finite-difference discretization of our fractional model based on the

use of fractional centered differences. Associated to our discrete model, we also propose discretizations

of the energy quantities. We establish that the discrete energy is conserved in the undamped regime,

and that it dissipates in the damped scenario. Among the most important numerical features of our

scheme, we show that the method has a consistency of second order, that it is stable and that it has a

quadratic order of convergence. Some one- and two-dimensional simulations are shown in this chapter

to illustrate the fact that the technique is capable of preserving the discrete energy in the undamped

regime.
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Introduction

Aims and scope

The design of numerical methods that preserve the discrete energy of conservative systems governed by

partial differential equations has been an important area of research in computational physics [15, 107].

Many different approaches have been employed in order to provide numerical techniques that preserve

the total energy of discrete models, including finite differences [117], mimetic finite differences [54],

finite elements [33], Galerkin methods [24], symplectic techniques [115], G-symplectic schemes [23]

and finite pointset methods [56] among other approaches. Historically, the development of numerical

techniques that preserve physical properties of the solutions of systems of partial differential equations

was popularized by D. Furihata and coworkers at the turn of the 21st century [30, 31]. Many reports

on the design of numerical techniques that preserve physical or mathematical invariants of systems of

partial differential equations were proposed afterwards [14], including manuscripts on methods that

preserve the mass [42] and the momentum [98] of a system. Of course, many physical applications

have been proposed using those techniques.

The design of techniques to approximate the solution of physical systems has been largely enriched

with the study of partial differential equations of fractional orders. Indeed, fractional calculus has found

interesting applications in many fields of the natural sciences and engineering, including the theory

of viscoelasticity [48], the theory of thermoelasticity [82], financial problems under a continuous time

frame [89], self-similar protein dynamics [37] and quantum mechanics [74]. Distributed-order fractional

diffusion-wave equations are used in groundwater flow modelling to and from wells [96, 79]. A vast

amount of nonequivalent approaches have been followed, and new criteria of fractional differentiation

have been proposed constantly in the last decades. However, the problem in those cases is the common

lack of a physically meaningful formulation of the Euler–Lagrange formality for fractional variational

systems [2]. As expected, this has been a major problem in the design of energy-preserving method

for fractional partial differential equations.

In spite of this shortcoming, many of the partial differential equations from mathematical physics

have been extended to the fractional scenario. Physically, problems that only considered local contri-

butions to the dynamics of discrete or continuous systems have been extended to account for global

effects. In such way, various classical models that were traditionally described by partial differen-

tial equations have been formulated using derivatives of fractional order under different approaches
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[88, 75, 102]. Among the models that have been extended to the fractional scenario are the classical

nonlinear wave equations [84, 4]. Here, it is important to point out that the Riesz definition of spa-

tial derivatives of fractional order has been extensively employed in order to account physically for

anomalous diffusion [38], and to provide pertinent conservation laws and Hamiltonian-like equations

[105]. In view of these remarks, a natural question that arises immediately is whether it is feasible to

propose finite-difference discretizations of nonlinear hyperbolic equations with Riesz space-fractional

derivatives, in such way that known conservation laws are likewise conserved in the discrete domain.

The purpose of this thesis is to provide a discretization of Riesz space-fractional models that

generalizes the well-known wave equation with a general nonlinear potential. The continuous model is

complemented by suitable initial and boundary constraints on a closed and bounded spatial interval.

An energy-like functional that resembles the Hamiltonian of classical nonlinear wave equations is

already available for our fractional model. Using these facts, we propose a numerical method based

on fractional centered differences to approximate the solutions of our fractional system. The method

is implicit and nonlinear, so its implementation requires Newton’s method for the solution of systems

of nonlinear equations. As we will see in this manuscript, the finite-difference method possesses a

quantity that estimates the pseudo-energy of the system and, moreover, we will show that this quantity

is conserved at each temporal step. This fact will be confirmed through some numerical experiments,

and an application to a novel generalized nonlinear problem in physics will be proposed at the end of

this thesis.

Summary

This thesis is sectioned as follows.

• Chapter 1 provides a list of important second-order partial differential equations that constitute

particular cases of the equation under study. We state the general form of our problem, describe

the most important applications that it models, and provide analytical methods to compute

solution and, particularly, soliton-like solutions to several particular cases. We close this chapter

stating some important definitions and results from numerical analysis that we use in this thesis

without reference.

• Chapter 2 presents a discrete space, mixed-value problem version of the model introduced in the

previous chapter. The model under study in this section describes the motion of a semi-infinite

chain of coupled oscillators with damping, subject to harmonic driving at the free end. In this

chapter, we derive a finite-difference scheme to approximate solutions to our new problem, and

derive energy properties of the system. The study of the process of nonlinear supratransmission

of the chain is carried out in detail, and we obtain bifurcation diagrams to predict the occurrence

of nonlinear supratransmission under the presence of the parameters of the model. In that

stage, we show how nonlinear supratransmission in nonlinear chains of coupled oscillators can be

controlled in order to achieve a successful transmission of binary information.

• In Chapter 3, we investigate numerically a model governed by a multidimensional nonlinear

wave equation with damping and fractional diffusion. The governing partial differential equation

considers the presence of Riesz space-fractional derivatives of orders in (1, 2], and homogeneous



Dirichlet boundary data are imposed on a closed and bounded spatial domain. The model under

investigation possesses an energy function which is preserved in the undamped regime. In the

damped case, we establish the property of energy dissipation of the model using arguments from

functional analysis. Motivated by these results, we propose an explicit finite-difference discretiza-

tion of our fractional model based on the use of fractional centered differences. Associated to

our discrete model, we also propose discretizations of the energy quantities. We establish that

the discrete energy is conserved in the undamped regime, and that it dissipates in the damped

scenario. Among the most important numerical features of our scheme, we show that the method

has a consistency of second order, that it is stable and that it has a quadratic order of conver-

gence. Some one- and two-dimensional simulations are shown in this chapter to illustrate the

fact that the technique is capable of preserving the discrete energy in the undamped regime.

• This thesis closes with a section of conclusions for each chapter and a list of relevant references.
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1. Preliminaries

The nonlinear Klein-Gordon equation is one of the most important and simplest nonlinear

differential equations that appear in relativistic quantum mechanics. As a second-order partial

differential equation, the Klein-Gordon equation generalizes several other important problems in

various branches of physics, chemistry and mathematical biology that range from the classical

diffusion equation to the stochastic Fisher-KPP equation, from the classical wave equation to the

Schrödinger and the telegrapher’s equations. The present chapter is devoted to introduce and

evidence the importance of the differential equation under study in this thesis. We also present

some important definitions and results of numerical analysis that will be used without reference

in further chapters.

1.1 Basic definitions

By a domain we understand a closed connected subset of Rn. A function u defined in a domain D is

said to be have compact support if it is zero outside a compact subset of D. A function u defined

on a domain D is called smooth in D if it has continuous partial derivatives of all orders in D. The

function u is called small at infinity if for every x̄0 in the boundary of D,

lim
x̄ → x̄0

x̄ ∈ D

u(x̄) = 0.

Let a, b, c, d and e be real numbers with at least one of a, b or c not equal to zero. A second-order

partial differential equation in the variables x and y with constant coefficients is an equation of the

form

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
= F (x, y), (1.1)

where u is a function of (x, y) usually assumed to be defined and of compact support in some domain

D, that has continuous partial derivatives up to the second order in D. The number b2 − 4ac is called

the discriminant of Equation (1.1) and yields a criterion to classify second-order partial differential

equations:

• If b2 − 4ac > 0 then Equation (1.1) is called a hyperbolic equation. As an example of this type

12



of equation we have the classical one-dimensional wave equation

∂2u

∂x2
=

1

ν2

∂2u

∂t2
.

It describes the vertical disturbance of a wave with phase velocity ν as it travels on the horizontal

direction. The wave equation applies to a stretched string or a plane electromagnetic wave. Given

initial and boundary conditions the wave equation can be solved exactly by using a Fourier

transform method or via separation of variables.

• If b2 − 4ac = 0 then Equation (1.1) is called a parabolic equation. An example of parabolic

equation is the one-dimensional diffusion equation (also called heat equation)

∂u

∂t
= κ

∂2u

∂x2
.

This equation commonly arises in problems of heat conductivity. In those situations κ represents

thermal diffusivity and u represents temperature. If initial and boundary conditions are given,

the diffusion equation can be solved analytically by separation of variables.

• If b2 − 4ac < 0 then Equation (1.1) is called an elliptic equation. Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0

is an example of an elliptic equation. It is satisfied by the potential of any distribution of matter

which attracts according to the Newtonian Law. A solution to Laplace’s equation is uniquely

determined if the value of the function or the normal derivative of the function is specified on all

boundaries.

We must remark that the wave equation, the heat equation and Laplace’s equation have gener-

alizations that model the corresponding physical phenomena in three dimensions. For example, the

wave equation in three space variables reads

∇2u =
1

ν2

∂2u

∂t2
,

where u is a scalar function that depends on the space coordinate (x, y, z) and time t. The symbol

∇2 denotes the Laplacian differential operator, which is the divergence of the gradient of a scalar

function. With this notation the three-dimensional diffusion equation is described by the equation

∂u

∂t
=

1

κ
∇2u,

and the three-dimensional Laplace’s equation by

∇2u = 0.

Let V and ρ be scalar functions depending only on space. An important variation of the three-

dimensional Laplace’s equation occurs in classical electromagnetic theory when relating the electric

13



potential V of a distribution and its charge density ρ. The relation between V and ρ is described by

the equation ǫ0∇2V = ρ, which is called Poisson’s equation. More generally, every equation of the

form

∇2u = F (x, y, z, t),

where u is a scalar function depending on x, y, z and t, is called a Poisson equation. Another useful

classification of second-order partial differential equations with constant coefficients is in terms of a

property called linearity. Differential equation (1.1) is called linear if for arbitrary real constants k1,

k2 and solutions u1, u2 of (1.1), k1u1 + k2u2 is also a solution of (1.1).

Finally, if the variable time is one of the independent variables of the scalar function u then the term

k∂u/∂t in the differential equation modeling u is called the external damping term and the constant

k is called the external damping coefficient. The differential equation is said to be damped if k

is not equal to zero, otherwise it is called undamped.

1.2 Important partial differential equations

Many other three-dimensional generalizations of the wave equation, the diffusion equation and Laplace’s

equation happen to appear in mathematical physics and biology. For example, the manipulation of

Maxwell’s equations to obtain propagating waves gives rise to the so called Helmholtz equation

[120], whose general form is

∇2u+ k2u = 0,

where k is a real constant and u is a scalar function in the variables x, y, z, t. Obviously, Helmholtz

equation is a linear second-order partial differential equation that generalizes the three-dimensional

wave equation.

Another physical example appears in the field of non-relativistic quantum mechanics: Let ~ denote

Planck’s original constant divided by 2π. The wave function associated to a particle of mass m with

potential scalar function V is a scalar function u that depends on the position vector (x, y, z) of the

particle and the time t, given by the differential equation

i~
∂u

∂t
= − ~2

2m
∇2u+ V u.

This differential equation is called Schrödinger’s equation. In this equation the scalar function u

may be complex, but the square of its modulus is a real scalar function that represents the proba-

bility density function associated with the location of the particle at any time. It is worth noticing

that Schrödinger’s equation provides a mathematical generalization of the three-dimensional diffusion

equation. Observe that because the scalar function V does not need to be constant, Schrödinger’s

equation is a linear partial differential equation with not necessarily constant coefficients.

The relativistic counterpart of Schrödinger’s equation is the Klein-Gordon equation. By the linear

Klein-Gordon equation we understand the linear second-order partial differential equation

∇2u =
1

c2

∂2u

∂t2
+m2u,

where m is a real constant and u is a scalar function of position and time. This is the equation for
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a relativistic quantum-mechanical scalar (spin-zero) particle of mass m. The exact solution of this

equation in the form of a traveling wave is given in [81]. An important nonlinear variation of this

equation that often appears in the study of the collisional properties of solitons [78, 97], that is

solitary waves, and a number of other physical applications [5, 36, 9] is the sine-Gordon equation

∇2u =
1

c2

∂2u

∂t2
+m2 sinu.

Several nonlinear variations of the Klein-Gordon equation appear in many branches of physics,

chemistry and other sciences. The Landau-Ginzburg equation is one of those equations. Studied

by Lev Landau and Vitaly Grinzburg in 1950 while studying the theory of superconductivity, this

equation is used to study simple periodic oscillations and the change of their amplitude and frequency

with respect to initial excitations in problems that arise in oscillating chemical reactions and atomic

physics. In dimensionless form, the three-dimensional Landau-Grinzburg equation is given by

∂2u

∂t2
− ∇2u−m2u+G′(u) = 0

In mathematical biology, consider a population distributed in a linear habitat with uniform density.

If at any point of the habitat a mutation advantageous to survival occurs then the mutant gene increases

at the expense of the allelomorphs previously occupying the same locus. Mathematically, let u be the

frequency of the mutant gene and let m be a constant representing intensity of selection in favor of

the mutant gene. Then u must satisfy Fisher’s equation (also called the Fisher-KPP equation)

∂u

∂t
= k

∂2u

∂x2
+ F (u),

where k is a diffusion coefficient and u depends on the position x in the linear habitat and time t

given in generations. This parabolic equation was simultaneously and independently investigated by

Fisher [27] and Kolmogoroff et al. [49], using F (u) = mu(1 − u). It is used also in describing the

process of epidermal wound healing [91]. Other applications appear in the theory of superconducting

electrodynamics [114] and in the study of excitons [83]. Fisher’s equation is a nonlinear equation that

obviously generalizes the three-dimensional diffusion model if we rewrite Fisher’s equation as

∂u

∂t
= k∇2u+ F (u).

The stochastic Fisher-KPP equation is the one-dimensional Fisher equation with F (u) =

mu(1 − u) + γ
√
u(1 − u)η(x, t), where 0 ≤ u ≤ 1, γ is a real constant, and η(x, t) is a Gaussian white

noise process in space and time with mean equal to zero [21]. To fix ideas, we may think of a noise

as a random signal of known statistical properties of amplitude, distribution, and spectral density. A

noise is a white noise in space and time if it is uncorrelated in these two variables, and it is Gaussian

if its probability density function over a given frequency band is normal. The stochastic Fisher-KPP

equation is a stochastic partial differential equation that describes random walk processes that have

applications in hydrodynamics and economics.

Second-order partial differential equations describing diffusion or conduction happen to appear in

the area of thermodynamics [70]. Heat conduction is understood as the transfer of heat from warm
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areas to cooler ones, and effectively occurs by diffusion. Under the assumption of a macroscopic

continuum formulation, the Fourier equation [28] for the heat flux q̄ in a medium of density ρ, mass

heat capacity CP , and temperature function u, is

q̄ = −k∇u,

where both q̄ and u depend on the three spatial coordinates and time, k = ρκCP is the thermal

conductivity of the medium, and κ is the thermal diffusivity term of the classical diffusion equation.

The previously mentioned Fourier heat conduction equation is diffusive and does not account for the

temperature propagation speed in transient situations. Because of certain issues argued and identified

earlier, attempts to account for a finite speed of heat propagation have evolved over the years. The

Maxwell-Cattaneo model [12], which is based on the notion of relaxing the heat flux, is given as

τ
∂q̄

∂t
= −q̄ − k∇u,

where τ is the relaxation time. Assuming that there are no heat sources and that k is constant, the

one-dimensional version of the Maxwell-Cattaneo equation together with the energy equation

ρCP
∂u

∂t
+
∂q

∂x
= 0,

yield the hyperbolic equation

τρCP
∂2u

∂t2
− k

∂2u

∂x2
+ ρCP

∂u

∂t
= 0.

Obviously, it can be generalized to the three-dimensional case as

∂2u

∂t2
− k

τρCP
∇2u+

1

τ

∂u

∂t
= 0.

The telegraph equation is a hyperbolic equation that describes heat or mass transport. It models

phenomena that are mixtures between diffusion and wave propagation. In this model a small section

of a telegraph wire is treated to study the pulse of voltage moving along the wire. It was studied in

1876 by Heaviside in his research on coaxial marine telegraph cables [53]. The telegraph equation is

the linear second-order partial differential equation

∂2u

∂x2
− 1

ν2

∂2u

∂t2
− γ

∂u

∂t
− b2u = 0,

where ν is positive, and γ and b are nonnegative constants. The one-dimensional wave equation is just

a particular case of the telegraph equation with γ and b both equal to zero. The generalization of the

telegraph equation to three dimensions is

∇2u− 1

ν2

∂2u

∂t2
− γ

∂u

∂t
− b2u = 0.
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1.3 Modified Klein-Gordon equations

The objective of this paper is to study a general form of the Klein-Gordon equation that embraces

the partial differential equations described in the previous section and, at the same time, takes into

account a third-order term proportional to the Laplacian of the partial derivative of u in time, which

physically represents the internal damping term. More precisely, let u be a function of the spatial

variables X , Y , Z, and the time variable T . The nonlinear partial differential equation with constant

coefficients that we wish to study in this thesis is

a
∂2u

∂T 2
− b∇2u− c

∂

∂T

(
∇2u

)
+ d

∂u

∂T
+m2u+ G′(u) = 0,

Let x = X/
√
b, y = Y/

√
b, z = Z/

√
b, and t = T/

√
a for a and b positive numbers. Let β = c/(b

√
a)

and γ = d/
√
a. Our problem can be stated in dimensionless form as

∂2u

∂t2
− ∇2u− β

∂

∂t

(
∇2u

)
+ γ

∂u

∂t
+m2u+G′(u) = 0,

subject to :




u(x̄, 0) = φ(x̄), x̄ ∈ D,
∂u

∂t
(x̄, 0) = ψ(x̄), x̄ ∈ D.

(1.2)

This initial-value problem will be referred to as the modified nonlinear Klein-Gordon equation

or the dissipative nonlinear Klein-Gordon equation, and its numerical study for the particular

choice G′(u) = up, for p > 1 an odd number, is the topic of this paper. We identify the term containing

the coefficient β as the internal damping term, while the term containing γ is easily identified as the

external damping term. Needless to say that the differential equation in (1.2) generalizes the equations

listed in Section 1.2 either by choosing suitable coefficients or by suppressing terms; the classical Klein-

Gordon equation, for instance, can be obtained by setting β and γ both equal to zero and G′ identically

zero. It is worthwhile mentioning that the undamped nonlinear Klein-Gordon equation withG′(u) = u3

is called the quasilinear Klein-Gordon equation, and it also has physical applications [76].

The following is the major theoretic result we will use in our investigation. It is valid only for certain

classical one-dimensional nonlinear Klein-Gordon equations. Here M(t) represents the amplitude of a

solution of (1.2) at time t, that is

M(t) = max
x

|u(x, t)|.

Theorem 1.1. Let β and γ be both equal to zero, and let G′(u) = |u|p−1u. Suppose that φ and ψ are

smooth and small at infinity. Then

(1) If p < 5, a unique smooth solution of (1.2) exists with amplitude bounded at all time [43].

(2) If p ≥ 5, a weak solution exists for all time [90].

(3) For p > 8/3 and for solutions of bounded amplitude, there is a scattering theory; in particular,

they decay uniformly as fast as M(t) ≤ c(1 + |t|)−3/2 [73].
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Josephson transmission lines

As we stated in the introductory chapter, initial-value problem (1.2) has applications in several physical

problems. In the remainder of this section we will describe some of them.

A Josephson junction is a type of electronic circuit capable of switching at very high speeds when

operated at temperatures approaching absolute zero. Named for the British physicist who designed

it, a Josephson junction exploits the phenomenon of superconductivity, that is the ability of certain

materials to conduct electric current with practically zero resistance. Josephson junctions are used

in certain specialized instruments such as highly-sensitive microwave detectors, magnetometers, and

quantum interference devices.

A Josephson junction is made up of two superconductors, separated by a nonsuperconducting

layer so thin that electrons can cross through the insulating barrier. The flow of current between

the superconductors in the absence of an applied voltage is called a Josephson current, and the

movement of electrons across the barrier is known as Josephson tunneling. Two or more junctions

joined by superconducting paths form what is called a Josephson interferometer.
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Figure 1.1: Schematic representation of a small Josephson junction.

While researching superconductivity, Josephson studied the properties of a junction between two

superconductors [44]. Following up on earlier works by Leo Esaki and Ivar Giaever, he demonstrated

that in a situation when there is electron flow between two superconductors through an insulating

layer (in the absence of an applied voltage), and a voltage is applied, the current stops flowing and

oscillates at a high frequency. This phenomenon is called the Josephson effect, and it is influenced

by magnetic fields in the vicinity, a capacity that enables the Josephson junction to be used in devices

that measure extremely weak magnetic fields, such as superconducting quantum interference devices.

For their efforts, Josephson, Esaki, and Giaever shared the Nobel Prize for Physics in 1973.

It is worthwhile mentioning that the theory of low temperature conductivity tells us that a super-

conductor is a system where a fraction of the conduction electrons form pairs called Cooper pairs.

In these pairs the two electrons have opposite momentum and spin. These pairs are able to condense

in the same quantum state so that the superconductor can be described by a single macroscopic wave

function

Ψ =
√
ρeiφ.

Here ρ represents the pair density and φ is the quantum phase common to all pairs. A small Joseph-

son junction consists of two small layers of superconducting metal separated by a thin dielectric

barrier layer, which is small enough to permit tunneling of Cooper pairs (equivalently, coupling of the

wave functions of the two superconductors).

A long Josephson junction consists of two identical superconducting long strips separated by
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Figure 1.2: Schematic representation of a long Josephson junction.

a thin dielectric layer. This long tunneling junction can be regarded as a transmission line as far its

electromagnetic behavior is concerned [5]. However, in dealing with real transmission lines for the long

Josephson junction one must take into account losses, bias, and junction irregularities which influence

motion [85]. When we account for all of these effects, we obtain the third-order partial differential

equation
∂2φ

∂x2
− ∂2φ

∂t2
− α

∂φ

∂t
+ β

∂3φ

∂x2∂t
= sin φ− γ,

where α, β and γ are constants.

The statistical mechanics of kinks

The statistical mechanics of kinks (that is, exact solitary waves) of nonlinear coherent structures has

been studied by two approaches. In the first approach one assumes that the kinks may be treated as

weakly interacting elementary excitations. Provided the kink density is low, the canonical partition

function can be found by standard methods [67, 50, 19]. Alternatively, it is possible to calculate the

partition function to exploit a transfer operator technique. This method was used by Krumhansl and

Schrieffer in [50], and it showed that in the low temperature limit the partition function naturally

factorizes into two contributions: A tunneling term which they were able to identify with the kink

contribution, and the remainder which they identified as linearized phonons (by a phonon we mean a

quantized mode of vibration occurring in a rigid crystal lattice, such as the atomic lattice of a solid).

The ideas of Krumhansl and Schrieffer were further refined and extended to a wider class of systems

[19]. In particular, interactions of kinks with linearized phonons were considered, leading to substantial

corrections of results. Computer simulations based on standard methods [3] made possible to verify

results on the equilibrium statistical mechanics of kinks using a dimensionless Langevin equation

describing the (1 + 1)-dimensional theory:

∂2φ

∂t2
=
∂2φ

∂x2
− γ

∂φ

∂t
− φ(1 − φ2) + F (x, t).

The wave equation revisited

Initial-value problem (1.2) also describes the mechanical motion of strings for certain physical situ-

ations. Consider the one-dimensional motion of a string immersed in a non-Hookean medium. We

represent the vertical motion of the string as a function u(r, t) of horizontal position and time, and
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the nonlinear force of the medium by G′(u). The string is assumed to posses internal damping due to

its inner stiffness, which is proportional to urrt. Finally, we assume that there exists friction between

the string and the medium that derives in a force which opposes the motion of the string and is pro-

portional to the vertical velocity of the string. In these circumstances, the motion of our string will be

described by (1.2).

1.4 Elementary solutions

In our study we will be often interested in studying soliton solutions. As mentioned before, solitons

are solitary waves found in many nonlinear physical phenomena. They were first named by Zabusky

and Kruskal in 1965 [118], and first appeared in the solution of the Korteweg-de Vries equation

∂u

∂t
+
∂3u

∂x3
− 6u

∂u

∂x
= 0.

Later on it was proved that equations such as the nonlinear Schrödinger equation, the nonlinear Klein-

Gordon equation and the sine-Gordon equation also posses soliton solutions. Mathematically, solitons

have been defined [22] as solutions of nonlinear partial differential equations which

(i) represent waves of permanent form and velocity,

(ii) decay or approach a constant at infinity, and

(iii) can interact strongly with other solitons and retain their identity.

Given a differential equation in the variables x and t, an elementary soliton solution is a solution

of the differential equation u of the form u(x, t) = φ(x− vt) with the property that the infinite limits

limx→−∞ u(x, t) and limx→+∞ u(x, t) are constant with respect to time. In this section we derive the

solution of the linear Klein-Gordon equation using Fourier transforms and some elementary soliton

solutions for some important nonlinear partial differential equations. Throughout ξ will denote the

quantity x− vt.

The linear Klein-Gordon equation

First we wish to use Fourier transform to solve an arbitrary initial value-problem involving the linear

Klein-Gordon equation and provide a solution in terms of the source function. After that, we will

find the traveling wave solutions of this differential equation. Thus, let m be a real constant and the

consider the (1 + 1)-dimensional initial-value problem

∂2u

∂t2
− ∇2u+m2u = 0,

subject to :




u(x, 0) = φ(x), x̄ ∈ R,
∂u

∂t
(x, 0) = ψ(x), x ∈ R.

Using Fourier transform, this problem in terms of the source function S(x, t) can be expressed as the

initial-value problem
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∂2Ŝ

∂t2
+ k2Ŝ +m2Ŝ = 0,

subject to :




Ŝ(k, 0) = 0, −π < k < π,

∂Ŝ

∂t
(k, 0) = 1, −π < k < π.

For a fixed value of k, the differential equation in the initial-value problem above is ordinary, and its

solution is a linear combination of sines and cosines. It can be seen then that the particular solution to

this problem is of the form Ŝ(k, t) = sin(ωt)/ω, where ω =
√
k2 +m2. After applying inverse Fourier

transform to Ŝ and simplifying, it is easy to obtain that

S(x, t) =






1

2
J0

(
m
√
t2 − x2

)
, for |x| < t,

0, for |x| ≥ t,

Where J0 is the Bessel function of the first kind of order 0 whose general definition may be found in

[41]. Needless to say that the source function S of the linear Klein-Gordon equation converges to the

source function corresponding to the classical wave equation when m tends to 0.

We are interested now in computing radially symmetric solutions of the three-dimensional linear

Klein-Gordon equation using Fourier transforms. It is easy to verify that the expression Ŝ(k̄, t) of the

Fourier transform of the source function in this case will be the same as that of the (1+1)-dimensional

one. Letting r represent the Euclidean norm of x̄ in R3 and computing the inverse Fourier transform

of Ŝ we get

S(r, t) =
1

8π3

∫ 2π

0

∫ π

0

∫ ∞

0

sin(ωt)

ω
k2 sin θeikr cos θdk dθ dφ

=
1

2πr2

∫ ∞

0

sin(t
√
k2 +m2)√

k2 +m2
k sin kr dk

= − 1

4πr

δ

δr

∫ ∞

−∞

sin(t
√
k2 +m2)√

k2 +m2
eikrdk.

Let H represent the Heaviside function. Computing the above derivative with respect to r and

using the identities J0 = −J1 and J0(0) = 1, we obtain that

S(r, t) =
1

2π
δ(t2 − r2) −mH(t2 − r2)

J1(m
√
t2 − r2)

4π
√
t2 − r2

.

The sine-Gordon equation

The sine-Gordon equation has been used as a mathematical model in many different applications,

including the propagation of ultra-short optical pulses in resonant laser media [51], a universal theory

of elementary particles [92, 93, 25], and the propagation of magnetic flux in Josephson junctions [45].

Here we consider the classical (1 + 1)-dimensional sine-Gordon equation presented in Section 1.2, with

parameters m2 = c = 1, and assume that u(x, t) = φ(x− vt) = u(ξ) is an elementary soliton solution.

Then φ satisfies the ordinary differential equation (1 − v2)φξξ − sin φ = 0. Multiplying then by φx,
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Figure 1.3: Soliton solution (solid line) and anti-soliton solution (dotted line) of the sine-Gordon
equation at time 0, with v = 0.1.

integrating with respect to ξ and solving for φξ, we obtain that

dφ

dξ
=

(
2A− 2 cosφ

1 − v2

)1/2

,

where A is the constant of integration. Now we use separation of variables and the substitution

A(1 − v2) = 1. Integrating both sides and noting that 1 − cosφ = 2 sin2(1
2φ) and noting that the

derivative with respect to φ of ln tan(1
4φ) equals 1

2 csc(1
2φ), we get

√
2 ln

[
tan(1

4φ)

tan(1
4φ0)

]
=

[
2

1 − v2

]1/2

(ξ − ξ0).

Finally, solving for φ and expressing the result in terms of x and t, it is possible to write the

elementary soliton solution as

u(x, t) = 4 arctan

[
exp

(
x− vt√
1 − v2

)]
.

This solution is sometimes called a kink; its profile is shown in Figure 1.3. The other soliton solution

that can be obtained from the sine-Gordon equation, called the anti-kink or anti-soliton, is shown

in the same figure. Its analytical expression is given by

u(x, t) = 4 arccot

[
exp

(
x− vt√
1 − v2

)]
.
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We must mention here that the sine-Gordon equation possesses solutions built up from the superpo-

sition of solitons and/or anti-solitons. Those solutions and the elementary soliton solutions obtained

above are listed in the following table for the sake of future reference (see [113]).

Type of solution Analytical expression

single soliton u(x, t) = 4 arctan

[
exp

(
x− vt√
1 − v2

)]

single anti-soliton u(x, t) = u(x, t) = 4 arccot

[
exp

(
x− vt√
1 − v2

)]

two solitons u(x, t) = 4 arctan

[
v sinh(x/

√
1 − v2)

cosh(vt/
√

1 − v2)

]

soliton and anti-soliton 4 arctan

[
sinh(vt/

√
1 − v2)

v cosh(x/
√

1 − v2)

]

”breather” u(x, t) = 4 arctan

[√
1 − v2

v

sin(vt)

cosh(x
√

1 − v2)

]

Table 1.1: Different types of soliton solutions of the sine-Gordon equation.

The Landau-Ginzburg equation

The (1 + 1)-dimensional Landau-Ginzburg equation is another important nonlinear partial differential

equation arising in physics that possesses soliton solutions. From the mathematical point of view, the

Landau-Ginzburg equation can be seen as a quasilinear Klein-Gordon equation with purely imaginary

mass and nonlinear term proportional to u3. More concretely, the Landau-Ginzburg equation with

real parameters m and λ under study in this section can be written as

∂2u

∂t2
− ∂2u

∂x2
−m2u+ λu3 = 0.

Using the same technique to find elementary, solitary wave solutions, we suppose that u(x, t) = φ(ξ),

where ξ = x− vt for some v ∈ R. Then φ satisfies the ordinary differential equation

(1 − v2)
d2φ

dξ2
= −m2φ+ λφ3.

Solving and then multiplying by 2φ′(ξ), we obtain that

d

dξ

[(
dφ

dξ

)2
]

=
1

2(1 − v2)

d

dξ

(
λφ4 − 2m2φ2

)
.

We integrate now with respect to ξ both sides of the equation. An integration constant will appear

in the right-hand side of the resulting equality. By choosing this constant of integration equal to

m2/(2λ(1 − v2)), taking the negative square root on both sides of the equation, separating variables,

and completing the square in the radical that contains φ, we obtain that

− 1√
λ

∫ φ

φ0

dφ

φ2 −m2/λ
=

∫ ξ

ξ0

dξ√
2(1 − v2)

.
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Figure 1.4: Soliton solution (solid line) and anti-soliton solution (dotted line) of the Landau-Ginzburg
equation at time 0, with v = 0.1.

Let ξ0 and φ0 be both equal to zero. Expressing the integrand in the left-hand side of the preceding

equality, integrating, and then evaluating from φ0 to φ, we get

1

2m
ln

∣∣∣∣∣
(φ+m/

√
λ)(φ0 −m/

√
λ)

(φ−m/
√
λ)(φ0 +m/

√
λ)

∣∣∣∣∣ =
ξ − ξ0√
2(1 − v2)

We choose φ0 and ξ0 to be equal to zero. Solving then for φ we obtain the following soliton (kink)

solution for the Landau-Ginzburg equation

u(x, t) =
m√
λ

= tanh

[
m(x− vt)√

2(1 − v2)

]

The corresponding anti-soliton (anti-kink) solution to the Landau-Ginzburg equation is obtained by

evaluationg the solition solution at (−x, t). A graph showing the kink and anti-kink of the Landau-

Ginzburg equation is shown in Figure 1.4.

1.5 Elements of numerical analysis

In our investigation, we are interested in developing finite-difference schemes to approximate radially

symmetric solutions of modified nonlinear Klein-Gordon equations. In order to determine how accurate

our approximations are, we need to introduce the notions of convergence, consistency and stability.

To understand these concepts we must first clarify some ideas from mathematical analysis. Here we
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follow [86] and [106]. Throughout K denotes the fields R and C.

Normed linear spaces

A norm on a vector space V over a scalar field K is a function || · || that associates every element of

V with a real number, such that for any vectors ū and v̄, and any scalar a, the following properties

are satisfied:

(i) ||v̄|| ≥ 0, and ||v̄|| = 0 iff v̄ = 0,

(ii) ||av̄|| = |a| ||v̄||, and

(iii) ||ū+ v̄|| ≤ ||ū|| + ||v̄||.

It is worthwhile mentioning that a vector space with a norm associated with it is called a normed

linear space or simply normed space. The following are examples of normed linear spaces with the

given norms.

Example 1.2. Denote by | · | the standard norm in K. The linear space Kn can be given the p-norm

(p ≥ 1)

||x̄||p =

(
n∑

i=1

|xi|p
)1/p

.

The 1-norm and the 2-norm in Kn are called the the taxicab norm and the Euclidean norm ,

respectively. Kn can also be normed by the so called infinity norm ||x̄||∞ = max{|x1|, . . . , |xn|}.

Example 1.3. Let ∆x and p be positive numbers with p > 1. The space ℓp,∆x is the normed linear

space of all infinite sequences u = (. . . , u−1, u0, u1, . . . ) of elements in K with vector addition and

scalar multiplication given componentwise, such that
∑

−∞<j<∞

|uj|p < ∞. The norm is given by

||u||p,∆x =

(
∞∑

k=−∞

|uk|p∆x

)1/p

.

The space ℓp is the space ℓp,1. If p is equal to 2 then ℓp,∆x is called the energy space.

Example 1.4. Let λ represent the Lebesgue measure on X ⊆ R. The space Lp(X) for p > 1 is the

normed linear space of all equivalence classes of functions f : X → R under the relation of equivalence

almost everywhere, together with addition and scalar multiplication defined in representatives, such

that
∫

X
fp dλ < ∞. Its norm is given by

||f ||p =

(∫

X

fp dλ

)1/p

.

Example 1.5. Let || · || be any norm in Kn. The space of all n× n-matrices with coefficients in K is a

normed linear space with the usual operations of addition of matrices and scalar multiplication, with

matrix norm defined by

||Q|| = sup
||ū||≤1

{Qū}.
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Convergence

A difference scheme Ln
ku

n
k = Gn

k approximating the partial differential equation Lv = F is a conver-

gent scheme at time t in the norm || · || of ℓp,∆x if, as (n+ 1)∆t → t,

||un+1 − vn+1|| → 0

as ∆x,∆t → 0. Here un = (. . . , un
−1, u

n
0 , u

n
1 , . . . ) and vn = (. . . , vn

−1, v
n
0 , v

n
1 , . . . ) are the sequences

representing the vector of approximations to the solution of the partial differential equation and the

vector of exact solutions whose k-th component is v(k∆x, n∆t), respectively.

Consistency

The difference scheme un+1 = Qun+∆tGn is consistent with the partial differential equation Lv = F

in the norm || · || if the solution v of the differential equation satisfies

vn+1 = Qvn + ∆tgn + ∆tτn,

and ||τn|| → 0 as ∆x,∆t → 0. Moreover, the scheme is said to be accurate with order O(∆xp)+O(∆tq)

if

||τn|| = O(∆xp) + O(∆tq).

Stability

One interpretation of stability of a finite-difference scheme is that, for a stable scheme, small errors in

the initial conditions cause small errors in the solution. As we will see, the definition does allow the

errors to grow but limits them to grow no faster than exponential. More precisely, the finite-difference

scheme un+1 = Qun is said to be stable with respect to the norm || · || if there exist positive constants

∆x0 and ∆t0, and nonnegative constants K and β so that

||un+1|| ≤ Keβt||u0||,

for 0 ≤ t = (n + 1)∆t, 0 < ∆x ≤ ∆x0 and 0 < ∆t ≤ ∆t0. If further restrictions on the relationship

between ∆t and ∆x are needed in order to guarantee stability of the finite-difference scheme, we say

that the scheme is conditionally stable.

One characterization of stability that is often useful comes from the inequality in the definition

above. We state this in the following result.

Theorem 1.6. The scheme un+1 = Qun is stable with respect to the norm || · || if and only if there

exist positive constants ∆x0 and ∆t0, and nonnegative constants K and β so that

||Qn+1|| ≤ Keβt,

for 0 ≤ t = (n+ 1)∆t, 0 < ∆x ≤ ∆x0 and 0 < ∆t ≤ ∆t0.

The scheme un+1 = Qun is said to be stable order n with respect to the norm || · || if there exist
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positive constants ∆x0 and ∆t0, and nonnegative constants K1, K2 and β such that

||un+1|| ≤ (K1 + nK2)eβt||u0||,

for 0 ≤ t = (n + 1)∆t, 0 < ∆x ≤ ∆x0 and 0 < ∆t ≤ ∆t0. Obviously, if a finite-difference scheme is

stable then it will be stable order n. We also realize that the above definition is equivalent to requiring

that Q satisfy ||Qn|| ≤ (K1 + nK2)eβt.

The use of the discrete Fourier transform is a useful tool in the analysis of stability of finite-

difference schemes for initial-value problems. We define the discrete Fourier transform of u ∈ ℓ2

as the function û ∈ L2([−π, π]) given by

û(ξ) =
1√
2π

∞∑

m=−∞

e−imξum,

for ξ ∈ [−π, π]. The ℓ2 vectors that we will be using later will be the ℓ2,∆x vectors that are the solutions

to our finite-difference schemes at time step n.

Example 1.7. The central second-order difference is the linear operator δ2 that associates with

each infinite sequence u = (. . . , u−1, u0, u1, . . . ) of real numbers the infinite sequence δ2u whose m-th

component is given by um+1 − 2um + um−1. It is easy to check that the Fourier transform of δ2u is

given by −4 sin2 ξ
2 û.

It is important to remark that if u ∈ ℓ2 has discrete Fourier transform û then ||û||2 = ||u||2, where

the first norm is the L2-norm on [−π, π] and the second norm is the ℓ2-norm. This fact constitutes a

bridge between the spaces ℓ2 and L2([−π, π]) that provides us with the following important result for

stability.

Theorem 1.8. The sequence {un} is stable in ℓ2,∆x if and only if {ûn} is stable in L2([−π, π]).

Let un+1 = Qun be a finite difference scheme. Taking discrete Fourier transform in both sides we

obtain an equation of the form ûn+1 = A(ξ)ûn. The matrix A(ξ) is called the amplification matrix

of the difference scheme. By virtue of Theorem 1.8, the stability of the scheme depends on the growth

of the amplification matrix raised to the n-th power.

Theorem 1.9 (Lax Theorem). If a two-level difference scheme un+1 = Qun + ∆tGn is consistent in

the norm || · || to an initial-value problem and is stable with respect to || · ||, the it is convergent with

respect to || · ||.

1.6 Finite differences

We could begin by recalling the standar definition of derivative which we have learned in elementary

calculus.

Definition 1.10. The derivative of the function u(x) is defined by the equation

u′(x) = lim
∆x→0

u(x+ ∆x) − u(x)

∆x
. (1.3)

provided the limit exists. The number u′(x) is also called the rate of change of u at x.
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Figure 1.5: Computational grid and example of backward (red dashed line), forward (blue dashed line)
and centered (magenta dashed line) linear interpolation to the function.

However, the computers can not handle the previous limit, namely, when ∆x → 0, and hence a

discrete analogue of the continuous scenario need to be considered. In the discretization, we can regard

that the set of points on which the function is defined is finite, and the function value is available on

a discret set of points. The approximations to the derivative of the function will must to come from

these finite sets of points.

Figure 1.5 shows us the discrete set of points xi where the function is known. We use the notation

ui = u(xi) to denote the value of the function at the i-th node of the computational grid. We divide

the axis into a set of intervals of width ∆xi = xi+1 − xi. We can fix the grid spacing, it means that

all intervals are of equal size, so we will refer to the grid spacing as ∆x. If we make the last, we will

obtain several advantages when we develop the method as we will see afterward.

Finite difference approximation

We employ the definition of derivative in the continuous case to approximate the derivative in the

discrete case:

u′(xi) ≈ u(xi + ∆xi) − u(xi)

∆x
=
ui+1 − ui

∆x
, (1.4)

where now ∆x is a finite and small but not necessarily infinitesimally small quantity. In the literature,

this is known as a forward Euler approximation since it uses forward differencing.

Intuitively, we hope that the approximation improves, it means, the error will decrease, as ∆x is

made smaller. The above is not the only way to approximate the derivative. We provide two other
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equally valid approximations:

u′(xi) ≈ u(xi) − u(xi − ∆x)

∆x
=
ui − ui−1

∆x
, (1.5)

and

u′(xi) ≈ u(xi + ∆x) − u(xi − ∆x)

∆x
=
ui+1 − ui−1

∆x
. (1.6)

Equation (1.5) is known as backward Euler’s approximation whereas Equation (1.6) represents the

centered difference approximation. All these definitions are equally equivalent in the continuous case

but yield to different approximations in the discrete case. The question becomes which one is better,

and is there a way to quantify the error committed. The answer lies in the application of Taylor series

analysis.

Taylor series

Let’s start with the identity

u(x) = u(xi) +

∫ x

xi

u′(s)ds. (1.7)

Since u(x) is arbitrary, the formula should hold with u(x) replaced by u′(x), it means,

u′(x) = u′(xi) +

∫ x

xi

u′′(s)ds. (1.8)

Replacing this expression in the original formula and carrying out the integration (since u(xi) is

constant) we get

u(x) = u(xi) + (x − xi)u
′(xi) +

∫ x

xi

∫ x

xi

u′′(s)dsds. (1.9)

The process can be repeated with

u′′(x) = u′′(xi) +

∫ x

xi

u′′′(s)ds, (1.10)

to get

u(x) = u(xi) + (x− xi)u
′(xi) +

(x− xi)
2

2!
u′′(xi) +

∫ x

xi

∫ x

xi

∫ x

xi

u′′′dsdsds. (1.11)

We can repeat this process under the assumption that u(x) is sufficiently differentiable, and we

find

u(x) = u(xi) + (x− xi)u
′(xi) +

(x− xi)
2

2!
u′′(xi) + . . .+

(x− xi)
n

n!
u(n)(xi) +Rn+1, (1.12)

where the remainder is given by

Rn+1 =

∫ x

xi

· · ·
∫ x

xi

u(n+1)(s)(ds)n+1. (1.13)

Equation (1.12) is known as the Taylor series of the function u(x) about the point xi. Notice that

the series is a polynomial in (x − xi) and the coefficients are the (scaled) derivatives of the function
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evaluated at xi.

If the (n + 1)-th derivative of the function u has minimum m and maximum M over the interval

[xi, x] the we can write

∫ x

xi

· · ·
∫ x

xi

m(ds)n+1 ≤ Rn+1 ≤
∫ x

xi

· · ·
∫ x

xi

M(ds)n+1, (1.14)

m
(x− xi)

n+1

(n+ 1)!
≤ Rn+1 ≤ M

(x− xi)
n+1

(n+ 1)!
, (1.15)

which shows that the remainder is bounded by the values of the derivative and the distance of the point

x to the expansion point xi raised to the power n+ 1. If we further assume that u(n+1) is continuous

then it must take all values between m and M , that is

Rn+1 = u(n+1)(ξ)
(x − xi)

n+1

(n+ 1)!
, (1.16)

for some ξ ∈ [xi, x].

Taylor series and finite differences

The behaviour of numerical approximation to differential equations can be studied using Taylor series.

First, we consider the forward Euler with Taylor series. For this, we need to expand the function u at

xi+1 about the point xi:

u(xi + ∆xi) = u(xi) + ∆xi
∂u

∂x

∣∣∣∣
xi

+
∆x2

i

2!

∂2u

∂x2

∣∣∣∣
xi

+
∆x3

i

3!

∂3u

∂x3

∣∣∣∣
xi

+ . . . (1.17)

We can rearranged the Taylor series to get the following

u(xi + ∆xi) − u(xi)

∆xi
− ∂u

∂x

∣∣∣∣
xi

=
∆x2

i

2!

∂2u

∂x2

∣∣∣∣
xi

+
∆x3

i

3!

∂3u

∂x3

∣∣∣∣
xi

+ . . .

︸ ︷︷ ︸
Truncation Error

(1.18)

where it is now clear that the forward Euler formula (1.4) corresponds to truncating the Taylor series

after the second term. We can see that the right-hand side of Equation (1.18) coincides with the error

committed when we terminate the series and is referred to as the truncation error. The truncation error

could be defined as the difference between the partial derivative and its finite difference representation.

For sufficiently smooth functions and adequately small ∆xi, the first term in the series is usually used

to establish the order of magnitud of the error. The first term in the truncation error is the product

of the second derivative evaluated at xi and the grid spacing ∆xi: the former is a property of the

function itself while the latter is a numerical parameter which we can change. Thereby, for finite
∂2u
∂x2 , the numerical approximation depends linearly on the parameter ∆xi. If we were to half ∆xi, we

would expect a linear decrease in the error, if we make ∆xi sufficiently small. We know that there is a

notation to refer this behaviour, that is truncation error ∼ O(∆xi). In general, if ∆xi is not constant

we choose a representative value of the grid spacing. Note that in general, we can not calculate the

exact truncation error; all we can do is characterize the behaviour of this error as ∆x → 0. Thus, we
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can rewrite Equation (1.18) as
∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui

∆xi
+ O(∆x) (1.19)

Now, we can use the Taylor series expansion to obtain an expression for the truncation error when

we consider the backward difference formula

u(xi − ∆xi−1) = u(xi) − ∆xi−1
∂u

∂x

∣∣∣∣
xi

+
∆x2

i−1

2!

∂u2

∂x2

∣∣∣∣
xi

− ∆x3
i−1

3!

∂u3

∂x3

∣∣∣∣
xi

+ . . . (1.20)

where ∆xi−1 = xi − xi−1. We proceed to get an expression for the error corresponding to backward

difference approximation of the first derivative

u(xi) − u(xi − ∆xi−1)

∆xi−1
− ∂u

∂x

∣∣∣∣
xi

= −∆x2
i−1

2!

∂u2

∂x2

∣∣∣∣
xi

+
∆x3

i−1

3!

∂u3

∂x3

∣∣∣∣
xi

+ . . .

︸ ︷︷ ︸
Truncation Error

(1.21)

We realize that the truncation error of the backward difference is not the same as the forward

difference; it behave similarly in terms of order of magnitude analysis, and is linear in ∆x, that is

∂u

∂x

∣∣∣∣
xi

=
ui − ui−1

∆xi−1
+ O(∆x) (1.22)

Observe that in both cases we used the information provided at just two points to obtain the

approximation, and the error performs linearly in both instances.

We can obtain a higher order approximation of the first derivative by combining the two Taylor

series Equation (1.17) and (1.20). Notice first that the high order derivatives of the function u are

all evaluated at the same point xi and are the same in both expansions. Now, if we form a linear

combination of the equations, the prime error will vanish. Observe Equations (1.18) and (1.21).

Multiplying the first by ∆xi−1 and the second by ∆xi and adding both equations we get:

1

∆xi + ∆xi−1

[
∆xi−1

ui+1 − ui

∆xi
+ ∆xi

ui − ui−1

∆xi−1

]
− ∂u

∂x

∣∣∣∣
xi

=
∆xi−1∆xi

3!

∂3u

∂x3

∣∣∣∣
xi

+ . . . (1.23)

The approximation uses information about the function u at three points: xi−1, xi and xi+1. Thus,

the truncation error ∼ O(∆xi−1∆xi) and is second order. We can observe that on the important case

where the grid spacing is constant, the expression simplifies to

ui+1 − ui−1

2∆x
− ∂u

∂x

∣∣∣∣
xi

=
∆x2

3!

∂3u

∂x3

∣∣∣∣
xi

+ . . . (1.24)

Hence, for an equally spaced grid, the centered difference approximation converges quadratically

as ∆x → 0:
∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui−1

2∆x
+ O(∆x2) (1.25)
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Higher order approximation

The Taylor expansion provides a suitable tool to derive a higher order approximation to derivatives of

any order. In most of the following we will consider the grid spacing to be constant as is usually the

case in most applications. In fact, we will assume constant spacing grid in this thesis.

Equation (1.24) yields the simplest way to derive a fourth order approximation. As an important

property of this centered formula is that its truncation error contains only odd derivative terms:

ui+1 − ui−1

2∆x
=
∂u

∂x
+

∆x2

3!

∂3u

∂x3
+

∆x4

5!

∂5u

∂x5
+

∆x6

7!

∂7u

∂x7
+ . . .+

∆x2m

(2m+ 1)!

∂2m+1u

∂x2m+1
+ . . . (1.26)

The above formula can be applied with ∆x replace by 2∆x, and 3∆x respectively, to get:

ui+2 − ui−2

4∆x
=
∂u

∂x
+

(2∆x)2

3!

∂3u

∂x3
+

(2∆x)4

5!

∂5u

∂x5
+

(2∆x)6

7!

∂7u

∂x7
+O(∆x8), (1.27)

ui+3 − ui−3

6∆x
=
∂u

∂x
+

(3∆x)2

3!

∂3u

∂x3
+

(3∆x)4

5!

∂5u

∂x5
+

(3∆x)6

7!

∂7u

∂x7
+O(∆x8). (1.28)

Multiplying Equation (1.26) by 22 and substracting it from Equation (1.27), we cancel the second

order error term to get:

8(ui+1 − ui−1) − (ui+2 − ui−2)

12∆x
=
∂u

∂x
− 4∆x4

5!

∂5u

∂x5
− 20∆x6

7!

∂7u

∂x7
+O(∆x8). (1.29)

Repeating this process for Equation (1.27) but using the factor 32 and substracting it from Equation

(1.28), we get

27(ui+1 − ui−1) − (ui+3 − ui−3)

48∆x
=
∂u

∂x
− 9∆x4

5!

∂5u

∂x5
− 90∆x6

7!

∂7u

∂x7
+O(∆x8). (1.30)

Even though both Equation (1.29) and (1.30) are meaningful, the latter is not used in the practice

since it does not sense to ignore neighboring points while using more distant ones. Nevertheless, this

expresion is appropiate to derive a sixth approximation to the first derivative: multiply equation (1.30)

by 9 and the same equation by 4 and substract to get:

45(ui−1 − ui−1) − 9(ui+2 − ui−2) + (ui+3 − ui−3)

60∆x
=
∂u

∂x
+

36∆x6

7!

∂7u

∂x7
+O(∆x8). (1.31)

The process can be repeated to derive higher order approximations.
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2. Numerical method for a nonlinear

chain

In this chapter we study the phenomenon of nonlinear supratransmission in a semi-infinite

discrete chain of coupled oscillators described by modified sine-Gordon equations with constant

external and internal damping, and subject to harmonic external driving at the end. We develop a

consistent and conditionally stable finite-difference scheme in order to analyze the effect of damping

in the amount of energy injected in the chain of oscillators; numerical bifurcation analyses to

determine the dependence of the amplitude at which supratransmission first occurs with respect

to the frequency of the driving oscillator are carried out in order to show the consequences of

damping on harmonic phonon quenching and the delay of appearance of critical amplitude.

2.1 Introduction

The study of nonlinear continuous media described by modified Klein-Gordon equations subject to

initial conditions is a topic of interest in several branches of the physical sciences [85, 55, 66, 5]. Here

the analytical study on features of solutions of Klein-Gordon-like equations as well as the development

of new and more powerful computational techniques to approximate them have been the most transited

highways in the mathematical research of the area. The behavior of nonlinear continuous media

described by modified Klein-Gordon equations subject to boundary conditions is also an interesting

topic of study in mathematical physics. This type of mathematical models have proved to be useful

when applied, for instance, to the description of the project of data transmission in optical fibers in

nonlinear Kerr regimes [39, 72] or in the study of the property of self-induced transparency of a two-

level system submitted to a high-energy incident (resonant) laser pulse [69, 1]. More concretely, the

behavior of a continuous medium submitted to a continuous wave radiation constitutes a fundamental

problem that has not been studied in-depth, yet it has shown to have potential applications as a model

in the study of Josephson transmission lines [108, 109, 110]. Numerical studies on discrete versions of

these models [34] followed by experimental results [35] have shown that there exists a bifurcation of

wave transmission within a forbidden band gap in certain semi-infinite undamped Klein-Gordon-like

chains of coupled oscillators which are periodically forced at the end. This bifurcation is a consequence

of the generation of nonlinear modes by the periodic forcing at the end of the chain, and allows energy

to flow into the medium via a nonlinear process called nonlinear supratransmission, which has been

proved numerically not to depend on integrability as long as the model possesses a natural forbidden
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band gap.

The process of nonlinear supratransmission has been studied numerically by means of computational

algorithms already built in standard mathematical packages. Most particularly, the numerical results

obtained in [34], for instance, rely on the use of a Runge-Kutta method of high order, which has the

advantage of possessing high accuracy and efficiency in the computations, but lacks the consistency

in the numerical estimation of the energy flowing into the medium which is desired in the study of

supratransmission. With this shortcoming in mind, we present in this chapter an alternate numerical

formulation to study the process of supratransmission in a nonlinear system of differential equations,

that has the advantage of being consistent in the approximation of the solutions to the problem

and in the estimation of the continuous energy. More concretely, in the present chapter we study

the process of nonlinear supratransmission in a semi-infinite nonlinear discrete system of coupled

oscillators governed by modified sine-Gordon and Klein-Gordon equations with constant internal and

external damping. We exploiting some numerical results for dissipative nonlinear modified Klein-

Gordon equations that generalize a method proposed by Stauss and Vázquez [94], and validate our

conclusions against [34]. Our study — rigorous in numerical nature — will soon be succeeded by future

applications in forthcoming papers.

In Section II of this chapter we introduce the mathematical problem under study and derive the

expression of the instantaneous rate of change of the energy transmitted to the system through the

boundary. Section III is devoted to introducing the finite-difference scheme; here we present the

discrete energy analysis associated with the problem under study and establish in detail the numerical

properties of our method. Numerical results are presented in the next section, followed by a brief

discussion.

2.2 Analytical results

Mathematical model

In this article we study the effects of the nonnegative constant parameters β and γ, and the real

constant m2 on the behavior of solutions to the mixed-value problem with mass m,

d2un

dt2
−
(
c2 + β

d

dt

)
∆2

xun + γ
dun

dt
+m2un + V ′(un) = 0,

subject to :




un(0) = φ(n), n ∈ Z
+,

dun

dt
(0) = ϕ(n), n ∈ Z+,

u0(t) = ψ(t), t ≥ 0,

(2.1)

which describes a system of coupled oscillators with coupling coefficient c ≫ 1, and where β and γ

clearly play the roles of internal and external damping coefficients, respectively. The number ∆2
xun

is used to represent the spatial second-difference un+1 − 2un + un−1 for every n ∈ Z
+, and the

boundary-driving function ψ is assumed continuously differentiable on (0,+∞). In our study, we will

let V (u) = 1 − cosu for a chain of coupled sine-Gordon equations, and V (un) = 1
2!u

2
n − 1

4!u
4
n + 1

6!u
6
n

for zero mass in the case of a Klein-Gordon chain.

It is worth recalling that the differential equation under study has multiple applications in the

continuous limit. For instance, a similar equation appears in the study of Josephson junctions between
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Figure 2.1: Approximate solution u60(t) of a sine-Gordon system in the first row and a Klein-Gordon
system in the second, for a driving frequency of 0.9 and two different amplitude values A: (a) before
and (b) after the bifurcation threshold.

superconductors when dissipative effects are taken into account [85]. A modification of this equation is

used in the study of fluxons in Josephson transmission lines [55], and a version in the form of a modified

Klein-Gordon equation appears in the statistical mechanics of nonlinear coherent structures such as

solitary waves (see [66] pp. 298–309) when no internal damping is present. Besides, our equation

clearly describes the motion of a damped string in a non-Hookean medium.

For purposes of this chapter, we will consider a system of coupled oscillators initially at rest at the

origin of the system of reference, subject to an external harmonic forcing described by ψ(t) = A sin Ωt,

and pure-imaginary or real mass satisfying |m| ≪ 1. Analysis of the undamped linearized system

of differential equations in (2.1) shows that the linear dispersion relation reads ω2(k) = m2 + 1 +

2c2(1 − cos k). in any case. The driving frequency will take on values in the forbidden band gap region

Ω <
√
m2 + 1, in which case the linear analysis yields the exact solutions un(t) = A sin(Ωt)e−λn, where

λ = arccosh

(
1 +

m2 + 1 − Ω2

2c2

)
.

Meanwhile, the massless undamped nonlinear case possesses an exact solution in the continuous
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Figure 2.2: Graphs of total energy transmitted into the massless sine-Gordon and Klein-Gordon sys-
tems vs. driving amplitude for a driving frequency of 0.9, with β = 0 and γ = 0 (solid), 0.01 (dashed),
0.02 (dash-dotted), 0.03 (dotted).

limit which happens to work well for high values of the coupling coefficient. It has been shown

numerically that, for each frequency Ω in the forbidden band gap, the massless medium starts to

transmit energy by means of nonlinear mode generation for amplitudes greater than the threshold

value As = 4 arctan (λc/Ω).

Energy analysis

In this section we derive the expression of the instantaneous rate of change of total energy in system

(2.1). Here, by a square-summable sequence we understand a real sequence (an)∞
n=0 for which

∑
a2

n is

convergent.

Lemma 2.1 (Discrete Green’s First Identity). If (an)∞
n=0 is a square-summable sequence then

∞∑

n=1

(an+1 − 2an + an−1)an = a0(a0 − a1) −
∞∑

n=1

(an − an−1)2.

Proof. Hölder’s inequality implies that both series in the formula of the lemma converge. Moreover,

the sequence defined by tn = anan−1 − (an−1)2 for every positive integer n converges to zero and the

result follows now from the identities

∞∑

n=1

(an+1 − 2an + an−1)an =

∞∑

n=1

(tn+1 − tn) −
∞∑

n=1

(an − an−1)2

= −t1 −
∞∑

n=1

(an − an−1)2.

Proposition 2.2. Let (un(t))∞
n=0 be solutions to (2.1) such that (u̇n(t))∞

n=0 is square-summable at any
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Figure 2.3: Total energy transmitted into the sine-Gordon system vs. driving amplitude for a driving
frequency of 0.9, with β = 0, γ = 0.01, and pure-imaginary and real masses of magnitude 0 (solid),
0.05 (dashed), 0.075 (dash-dotted) and 0.1 (dotted).

fixed time t. The instantaneous rate of change of the total energy in the system is given by

dE

dt
= c2(u0 − u1)u̇0 − γ

∞∑

n=1

(u̇n)2 − β

[
∞∑

n=1

(u̇n − u̇n−1)2 + (u̇1 − u̇0)u̇0

]
.

Proof. The energy density of the undamped system of coupled equations with a potential energy V (un)

in the n-th oscillator is given by Hn = 1
2 [u̇2

n + c2(un+1 − un)2 + m2u2
n] + V (un). After including the

potential energy from the coupling between the first two oscillators, the total energy of the system at

any time becomes ”‘

E =

∞∑

n=1

Hn +
c2

2
(u1 − u0)2,

and the fact that un tends to 0 as n increases implies that the sequence Jn = −c2u̇n(un − un−1)

converges to zero pointwisely at any fixed time. Simplifying and rearranging terms of the derivative

of the Hamiltonian Hn yields the expression

dHn

dt
= (Jn − Jn+1) + β(u̇n+1 − 2u̇n + u̇n−1)u̇n − γ(u̇n)2.

The result follows now from this identity after computing the derivative of the total energy of the

system, using the formula for telescoping series and applying our discrete version of Green’s First

Identity.

Observe from the proposition that the expression of the rate of change of energy associated with

damped system (2.1) is in agreement with the undamped formula derived in [34]. Moreover, it is clear

that the external damping coefficient contributes decreasing the total amount of energy in the chain

system for β equal to zero.
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Figure 2.4: Graphs of total energy transmitted into the massless sine-Gordon and Klein-Gordon sys-
tems vs. driving amplitude for a driving frequency of 0.9, with γ = 0 and β = 0 (solid), 0.1 (dashed),
0.2 (dash-dotted), 0.3 (dotted).

2.3 Numerical analysis

Finite-difference scheme

From a practical point of view, we will restrict our study to a system consisting of a finite number N of

coupled oscillators with constant internal and external damping coefficients, described by the system

of ordinary differential equations

d2un

dt2
−
(
c2 + β

d

dt

)
∆2

xun + α
dun

dt
+m2un + V ′(un) = 0

for 1 ≤ n ≤ N , where α includes both the effect of external damping and a simulation of an absorbing

boundary slowly increasing in magnitude on the last N − N0 oscillators. More concretely, we let

uN+1(t) be equal to zero at all time t, and let α be the sum of external damping and the function

γ′(n) =





κ

[
1 + tanh

(
2n−N0 +N

2σ

)]
, N0 < n ≤ N,

0, otherwise.

In practice, we will let κ = 0.5, σ = 3, N0 = 150 and N = 200.

We proceed now to discretize problem (2.1) using a finite system of N differential equations and a

regular partition 0 = t0 < t1 < · · · < tM = T of the time interval [0, T ] with time step equal to ∆t. For

each k = 0, 1, . . . ,M , let us represent the approximate solution to our problem on the n-th oscillator

at time tk by uk
n. If we convey that δtu

k
n = uk+1

n − uk−1
n , that δ2

t u
k
n = uk+1

n − 2uk
n + uk−1

n and that
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δ2
xu

k
n = uk

n+1 − 2uk
n + uk

n−1, our problem takes then the discrete form

δ2
t u

k
n

(∆t)2
−
(
c2 +

β

2∆t
δt

)
δ2

xu
k
n +

α

2∆t
δtu

k
n +

m2

2
[uk+1

n + uk−1
n ]

+
V (uk+1

n ) − V (uk−1
n )

uk+1
n − uk−1

n

= 0,

subject to :






u0
n = φ(n), 1 ≤ n ≤ N,

u1
n = φ(n) + ∆tϕ(n), 1 ≤ n ≤ N,

uk
0 = ψ(k∆t), 1 ≤ k ≤ M,

uk
N+1 = 0, 1 ≤ k ≤ M.

(2.2)

Observe that the proposed numerical method is nonlinear and requires an application of Newton’s

method for systems of equations in order to be implemented. Notice also that if V ′(un) at the k-th time

step is approximated by V ′(uk
n) then the finite-difference scheme becomes linear and an application of

Crout’s reduction technique for tridiagonal systems suffices to approximate solutions of (2.1). In such

case, it is readily seen that the vector equation

Auk+1 = Buk + Cuk−1 − V ′(uk) + vk

must be satisfied for every k ≥ 2, for the three N -dimensional tridiagonal matrices and the N -

dimensional vector

A =




b a · · · 0

a b · · · 0
...

...
. . .

...

0 0 · · · b



, B =




d c2 · · · 0

c2 d · · · 0
...

...
. . .

...

0 0 · · · d



,

and

C =




e a · · · 0

a e · · · 0
...

...
. . .

...

0 0 · · · e



, vk =




c2uk
0 − aδtu

k
0

0

0
...

0




,

respectively, and constants

a = − β

2∆t
, b =

α+ 2β

2∆t
+
m2

2
+

1

(∆t)2
,

d =
2

(∆t)2
− 2c2 and e =

α+ 2β

2∆t
− m2

2
− 1

(∆t)2
.

Here uk = (uk
1 , . . . , u

k
n)t for every k ∈ {0, 1, . . . ,M}, and V (uk) is the n-th dimensional vector whose

i-th component is equal to V (uk
i ). This latter formulation of our problem will be used for validation

purposes only, since we will prefer the nonlinear formulation due to the quadratic order of convergence

of Newton’s method and other reasons that will be presented in the next section.
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Figure 2.5: Total energy transmitted into the sine-Gordon system vs. driving amplitude for a driving
frequency of 0.9, with β = 0.2, γ = 0, and pure-imaginary and real masses of magnitude 0 (solid), 0.05
(dashed), 0.075 (dash-dotted) and 0.1 (dotted).

Discrete energy

The total energy in the system at the k-th time step will be approximated numerically via

Ek =
1

2

M∑

n=1

(
uk+1

n − uk
n

∆t

)2

+
c2

2

M∑

n=1

(uk+1
n+1 − uk+1

n )(uk
n+1 − uk

n)

+
m2

2

M∑

n=1

(uk+1
n )2 + (uk

n)2

2
+

M∑

n=1

V (uk+1
n ) + V (uk

n)

2

+
c2

2
(uk+1

1 − uk+1
0 )(uk

1 − uk
0).

Proposition 2.3. The following identity holds for every sequence (uk
n) satisfying (2.2) and every

positive index k:

Ek − Ek−1

∆t
= c2(uk

0 − uk
1)
δtu

k
0

2∆t
− γ

N∑

n=1

(
δtu

k
n

2∆t

)2

−β
[

∞∑

n=1

(
δtu

k
n − δtu

k
n−1

2∆t

)2

+

(
δtu

k
1 − δtu

k
0

2∆t

)
δtu

k
0

2∆t

]
.

Proof. The proof of this result is merely an algebraic task. We need only say that an application of

the discrete Green’s First Identity with an = (uk+1
n − 2uk−1

n )/2∆t is indispensable in order to reach

the correct expression of the term with coefficient β.

We conclude that the discrete energy associated with scheme (2.2) is a consistent approximation

of order O(∆t) of the total energy of system (2.1), whereas the discrete rate of change of energy is

consistent order O(∆t)2 with the instantaneous rate of change.
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Stability analysis

The following result summarizes the numerical properties of our method.

Proposition 2.4. Scheme (2.2) is consistent order O(∆t)2 with the linear contribution of (2.1) for a

potential equal to zero. Moreover, a necessary condition for the scheme to be stable order n is that

(
c2 − m2

4

)
(∆t)2 < 1 +

(α
4

+ β
)

∆t.

Proof. Following the notation in [106], let Uk+1
1n = uk+1

n and Uk+1
2n = uk

n for each n = 0, 1, . . . ,M and

k = 0, 1, . . . , N − 1. For every n = 0, 1, . . . ,M and k = 1, 2, . . . , N let Ūk
n be the column vector whose

components are Uk
1n and Uk

2n. Our problem can be written then in matrix form as

(
g 0

0 1

)
Ūk+1

n =

(
2 + c2(∆t)2δ2

x −h
1 0

)
Ūk

n ,

where

g = 1 + α
∆t

2
− β

∆t

2
δ2

x +m2 (∆t)2

2
and

h = 1 − α
∆t

2
+ β

∆t

2
δ2

x +m2 (∆t)2

2
.

Applying Fourier transform to the vector equation we obtain

Ûk+1
n =

(
2

ĝ(ξ)

(
1 − 2c2(∆t)2 sin2 ξ

2

)
− ĥ(ξ)

ĝ(ξ)

1 0

)
Ûk

n .

The matrix A(ξ) multiplying Ûk
n in this equation is the amplification matrix of the problem. It is

easy to check that the eigenvalues of A for ξ = π are given by

λ± =
1 − 2c2(∆t)2 ±

√
(1 − 2c2(∆t)2)2 − ĥ(π)ĝ(π)

ĝ(π)
.

Suppose for a moment that 1−2c2(∆t)2 < −ĝ(π). If the radical in the expression for the eigenvalues

of A(π) is a pure real number then |λ−| > 1. So for every n ∈ N, ||An|| ≥ |λ−|n grows faster than

K1 + nK2 for any constants K1 and K2. A similar situation happens when the radical is a pure

imaginary number, except that in this case | · | represents the usual Euclidean norm in the field of

complex numbers. Therefore in order for our numeric method to be stable order n it is necessary that

1 − 2c2(∆t)2 > −ĝ(π), which is what we wished to establish.

It is worth mentioning that our stability region is in agreement with the stability condition proposed

in [58] when c = 1 for a similar nonlinear continuous problem.
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Figure 2.6: Graphs of total energy vs. driving frequency and amplitude for massless and undamped
sine-Gordon and Klein-Gordon chains of coupled oscillators.

2.4 Numerical results

In this section we study the effects of the internal and external damping coefficients on the behavior of

solutions to mixed-value problem (2.1). Particularly, we wish to establish the effect of weak damping

on the minimum amplitude value necessary for the phenomenon of supratransmission to take place at

a fixed driving frequency. Throughout we validate our code against [34] and against an implementation

of our finite-difference scheme using the Runge-Kutta method of order four.

External Damping

For the remainder of this chapter we consider a semi-infinite coupled chain of oscillators initially at rest

in their equilibrium positions, subject to harmonic forcing at the end described by ψ(t) = A sin(Ωt) at

any time t. The functions φ and ϕ are both identically equal to zero and, in order to avoid the shock

wave produced by the vanishing initial velocity in the boundary, we let the driving amplitude linearly

increase from 0 to A in a finite period of time before we start to compute the total energy. In the

present section we will let β be equal to zero and consider a discrete system of 200 coupled oscillators

described by (2.1) over a typical time period of 200, with a time step of 0.05 and a coupling coefficient

equal to 4.

Let us first examine the massless case when no damping is present at all and Ω = 0.9. In order

to verify that our mixed-value problem produces a bifurcation it is necessary to study the qualitative

behavior of solutions near the predicted threshold value As which, in this case, reads approximately

1.80. The first row of Figure 2.1 shows the function u60(t) in the solution of a sine-Gordon system for

two different values of the amplitude of the driving end, while the second row presents the corresponding

graphs in the solution of a Klein-Gordon chain. The graphs evidence the presence of a bifurcation in

the behavior of solutions around the amplitude value 1.79 for both chains.

Naturally, the next step in our investigation will be to determine the behavior of the total energy

flow injected by the periodic forcing at the end of the undamped discrete chain of oscillators as a func-

tion of the amplitude. The solid lines of Figure 2.2 represent the graphs of total energy transmitted

into the system vs. amplitude for a forcing frequency of 0.9 and external damping coefficient equal
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Figure 2.7: Diagram of smallest driving amplitude value at which supratransmission begins vs. driving
frequency for a massless system with β = 0 and values of γ equal to 0 (solid), 0.1 (dashed), 0.2 (dash-
dotted) and 0.3 (dotted). The theoretical threshold As in the undamped is shown as a sequence of
×-marks.

to zero, for a sine-Gordon system in the first column and a Klein-Gordon system in the second. It is

worthwhile noticing the abrupt increase in the total energy administered to the system for some am-

plitude value between 1.77 and 1.79. This feature of the graphs evidences the existence of a bifurcation

value around the predicted amplitude As, after which the phenomenon of nonlinear supratransmission

takes place.

Figure 2.2 also presents graphs of total energy vs. forcing amplitude for weak constant damping

coefficients γ = 0.01, 0.02 and 0.03 in a sine-Gordon system of oscillators. The graphs show a tendency

of the bifurcation value to increase linearly as the external damping coefficient is increased. Another

interesting feature of this figure is the decrease of total energy for increasing values of γ, at least for

fixed amplitudes greater than the undamped bifurcation threshold. Needless to point out that similar

conclusions are obtained for Klein-Gordon chains of oscillators.

The qualitative effect of m in a sine-Gordon system is also of interest in the analysis of solutions

of this chain and is numerically carried out in Figure 2.3 for a chain with external damping equal to

0.01 and pure-imaginary and real masses, using graphs of total energy administered into the system

through the boundary vs. driving amplitude. A horizontal shift in the occurrence of the bifurcation

value is readily noticed in these graphs. Indeed, the displacement of the bifurcation amplitude for the

system (2.1) of mass m with respect to the bifurcation amplitude of the massless system is a monotone

increasing function of m2. Analogous computational results (not included here) were obtained for a

similar Klein-Gordon chain.
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Figure 2.8: Diagram of smallest driving amplitude value at which supratransmission begins vs. driving
frequency for a massless system with γ = 0 and values of β equal to 0 (solid), 0.1 (dashed), 0.4 (dash-
dotted) and 0.7 (dotted). The theoretical threshold As in the undamped case is shown as a sequence
of ×-marks.

Internal damping

Consider again a system of 200 oscillators ruled by mixed-value problem (2.1) over a time period of 200,

with time step 0.05, coupling coefficient equal to 4 and constant external damping equal to zero. In this

context, Figure 2.4 shows graphs of total energy vs. forcing amplitude for internal damping coefficients

β = 0, 0.1, 0.2 and 0.3, for sine-Gordon and Klein-Gordon systems. As in the case of external damping,

we observe that the threshold value at which supratransmission starts tends to increase as the value

of β is increased. Opposite to the case of external damping, though, the minimum value for which

supratransmission starts varies with β in a nonlinear way.

Next we verify our conclusions on the effect of the mass m on the qualitative behavior of solutions

of the sine-Gordon system. Figure 2.5 shows graphs of total energy vs. driving amplitude for a system

with no external damping, β = 0.2 and driving frequency of 0.9, for different pure-imaginary and real

masses. As observed before, the graphs evidence a shift on the bifurcation amplitude with respect to

the massless bifurcation value which is an increasing function of m2.

Bifurcation analysis

Both the chain of coupled sine-Gordon equations and the chain of Klein-Gordon equations have numer-

ically proved to undergo nonlinear supratransmission for a driving frequency equal to 0.9 and different

values of the external and internal damping coefficients, thus establishing that the results obtained

in this chapter do not depend on integrability. Naturally we are interested in determining that the

process of nonlinear supratransmission happens for any frequency value in the forbidden band gap.

With that purpose in mind, we obtained graphs of total energy vs. driving frequency and various

amplitude values for undamped discrete systems of 200 coupled oscillators with coupling coefficient
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Figure 2.9: Diagram of smallest driving amplitude value at which supratransmission begins vs. driving
frequency for an undamped sine-Gordon system with

√
m2

ℓ + 1 = 1 + ℓ
40 for ℓ = −4, −2, −1, 0, 1, 2,

4.

4, time period of 200 and time step 0.05. The 3-dimensional results for both chains of oscillators are

shown in Figure 2.6 together with a graph of the continuous-limit threshold amplitude As vs. driving

frequency on the amplitude-frequency plane for comparison purposes.

Several observations may be immediately drawn from Figure 2.6. First of all, the predicted bi-

furcation values As display an excellent concordance to the corresponding values obtained using the

finite difference-schemes associated with the sine-Gordon and the Klein-Gordon chains. Second, the

process of supratransmission ceases to appear in the Klein-Gordon case for driving frequencies below

0.7. Third, for driving frequencies close to the band gap limit, the bifurcation threshold is not clearly

determined from the energy vs. driving amplitude graph of the sine-Gordon chain, as prescribed by

[34]. For those frequencies, it is indispensable to increase the time period of approximation at least

up to 500. Fourth, strong numerical proof of the existence of the occurrence of the supratransmis-

sion process is at hand and we have now reasons to believe that there exists a bifurcation function

A(Ω;β, γ,m2) for driving amplitude associated with (2.1).

We proceed then to obtain graphs of amplitude values for which nonlinear supratrasmission starts

vs. driving frequency for a massless sine-Gordon chain of coupled oscillators with internal damping

coefficient equal to zero and different values of γ. The numerical results are summarized in Figure

2.7 together with the plot of the prescribed continuous-limit bifurcation amplitudes As. It is worth

noticing that the bifurcation threshold increases with γ for fixed frequencies above 0.35, as previously

evidenced for a frequency equal to 0.9. We must notice also that the discrepancies that appear for

frequencies below 0.35 when γ = 0, also appear for greater values of γ, each time bounded in smaller

intervals. In fact, we have checked that the discrepancy region — an effect of the phenomenon of

harmonic phonon quenching — tends to vanish for higher values of external damping (results not

included). In this state of matters, we wish to point out that better numerical approximations to the

bifurcation threshold are obtained for larger systems of oscillators at the expense of superior needs in
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Figure 2.10: Time-dependent graphs of the position of the breathers generated in (2.3) by the binary
signal ‘1111’.

terms of computational time. Likewise, we have confirmed that larger values of the coupling coefficient

lead to better approximations to the bifurcation threshold, as prescribed by [34].

Figure 2.8 shows bifurcation diagrams for a massless sine-Gordon system of oscillators with no

external damping and different constant internal damping coefficients. As expected, the bifurcation

threshold tends to increase with β for a fixed driving frequency. The effects of harmonic phonon

quenching are present again in all the bifurcation diagrams, but contrary to the case of external

damping, in the case of internal damping the range over which discrepancies occur slightly widens

as β increases. Also, it is worth observing that the length of the forbidden band gap increases with

the parameter β apparently in a linear fashion. Moreover, the graphs of bifurcation diagrams for

nonzero values of β are approximately obtained by shifting horizontally the corresponding graph of

the undamped diagram a number of β units to the right. More concretely, A(Ω; 0, 0, 0) is a good

approximation for A(Ω − β;β, 0, 0).

Finally, we compute bifurcation diagrams for an undamped sine-Gordon system with different real

and pure-imaginary masses in order to establish the effect of m on the occurrence of the bifurcation

threshold. The numerical results are summarized in Figure 2.9 for some real and pure-imaginary

masses, and driving frequencies starting at 0.5. Our results lead us to conclude that the bifurcation

diagram of the sine-Gordon system of oscillators with mass m is approximately equal to the graph

of the corresponding massless graph shifted
√

1 +m2 − 1 horizontal units, for |m| ≪ 1. In order to

test our claim numerically, we obtained graphs of absolute differences between the massless undamped

bifurcation diagram, and shifted undamped bifurcation diagrams for several mass values (results not

included). We observed that the differences tend to attenuate for high frequency values and that

smaller differences are obtained for smaller values of m in magnitude.
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Figure 2.11: Time-dependent graphs of the maximum energy of the breathers generated in (2.3) by
the binary signal ‘1111’.

2.5 Application

Throughout this section, we assume that α, β and γ are nonnegative real numbers, and that c ≫ 1

(see [34]). Likewise, we consider a system (un)∞
n=1 of oscillators satisfying the mixed-value problem

studied in [59], namely,

d2un

dt2
−
(
c2 + α

d

dt

)
∆2

xun + β
dun

dt
+ V ′(un) = 0,

subject to :




un(0) = 0, n ∈ Z+,
dun

dt
(0) = 0, n ∈ Z+,

u0(t) = ψ(t), t ≥ 0,

(2.3)

where c is the coupling coefficient, and α and β evidently play the roles of internal and external damping

coefficients, respectively. Here, ∆2
xun is used to denote the spatial second-difference un+1 −2un +un−1

for every n ∈ Z+, the boundary-driving function is given by ψ(t) = A(t) sin(Ωt) for every t ∈ (0,+∞),

and V (un) = 1 − cos(un) − γun where, due to the analogy with the Josephson model [111], γ will be

called here the normalized current. Notice that the Hamiltonian of the n-th lattice site is given by

Hn =
1

2

[
u̇2

n + c2(un+1 − un)2
]

+ V (un),

for any differentiable function V . After including the potential energy from the coupling between the

first two oscillators, the total energy of the system becomes

E =

∞∑

n=1

Hn +
c2

2
(u1 − u0)2.
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Figure 2.12: Local energy of the 100-th (left) and 300-th (right) sites in (2.3) vs. normalized time, as
a response to the transmission of the binary signal ‘10111001011011101001’.

Bifurcation analysis

The existence of a bifurcation threshold of the energy administered into a semi-infinite chain of damped

coupled oscillators described by (2.3) has been established and numerically predicted in [59] for a poten-

tial V (u) = 1−cosu. Numerical experiments on undamped mechanical chains with nonzero normalized

bias currents have shown that the process of nonlinear supratransmission is likewise present in these

models. In fact, in the previous sections we provided bifurcation diagrams of driving amplitude at

which supratransmission first occurs vs. driving frequency Ω for a system of 200 undamped oscillators

with coupling coefficient equal to 4 and several values of γ, over a time interval [0, T (Ω)] where T (Ω)

is equal to 200 for all frequencies except for those satisfying Ω > 0.95, in which case T (Ω) had to be

increased up to 500.

Moving breather solutions

For the sake of simplification, let γ = 0 and consider a discrete system described by (2.3), harmonically

driven at the boundary by a frequency Ω. A binary bit b will be transmitted into the medium during

a fixed and sufficiently long period of signal generation P equal to an integer multiple of the driving

period, by defining

A(t) =
8

5
bCAs

(
e−Ωt/4.5 − e−Ωt/0.45

)

for every t ∈ [0, P ], where As represents the critical amplitude at which nonlinear supratransmission

starts and C > 0 is an adjusting constant.

In the previous sections, we provided numerical evidence that shows the time evolution of the local

energies Hn corresponding to solutions of the undamped problem (2.3) with coupling coefficient equal

to 4, driving frequency 0.9 (in which case As is approximately equal to 1.79) and C = As. The period

of signal generation is equal to 20 driving periods, and the binary code transmitted at the boundary

is ‘1111’. The results show that a single moving breather is generated per period, and that the phase

velocity vp through the medium is approximately constant. To verify this claim, we include in Fig.

2.10 the graphs of the positions of the four breathers generated by the binary signal vs. time. The fact

that the breathers are transmitted at a constant velocity is now obvious, the common phase velocity
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being approximately 2.549.

In order to determine the strength of the emitted signals at sites located far away from the source,

it is important to determine the time behavior of the maximum local energy attained by a discrete

breather. Fig. 2.11 presents this behavior for the breather solutions obtained under the conditions

above. Notice that the maximum local energy is well above a cutoff limit of 2.

Signal propagation

The discrete medium described by (2.3) with α = β = γ = 1 × 10−3, and the rest of the parameters

as in the previous section, will be our object of study in this section. Local energy-based reception

devices will be placed on the 100-th and 300-th lattice sites, and the signal to be transmitted through

the chain system is ‘10111001011011101001’. Our system will consist of 600 sites, and a time step of

0.05 will be employed.

Assuming the general convention that site n0 ≥ 100 will start signal reception at time t = (n0 −
100)/vp, Fig. 2.12 shows the evolution of the local energy in the 100-th and 300-th sites in terms of

the time normalized with respect to the period of signal generation. In either case, it is clear that the

transmission of a bit equal to 1 in the n-th period is completely characterized in the graph by peak(s)

of height greater than the cutoff limit 2 on the interval [n− 1, n].
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3. Numerical method for a fractional

medium

In this chapter, we investigate numerically a model governed by a multidimensional nonlinear

wave equation with damping and fractional diffusion. The governing partial differential equation

considers the presence of Riesz space-fractional derivatives of orders in (1, 2], and homogeneous

Dirichlet boundary data are imposed on a closed and bounded spatial domain. The model under

investigation possesses an energy function which is preserved in the undamped regime. In the

damped case, we establish the property of energy dissipation of the model using arguments from

functional analysis. Motivated by these results, we propose an explicit finite-difference discretiza-

tion of our fractional model based on the use of fractional centered differences. Associated to

our discrete model, we also propose discretizations of the energy quantities. We establish that

the discrete energy is conserved in the undamped regime, and that it dissipates in the damped

scenario. Among the most important numerical features of our scheme, we show that the method

has a consistency of second order, that it is stable and that it has a quadratic order of convergence.

Some one- and two-dimensional simulations are shown in this chapter to illustrate the fact that

the technique is capable of preserving the discrete energy in the undamped regime.

3.1 Introduction

In the last decades, the investigation of physical media described by systems with long-range inter-

actions has been a fruitful avenue of research. In particular, a wide variety of physical phenomena

described by linear systems with long-range interactions have been reported in the literature. One of

the typical examples in classical physics is the linear interaction of particles in a three-dimensional

gravitational system [7]. Other examples are the interactions of vortices in two dimensions, engineering

problems on elasticity arising from the study of planar stress, systems of electric charges and systems

that consider dipolar forces [11]. Moreover, there are several well-characterized cases of long-range

interactions involved in the activation and the repression of transcription in chromosomal and gene

regulation [71], and many other applications have been proposed to polymer science (including some

applications to microscopic models of polymer dynamics and rheological constitutive equations), to

regular variations in thermodynamics and to Hamiltonian chaotic systems [40]. It is worth pointing out

that various works have been devoted to the physical and mathematical investigation of generalized

forms of these models [104, 103], including systems which exhibit the presence of the phenomenon of

50



nonlinear supratransmission of energy in fractional sine-Gordon-type equations [62], models of Joseph-

son transmission lines [63] and extensions of the Fermi–Pasta–Ulam chains [64]. Additionally, some

models of oscillators with long-range interactions possess conservation laws that resemble those quan-

tities preserved by classical systems [100, 105].

It is important to recall that certain long-range interactions (namely, the so-called α-interactions)

yield fractional derivatives in some continuous-limit process. This process involves the Fourier series

transform, the inverse Fourier transform and the limiting process when the distance between consec-

utive particles tends to zero [101]. In such way, fractional models in the form of ordinary or partial

differential equations are obtained from discrete physical systems. In fact, there are various types of

long-range interactions which lead to systems that include fractional derivatives of the Riesz type.

From this perspective, the use of the Riesz differential operator is physically justified, at least as the

continuous limit of physically meaningful discrete systems appearing in various branches of sciences.

Obviously, this fact has encouraged the mathematical modeling using fractional differential equations,

as well as the analytical and the physical investigation of these models. Needless to mention that

the specialized literature has benefited from the investigation of fractional equations. Indeed various

interesting reports have been published on the existence and the uniqueness of solutions of fractional

forms of parabolic models, like the porous media equation [20], the nonlinear diffusion equation in

multiple dimensions [112] and nonlinear degenerate diffusion equations in bounded domains [10].

On the other hand, the recent advances of fractional calculus have led to the development of

numerical techniques to approximate the solution of fractional partial differential equations. As exam-

ples, numerical models have been proposed to solve a time-space fractional Fokker–Planck equation

with variable force field and diffusion [80] and nonlinear fractional-order Volterra integro-differential

equations [119]. Some fractional models that extend well-known equations from mathematical physics

have been the motivation to develop suitable numerical schemes. For instance, some highly accurate

numerical schemes have been proposed for variable-order fractional Schrödinger equations [8], a new

technique based on Legendre polynomials has been reported to solve the fractional two-dimensional

heat equation [46], some improvements of the sub-equation method have been designed to solve a

(3 + 1)-dimensional generalization of the Korteweg–de Vries–Zakharov–Kuznetsov equation [87] and

some novel methods have been constructed to approximate the solutions of a two-dimensional variable-

order fractional percolation equation in non-homogeneous porous media [16]. Like these reports, the

literature shows that the numerical investigation of fractional partial differential equations has been

a fruitful avenue of current research in numerical analysis [57]. However, it is important to point out

that the design of structure-preserving methods to solve such models is still a direction of research

which has not been sufficiently exploited.

In this context, the notion of structure-preserving method refers to those numerical techniques

which are capable of preserving physical features of the solutions of interest. As opposed to numerical

efficiency which is typically associated to the computational properties inherent to those techniques

(consistency, stability and convergence), the properties of preservation of the structure of solutions

depend on each physical problem itself. As examples of those properties, we can quote the conservation

of physical quantities like energy, momentum or mass [31]. Mathematical characteristics such as

positivity, boundedness, monotonicity and convexity are also considered in this chapter as structural

properties [65]. Some structure-preserving methods have been designed for the numerical solution of
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partial differential equations of fractional order. For instance, some energy-preserving schemes have

been proposed for the nonlinear fractional Schrödinger equation [116], and some finite-difference scheme

based on fractional centered differences has been used to approximate positive and bounded solutions

of a fractional population model [61]. However, it is important to note that there are very few reports

in the literature on energy-conserving methods for fractional partial differential equations which are

consistent, stable and convergent. In particular, fractional extensions of hyperbolic models like the

sine-Gordon and the Klein–Gordon equations have been practically left without investigation. This is

a topic that merits deeper investigation in view of all the potential applications of those equations to

the continuous mathematical modeling of nonlinear systems with long-range interactions [101, 18, 17].

The purpose of the present chapter is to study numerically a multidimensional Riesz space-fractional

generalization of the nonlinear and damped wave equation that extends various models from math-

ematical physics, including the sine-Gordon and the Klein–Gordon equations. It is well known that

these two models possess an energy functional that dissipates or is conserved, depending on suitable

analytical and parameter conditions. Thus the design of dissipation and conserving schemes to approx-

imate its solution is pragmatically justified. The method reported in this chapter has some associated

energy density functionals along with a function of total energy which is capable of resembling this

property of the continuous model. Moreover, we will show that our methodology is an explicit tech-

nique which is second-order consistent, stable and quadratically convergent. Some simulations will be

provided to illustrate the capability of the scheme to preserve the energy when the damping coefficient

is equal to zero. Evidently, the explicit nature of our approach makes the technique an ideal tool

in the investigation of multidimensional systems governed by Riesz space-fractional nonlinear wave

equations.

This chapter is sectioned as follows. The multidimensional nonlinear dissipative wave equation

with Riesz space-fractional derivatives is presented in Section 3.2, together with the definition of the

fractional differential operator and a dimensional extension of an energy functional proposed in the

literature [4]. We show in that section that the initial-boundary-value problem under investigation is

a dissipative system, and that it is conservative when the damping coefficient is equal to zero. Section

3.3 introduces the discrete nomenclature and the explicit method to solve numerically the problem

under investigation. The concept of fractional centered differences will be recalled therein and some

useful lemmas will be proved in the way. The most important physical properties of the method will

be established in Section 3.4. Concretely, we will establish the capability of the finite-difference scheme

to preserve the dissipation or the conservation of energy of the discrete system. The most important

numerical properties of our technique will be proved in Section 3.6. In that stage we will show that our

method is a consistent technique, and we will establish the stability and the convergence properties.

The proofs will make use of various technical lemmas established in Section 3.5. Additionally, Section

3.6 offers some qualitative simulations that illustrate the capability of our scheme to preserve the

energy or the dissipation of energy in Riesz space-fractional wave equations. This chapter closes with

a section of concluding remarks.
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3.2 Preliminaries

In this chapter we let p ∈ N, T ∈ R
+ and γ ∈ R

+ ∪ {0}. Let us define the set In = {1, . . . , n} for

each natural number n, and let In = In ∪ {0}. Suppose that ai, bi ∈ R satisfy ai < bi for each i ∈ Ip.

Throughout we will assume that 1 < αi ≤ 2 for each i ∈ Ip, and we let

B =

p∏

i=1

(ai, bi) ⊆ R
P , (3.1)

Ω = B × (0, T ) ⊆ R
p+1. (3.2)

We introduce the symbols B and Ω to denote the closures of B and Ω in Rp+1 under the standard

topology, respectively, and let ∂B represent the boundary of B. Assume that G : R → R and that

φ, ψ : B → R are sufficiently smooth functions that satisfy φ(x) = ψ(x) = 0 for each x ∈ ∂B.

Additionally, we will suppose that G is nonnegative and that u : Ω → R is a sufficiently smooth

function that satisfies the initial-boundary-value problem

∂2u

∂t2
(x, t) −

p∑

i=1

∂αiu

∂|xi|αi
(x, t) + γ

∂u

∂t
(x, t) +G′(u(x, t)) = 0, ∀(x, t) ∈ Ω,

such that





u(x, 0) = φ(x), ∀x ∈ B,
∂u

∂t
(x, 0) = ψ(x), ∀x ∈ B,

u(x, t) = 0, ∀(x, t) ∈ ∂B × (0, T ).

(3.3)

Here we assume that x = (x1, x2, . . . , xp) ∈ Rp, and the Riesz differential operators are defined for

each i ∈ Ip by

∂αiu

∂|xi|αi
(x, t) =

−1

2 cos(παi

2 )Γ(2 − αi)

∂2

∂x2
i

∫ bi

ai

u(x1, . . . , xi−1, ξ, xi+1, . . . , xp, t)

|xi − ξ|αi−1
dξ, ∀(x, t) ∈ Ω. (3.4)

Let Lx,2(Ω) denote the set of all functions f : Ω → R such that f(·, t) ∈ L2(B) for each t ∈ [0, T ].

For each pair f, g ∈ Lx,2(Ω), the inner product of f and g is the function of t defined by

〈f, g〉x =

∫

B

f(x, t)g(x, t)dx, ∀t ∈ [0, T ]. (3.5)

In turn, the Euclidean norm of f ∈ Lx,2(Ω) is the function of t defined by ‖f‖x,2 =
√

〈f, f〉. The set

of all functions f : Ω → R such that f(·, t) ∈ L1(B) for each t ∈ [0, T ] will be denoted by Lx,1(Ω), and

for each such f we define its norm as the function of t given by

‖f‖x,1 =

∫

B

|f(x, t)|dx, ∀t ∈ [0, T ]. (3.6)

The literature on mathematical physics has proposed various functionals to calculate the energy of

one-dimensional systems governed by (3.3) when γ = 0 (see [105], for instance). For purposes of this
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chapter, we will use the following dimensional extension of the energy integral employed in [4]:

E(t) =
1

2

∥∥∥∥
∂u

∂t

∥∥∥∥
2

x,2

+
1

2

p∑

i=1

〈
u,− ∂αiu

∂|xi|αi

〉

x

+ ‖G(u)‖x,1 , ∀t ∈ [0, T ]. (3.7)

It is important to note here that the Riesz fractional derivative of order αi in the ith component is a

self-adjoint and negative operator [52] for each i ∈ Ip. This fact implies that the additive inverse of

the Riesz fractional derivative has a unique square root operator [29] which will be denoted by Ξαi
xi

.

Moreover, the following holds for any two functions u and v:

〈
− ∂αiu

∂|xi|αi
, v

〉

x

=
〈
Ξαi

xi
u,Ξαi

xi
v
〉

x
. (3.8)

The next result is now easy to verify.

Lemma 3.1. The energy function (3.7) may be rewritten alternatively as

E(t) =
1

2

∥∥∥∥
∂u

∂t

∥∥∥∥
2

x,2

+
1

2

p∑

i=1

∥∥Ξαi

xi
u
∥∥2

x,2
+ ‖G(u)‖x,1 , (3.9)

for each t ∈ (0, T ).

Obviously, the associated energy density is defined for each (x, t) ∈ Ω by

H(x, t) =
1

2

[
∂u

∂t
(x, t)

]2

− 1

2

p∑

i=1

u(x, t)
∂αiu

∂|xi|αi
(x, t) +G(u(x, t))

=
1

2

[
∂u

∂t
(x, t)

]2

+
1

2

p∑

i=1

[
Ξαi

xi
u(x, t)

]2
+G(u(x, t)).

(3.10)

The following result is the cornerstone of our investigation. It is a generalization of Theorem 1.1 of

[60], which is a result valid for fractional wave equations in one spatial variable. A proof is provided

here for completeness.

Theorem 3.2 (Maćıas-Dı́az [60]). If u is a solution of (3.3) then

E ′(t) = −γ
∥∥∥∥
∂u

∂t

∥∥∥∥
2

x,2

, ∀t ∈ (0, T ). (3.11)

Proof. Note that the following hold for each i ∈ Ip:

1

2

d

dt

∥∥∥∥
∂u

∂t

∥∥∥∥
2

x,2

=
1

2

∫

B

∂

∂t

(
∂u

∂t
(ξ, t)

)2

dξ =

〈
∂u

∂t
,
∂2u

∂t2

〉
, (3.12)

1

2

d

dt
‖Ξαi

xi
u‖2

x,2 =

〈
∂

∂t

(
Ξαi

xi
u
)
,Ξαi

xi
u

〉

x

=

〈
Ξαi

xi

(
∂u

∂t

)
,Ξαi

xi
u

〉

x

=

〈
∂u

∂t
,− ∂αiu

∂|xi|αi

〉
, (3.13)

d

dt
‖G(u)‖x,1 =

∫ b

a

∂

∂t
G(u(ξ, t))dξ =

〈
∂u

∂t
,G′(u)

〉
. (3.14)

Taking derivative with respect to t on both sides of (3.9), using the identities above and the partial
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differential equation of (3.3), and simplifying algebraically we obtain

E ′(t) =

∫

B

∂u

∂t
(ξ, t)

[
∂2u

∂t2
(ξ, t) −

p∑

i=1

∂αiu

∂|xi|αi
(ξ, t) +G′(u(ξ, t))

]
dξ = −γ

∫

B

[
∂u

∂t
(ξ, t)

]2

dξ, (3.15)

whence the result readily follows.

Corollary 3.3. If u is a solution of (3.3) then

E(t) = E(0) − γ

∫ t

0

∥∥∥∥
∂u

∂t

∥∥∥∥
2

x,2

dt, ∀t ∈ [0, T ]. (3.16)

In particular, if γ = 0 then the system (3.3) is conservative.

In the following section, we will propose an explicit numerical method to approximate the solutions

of (3.3) and the energy function (3.7). Our numerical technique will satisfy discrete versions of Theorem

3.2 and Corollary 3.3, along with the numerical properties of consistency, stability and convergence.

3.3 Numerical method

For the remainder of this chapter we let hi and τ be positive step-sizes for each i ∈ Ip, and assume

that N = T/τ and Mi = (bi − ai)/hi are positive integers for each i ∈ Ip. Consider uniform partitions

of [ai, bi] and [0, T ] given by

xi,ji
= ai + jihi, ∀i ∈ Ip, ∀ji ∈ IMi

, (3.17)

tn = nτ, ∀n ∈ IN . (3.18)

Let J =
∏p

i=1 IMi−1 and J =
∏p

i=1 IMi
, and let ∂J represent the boundary of the mesh J . Define

xj = (x1,j1
, . . . , xp,jp

) for each multi-index j = (j1, . . . , jp) ∈ J . In this chapter, the symbol vn
j will

represent a numerical approximation to the exact value of un
j = u(xj , tn) for each j ∈ J and each

n ∈ IN . Define the discrete linear operators

µtu
n
j =

un+1
j + un

j

2
, (3.19)

δ
(1)
t un

j =
un+1

j − un
j

τ
, (3.20)

δ
(2)
t un

j =
un+1

j − 2un
j + un−1

j

τ2
, (3.21)

δ
(1)
u,tG(un

j ) =





G(un+1
j ) −G(un

j )

un+1
j − un

j

, if un+1
j 6= un

j ,

G′(un
j ), if un+1

j = un
j ,

(3.22)

for each j ∈ J and n ∈ IN−1.

Definition 3.4. For any function f : R → R, any h > 0 and any α > −1 we define the fractional
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Figure 3.1: Forward-difference stencil for the approximation to the exact solution of the one dimensional
form of (3.3) at the time tn, using the finite-difference scheme (3.28). The black circles represent
the known approximations at the times tn−1, tn and tn+1, while the cross denotes the unknown
approximation at the time tn+2.

centered difference of order α of f at the point x as

∆α
hf(x) =

∞∑

k=−∞

g
(α)
k f(x− kh), ∀x ∈ R, (3.23)

where

g
(α)
k =

(−1)kΓ(α+ 1)

Γ(α
2 − k + 1)Γ(α

2 + k + 1)
, ∀k ∈ N ∪ {0}. (3.24)

Lemma 3.5 (Çelik and Duman [13]). If 1 < α ≤ 2 then

(i) g
(α)
0 ≥ 0,

(ii) g
(α)
k = g

(α)
−k < 0 for all k ≥ 1, and

(iii)
∑∞

k=−∞ g
(α)
k = 0.

As a consequence, the series on the right-hand side of (3.23) converges absolutely for any f ∈
L1(R) ∩ L∞(R). It is easy to see that any f ∈ C5(R) for which all of its derivatives up to order five

belong to L1(R), satisfies

− 1

hα
∆α

hf(x) =
∂αf(x)

∂|x|α + O(h2), ∀x ∈ R, (3.25)

whenever 1 < α ≤ 2 (see [13]). Moreover, if u ∈ C5(B) then

∂αiu

∂|xi|αi
(xj , tn) = δ(αi)

xi
un

j + O(h2), ∀i ∈ Ip, ∀(j, n) ∈ J × IN , (3.26)
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where

δ(αi)
xi

un
j = − 1

hαi

i

Mi∑

k=0

g
(αi)
ji−ku(x1,j1

, . . . , xi−1,ji−1
, xi,k, xi+1,ji+1

, . . . , xp,jp
, tn). (3.27)

With this nomenclature, the finite-difference method to approximate the solution of (3.3) on Ω is

given by

µtδ
(2)
t vn

j −
p∑

i=1

µtδ
(αi)
xi

vn
j + γδ

(1)
t vn

j + δ
(1)
v,tG(vn

j ) = 0, ∀(j, n) ∈ J × IN−2,

such that





v0
j = φ(xj), ∀j ∈ J,

δtv
0
j = ψ(xj), ∀j ∈ J,

vn
j = 0, ∀(j, n) ∈ ∂J × IN .

(3.28)

For illustration purposes, Figure 3.1 shows the forward-difference stencil in the case that p = 1 using

the conventions M = M1 and xj = x1,j . Note in general that this scheme is an explicit four-step

method, and that the numerical approximation to the solution at the node xj and time tn+2 is given

by the formula

vn+2
j = vn+1

j + vn
j − vn−1

j + 2τ

[
p∑

i=1

µtδ
(αi)
xi

vn
j − γδ

(1)
t vn

j − δ
(1)
v,tG(vn

j )

]
, ∀(j, n) ∈ J × IN−2. (3.29)

3.4 Energy invariants

In this section we show that the finite-difference method (3.28) satisfies physical properties similar to

those satisfied by (3.3). More precisely, we will propose a numerical energy functional associated to

the scheme (3.28) that is preserved under suitable parameter conditions. For the remainder of this

chapter we will let

h = (h1, . . . , hp), (3.30)

h∗ =

p∏

i=1

hi, (3.31)

and employ the spatial mesh Rh = {xj}j∈J ⊆ R
p. Let Vh be the real vector space of all real grid

functions on Rh. For any u ∈ Vh and j ∈ I convey that uj = u(xj). Moreover, define respectively the

inner product 〈·, ·〉 : Vh × Vh → R and the norm ‖ · ‖1 : Vh → R by

〈u, v〉 = h∗

∑

j∈I

ujvj , (3.32)

‖u‖1 = h∗

∑

j∈I

|uj |, (3.33)

for any u, v ∈ Vh. The Euclidean norm induced by 〈·, ·〉 will be denoted by ‖ · ‖2. In the following, we

will represent the solutions of the finite-difference method (3.28) by (vn)N
n=0, where we convey that

vn = (vn
j )j∈J for each n ∈ IN .
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Lemma 3.6 (Maćıas-Dı́az [60]). If i ∈ Ip then the following are satisfied for the matrix

A(αi)
xi

=




g
(αi)
0 g

(αi)
−1 · · · g

(αi)
2−Mi

g
(αi)
1 g

(αi)
0 · · · g

(αi)
3−Mi

...
...

. . .
...

g
(αi)
Mi−2 g

(αi)
Mi−3 · · · g

(αi)
0



. (3.34)

(a) A
(αi)
xi

is Hermitian.

(b) A
(αi)
xi

is strictly diagonally dominant.

(c) All the eigenvalues of A
(αi)
xi

are positive real numbers bounded from above by 2g
(αi)
0 .

(d) A
(αi)
xi

is positive-definite.

Before we state our next result, we require some additional notation. Let v be a grid function,

let j ∈ J and i ∈ Ip. If k ∈ IMi−1 then we define respectively the real constant and the (Mi − 1)-

dimensional real vector

vj|ji=k = v(x1,j1
, . . . , xi−1,ji−1

, xi,k, xi+1,ji+1
, . . . , xp,jp

), (3.35)

vj|ji
= (vj|ji=1, vj|ji=2, . . . , vj|ji=Mi−1)⊤. (3.36)

These conventions will be required in the next lemma, whose proof will require a well-known result on

the existence and the uniqueness of square-root operators from functional analysis [29].

Lemma 3.7. For each i ∈ Ip there exists a unique positive linear operator Λ
(αi)
xi : Vh → Vh such that

〈
−δ(αi)

xi
u, v
〉

=
〈

Λ(αi)
xi

u,Λ(αi)
xi

v
〉
, (3.37)

for each u, v ∈ Vh.

Proof. Note firstly that if u, v ∈ Vh and if i ∈ Ip then

〈u,−δ(αi)
xi

v〉 = −h∗

∑

j∈J

ujδ
(αi)
xi

vj =
h∗

hαi

∑

j∈J

Mi−1∑

k=1

ujg
(αi)
ji−kvj|ji=k

=
h∗

hαi

M1−1∑

j1=1

· · ·
Mi−1−1∑

ji−1=1

Mi+1−1∑

ji+1=1

· · ·
Mp−1∑

jp=1

Mi−1∑

ji=1

Mi−1∑

k=1

ujg
(αi)
ji−kvj|ji=k

=
h∗

hαi

M1−1∑

j1=1

· · ·
Mi−1−1∑

ji−1=1

Mi+1−1∑

ji+1=1

· · ·
Mp−1∑

jp=1

u⊤
j|ji
A(αi)

xi
vj|ji

.

(3.38)

Using the symmetry of the matrix A
(αi)
xi

we observe that

〈u,−δ(αi)
xi

v〉 = 〈u,−δ(αi)
xi

v〉⊤ =
h∗

hαi

M1−1∑

j1=1

· · ·
Mi−1−1∑

ji−1=1

Mi+1−1∑

ji+1=1

· · ·
Mp−1∑

jp=1

v⊤
j|ji

A(αi)
xi

uj|ji
= 〈−δ(αi)

xi
u, v〉

(3.39)
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holds for each u, v ∈ Vh, which means that −δ(αi)
xi

is a self-adjoint operator for each i ∈ Ip. On the

other hand, the fact that the matrix A
(αi)
xi

is positive definite implies that u⊤
j|ji
A

(αi)
xi

uj|ji
≥ 0 for each

u ∈ RMi−1 and i ∈ Ip. As a consequence we note that 〈u,−δ(αi)
xi

u〉 ≥ 0 for each u ∈ Vh, which means

that −δ(αi)
xi is positive. We conclude that there exists a unique positive linear square-root operator

Λ
(αi)
xi

for −δ(αi)
xi

which satisfies the conclusion of the theorem.

The next theorem establishes the existence of invariants for the discrete system (3.28).

Theorem 3.8 (Dissipation of energy). Let (vn)N
n=0 be a solution of (3.28), and define

En =
1

2
〈δ(1)

t vn, δ
(1)
t vn−1〉 +

1

2

p∑

i=1

‖Λ(αi)
xi

vn‖2
2 + ‖G(vn)‖1 , ∀n ∈ IN−1. (3.40)

Then δtE
n = −γ‖δ(1)

t vn‖2
2 for each n ∈ IN−2.

Proof. Recall that G is a nonnegative function and note that the following hold for each n ∈ IN−2:

〈µtδ
(2)
t vn, δ

(1)
t vn〉 =

1

2τ

[
〈δ(1)

t vn+1, δ
(1)
t vn〉 − 〈δ(1)

t vn, δ
(1)
t vn−1〉

]
, (3.41)

〈−µtδ
(αi)
xi

vn, δ
(1)
t vn〉 =

1

2τ

[
‖Λ(αi)

xi
vn+1‖2

2 − ‖Λ(αi)
xi

vn‖2
2

]
, ∀i ∈ Ip, (3.42)

〈δ(1)
v,tG(vn), δ

(1)
t vn〉 =

1

τ

[
‖G(vn+1)‖1 − ‖G(vn)‖1

]
. (3.43)

Let Θn
j represent the left-hand side of the difference equations in (3.28) for each j ∈ J and each

n ∈ IN−2, and let Θn = (Θn
j )j∈J . Suppose that (vn)N

n=0 is a solution of (3.28). Calculating the inner

product of Θn with δ
(1)
t vn, using the identities above and collecting terms, we note that

0 = 〈Θn, δ
(1)
t vn〉 =

1

2τ

[
〈δ(1)

t vn+1, δ
(1)
t vn〉 − 〈δ(1)

t vn, δ
(1)
t vn−1〉

]

+
1

2τ

p∑

i=1

[
‖Λ(αi)

xi
vn+1‖2

2 − ‖Λ(αi)
xi

vn‖2
2

]

+
1

τ

[
‖G(vn+1)‖1 − ‖G(vn)‖1

]
+ γ

∥∥∥δ(1)
t vn

∥∥∥
2

2

= δtE
n + γ‖δ(1)

t vn‖2
2, ∀n ∈ IN−2,

(3.44)

whence the conclusion of this result is obtained.

Corollary 3.9. If (vn)N
n=0 is a solution of (3.28) then

En = E1 − γτ
n−1∑

k=1

‖δ(1)
t vk‖2

2, ∀n ∈ IN−2. (3.45)

In particular, the quantities En are invariants of (3.28) when γ = 0.

Proof. It readily follows from Theorem 3.8.

Theorem 3.8 and Corollary 3.9 are clearly the discrete counterparts of Theorem 3.2 and Corollary

3.3, respectively, and they indicate that our method is a dissipation-preserving technique. Moreover,
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it is important to point out that the energy quantity En defined in Theorem 3.8 has associated the

following discrete energy density functions:

Hn
j =

1

2

(
δ

(1)
t vn

j

)(
δ

(1)
t vn−1

j

)
− 1

2
vn

j

p∑

i=1

δ(αi)
xi

vn
j +G(vn

j )

=
1

2

(
δ

(1)
t vn

j

)(
δ

(1)
t vn−1

j

)
+

1

2

p∑

i=1

∣∣∣Λ(αi)
xi

vn
j

∣∣∣
2

+G(vn
j ), ∀(j, n) ∈ J × IN−2.

(3.46)

Theorem 3.10. The discrete quantities (3.40) may be rewritten alternatively as

En =
1

2
µt‖δ(1)

t vn−1‖2
2 − τ2

4
‖δ(2)

t vn‖2
2 +

1

2

p∑

i=1

‖Λ(αi)
xi

vn‖2
2 + ‖G(vn)‖1 , ∀n ∈ IN−2. (3.47)

Proof. Note that

〈δtv
n, δtv

n−1〉 = ‖δ(1)
t vn‖2

2 − 1

τ2
〈vn+1 − vn, vn+1 − 2vn + vn−1〉

= ‖δ(1)
t vn‖2

2 − τ2‖δ(2)
t vn‖2

2 − 1

τ2
〈vn − vn−1, vn+1 − 2vn + vn−1〉

= ‖δ(1)
t vn‖2

2 + ‖δ(1)
t vn−1‖2

2 − τ2‖δ(2)
t vn‖2

2 − 〈δtv
n, δtv

n−1〉

(3.48)

holds for each n ∈ IN−1. It follows that

〈δtv
n, δtv

n−1〉 = µt‖δ(1)
t vn−1‖2

2 − τ2

2
‖δ(2)

t vn‖2
2, ∀n ∈ IN−1, (3.49)

whence the conclusion of the theorem is reached.

3.5 Auxiliary lemmas

In this section, we prove some propositions needed to establish the properties of numerical efficiency of

the finite-difference method (3.28). To start with, we will require the following elementary facts which

will be employed in the sequel without an explicit reference:

(A) If v and w are real vectors of the same dimension then |2〈v, w〉| ≤ ‖v‖2
2 + ‖w‖2

2.

(B) As a consequence, ‖v + w‖2
2 ≤ 2‖v‖2

2 + 2‖w‖2
2 for any two real vectors v and w of the same

dimension.

(C) More generally, if k ∈ N and v1, . . . , vk are real vectors of the same dimension then

∥∥∥∥∥

k∑

n=1

vn

∥∥∥∥∥

2

2

≤ k
k∑

n=1

‖vn‖2
2. (3.50)
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(D) If (vn)N
n=0 is a finite sequence in Vh and n ∈ IN then vn = v0 + τ

n−1∑

k=0

δ
(1)
t vk. It follows that

‖vn‖2
2 ≤ 2‖v0‖2

2 + 2Tτ

n−1∑

k=0

‖δ(1)
t vk‖2

2, ∀n ∈ IN . (3.51)

The following lemma summarizes some important properties of the operators δ
(αi)
xi

introduced in

Section 3.3 along with their respective square roots.

Lemma 3.11. Let v ∈ Vh and i ∈ Ip.

(a) ‖Λ
(αi)
xi v‖2

2 ≤ 2g
(αi)
0 h∗h

−αi ‖v‖2
2.

(b) ‖δ(αi)
xi v‖2

2 = ‖Λ
(αi)
xi Λ

(αi)
xi v‖2

2.

(c) ‖δ(αi)
xi

v‖2
2 ≤ 2g

(αi)
0 h∗h

−αi‖Λ
(αi)
xi

v‖2
2 ≤ 4

(
g

(αi)
0 h∗h

−αi

)2

‖v‖2
2. It follows then that

p∑

i=1

‖δ(αi)
xi

v‖2
2 ≤ 2h∗

p∑

i=1

g
(αi)
0 h−αi ‖Λ(αi)

xi
v‖2

2 ≤ 4h2
∗‖v‖2

2

p∑

i=1

(g
(αi)
0 h−αi)2. (3.52)

Proof.

(a) The properties of the matrix A
(αi)
xi

in Lemma 3.6 guarantee that v⊤
j|ji

A
(αi)
xi

vj|ji
≤ 2g

(αi)
0 ‖vj|ji

‖2
2

holds for each j ∈ J . Moreover, Lemma 3.7 yields

‖Λ
(αi)
xi

v‖2
2 = 〈Λ(αi)

xi
v,Λ

(αi)
xi

v〉 = 〈v,−δ(αi)
xi

v〉

=
h∗

hαi

M1−1∑

j1=1

· · ·
Mi−1−1∑

ji−1=1

Mi+1−1∑

ji+1=1

· · ·
Mp−1∑

jp=1

v⊤
j|ji

A(αi)
xi

vj|ji

≤ 2g
(αi)
0

h∗

hαi

M1−1∑

j1=1

· · ·
Mi−1−1∑

ji−1=1

Mi+1−1∑

ji+1=1

· · ·
Mp−1∑

jp=1

‖vj|ji
‖2

2

= 2g
(αi)
0 h∗h

−αi‖v‖2
2.

(3.53)

(b) Using Lemma 3.7 we readily check that

‖δ(αi)
xi

v‖2
2 = 〈−δ(αi)

xi
v,−δ(αi)

xi
v〉 = 〈Λ(αi)

xi
v,−δ(αi)

xi
Λ

(αi)
xi

v〉
= 〈Λ(αi)

xi
Λ

(αi)
xi

v,Λ
(αi)
xi

Λ
(αi)
xi

v〉 = ‖Λ
(αi)
xi

Λ
(αi)
xi

v‖2
2.

(3.54)

(c) This property is a consequence of (a) and (b). Its proof is straightforward.

For the remainder of this chapter, we let α = (α1, . . . , αp), and define g
(α)
h = 2h∗ max{g(αi)

0 h−αi :

i ∈ Ip}. In light of the last lemma, it is clear that g
(α)
h is a positive number such that

p∑

i=1

‖δ(αi)
xi

v‖2
2 ≤ g

(α)
h

p∑

i=1

‖Λ(αi)
xi

v‖2
2 ≤

(
g

(α)
h ‖v‖2

)2

. (3.55)
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Lemma 3.12. Let G ∈ C2(R) and G′′ ∈ L∞(R), and suppose that (un)N
n=0, (vn)N

n=0 and (Rn)N
n=0 are

sequences in Vh. Let εn = vn − un and G̃n = δv,tG(vn) − δw,tG(wn) for each n ∈ IN−1. Then the

following are satisfied.

(a) There exists a constant C0 ∈ R+ that depends only on G such that

‖G̃n‖2
2 ≤ C0(‖εn+1‖2

2 + ‖εn‖2
2), ∀n ∈ IN−1. (3.56)

(b) There exists C1 ∈ R
+ depending only on G such that

2|〈Rn − G̃n, δ
(1)
t εn〉| ≤ 2‖Rn‖2

2 + C1

(
‖εn+1‖2

2 + ‖εn‖2
2 + ‖δ(1)

t εn‖2
2

)
, ∀n ∈ IN−1. (3.57)

(c) There exist C2, C3 ∈ R+ that depend only on G such that for each k ∈ IN−1,

2τ

k∑

n=1

∣∣∣〈Rn − G̃n, δ
(1)
t εn〉

∣∣∣ ≤ 2τ

k∑

n=0

‖Rn‖2
2 + C2‖ε0‖2

2 + C3τ

k∑

n=0

‖δ(1)
t εn‖2

2. (3.58)

(d) For each k ∈ IN−1,

kτ2
k∑

n=1

‖G̃n‖2
2 ≤ 4C0T

2‖ε0‖2
2 + 4C0T

3τ

k∑

n=0

‖δ(1)
t εn‖2

2. (3.59)

Proof. Let C′
0 = sup{|G′′(u)| : u ∈ R}.

(a) As a consequence of the Mean Value Theorem and a direct integration we obtain that |G̃n
j | ≤

C′
0(|εn+1

j | + |εn
j |) for each j ∈ J and each n ∈ IN−1. Raising both sides of this inequality to the

second power and using the inequalities at the beginning of this section we readily reach (3.56)

with C0 = 2C′
0.

(b) Note that for each n ∈ IN−1,

2|〈Rn − G̃n, δ
(1)
t εn〉| ≤ 2‖Rn‖2

2 + 2‖G̃n‖2
2 + ‖δ(1)

t εn‖2
2

≤ 2‖Rn‖2
2 + 2C0

(
‖εn+1‖2

2 + ‖εn‖2
2

)
+ ‖δ(1)

t εn‖2
2,

(3.60)

whence the inequality (3.57) readily follows with C1 = max{4C′
0, 1}.

(c) Using the inequality (3.57) and the remarks at the beginning of the present section we obtain
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that

2τ

k∑

n=1

∣∣∣〈Rn − G̃n, δ
(1)
t εn〉

∣∣∣ ≤ 2τ

k∑

n=1

‖Rn‖2
2 + 2C1τ

[
k+1∑

n=1

‖εn‖2
2 +

k∑

n=1

‖δ(1)
t εn‖2

2

]

≤ 2τ

k∑

n=0

‖Rn‖2
2

+2C1τ

[
k+1∑

n=1

(
2‖ε0‖2

2 + 2Tτ

n−1∑

l=0

‖δ(1)
t εl‖2

2

)
+

k∑

n=1

‖δ(1)
t εn‖2

2

]

≤ 2τ

k∑

n=0

‖Rn‖2
2 + 4C1T ‖ε0‖2

2 + 2C1(2T 2 + 1)τ

k∑

n=0

‖δ(1)
t εn‖2

2,

(3.61)

for each k ∈ IN−1. The conclusion of this result follows for C2 = 4C1T and C3 = 2C1(2T 2 + 1).

(d) Note that (3.56) and the remarks at the beginning of this section imply that for each k ∈ IN−1,

kτ2
k∑

n=1

‖G̃n‖2
2 ≤ 2C0kτ

2
k+1∑

n=1

‖εn‖2
2 ≤ 2C0Tτ

k+1∑

n=1

(
2‖ε0‖2

2 + 2Tτ

n−1∑

l=0

‖δ(1)
t εl‖2

2

)
, (3.62)

whence the conclusion readily follows.

Let G ∈ C2(R) and G′′ ∈ L∞(R), and suppose that (un)N
n=0, (vn)N

n=0 and (Rn)N
n=0 are sequences

in Vh. As in our last result, let εn = vn − un and G̃n = δv,tG(vn) − δw,tG(wn) for each n ∈ IN−1.

Suppose also that

µtδ
2
t ε

n −
p∑

i=1

µtδ
(αi)
xi

εn + γδ
(1)
t εn + G̃n = Rn, ∀n ∈ IN−1. (3.63)

Using this identity and mathematical induction it follows that

δ
(2)
t εk+1 = (−1)kδ

(2)
t ε1+

p∑

i=1

δ(αi)
xi

εk+1+(−1)k+1

p∑

i=1

δ(αi)
xi

ε1+2

k∑

n=1

(−1)n
[
γδ

(1)
t εn + G̃n −Rn

]
, (3.64)

for each k ∈ IN−2. Moreover, calculating the square of the Euclidean norm of δ
(2)
t εk+1, using (3.55)

and the inequalities at the beginning of this section, applying Lemma3.12(a), multiplying by τ2 and

simplifying we readily obtain that

τ2‖δ(2)
t εk+1‖2

2 ≤ 5τ2‖δ(2)
t ε1‖2

2 + 5pτ2g
(α)
h

p∑

i=1

‖Λ(αi)
xi

ε1‖2
2 + 5pτ2g

(α)
h

p∑

i=1

‖Λ(αi)
xi

εk+1‖2
2

+20γ2Tτ

k∑

n=1

‖δ(1)
t εn‖2

2 + 40kτ2
k∑

n=1

(
‖G̃n‖2

2 + ‖Rn‖2
2

)

≤ 160C0T
2‖ε0‖2

2 + 20µt‖δ(1)
t ε0‖2

2 + 5pτ2g
(α)
h

p∑

i=1

‖Λ(αi)
xi

ε1‖2
2 + 40Tτ

k∑

n=1

‖Rn‖2
2

+5pτ2g
(α)
h

p∑

i=1

‖Λ(αi)
xi

εk+1‖2
2 + 20(8C0T

2 + γ2)Tτ

k∑

n=0

‖δ(1)
t εn‖2

2.

(3.65)
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This inequality will be used in the following section to establish the stability and the convergence of

the finite-difference method (3.28).

The following result will be useful to prove the stability and convergence properties of (3.28). It is

obviously a discrete version of the well-known Gronwall inequality.

Lemma 3.13 (Pen-Yu [77]). Let (ωn)N
n=0 and (ρn)N

n=0 be finite sequences of nonnegative mesh func-

tions, and suppose that there exists C ≥ 0 such that

ωk ≤ ρk + Cτ
k−1∑

n=0

ωk, ∀k ∈ IN−1. (3.66)

Then ωn ≤ ρneCnτ for each n ∈ IN .

3.6 Numerical results

The main numerical properties of the finite-difference method (3.28) as well as some illustrative com-

putational simulations are presented in this stage. Here we show that our scheme is a consistent, stable

and convergent technique under suitable conditions on the parameters of the model. In a first stage,

we show that (3.28) is a second-order consistent technique, and that the discrete energy density (3.46)

also provides a consistent approximation to the continuous Hamiltonian (3.10). For practical purposes

we define the following continuous and discrete functionals:

Lu(x, t) =
∂2u

∂t2
(x, t) −

p∑

i=1

∂αiu

∂|xi|αi
(x, t) + γ

∂u

∂t
(x, t) +G′(u(x, t)), ∀(x, t) ∈ Ω, (3.67)

Lun
j = µtδ

(2)
t un

j −
p∑

i=1

µtδ
(αi)
xi

un
j + γδ

(1)
t un

j + δ
(1)
u,tG(un

j ), ∀(j, n) ∈ J × IN−2. (3.68)

Theorem 3.14 (Consistency). If u ∈ C5(Ω) then there exist constants C,C′ > 0 which are independent

of h and τ such that for each j ∈ J and each n ∈ IN−2,

∣∣Lun
j − Lu(xj , tn)

∣∣ ≤ C(τ2 + ‖h‖2
2), (3.69)

∣∣Hun
j − Hu(xj , tn)

∣∣ ≤ C′(τ + ‖h‖2
2). (3.70)

Proof. We employ here the usual arguments with Taylor polynomials and the identity (3.26). Using

the hypotheses of continuous differentiability, there exist constants C1, C2,i, C3, C4 ∈ R for i ∈ Ip such

that

∣∣∣∣µtδ
(2)
t un

j − ∂2u

∂t2
(xj , tn+ 1

2
)

∣∣∣∣ ≤ C1τ
2, (3.71)

∣∣∣∣µtδ
(αi)
xi

un
j − ∂αiu

∂|x|αi
(xj , tn+ 1

2
)

∣∣∣∣ ≤ C2,i(τ
2 + h2

i ), (3.72)

∣∣∣∣δ
(1)
t un

j − ∂u

∂t
(xj , tn+ 1

2
)

∣∣∣∣ ≤ C3τ
2, (3.73)

∣∣∣δ(1)
u,tG(un

j ) −G′(u(xj , tn+ 1
2
))
∣∣∣ ≤ C4τ

2, (3.74)
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for each j ∈ J and each n ∈ IN−2. The first inequality in the conclusion of this theorem is readily

reached using the triangle inequality and defining C = max{C1, γC3, C4} ∨ max{C2,i : i ∈ Ip}. To

establish the second inequality, note that the consistency of the forward-difference operators, the

Mean Value Theorem and the smoothness of the function u guarantee that there exists a constant C5

independent of τ such that

∣∣∣∣∣δ
(1)
t un

j δ
(1)
t un−1

j −
(
∂u

∂t
(xj , tn)

)2
∣∣∣∣∣ ≤

∣∣∣δ(1)
t un−1

j

∣∣∣
∣∣∣∣δ

(1)
t un

j − ∂u

∂t
(xj , tn)

∣∣∣∣

+

∣∣∣∣
∂u

∂t
(xj , tn)

∣∣∣∣

∣∣∣∣δ
(1)
t un−1

j − ∂u

∂t
(xj , tn)

∣∣∣∣
≤ C5τ,

(3.75)

for each j ∈ J and each n ∈ IN−1. Likewise, there exist constants C6,i for each i ∈ Ip such that

∣∣∣∣u
n
j δ

(αi)
xi

un
j − u(xj , tn)

∂αiu

∂|xi|αi
(xj , tn)

∣∣∣∣ ≤ C6,ih
2
i , (3.76)

for each j ∈ I and each n ∈ IN−1. The second inequality of the conclusion follows again using the

triangle inequality and letting C′ = 1
2 (C5 ∨ max{C6,i : i ∈ Ip}).

We turn our attention to the stability and the convergence properties of (3.28). In the following,

the constants C1, C2 and C3 are as in Lemma 3.12, and (φv, ψv) and (φw , ψw) will denote two sets of

initial conditions of (3.3).

Theorem 3.15 (Stability). Let G ∈ C2(R) and G′′ ∈ L∞(R), and suppose that τ and h satisfy

5

2
pτ2g

(α)
h < 1. (3.77)

Let v = (vn)N
n=0 and w = (wn)N

n=0 be solutions of (3.28) for (φv, ψv) and (φw, ψw), respectively, and

let εn = vn −wn for each n ∈ IN . Then there exist constants C4, C5 ∈ R+ and 0 < η0 < 1 independent

of v and w such that, for each n ∈ IN−1,

1

2
‖δ(2)

t εn‖2
2 + (1 − η0)

p∑

i=1

‖Λ(αi)
xi

εn‖2
2 ≤ C4

(
‖ε0‖2

2 + µt‖δ(1)
t ε0‖2

2 +

p∑

i=1

‖Λ(αi)
xi

ε1‖2
2

)
eC5nτ . (3.78)

Proof. Let η0 satisfy 5
2pτ

2g
(α)
h < η0 < 1. Obviously, the sequence (εn)N

n=0 satisfies the initial-boundary-

value problem

µtδ
(2)
t εn

j −
p∑

i=1

µtδ
(αi)
xi

εn
j + γδ

(1)
t εn

j + δ
(1)
v,tG(vn

j ) − δw,tG(wn
j ) = 0, ∀(j, n) ∈ J × IN−2,

such that






ε0
j = φv(xj) − φw(xj), ∀j ∈ J,

δtε
0
j = ψv(xj) − ψw(xj), ∀j ∈ J,

εn
j = 0, ∀(j, n) ∈ ∂J × IN .

(3.79)

For the sake of convenience, let G̃n
j = δ

(1)
v,tG(vn

j ) − δw,tG(wn
j ) for each j ∈ J and each n ∈ IN−1. From
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the identities preceding Theorem 3.8 and those after the proof of Corollary 3.9, we readily obtain that

〈
µtδ

(2)
t εn, δ

(1)
t εn

〉
=

1

2
δ

(1)
t µt‖δ(1)

t εn−1‖2
2 − τ2

4
δ

(1)
t ‖δ(2)

t εn‖2
2,

〈−µtδ
(αi)
xi

εn, δ
(1)
t εn〉 =

1

2
δ

(1)
t ‖Λ(αi)

xi
εn‖2

2, ∀i ∈ IN−1, (3.80)

|2〈G̃n, δ
(1)
t εn〉| ≤ C1

(
‖εn+1‖2

2 + ‖εn‖2
2 + ‖δ(1)

t εn‖2
2

)
, (3.81)

for each n ∈ IN−1 and for some C1 ∈ R+. Let k ∈ IN−1. Taking the inner product of δ
(1)
t εn with both

sides of the respective difference equation of (3.79), substituting the identities above, calculating then

the sum of the resulting identity for all n ∈ Ik, multiplying by 2τ on both sides, applying Lemma 3.12

with Rn = 0 and simplifying algebraically yields

1

2
‖δ(1)

t εk+1‖2
2 +

p∑

i=1

‖Λ(αi)
xi

εk+1‖2
2 ≤ µt‖δ(1)

t ε0‖2
2 +
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i=1

‖Λ(αi)
xi

ε1‖2
2 +

τ2

2
‖δ(2)

t εk+1‖2
2

+2τ

k∑

n=1

∣∣∣〈G̃n, δ
(1)
t εn〉

∣∣∣

≤ ρ+
5

2
pτ2g

(α)
h

p∑

i=1

‖Λ(αi)
xi

εk+1‖2
2 + C5τ

k∑

n=0

‖δ(1)
t εn‖2

2

≤ ρ+
5

2
pτ2g

(α)
h

p∑

i=1

‖Λ(αi)
xi

εk+1‖2
2 + C5τ

k∑

n=0

ωn, ∀k ∈ IN−1,

(3.82)

where

C4 = max{C2 + 80C0T
2, 11, 1 + η0}, (3.83)

C5 = 2C3 + 20(8C0T
2 + γ2)T, (3.84)

ρ = C4

(
‖ε0‖2

2 + µt‖δ(1)
t ε0‖2

2 +

p∑

i=1

‖Λ(αi)
xi

ε1‖2
2

)
, (3.85)

ωn =
1

2
‖δ(1)

t εn‖2
2 + (1 − η0)

p∑

i=1

‖Λ(αi)
xi

εn‖2
2, ∀n ∈ IN−1. (3.86)

Subtracting the second term on the right-hand side of (3.82) we note that the hypotheses of Lemma

3.13 are readily satisfied with C = C5 and ρk = ρ for each k ∈ IN−1, whence the conclusion of Theorem

3.15 follows.

Note that the inequality (3.77) is satisfied for sufficiently small values of τ and of the components

of h. Finally, we tackle the problem of the convergence of the numerical method (3.28). The proof of

the following result is similar to that of Theorem 3.15. For that reason we provide only a sketch of the

proof.

Theorem 3.16 (Convergence). Let u ∈ C5(Ω) be a solution of (3.3) with G ∈ C2(R) and G′′ ∈ L∞(R),

and let (vn)N
n=0 be a solution of (3.28) for the initial conditions (φ, ψ). Assume that ǫn = vn − un for

each n ∈ IN . If (3.77) holds then the method (3.28) is convergent of order O(τ2 + ‖h‖2).

Proof. Let η0 be as in the proof of Theorem 3.15, and let Rn
j be the truncation error at the point
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Graphs of the numerical solution (left column) and the associated energy density (right
column) of the one-dimensional problem (3.3) with G(u) = 1 − cosu obtained using (3.28) and (3.46)
on Ω = (−30, 30)× (0, 100). The initial data were provided by (3.93) with ω = 0.9, and the parameters
employed were γ = 0, h1 = 0.5 and τ = 0.05. Various derivative orders were used, namely, α1 = 2
(top row), α1 = 1.6 (middle row) and α1 = 1.2 (bottom row). The insets of the graphs of the right
column represent the discrete dynamics of the total energy (3.40) of the system.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Graphs of the numerical solution (left column) and the associated energy density (right
column) of the one-dimensional problem (3.3) with G(u) = 1 − cosu obtained using (3.28) and (3.46)
on Ω = (−30, 30)× (0, 100). The initial data were provided by (3.93) with ω = 0.9, and the parameters
employed were γ = 0.05, h1 = 0.5 and τ = 0.05. Various derivative orders were used, namely, α1 = 2
(top row), α1 = 1.6 (middle row) and α1 = 1.2 (bottom row). The insets of the graphs of the right
column represent the discrete dynamics of the total energy (3.40) of the system.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Graphs of the approximate solution of (3.3) in two spatial dimensions at the times (a)
t = 0.22, (b) t = 0.34, (c) t = 0.46, (d) t = 0.58, (e) t = 0.70 and (f) t = 0.82. The model parameters
employed were α1 = 1.8, α2 = 1.6, γ = 0, G(u) = 1 − cosu, B = (−5, 5) × (−5, 5) and T = 10.
Meanwhile, the initial conditions were provided by ϕ(x2 + y2, t), where ϕ is given by (3.93) with
ω = 0.8. Numerically, we used the method (3.28) with M1 = M2 = 100 and N = 500.
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(a) α1 = 1.8, α2 = 1.8. (b) α1 = 1.8, α2 = 1.6.

(c) α1 = 1.8, α2 = 1.2. (d) α1 = 1.6, α2 = 1.6.

(e) α1 = 1.6, α2 = 1.2. (f) α1 = 1.2, α2 = 1.2.

Figure 3.5: Graphs of the energy dynamics of the solution of (3.3) in two spatial dimensions using
various sets of the parameters α1 and α2, G(u) = 1 − cosu, B = (−5, 5) × (−5, 5) and T = 10. The
initial conditions were provided by ϕ(x2 + y2, t), where ϕ is given by (3.93) with ω = 0.8, and various
damping coefficients were considered, namely, γ = 0 (solid), γ = 0.01 (dashed), γ = 0.02 (dashed-
dotted) and γ = 0.03 (dotted). Numerically, we used the method (3.28) with M1 = M2 = 100 and
N = 500.
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(xj , tn) for each j ∈ J and each n ∈ IN . Then (ǫn)N
n=0 satisfies

µtδ
(2)
t ǫn

j −
p∑

i=1

µtδ
(αi)
xi

ǫn
j + γδ

(1)
t ǫn

j + δ
(1)
v,tG(vn

j ) − δw,tG(wn
j ) = Rn

j , ∀(j, n) ∈ J × IN−2,

such that

{
ǫ0

j = δtǫ
0
j = 0, ∀j ∈ J,

ǫn
j = 0, ∀(j, n) ∈ ∂J × IN .

(3.87)

Following the proof of Theorem 3.15, let G̃n
j = δ

(1)
v,tG(vn

j )−δw,tG(wn
j ) for each j ∈ J and each n ∈ IN−1.

Proceeding as in the proof of that theorem, we readily obtain

1

2
‖δ(1)

t ǫk+1‖2
2 +

p∑

i=1

‖Λ(αi)
xi

ǫk+1‖2
2 ≤ ρk+1 +

5

2
pτ2g

(α)
h

p∑

i=1

‖Λ(αi)
xi

ǫk+1‖2
2 + C5τ

k∑

n=0

ωn, ∀k ∈ IN−1,

(3.88)

where C5 is as before, and

C4 = max{C2 + 80C0T
2, 11, 1 + η0, 20T + 2}, (3.89)

ρk = C4

(
‖ǫ0‖2

2 + µt‖δ(1)
t ǫ0‖2

2 +

p∑

i=1

‖Λ(αi)
xi

ǫ1‖2
2 + τ

k−1∑

n=0

‖Rn‖2
2

)
, ∀k ∈ IN−1, (3.90)

ωk =
1

2
‖δ(1)

t ǫk‖2
2 + (1 − η0)

p∑

i=1

‖Λ(αi)
xi

ǫk‖2
2, ∀k ∈ IN−1. (3.91)

Subtracting the second term of the right-hand side of (3.88) from both sides of that inequality assures

that the hypotheses of Lemma 3.13 are satisfied. Using the conclusion of that result, the consistency

property of our method and the homogeneous initial-boundary conditions of (3.87) we obtain that

1

2
‖δ(1)

t ǫk‖2
2 +

p∑

i=1

‖Λ(αi)
xi

ǫk‖2
2 ≤ C4e

C5kτ τ
k−1∑

n=0

‖Rn‖2
2 ≤ C6(τ2 + ‖h‖2

2)2, ∀k ∈ IN−1. (3.92)

Here C6 = C4C2eC5TT and C is the constant of Theorem 3.14. The conclusion of the theorem readily

follows from the last inequality.

Finally, we provide some numerical approximations of the solution of problem (3.3) that show the

capability of (3.28) to preserve the energy. The simulations were obtained using an implementation of

our method in c©Matlab 8.5.0.197613 (R2015a) on a c©Sony Vaio PCG-5L1P laptop computer with

Kubuntu 16.04 as operating system. In terms of computational times, we are aware that better results

may be obtained with more modern equipment and more modest Linux/Unix distributions.

In a first stage, we consider undamped and damped one-dimensional forms of problem (3.3).

Example 3.17 (One-dimensional problem). Let 0 < ω < 1. In this example, we let G(u) = 1 − cosu

for all u ∈ R, and use the exact solution of the classical sine-Gordon equation described by

ϕ(x, t) = 4 arctan

( √
1 − ω2 cosωt

ω cosh
√

1 − ω2x

)
, ∀(x, t) ∈ R × (R+ ∪ {0}), (3.93)

to prescribe the initial conditions. Computationally, we consider the domain Ω = (−30, 30) × (0, 100),
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h1 = 0.5 and τ = 0.05. Figure 3.2 shows the numerical solution (left column) and the associated energy

density (right column) of the problem (3.3) obtained using (3.28) and (3.46), respectively, for ω = 0.9

and γ = 0. Various derivative orders were used, namely, α1 = 2 (top row), α1 = 1.6 (middle row) and

α1 = 1.2 (bottom row). The insets of the graphs of the right column represent the discrete dynamics

of the total energy (3.40) of the system. The results show that the discrete total energy is conserved,

in agreement with the theory established in this chapter and numerical results obtained through an

implicit nonlinear numerical method [60]. We have used different computational parameters and the

results (not presented here in view of their redundancy) show that the discrete total energy is likewise

conserved. This qualitative behavior is in agreement with Theorem 3.8.

Example 3.18 (One-dimensional problem). Consider now the same problem as in Example 3.17, but

letting γ = 0.05. The results of the simulations are shown in Figure 3.3. Obviously, in this case the

quantities En are not conserved in view of the presence of a nonzero damping term. These results are

in qualitative agreement with Theorem 3.8 and with the numerical simulations obtained in [60].

We consider now the problem (3.3) in two spatial dimensions.

Example 3.19 (Two-dimensional problem). Let Ω = (−5, 5) × (−5, 5) × (0, 10), and define G(u) =

1 − cosu for each u ∈ R. Consider the two-dimensional form of (3.3) with the initial conditions

obtained using by ϕ(x2 + y2, t), where ϕ is defined by (3.93) with ω = 0.8. Under these circumstances,

Figure 3.4 shows snapshots of the approximate solution of (3.3) at the times (a) t = 0.22, (b) t = 0.34,

(c) t = 0.46, (d) t = 0.58, (e) t = 0.70 and (f) t = 0.82. The model parameters employed in this example

were α1 = 1.8, α2 = 1.6 and γ = 0. Numerically, we used the method (3.28) with M1 = M2 = 100

and N = 500. The solutions appear to follow almost a periodic behavior. Moreover, Figure 3.5 shows

the dynamics of the energy for various values of α1 and α2, and different damping coefficients, namely,

γ = 0 (solid), γ = 0.01 (dashed), γ = 0.02 (dashed-dotted) and γ = 0.03 (dotted). The results illustrate

the fact that the total energy of the system is conserved in the case when γ = 0, while the system is

dissipative if γ = 0. The results are in agreement with the theorems derived in this chapter.
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Conclusions and discussions

Chapter 2 In this chapter, we considered a numerical method to approximate solutions of a semi-

infinite nonlinear chain of coupled oscillators ruled by modified sine-Gordon equations harmonically

driven at its end. The proposed finite-difference scheme is consistent order O(∆t)2 and we provided a

necessary condition in order for the method to be stable order n. The process of nonlinear supratrans-

mission for a coupled system of oscillators described by sine-Gordon equations was studied numerically

under the scope of this numerical technique, and the dependence of supratransmission on damping was

analyzed. Several conclusions can be drawn from our computational experiments on the sine-Gordon

system of coupled oscillators (2.1). First of all, we have shown that the phenomenon of harmonic

phonon quenching still appears in the presence of external and internal damping and that the discrep-

ancy region due to phonon quenching is shortened as the external damping coefficient is increased,

while it slightly widens as the internal damping coefficient increases. Second, the threshold value at

which supratransmission first occurs for fixed frequencies outside the discrepancy region is seen to

increase for both external and internal damping as the damping coefficient increases; both conclu-

sions are clearly consequences of the dispersive and dissipative natures of the parameters β and γ,

respectively.

It is worth noting that the bifurcation diagram for a value of the parameter β is approximately

equal to the corresponding diagram for the undamped system shifted β horizontal units to the right.

Likewise, a horizontal shift of
√

1 +m2 −1 units in the bifurcation diagram of a sine-Gordon system of

mass m with respect to the corresponding massless system is observed for small masses and frequencies

outside the discrepancy region. At the samt time, we have proposed a simple mathematical model

to transmit binary information in discrete, semi-infinite chains of couped oscillators using the process

of nonlinear supratransmission. In the absence of dispersive and dissipative effects, our model (which

is based on the modulation of amplitudes of source signals with constant frequency) has shown to

be highly reliable for sufficiently long periods of single-bit generation, independently of the distance

between the source of transmission and the point of reception.

When weak damping is present the general picture does not change much. Stronger damping,

however, manifests itself through a substantial decrease in the amplitude of the maximum local energy

of the moving breathers with respect to the lattice site. In a forthcoming work, we will examine the

possibility to overcome this problem via the concatenation of chain systems, where the driving at the

beginning of each lattice will irradiate with an amplitude equal to a value just below its critical point

73



multiplied by the amplitude of the last site in the previous lattice. Finally, we wish to point out that

the problem of determining whether it is possible to design a propagation system of binary signals in

Josephson junction arrays still remains an open topic of research. Moreover, in view of the recently

discovered phenomenon of nonlinear infratransmission (or lower-transmission, as named by the authors

[47]), the problem of finding more efficient pathways to achieve signal transmission in other models is

still an open question of general interest.

Chapter 3 In this chapter, we considered a damped fractional extension of the classical nonlinear

wave equation in multiple spatial dimensions. The model under investigation is defined on a closed

and bounded interval of the real line, and it considers the presence of a general nonlinear potential

function that generalizes many particular models from mathematical physics, including the well-known

sine-Gordon and Klein–Gordon equations from relativistic quantum mechanics. Moreover, in this pa-

per we considered a space-fractional extension of the wave equation using Riesz fractional derivatives

of orders in (1, 2]. We show here that the multidimensional model under investigation possesses en-

ergy functionals which are preserved under suitable assumptions on the boundary conditions and the

parameters of the model. The exact resolution of the problem under study is a difficult mathematical

task, so the design of numerical techniques that are capable of preserving discrete energy functions is

a problem that merits further investigation.

Motivated by the analytical difficulties to provide exact solutions of our fractional wave equation,

we designed an explicit finite-difference scheme to approximate its solutions. The numerical method is

based on the use of fractional centered differences, which provide second-order consistent approxima-

tions of fractional-order derivatives. Using operator theory, we show that the multidimensional discrete

fractional Laplacian is a positive and self-adjoint operator, whence the existence of a square root read-

ily follows. This fact is employed then to propose a discrete energy functional of the numerical method

which, under suitable conditions on the boundary conditions and the model parameters, is preserved

at each discrete time. Additionally, the method is a second-order consistent discretization of the prob-

lem under investigation, and the simulations provided in this work show that the energy is conserved

throughout time when the assumptions of the relevant theorems on energy preservation are satisfied.

For the sake of convenience, a computer implementation of our method in the one-dimensional case is

provided as an appendix.

This work was motivated by many seminal papers published by L. Vázquez and coworkets in

the 1970s on the design of energy-preserving finite-difference schemes for nonlinear partial differen-

tial equations. Many nonlinear partial differential equations of integer order are known to posses

energy functionals that are preserved under suitable boundary conditions, including models like the

Schrödinger, the sine-Gordon and the nonlinear Klein–Gordon equations from relativistic quantum

mechanics, just to mention some wave equations of physical relevance. Several groups of researchers

have developed reliable numerical techniques to approximate the solutions of these and other nonlin-

ear conservative systems as well as the constant energy functionals associated to them. On a personal

note, the most notable contributions were the energy-preserving finite-difference methodologies pro-

posed for the Schrödinger [99], the sine-Gordon [6, 26] and the nonlinear Klein–Gordon regimes [95].

Those works have been the sources of motivation for the numerical investigation carried out in the

present manuscript. In many senses, these works constitute the formal birth of the discrete variational

derivative method, whose use has been widely accepted in the specialized literature [31, 68, 32].
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