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Ángela Paulina Pérez Dı́az
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Resumen

En esta investigación se muestran los efectos de incorporar funciones cópula a la clasificación

supervisada. Las dependencias entre variables en un conjunto de datos pueden ser lineales o

no lineales y las funciones cópula son capaces de modelar diferentes tipos de dependencias por

lo que resultan una herramienta flexible para modelar dichas dependencias.

La clasificación supervisada es la que se da cuando se tienen clases identificadas aśı como las

caracteŕısticas de los objetos que forman parte de cada clase, de esa manera si se tienen nuevos

objetos de los cuales se conocen sus caracteŕısticas pero no la clase, es posible asignar el objeto

a la clase con la que tenga más similitudes según sus caracteŕısticas.

Por medio de una serie de experimentos que se realizaron con dos bases de datos diferentes: Base

de datos de imágenes de Microsoft [26] y Conjunto de datos de digitos escritos a mano alzada

[15], se exponen los resultados que arroja modelar dependencias en clasificación supervisada

entre los pares de variables con dependencias más importantes identificados por medio de un

modelo gráfico de cadena. Estos resultados son comparados con un clasificador que no considera

las dependencias entre variables también conocido como clasificador ingenuo de Bayes.

Los resultados de las muestras analizadas revelan una mejora de hasta 8.3% en algunos casos

de clasificación supervisada cuando se incorporan funciones cópula debido a que el desempeño

del clasificador es más alto cuando se consideran dependencias que cuando no se hace. Este

porcentaje representa una diferencia estad́ısticamente significativa.
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Abstract

This research shows the effects of incorporating copula functions into supervised classification.

The dependencies among variables in a dataset can be linear or non-linear and copula functions

are able to model different types of dependencies, which make them a flexible tool for modeling

these dependencies.

Supervised classification is the one that occurs when the classes are known as well as the char-

acteristics of the objects that are part of each class, that way if there are new objects of which

their characteristics are known but not the class, the object can be assigned to the class with

which it has most similarities according to its characteristics.

By means of a series of experiments that were carried out with two different databases: Im-

ages database from Microsoft [26] and Handwritten digits dataset [15], the results of modeling

dependencies in supervised classification between the pairs of variables with more important

dependencies identified by means of a graphic chain model are presented. These results are

compared with a classifier that does not consider dependencies between variables also known

as naive Bayes’ classifier.

The results of the analyzed samples reveal an improvement on the average of the experiments

of up to 8.3% in some cases of supervised classification when copula functions are incorporated

due to the performance of the classifier which is higher when dependencies are considered than

when they are not. This percentage represents a statistically significant difference.
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1. Introduction

Classification is commonly used nowadays in several sectors like industry [20] and healthcare

[1], among others. For instance, in a bank when it is necessary to determine if a person is

suitable to receive a bank credit or in a juice company to decide if a fruit is appropriate to

create a product, it is necessary to classify.

The terminology in classification can vary, the attributes of an object may also be called fea-

tures, characteristics, variables, among others [8], the classes can also be called categories or

groups.

By knowing the features of certain objects and the class or group where they belong, it is

desirable that having a new object whose characteristics are known but not the class to which

it belongs, it could be known to which group it should be assigned. There is a wide variety of

these characteristics, they could be quality features, requirements or any feature that distin-

guishes an object from other objects and provides important information about it. Moreover,

depending on the type of object and the characteristics that are known, not all the character-

istics are always useful for the classification.

There are different types of classification, the one described in the previous paragraph and

which is being used in this work is known as supervised classification, whose main objective is

to group similar objects into different categories based on their features. In supervised clas-

sification, the classes and the features of the objects that are part of those classes are known

in advance. This information known as training data provides the classifier with important

information to identify the test objects which are the ones to be classified and whose category

is unkown.

On the other hand, the use of copula functions is increasing considerably in machine learning

thanks to the fact that they provide a flexible tool to build multivariate distributions from

marginals which are modeled by different distributions, and a copula function that links these

marginals [7].

A copula function is a probability distribution whose main objective is to model dependen-

cies among variables. Copula functions join multivariate distribution functions to their one-

dimensional marginal distribution functions [19].

Copula theory, introduced by Sklar in [33] to separate the effect of dependence from the effect

of marginal distribution in a joint distribution, allows modeling linear and non-linear depen-
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dencies [30].

The intention in this work is to take into account, when classifying, not only the features of

the objects but also the most important dependencies among them, to use a graphical model

as a tool to identify the most important dependencies and avoid the computational cost that

can result from taking all the dependencies. It is intended to observe an improvement in the

performance of classifiers when modeling dependencies by using gaussian kernel densities, a

graphical model and copula functions.

This work is presented in 7 chapters, the Chapter 2 presents the state of the art where the main

concepts to understand the methodology used are explained in detail and the literature review

is presented, in that chapter an analysis of the proposals of various authors with researches

related with this study is done.

Chapter 3 addresses the research problem where the objectives and hypothesis are raised, the

motivation an research question are also presented.

The methodology of the research and how the investigation was carried out is presented in

Chapter 4.

Chapter 5 presents the experiments performed and the results obtained, it also describes the

databases used.

Chapter 6 presents the discussion, in that chapter an analysis of the results obtained as well as

the limitations of the study, recommendations and future work that could continue after this

research is performed.

Finally, in Chapter 7, the conclusions are presented.
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2. State of the Art

2.1 Classification

A class is a group of similar objects but not necessarily identical, they could be associated by

their similar features but they are different from objects of other classes. The main idea on

classification is to identify features from objects and assign the objects to the class where they

fit best by taking into account the feature values.

According to [36], classification is the grouping together of similar objects. If each object

is characterized by d variables, classification can be performed according to rational criteria.

Depending on the criteria used, an object could potentially belong to several classes.

Humans are able to naturally classify since the recognition of objects is done instinctively

on a daily basis, as well as the distinguishment of different sounds, smells and, visually, the

recognition of many things like faces and objects. It is even possible to distinguish one object

from another when they are in motion, with different shapes, lighting, etc. Because of the ease

with which humans recognize objects, it is hard to transmit the process to do it to a machine

[9].

Classification is usually the final step in a process [9] which is briefly outlined:

I The first step is sensing, where data is obtained, this could be done for instance with

a camera to obtain images, from a microphone to obtain sounds, etc. The information

obtained should be quality data to get the necessary attributes.

II The next step is pre-processing, in this step the object is conditioned for segmentation, an

image can be smoothed or the noise of an image, video, audio can be removed.

III Segmentation, this step is where the object is partitioned into regions of interest, an image

can be segmented in background and foreground, having in foreground the features of

interest and in background everything else.

IV Post-processing is the step that prepares the object to the feature extraction, for example

separated objects can be joint, holes can be filled, etc.

V The next step is feature extraction, in this stage, the attributes of the objects whose values

must be similar for objects in a particular class and different from the values of the rest of

9



the classes, are identified. The features selected for classification must be meaningful and

provide significant information depending on the application of the classification. From

the same object, different attributes can be used if the need for classification changes, for

instance if a group of people is classified by gender the features extracted would be different

from one where they are classified by the language they speak.

VI In the stage of classification, the objects are assigned to certain categories or classes based

on their feature information.

Classification can be either supervised or unsupervised. Supervised classification is used when

the classes and the attributes of some objects that belong to the classes are known in advance

thanks to some training information; on the other hand if the classes are unknown and a set

of objects is provided to a program in order for it to identify classes by recognizing similar

features in a subset of objects and different from the rest of subsets, then it is unsupervised

classification also known as clustering [9]. For this work, supervised classification is used.

2.1.1 Supervised Classification

Supervised learning or classification is a process that occurs when a set of rules are learned

from sample objects known as training data and an algorithm is implemented to identify those

rules in new samples known as test data [9].

When using email it is often easily identifiable if the received mail is spam or not, however it is

not optimal nor convenient to identify spam by our own so, this task is delegated to automated

filters that move or delete these kind of emails.

“An email filter is based on a set of rules applied to each incoming message, tagging it as spam

or “ham” (not spam). Such a filter is an example of a supervised classification algorithm.” [8],

these rules can be certain words on the subject or body of the email, the extension of some

files, etc., that identify an email as spam so, when a new message arrives if it fits with the rules

learned by the filter, it will classify it as spam.

An effective filter as well as any classifier should be able to successfully identify the greatest

amount of spam and unwanted emails without loosing legit emails which means that classifica-

tion must be accurate and efficient enough to not become a bottleneck [8].

There are multiple methods of supervised classification, some of them based on probabilistic

classification and some others based on non probabilistic classification. Some of the most known
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methods are briefly explained as follows.

According with [39] a support vector machine tries to identify support vectors which are ob-

servations that are in the edge of an area that represents a limit between these classes of

observations and other classes of observations. The space between those regions is known as

the margin between classes.

Neural networks are learning algorithms based on the human brain, each neuron is connected

to other thousands of neurons and communicates with them. Learning is achieved by adjusting

the weights on the connections between nodes, which are analogous to synapses and neurons

[11].

A decision tree is a tree where each internal node is associated to a decision and the leaf nodes

are usually associated with a result or class. Every internal node tests one or more feature

values that lead two or more links. Each link is associated with a possible value of the decision

[18].

Nearest neighbor classification [10] is an automatic machine learning method whose main ob-

jective is to label unseen query objects until two or more classes are identified. As any classifier,

it requires training data with labels, thus is a supervised classification instance. In the simplest

variant, the query object inherits the label from the closest sample object in the training set.

Common variants extend the decision set from the single nearest neighbor within the training

data to the set of k nearest neighbors for any k > 1.

2.1.2 Probabilistic Classification

Probabilistic classification uses probabilistic distributions to assign the objects to a class, like

multivariate normal classifiers, bayesian network classifiers and even classifiers based on copula

functions among others [22]. However, there also exist non probabilistic classifiers which are

based on different methods that exclude the use of probability on them like neural networks or

support vector machines. For this work, a probabilistic classifier is used since copula functions

are part of the classification process executed.
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2.2 Maximum Likelihood

According with [2], “The joint density function of n random variables X1, ..., Xn evaluated at

x1, ..., xn, say f(x1, ..., xn; θ), is referred to as a likelihood function. For fixed x1, ..., xn the

likelihood function is a function of θ and often is denoted by L(θ).

If X1, ..., Xn represents a random sample from f(x; θ), then:

L(θ) = f(x1; θ) · · · f(xn; θ), (2.1)

Let L(θ) = f(x1, ..., xn; θ), θ ∈ Ω, be the joint pdf of X1, ..., Xn. For a given set of observations,

(x1, ..., xn), a value θ̂ in Ω at which L(θ) is a maximum is called a maximum likelihood estimate

(MLE) of θ. That is, θ̂ is a value of θ that satisfies: ”

f(x1, ..., xn; θ̂) = maxf(x1, ..., xn; θ)

θ ∈ Ω
(2.2)

An example of the use of maximum likelihood can be seen in the graphs shown next. In Figure

2.1 (a) The log-likelihood function of a sample of random exponential values is shown, where

θ2 is the parameter that maximizes the function while θ1 and θ3 are some other parameters.

Maximizing the likelihood is equivalent to maximizing the log-likelihood [4].

In Figure 2.1 (b), θ1, θ2 and θ3 have been represented in the histogram of the same exponential

density sample and it can be noticed that θ2, the parameter that maximizes the log-likelihood

function, is the one that fits the most to the model. Therefore θ2 becomes the maximum

likelihood estimate.
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(a) (b)

Figure 2.1: (a) Log-likelihood function of an exponential density sample. (b) Histogram of the
same exponential density sample with three different proposals for the parameter θ represented.

2.3 Copula Theory

Copula theory was introduced by Sklar [33] to separate the effect of dependence from the

effect of marginal distributions in a joint distribution, the use of copula functions in this work

is to model dependencies. The separation between marginal distributions and a dependence

structure provides flexibility even when the marginals are not of the same type.

Definition 1 A copula function is a joint distribution function of standard uniform random

variables. That is,

C(u1, u2, . . . , ud) = P[U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud],

where Ui ∼ U(0, 1) for i = 1, 2, . . . , d.

Theorem 1 (Sklar’s Theorem) Let F be a d-dimensional distribution function with marginal-

s F1, F2, . . . , Fd, then there exists a copula C such that for all x in Rd
,

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)),

where R denotes the extended real line [−∞,∞]. If F1(x1), F2(x2), . . . , Fd(xd) are all continuous,
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then C is unique. Otherwise, C is uniquely determined on Ran(F1)×Ran(F2)× . . .×Ran(Fd),

where Ran stands for the range.

Due to Sklar’s theorem, any d-dimensional density can be represented as:

f(x1, x2, . . . , xd) = c(F1(x1), F2(x2), . . . , Fd(xd))×
d∏
i=1

fi(xi), (2.3)

where c is the density of the copula C, Fi(xi) is the marginal distribution function of random

variable Xi, and fi(xi) is the marginal density of variable Xi. Equation (2.3) shows that the

dependence structure is modeled by the copula function.

For this research, two-dimensional parametric copula functions are used to model the depen-

dence structure of random variables associated by a joint distribution function. Table 2.1

shows the distribution functions of the following bivariate copula functions which are used in

this investigation: Independent, Ali-Mikhail-Haq (AMH), Clayton, Farlie-Gumbel-Morgenstern

(FGM), Frank, Gaussian and Gumbel. The dependence parameter θ regulates the strength of

association between variables.

Figure 2.2 shows the dependence structure for each copula where θ is a parameter belonging

to a subset especified in Tables 2.1 and 2.2 and, as can be seen, the dependence structure is

different for every copula. For instance, AMH and FGM model modest dependence. AMH,

Clayton, FGM, Frank and Gaussian can model positive and negative dependence but Gumbel

copula does not model negative dependence. The gaussian copula models strong dependence

on extreme values and weak dependence on centered values, etc. These copula functions are

chosen because they cover a wide range of dependencies. The reader interested in copula theory

is referred to [19]. The density functions of these copulas are shown in Table 2.2.

The dependence parameter θ of a bivariate copula function can be estimated through the max-

imum likelihood method (ML). The one-dimensional log-likelihood function, see Equation(2.4),

is maximized and its optimal value is used as parameter since it has better properties than

other estimators as explained in [38].

` (θ; {(u1i, u2i)}ni=1) ≈
n∑
i=1

log (c(u1i, u2i; θ)) , (2.4)

Assuming that the marginal distributions are known, the observations {(u1i, u2i)}ni=1 in Equa-

tion (2.4) are obtained by using the marginal distribution functions of variables X1 and X2 [30].
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Table 2.1: Bivariate Copula Distributions.

Copula Description

Independent
C(u1, u2) = u1u2

AMH
C(u1, u2) =

u1u2

1− θ(1− u1)(1− u2)
; θ ∈ [−1, 1)

Clayton
C(u1, u2) = max

{(
u−θ1 + u−θ2 − 1

)−1/θ
, 0

}
; θ ∈ [−1,∞)\{0}

FGM
C(u1, u2) = u1u2 (1 + θ(1− u1)(1− u2)) ; θ ∈ [−1, 1]

Frank
C(u1, u2) = −

1

θ
ln

(
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

)
; θ ∈ (−∞,∞)\{0}

Gaussian
C(u1, u2) =

∫Φ−1(u1)
−∞

∫Φ−1(u2)
−∞

e
−

1

2
t′
∑−1 t

2π|∑ |1/2
dt1dt2; θ ∈ (−1, 1)

where
∑

is a correlation matrix with
∑

12 = θ

Gumbel
C(u1, u2) = exp

(
−
(
ũθ1 + ũθ2

)1/θ
)

; θ ∈ [1,∞)

where ũ1 = −ln(u1) and ũ2 = −ln(u2)

AMH Clayton FGM
θ = 0.999 θ = 1.968 θ = 0.999

Frank Gaussian Gumbel
θ = 8.443 θ = 0.844 θ = 3.047

Figure 2.2: Bivariate dependence structure with different copulas.
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Table 2.2: Bivariate Copula Densities.

Copula Description

Independent
c(u1, u2) = 1

AMH
c(u1, u2; θ) =

1 + θ(u1 + u2 + u1u2 − 2)− θ2(u1 + u2 − u1u2 − 1)

(1− θ(1− u1)(1− u2))3
; θ ∈ [−1, 1)

Clayton
c(u1, u2; θ) = (1 + θ) (u1u2)

−θ−1
(
u−θ1 + u−θ2 − 1

)−2−1/θ
; θ ∈ [−1,∞)\{0}

FGM
c(u1, u2; θ) = 1 + θ(1− 2u1)(1− 2u2); θ ∈ [−1, 1]

Frank
c(u1, u2; θ) =

−θ(e−θ − 1)e−θ(u1+u2)

((e−θu1 − 1)(e−θu2 − 1) + (e−θ − 1))
2 ; θ ∈ (−∞,∞)\{0}

Gaussian
c(u1, u2; θ) =

(
1− θ2

)−1/2
exp

(
−(x21 + x22 − 2θx1x2)

2(1− θ2)
+

(x21 + x22)

2

)
; θ ∈ (−1, 1)

where x1 = Φ−1(u1) and x2 = Φ−1(u2)

Gumbel
c(u1, u2; θ) =

exp
(
−
(
ũθ1 + ũθ2

)−1/θ
)

u1u2

(ũ1ũ2)
θ−1(

ũθ1 + ũθ2
)2−1/θ

(
(ũθ1 + ũθ2)

1/θ + θ − 1
)

; θ ∈ [1,∞)

where ũ1 = −ln(u1) and ũ2 = −ln(u2)

2.4 Bayes Theorem

As explained before, this work is done through a probabilistic classifier by using Bayes theorem

shown in Equation (2.5) [9], which proposes the estimation of conditional probability of an

event “A”, given event “B” but it is necessary to know in advance the conditional probability

of “B” given “A”.

P (A|B) =
P (B|A)× P (A)

P (B)
(2.5)

For the purpose of this work, it is possible to know the probability that an object has to belong

to a group A given some features B because the conditional probability of an object that has
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certain features B when it does belong to a class A is known in advance due to training data.

Based on Bayes theorem, there is the naive Bayes classifier [9], which is based on applying Bayes’

theorem but assuming that each feature is independent of any other feature given the class,

meaning, it does not take into account the association that may exist between its features,

a conditional independence is assumed. An example considering three features (B1, B2, B3)

can be seen in Equation (2.6)[22]. Notice that P (A|(b1, b2, b3)) is the short representation of

P (A|(B1 = b1, B2 = b2, B3 = b3)) since capital letters represent random variables and lowercase

letters represent a value of the random variables.

P (A|(b1, b2, b3)) =
P (b1|A)P (b2|A)P (b3|A)P (A)

P (b1, b2, b3)
(2.6)

which can be represented in a graphical model as shown in Figure 2.3.

B1 B2 B3

A

Figure 2.3: Graphical model that represents naive Bayes classifier as seen in Equation (2.6)
where conditional independence is assumed.

However there are also classifiers by dependency, as shown in Equation (2.7), that, unlike the

previous ones, they consider the association between features of the objects, notice that for

Equation (2.7) only three features are considered also [22].

P (A|(b1, b2, b3)) =
P ((b1, b2, b3)|A)P (A)

P (b1, b2, b3)
(2.7)

which can be represented in a graphical model as shown in Figure 2.4.
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B1 B2 B3

A

Figure 2.4: Graphical model that represents dependence among variables as seen in Equation
(2.7).

2.5 Gaussian Kernel Density

“Kernel Density Estimation estimates the probability density function by imposing a model

function on every data point and then adding them together. The function applied to each

data point is called a kernel function. For example, a Gaussian function can be imposed on

every single data point, making the center of each Gaussian kernel function the data point that

it is based on. The standard deviation of the Gaussian kernel function adjusts the dispersion

of the function and is called a bandwidth of the function.

Given sufficiently large sample data, KDE can converge to a reasonable estimate of the proba-

bility density. As there are no specific finite parameters imposed on the observations, KDE is

a nonparametric method. The univariate KDE can be expressed as:

f(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (2.8)

where K(.) is the density kernel; x is a test instance point; Xi is a training instance point, which

controls the position of the kernel function; h is the bandwidth of the kernel, which controls

the dispersion of each kernel; and n is the number of data points” [16].

Because of the flexibility that it provides [13], for this work gaussian kernel density is used to

evaluate the marginal distribution, gaussian kernel provides smoothness which is sensible for

most datasets. Figure 2.5 shows a representation of kernel density for a sample dataset, the

representation is not uni-modal nor symmetric. The normality of data cannot be assumed and

that is the reason of using gaussian kernel density in this work.
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Figure 2.5: Kernel density estimate of a sample dataset.

2.6 Previous Research

Copula functions have been used in finance and other areas [23, 5], they are also being explored

in unsupervised classification as can be seen in [6, 17, 27, 35] and in supervised classification

[7, 31, 34, 29, 22, 30].

For instance, in [7] the authors solve a classification problem by using vine copulas to model

dependencies of multidimensional distributions. In that work, the inversion of Kendall’s tau

is used to estimate the parameters of bivariate copulas and to model a Dvine copula, the ex-

periments are done using: 1. Product copulas. 2. Only Gaussian copulas and 3. Pair-copulas

selected from a catalogue of candidate copulas that consists of Product, Gaussian, Clayton and

Gumbel functions.

In [31] four datasets are used to experiment over classification problems with the help of copula

theory and suitability of different copula functions in data mining is compared. Eight copula

functions are used: Gaussian, Student-t, Clayton, Gumbel, Frank, Hierarchical Clayton, Gum-

bel and Frank functions whose structure is estimated using Okhrin’s algorithm, however no

graphical model is employed.

A copula-based bayesian classifier is compared with naive bayes and neural networks classifier

in terms of accuracy in [34]. Eight real-world datasets are used however no graphical model is

used and the copula parameter is estimated by inversion of pairwise Kendall’s tau.

In [29] the Gaussian copula function is used to model probabilistic dependencies in supervised

classification for pixel classification in 50 images, by means of accuracy and Tanimoto coeffi-
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cient, an independent probabilistic model and a copula-based model that takes into account a

dependence structure are compared.

In [32] also only Gaussian copula is used for pattern recognition but discrete and mixed features

are taken into consideration.

In [22] and [30] copulas AMH, Clayton, FGM, Frank, Gaussian and Gumbel are incorporated

to supervised classification. Only a set of experiments with 50 images is done and each copula

performance is evaluated separately.

For this work, the use of six copulas is proposed (AMH, Clayton, FGM, Frank, Gaussian and

Gumbel) to model dependence, the parameter of dependence is selected with the help of the

maximum likelihood method. For the marginal distributions, gaussian kernel densities are used

but also a graphical model that takes into account the most important dependencies is em-

ployed.

Each copula performance is evaluated separately but also a copula selection is done according

to the highest likelihood results. Four sets of experiments are performed, explained in detail in

Chapter 5.
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3. Research Problem

Supervised classification has been used in various areas of generation and application of knowl-

edge such as industry, healthcare science, computer science, among others. It is well known

that is practically impossible to have classifiers be 100% accurate, however, it has consistently

been sought to obtain a classifier as precise as possible.

On the other hand, copula functions have been used to help in some areas like economics,

finance, civil engineering, data analysis, etc.[3, 21, 23, 28] but little has been explored about

copula functions in supervised classification.

Since copulas provide a tool to construct multivariate distributions from marginals of different

distributions and a function (copula function) that links those marginals, the intention is to

incorporate the advantages of modeling dependencies through copula functions to a supervised

classifier.

3.1 Research Question

What would be the performance of a probabilistic classifier if copula functions were incorporated

into supervised classification?

3.2 Motivation

Conducting this work responds to the interest of considering if supervised classification with

copula functions incorporated is competitive when compared with classifiers that do not use

copula functions or do not explicitly take into consideration the dependence among variables.

The improvement in classification by using copula functions could benefit to all those areas that

work with supervised classification and can provide a whole new subject to further investigate

in pattern recognition.

This research shows the performance of a supervised classifier when copula functions are incor-

porated and with this, it is intended to spread the results of the work and the future work that

it can generate.
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3.3 Objective

3.3.1 General Objective

The main objective of this work is to incorporate the copula theory in the design of a proba-

bilistic classifier and evaluate its performance.

3.3.2 Specific Objectives

1. Model dependencies in supervised classification through copula functions.

2. Use a graphical model to select the most important dependencies.

3. Get the performance of a classifier using real datasets and copula functions.

4. Analyze the feasibility of incorporating copula functions into supervised classification.

5. Compare supervised classification with independence vs. dependence.

3.4 Research Hypothesis

The incorporation of copula functions to model dependencies has been successfully applied to

some areas, that is why it is believed that incorporating copula functions in supervised clas-

sification can improve the results. Given that copulas model dependencies, it is possible to

provide more information to the classifier rather than working with independence. Since in

this investigation supervised classification is used, modeling dependencies implies getting more

training information to work with and having a better overview when the decision of assigning

the object to the class is made.

To incorporate the dependency information, a graphical model is used to get enough informa-

tion to classify without significantly affecting the computational cost.

Since naive Bayes classifier is considered as a good option to classify objects [40], it is be-

lieved that using a classifier applying Bayes theorem but considering dependencies, provides a

competitive method that can offer alternative solutions to multiple areas.
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4. Methodology

4.1 Graphical Chain Model

As known, copula functions can model dependencies among variables. The proposal in this work

was to use a graphical model as a tool and select the most important bivariate dependencies.

“Graphical models are probability models for multivariate observations to analyze and visualize

conditional relationships between random variables encoded by a conditional independence

graph” [25].

The dependence structure is based on a chain model which, for a d-dimensional continuous

random vector represents a probabilistic model with density [30]:

fchain(x) = f (xα1)
d∏
i=2

f
(
xαi|xα(i−1)

)
, (4.1)

where ~α = (α1, . . . , αd) is a permutation of the integers between 1 and d. An example of a

graphical chain model for a three dimensional vector is shown in Figure 4.1 [30].

Xα1 Xα2 Xα3

fchain(x) = f (xα1) f (xα2|xα1) f (xα3|xα2)

Figure 4.1: Joint distribution over 3 variables represented by a graphical chain model.

4.2 Kullback-Leibler Divergence

To properly use a chain model, it is necessary to select the dependencies to be used, one way

to select the most important dependencies, the permutation ~α, is through Kullback-Leibler

divergence (DKL). DKL is an information measure between two distributions [37]. It is always

non-negative for any two distributions, and is zero if and only if the distributions are identical

[30]. Hence, the Kullback-Leibler divergence can be interpreted as a measure of the dissimi-

larity between two distributions. Then, the goal is to choose a permutation ~α that minimizes

the Kullback-Leibler divergence between the true distribution f(x) of the dataset and the dis-

tribution associated to a chain model, fchain(x). For instance, the Kullback-Leibler divergence
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between joint densities f and fchain for a continuous random vector X = (X1, X2, X3) is given

by:

DKL (f ||fchain) = Ef

[
log

f(x)

fchain(x)

]
= −H(X) +

∫
log (f (xα1) f (xα2|xα1) f (xα3 |xα2)) fdx. (4.2)

The first term in Equation (4.2), H(X), is the entropy of the joint distribution f(x) and does

not depend on the permutation ~α. By using copula theory and Equation (2.3), the second term

can be decomposed into the product of marginal distributions and bivariate copula functions.

DKL (f ||fchain) = −H(X) +
3∑
i=1

H(Xi)

−
∫

log (c (uα1 , uα2 ; θα1,α2)) fdx

−
∫

log (c (uα2 , uα3 ; θα2,α3)) fdx. (4.3)

The second term of Equation (4.3), the sum of marginal entropies, also does not depend on the

permutation ~α. Therefore, minimizing Equation (4.3) is equivalent to maximize the sum of the

last two terms. Once a sample of size n is obtained from the joint density f , the last two terms

can be approximated by a Monte Carlo approach:

∫
log (c (uα1 , uα2 ; θα1,α2)) fdx ≈

1

n

n∑
i=1

log (c (u1i, u2i; θα1,α2)) . (4.4)

Through Equation (4.4), the DKL is minimized by maximizing the sum of the log-likelihood for

the copula parameters. Note that the log-likelihood allows to estimate the copula parameter

and to select the appropriate permutation ~α. Finally, by means of copula theory, a graphical

chain model for a three dimensional vector has the density

fchain(x) = f (xα1) f (xα2) f (xα3) c
(
uα1 , uα2 ; θ̂α1,α2

)
c
(
uα2 , uα3 ; θ̂α2,α3

)
(4.5)

And it is represented as Figure 4.2

24



Xα1 Xα2 Xα3

copula copula

Figure 4.2: Graphical representation of Equation (4.5).

4.3 Evaluation Metrics

To evaluate the performance of the classifiers three evaluation metrics were used. Accuracy

that shows the amount of data correctly classified, sensitivity and specificity (for two classes)

that show the amount of data correctly classified for positive class and negative class.

One of the classes will be considered as positive and the another one as negative, thus, true

positive is the data correctly classified in positive class, false positive is the data incorrectly

classified in positive class, true negative is the data correctly classified in negative class and

false negative is the data incorrectly classified in negative class as explained in Figure 4.3.

In the case when there are more than two classes, it is not possible to get sensitivity and

specificity.

Truth

Positive Negative

Model
Positive tp fp

Negative fn tn

accuracy =
tp+ tn

tp+ fp+ fn+ tn

sensitivity =
tp

tp+ fn

specificity =
tn

tn+ fp

(a) (b)

Figure 4.3: (a) Confusion matrix for binary classification, tp stands for true positive, fp is false
positive, fn is false negative, and tn is true negative. (b) Definitions for accuracy, sensitivity
and specificity used in this work.

4.4 Step by Step Methodology

The classifiers to perform the experiments were developed in python. “Python is a general-

purpose programming language. That means that it was designed and developed to write

software for a wide variety of disciplines” [14], it is an easy and intuitive language, the environ-

ment is almost completely platform-independent and the code written in python is platform
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independent [14]. Another advantage of python is that it is open source, it is an interpreted

language. The steps followed to get the evaluation metrics are the following:

I The first step is to extract the attributes of the objects in training data, meaning the ones

that have a class assigned.

II It is obtained gaussian kernel distribution for every attribute in each class as described in

the following pseudocode.

Pseudocode for getting gaussian kernel distribution

1. for i = 1 to i = No. classes

2. for j = 1 to j = No. attributes

3. yij = probability density function PDF of classi attributej

4. Yij = Integrate yij to get the cumulative distribution function CDF

III Get the dependence parameter (θ) and log-likelihood for every pair of attributes. To do

so, it is necessary the maximum likelihood method, this step is described in the following

pseudocode.

Pseudocode for getting θ and maximum log-likelihood

1. for i = 1 to i = No. classes

2. for j = 1 to j = No. attributes

3. for k = j + 1 to No. attributes

4. Maximize (log-likelihood of copula (classi attributej, classi attributek))

5. return maximum log-likelihood, θ that maximizes the log-likelihood

IV Having the values of the dependence parameter and log-likelihood for each pair of at-

tributes, the graphical chain model is formed with the most important dependencies, in

the case of three variables instead of taking into account all the dependencies as seen in

Figure 4.4 (a), the two most important dependencies were used as seen in Figure 4.4 (b)
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B1 B2 B3 B1 B2 B3

(a) (b)

Figure 4.4: (a) Graphical representation of all dependencies between an object with three
attributes. (b) Graphical chain model of an object with three attributes.

V Get the copula densities using the extracted parameter for the most important dependen-

cies.

VI Then, using Bayes theorem, it is necessary to get the probability that every test object

has of belonging to each class and it is classified where the probability is the highest, the

proposed model for a three variables example is shown in Equation 4.6.

P (b1, b2, b3|A) = P (b1|A)× c(FB1 , FB2|A)× P (b2|A)× c(FB2 , FB3|A)× P (b3|A) (4.6)

VII The final step is to get the evaluation metrics to know the performance of the classification.
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5. Experiments and Results

5.1 Images from Microsoft Repository

The first stage of experiments were done with pixel classification. From raster images also

known as digital images (the reader interested in knowing what a raster image is, is referred

to [24]) taken from [26], having three features: Red (R), Green (G) and Blue (B) and two

established classes: background and foreground. The features and the class where the pixels

belonged were used, extracted from training data to classify test data. It will be explained with

more detail in the next paragraph.

Microsoft repository [26] provided three different images for each picture; see Figure 5.1 the

first one is the color image called ”ELEPHANT” from where the RGB information is extracted,

the second image in gray scale represents the training data for both classes and test data, the

third image is correctly classified and it is the image that allowed to evaluate the performance

of the implemented classifiers.

(a) (b) (c)

Figure 5.1: (a) Color image. (b) Image that shows the training data for background (dark gray),
foreground (white) and test data (gray). (c) Correctly classified image, background (black) and
foreground (white).

The experiments were done with 50 images shown in Figure 5.2. Thanks to the color image,

three features were obtained: R, G and B. Every feature on each pixel has a value from 0 to

255 that represents the color intensity.
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Figure 5.2: 50 color images from Microsoft repository.

A color image can be represented in a 3-dimensional matrix to keep data for R, G and B colors,

this is the information that was used as the attributes of every pixel to classify them.

As mentioned in [22], 30 of the 50 images were classified using normal distribution; the classifi-

cation was made in two ways: without taking into account the association among the features

and taking into account the dependencies or association among them. The results obtained in

one of the experiments of image called ”PERSON6” with a normal distribution and indepen-

dence between features are shown in Figure 5.3 (b). The evaluation metrics of the classification

with normal distribution and independence are: Accuracy - 62.65%, Sensitivity - 37.86% and

Specificity - 83.05% [22].

The same image was classified taking into account the dependency among the features, as can

be seen in 5.3 (c) and the results were: Accuracy - 82.65%, Sensitivity - 74.83%, Specificity -

89.08% [22].
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(a) (b) (c)

Figure 5.3: (a) Correctly classified image. (b) Image classified with normal density and inde-
pendence between features. (c) Image classified with normal density and dependence between
features.

It can be learned from Figure 5.3 that taking into account the dependencies between attributes

might provide an improvement in supervised classification, and after experimenting with 30

images a trend was noticed, but since the normality of the information cannot be assumed and

because of the flexibility that it offers, it was decided to use the gaussian kernel density instead

of the normal density.

As mentioned earlier, one of the advantages of using gaussian kernel density is the flexibility

that it provides, this flexible marginal density was used with independence at first, the results

are shown in Figure 5.4 (b) of image ”PERSON6”.

The evaluation metrics for the image shown in Figure 5.4(b) which was classified with gaussian

kernel density and independence among features were: Accuracy - 74.98%, Sensitivity - 58.46%,

Specificity - 88.77%.

Then, copula functions were incorporated in classifiers with gaussian kernel density; the main

objective was to model dependency among the attributes. In order to cover a considerable

amount of models, the classification was done with six different density copulas, the ones

mentioned before in Table 2.2

The classification was done by getting the copula parameter that maximizes the log-likelihood

in the copula function. The 50 images were classified using all six copulas; in Figure 5.4 (c), an

image classified with kernel density function and copula Frank is shown. The results on that

image were: Accuracy - 82.80%, Sensitivity - 74.03%, Specificity - 90.01%.
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(a) (b) (c)

Figure 5.4: (a) Correctly classified image. (b) Image classified with kernel density and by
independence. (c) Image classified by Frank copula.

Image 227092, wich is a vase, is another of the 50 images taken from [26] that was classified,

in Figure 5.5, the scatterplot in the domain of copulas of this image is shown.

FOREGROUND

Red-Green Red-Blue Green-Blue

BACKGROUND

Red-Green Red-Blue Green-Blue

Figure 5.5: Scatterplot of image 227092 in copulas domain (0-1) for each pair of variables.
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For the foreground, a dependence similar to an elliptical structure in the three pairs of variables

with strong dependence on queues and a weaker dependence on the center can be noticed. On

the other hand, for the background, there is a strong dependence near the center of the figure.

The image of the vase can be seen in Figure 5.6 where the color, labelling-lasso and correct-

ed classified images are shown. Fig 5.7 shows the image classified with independent, AMH,

Clayton, FGM, Frank, Gaussian and Gumbel copulas.

(a) (b) (c)

Figure 5.6: (a) The color image. (b) The labelling-lasso image with the training data for
background (dark gray), for foreground (white) and the test data (gray). (c) The correct
classification with foreground (white) and background (black).
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.7: (a) Independent copula. (b) AMH copula. (c) Clayton copula. (d) FGM copula.
(e) Frank copula. (f) Gaussian copula. (g) Gumbel copula.

The values for the metrics obtained by the classifiers when copulas were incorporated from the

50 images have been summarized in Table 5.1 [22]. All six copulas had a better behaviour than

the independent copula which represents no association among features.

An ANOVA test for comparing the mean accuracy among classifiers was done in [30]. The test

reports a statistical difference between Clayton, Frank, Gaussian and Gumbel copula functions

with respect to the independent copula (p-value < 0.05). The major difference in accuracy

with respect to the independent copula is given by the Frank copula. Accuracy, as described

in Figure 4.3, shows the amount of pixels that were classified correctly.
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Table 5.1: Descriptive results for evaluation metrics, the values with a statistical difference
between the copula and the independent are marked with an asterisk.

Copula Accuracy % Sensitivity % Specificity %

Model Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Independent 79.4 10.8 77.3 16.6 81.3 13.6

AMH 82.9 9.5 80.7 15.9 84.7 11.9

Clayton 86.1* 8.7 83.0 15.7 88.5 9.7

FGM 80.9 9.8 78.9 16.5 82.5 13.2

Frank 87.7* 7.1 87.1 12.2 88.1 9.0

Gaussian 86.0* 10.6 87.1 11.0 85.0 18.6

Gumbel 86.7* 8.2 87.0 10.9 86.5 13.2

5.1.1 Images with Random Sample

In a second stage of experiments the pixels were picked randomly. Instead of having the test

data in a frame around the foreground training information as in the previous experiments.

Both, the training and test data were randomly selected from the whole image.

The pixels were selected in the following order having 6 sets of pixels as shown in Table 5.2

Table 5.2: Sets of Sample Pixels.

Training data Test data

5% 95%

10% 90%

20% 80%

30% 70%

40% 60%

50% 50%

In Figure 5.8 there are shown the images with 5, 10, 20, 30, 40 and 50 percent of the pixels as

training data. The sample was selected randomly for both foreground and background training
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data. In (a) it can be seen how the image with training and test data looks for 5%, it is a vase

but the form is hardly visible because the 95% of the pixels are test pixels. In (b) and (c), the

same image but with 10 and 20 percent of the pixels respectively as training data is shown. In

Figure 5.8 (d), (e) and (f) the vase figure is more visible since the test pixels are less than in

previous images in (a), (b) and (c).

(a) (b) (c)

(d) (e) (f)

Figure 5.8: (a) Image with 5% of training data. (b) 10%. (c) 20%. (d) 30%. (e) 40%. (f) 50%.

The following Tables (5.3, 5.4, 5.5, 5.6, 5.7 and 5.8) show the mean and standard deviation of

the values of metrics (accuracy, sensitivity and specificity) of the 50 images from [26] taking

5%, 10%, 20%, 30%, 40% and 50% of the pixels as training data respectively.
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Table 5.3: Descriptive results for evaluation metrics with training data size of 5%, the values
with a statistical difference between the copula and the independent are marked with an asterisk.

Copula Accuracy % Sensitivity % Specificity %

Model Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Independent 84.2 10.5 82.3 14.1 84.5 11.1

AMH 86.6 10.4 83.5 15.3 87.2 11.8

Clayton 90.9* 6.5 89.9 10.2 91.5 6.9

FGM 85.2 10.6 82.7 15.6 85.8 11.9

Frank 91.6* 7.1 92.2 8.8 91.4 7.4

Gaussian 92.4* 6.8 92.9 7.8 92.3 7.5

Gumbel 92.2* 6.7 93.0 7.1 92.0 7.2

Table 5.4: Descriptive results for evaluation metrics with training data size of 10%, the values
with a statistical difference between the copula and the independent are marked with an asterisk.

Copula Accuracy % Sensitivity % Specificity %

Model Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Independent 84.2 10.4 82.3 13.8 84.5 11.0

AMH 86.6 10.4 83.8 15.0 87.1 11.8

Clayton 90.9* 7.4 90.2 9.7 91.2 7.7

FGM 85.3 10.7 83.0 15.2 85.7 11.9

Frank 91.7* 7.0 92.1 8.6 91.5 7.3

Gaussian 92.3* 6.8 92.9 7.8 92.2 7.5

Gumbel 92.1* 6.7 92.9 7.3 92.0 7.2
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Table 5.5: Descriptive results for evaluation metrics with training data size of 20%, the values
with a statistical difference between the copula and the independent are marked with an asterisk.

Copula Accuracy % Sensitivity % Specificity %

Model Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Independent 84.2 10.4 82.6 13.6 84.4 11.1

AMH 86.6 10.4 84.1 14.8 87.1 11.8

Clayton 90.9* 6.9 89.6 10.7 91.3 7.1

FGM 85.2 10.8 83.1 15.0 85.7 12.0

Frank 91.6* 7.1 92.3 8.7 91.4 7.5

Gaussian 92.3* 6.9 93.0 7.6 92.1 7.6

Gumbel 92.1* 6.7 93.1 7.1 91.9 7.2

Table 5.6: Descriptive results for evaluation metrics with training data size of 30%, the values
with a statistical difference between the copula and the independent are marked with an asterisk.

Copula Accuracy % Sensitivity % Specificity %

Model Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Independent 84.2 10.4 82.5 13.8 84.4 11.0

AMH 86.6 10.3 84.1 14.8 87.1 11.7

Clayton 91.5* 6.4 90.0 10.7 91.8 6.6

FGM 85.3 10.7 83.1 15.1 85.8 11.9

Frank 91.6* 7.1 92.3 8.6 91.4 7.4

Gaussian 92.3* 6.9 92.9 7.7 92.1 7.6

Gumbel 92.1* 6.8 93.1 7.1 91.8 7.3
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Table 5.7: Descriptive results for evaluation metrics with training data size of 40%, the values
with a statistical difference between the copula and the independent are marked with an asterisk.

Copula Accuracy % Sensitivity % Specificity %

Model Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Independent 84.3 10.3 82.5 13.7 85.0 10.1

AMH 86.7 10.3 84.2 14.8 87.1 11.7

Clayton 91.3* 6.5 89.6 10.6 91.7 6.8

FGM 85.4 10.5 83.1 15.1 85.8 11.8

Frank 91.6* 7.0 92.3 8.6 91.4 7.4

Gaussian 92.2* 6.9 92.8 7.7 92.1 7.6

Gumbel 92.1* 6.7 93.1 7.2 91.8 7.2

Table 5.8: Descriptive results for evaluation metrics with training data size of 50%, the values
with a statistical difference between the copula and the independent are marked with an asterisk.

Copula Accuracy % Sensitivity % Specificity %

Model Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Independent 84.3 10.3 82.5 13.6 84.5 10.9

AMH 86.6 10.3 84.1 14.8 87.1 11.7

Clayton 91.2* 6.6 89.2 12.0 91.6 6.8

FGM 85.4 10.5 83.1 15.0 85.9 11.8

Frank 91.6* 7.0 92.3 8.6 91.4 7.4

Gaussian 92.2* 6.9 92.8 7.7 92.1 7.6

Gumbel 92.1* 6.8 93.1 7.2 91.8 7.3

An ANOVA test for comparing the mean accuracy among classifiers was also done for these

experiments. The test reports a statistical difference between Clayton, Frank, Gaussian and

Gumbel copula functions with respect to the independent copula (p-value < 0.01).

With the results in the mean accuracy for all the experiments with random sample, meaning

with 5, 10, 20, 30, 40 and 50 percent of the pixels as training information, it was possible
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to build the graph shown in Figure 5.9 where it is visible that the mean accuracy of the 50

images is very similar for all different percentages of training data in all seven copulas including

independent.

With these results, it is believed that it is feasible to use less training data when using random

samples and the results will be equally valid when using more training information.

It can also be seen in Figure 5.9 that the copulas with a statistical difference between them

and independent copula (Clayton, Frank, Gaussian and Gumbel) are on top of the graph.

Figure 5.9: The graph shows the accuracy (y axis) of the 50 images with different sample size
percentage on training datasets (x axis).

5.1.2 Freehand Images with GIMP Editor

Thinking of the possibility of having users or customers selecting the training and test data, a

series of experiments were performed on the images by selecting freehand pixels with the help

of GIMP editor, which is a computer program for creating and editing digital images [12] as

seen in Figure 5.10.
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(a) (b) (c)

Figure 5.10: (a) The color image. (b) Image edited with GIMP, training data for background
and foreground (color) and the test data (gray). (c) The correct classification with foreground
(white) and background (black).

The experiments were performed in 50 images by following the same procedure. The background

and foreground training pixels were selected by freehand, after the training of the classifier, the

test pixels (gray in Figure 5.10 (b)) were introduced to the classifier to know the class where they

belonged. The results of mean and standard deviation for accuracy, specificity and sensitivity

of the 50 images selecting pixels by freehand are shown in Table 5.9.

Table 5.9: Descriptive results for evaluation metrics with GIMP editor, the values with a
statistical difference between the copula and the independent are marked with an asterisk.

Copula Accuracy % Sensitivity % Specificity %

Model Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Independent 83.6 11.4 80.8 15.4 83.9 12.0

AMH 86.5 10.6 82.1 15.8 87.1 11.6

Clayton 91.5* 6.2 87.6 12.8 92.0 6.3

FGM 84.9 11.5 81.3 16.2 85.5 12.5

Frank 92.2* 6.0 90.2 9.4 92.4 6.1

Gaussian 92.2* 7.0 90.9 9.3 92.3 7.4

Gumbel 91.8* 6.7 90.9 9.2 91.8 7.0
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5.1.3 Copula Selection

The experiments done so far were using the same copula function for each couple of variables

of the most important dependencies, two for the case of the images.

The proposal in the next experiments was to perform a copula selection. Based on the results

of log-likelihood for every couple of variables and taking into consideration all six copulas, the

algorithm selected the highest values in log-likelihood that could form a graphic chain model.

That way, for the example shown in Figure 5.11 where 3 variables are taken into consideration

(R,G,B) a copula function can be used for the dependence of the first pair of variables R and

G (copula 1) and some other copula function for the dependence of other pair G and B (copula

2). In copula selection, a copula function was used for each couple of variables.

R G B
copula 1 copula 2

Figure 5.11: Example of a graphic chain model with 3 features (variables).

Table 5.10 show the results of copula selection for all the experiments performed, the asterisk

in accuracy represents a statistical difference between independent copula and copula selection.

Table 5.10: Descriptive results for evaluation metrics in all the experiments performed with
copula selection, RS stands for Random Sample.

Copula Accuracy % Sensitivity % Specificity %

Model Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Microsoft database 86.2* 10.6 87.2 11.4 85.3 18.4

Random Sample 5% 92.1* 6.9 93.0 6.8 91.8 7.7

Random Sample 10% 91.8* 7.3 92.8 7.5 91.6 7.8

Random Sample 20% 92.0* 6.7 92.5 8.5 91.9 7.1

Random Sample 30% 92.2* 6.6 92.6 8.7 92.0 6.9

Random Sample 40% 92.0* 6.6 92.0 9.1 92.0 7.0

Random Sample 50% 92.1* 6.6 92.3 8.8 92.0 7.0

Freehand 92.6* 6.4 91.6 8.2 92.7 6.6

Figure 5.12 shows a graph where the mean accuracy of the six copulas, independent copula and
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copula selection for the experiments of Microsoft repository, random sample of 5% of training

data and freehand are represented in a different line each.

Figure 5.12: The graph shows the accuracy (y axis) of the 50 images with the experiments done
from Microsoft repository, random sample of 5% of training data and Freehand (x axis).

5.2 Handwritten Digits Dataset

For this investigation, another database different from the image database [26] was used. This

dataset obtained from [15] is a database of 250 samples from 44 writers. The samples written

by 30 writers are used for training, and the samples written by the other 14 writers are used

for independent testing.

They describe the dataset as follows:

“We create a digit database by collecting 250 samples from 44 writers. The samples written by

30 writers are used for training, cross-validation and writer dependent testing, and the digits

written by the other 14 are used for writer independent testing.

We use a WACOM PL-100V pressure sensitive tablet, the tablet sends x and y tablet co-

ordinates and pressure level values of the pen at fixed time intervals (sampling rate) of 100

miliseconds.

These writers are asked to write 250 digits in random order inside boxes of 500 by 500 tablet

pixel resolution. Each screen contains five boxes with the digits to be written displayed above.
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In our study, we use only (x, y) coordinate information. The stylus pressure level values are

ignored” [15].

The objects in this database have not only three features, they have sixteen features and the

classes were ten instead of two like the pixels in previous experiments.

For this database, accuracy was the only evaluation metric used. Since the objects are classi-

fied in 10 classes the estimation of sensitivity and specificity becomes difficult, as explained in

Figure 4.3 sensitivity and specificity are metrics for cases with two classes. The results are the

following, shown in Table 5.11.

Table 5.11: Descriptive results for accuracy for Handwritten dataset.

Copula Accuracy %

Independent 83.6

AMH 87.2

Clayton 87.6

FGM 86.1

Frank 90.8

Gaussian 92.3

Gumbel 90.1

Selection 91.3

It can be noticed that the results in all copulas and copula selection is higher than the result

for Independent copula. For this case Gaussian copula got the best result with an improvement

of 8.7%.

The information in the dataset was re-distributed randomly to perform 30 new experiments.

The 250 samples from the 44 writers was combined and having all the information together,

the same amount of data than in the original samples (3498 of test data and 7494 of training

data) was extracted but the selection was done randomly. The mean and standard deviation

of those 30 experiments are shown in Table 5.12.
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Table 5.12: Descriptive results for accuracy for 30 experiments with handwritten dataset.

Copula Accuracy %

Model Mean Std. Dev.

Independent 87.0 0.5

AMH 90.9* 0.5

Clayton 91.1* 0.5

FGM 89.6* 0.6

Frank 93.7* 0.5

Gaussian 94.1* 0.4

Gumbel 93.0* 0.5

Selection 93.5* 0.6

An ANOVA test was performed for these experiments as well and all copulas and copula

selection had a statistical difference to independent copula. All copulas and copula selection

had a better performance than independent copula, Gaussian copula was the one with the best

result with a difference of 7.1%.
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6. Discussion

This research had as purpose to incorporate copula functions in the design of a probabilistic

classifier and evaluate its performance.

It has been carried out through a series of experiments, an analysis and comparison of the

results of a classifier that takes into consideration the dependencies among variables versus a

naive Bayes classifier or independent copula which do not take into consideration the depen-

dencies. Next, the main findings of this study will be discussed.

From the results obtained from this research, it can be deduced that the use of copula func-

tions to model dependencies among variables in classification, produces improvements in the

performed experiments.

In one of the two datasets used, the use of copulas Clayton, Frank, Gaussian and Gumbel as

well as copula selection are reported as cases with a statistical difference compared to inde-

pendent copula. These results were expected given that the other pair of copulas with which

experiments were carried out (AMH and FGM), model weak dependencies, similar to the in-

dependent copula.

On the other hand, from the experiments, it can be concluded that not in all cases were ob-

tained better results with the use of the same copulas and that is because each copula models

a different type of dependency which suggest that in the analyzed samples there were different

types of dependencies. For instance, in the experiments of random sample using 5% of the data

as training information, while image “PERSON6” had the highest results with Clayton and

Frank copula, “PERSON8” had them with Gaussian and Gumbel copula, the reader is referred

to Appendix A to corroborate this information.

The fact that in the mean accuracy of the experiments carried out, there was a higher result for

all six copulas, is an indicative that modeling dependencies with the help of copula functions

in supervised classification provides an improvement versus not modeling them.

Now, some aspects reviewed of the data obtained during this research will be discussed in detail.

There were used two databases to perform the experiments. The first one consisted in 50 im-

ages taken from Microsoft repository [26] and the experiments consisted in classifying pixels.

From each pixel, three variables (Red, Green and Blue) and two classes (Foreground and Back-

ground) were taken into consideration. The second database [15] consisted on handwritten

numbers from 0 to 9, in this database there were 16 variables which was coordinate information
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and 10 classes (0-9).

The database of the images was the most explored in this research since the images provided by

the repository were used but experiments were also done with the same images only selecting

randomly the pixels for training and test, and a case were the training data was selected by

freehand was also simulated.

In the first case, when it was experimented with the images as they are in the repository, the

copula with the highest result was the Frank copula with a mean of 87.7% of the pixels correctly

classified (accuracy) versus the independent copula with a mean of 79.4% in accuracy.

During the second stage of experiments where the pixels were selected randomly as training

and test data, Gaussian copula was the one with highest result in all cases (5, 10, 20, 30, 40

and 50 percent of pixels as training data). For the case of 5% of pixels as training data, the

result of Gaussian copula on terms of mean accuracy was 92.4% versus 84.2% of independent

copula.

In the case when the training data for foreground and background was selected by freehand,

both previously mentioned copulas, Frank and Gaussian, were the ones with the highest results

in mean accuracy with 92.2% versus 83.6% of independent copula.

For the results of the 30 experiments performed with the handwritten digits database, the

highest result was Gaussian copula with 94% of mean accuracy versus 86.9% in mean accuracy

for independent copula.

From this research, it was found that the use of copula functions to model dependencies in

supervised classification provides competitive results, worthy of further study.

The general objective and specific objectives were all achieved with satisfactory results. With

the results on the experiments, it can be concluded that the research hypothesis was demonstrat-

ed for the samples used. Copula functions incorporated to supervised classification improved

the results by modeling dependencies with the help of a graphical chain model.

6.1 Limitations of the Study

An unexpected finding was to realize that the mean accuracy on copula selection did not have

the highest result. The method to select the best copulas was to find the pair of variables

with the highest log-likelihood, this suggested that the result would be higher than using the

same copula for all pair of variables in the graphical chain model. It is not clear why it did
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not happen and some hypothesis could come up but since it requires more study, the results

should be interpreted with caution. However, the results of copula selection were not lower

than independent copula, they were always higher with a statistical difference.

The optimization and time of response on the algorithms used was not taken into account.

Since this study focused on the evaluation metrics especially on accuracy of the experiments,

the optimization and time of response on the algorithms may have not been the best, this is an

important aspect for future work especially when comparing the classifier with other methods.

Another limitation was the use of only two databases for the experiments. To have a deeper

insight of the advantages of incorporating copula functions in supervised classification it is

recommendable to use more databases and perform more experiments.

6.2 Recommendations and Future Work

For future work, it is recommended for the results to be compared with other classification

methods, probabilistic or non probabilistic.

Even when the classifiers are compared, it is important to have in mind that every different

classifier can be the best option for a different dataset. It would be useful to create a method

to identify in which cases the supervised classification with copulas incorporated would be the

best option to classify.

It is also recommended to experiment with other databases and to have more variables and

classes. One option could be a dataset where the results on independent copula are lower than

the ones used for this research given that the samples used in the study already had a high

result when not taking into account the dependencies among variables.

As mentioned in the previous section, it would be useful to optimize and improve the response

time of the algorithms used.
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7. Conclusions

In this study it was proposed to determine the performance of a probabilistic classifier when

copula functions are incorporated into supervised classification. The performance improves in

comparison with the same probabilistic classifier without taking into consideration the depen-

dencies among variables.

There is a statistical difference for copulas Clayton, Frank, Gaussian, Gumbel and copula se-

lection for the first dataset used in the experiments and there is a statistical difference between

all 7 cases (6 copulas and copula selection) versus independent copula for the second one.

This study has demonstrated that modeling dependencies among features provides important

information for supervised classification. For the databases used in this work, Gaussian and

Frank copula performed very well in most cases.

With the help of a graphical chain model, the most important bivariate dependencies among

variables were detected which was an advantage to avoid using all dependencies between each

pair of variables and use only the most important ones.

The findings in this research can be helpful for different applications where association among

variables can provide important information of the problem.
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[22] Pérez-Dı́az, A., Salinas-Gutiérrez, R., Hernández-Quintero, A. & Dalmau- Cedeño, O.

(2017). Supervised Classification Based on Copula Functions. In Research in Computing

Science(pp. 9-18). Mexico : Instituto Politécnico Nacional
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A. Accuracy per Image Tables

Images

21077 24077 37073 65019 69020

86016 106024 124084 153077 153093

181079 189080 208001 209070 227092

271008 304074 326038 376043 388016

BANANA1 BANANA2 BANANA3 BOOK BOOL



BUSH CERAMIC CROSS DOLL ELEPHANT

FLOWER FULLMOON GRAVE LLAMA MEMORIAL

MUSIC PERSON1 PERSON2 PERSON3 PERSON4

PERSON5 PERSON6 PERSON7 PERSON8 SCISSORS

SHEEP STONE1 STONE2 TEDDY TENNIS



Independent

Accuracy for each image with independent copula, the results are

presented in percentages. RS stands for Random Sample.

NAME RS 5% RS 50% FREEHAND DATABASE

21077 82.2 82.5 79.2 84.4

24077 62.6 62.3 65.7 65

37073 82.8 82.2 80.7 85.6

65019 78.4 79.4 77.5 71.2

69020 73.5 73.3 72.6 72.6

86016 93.8 93.7 93.7 89.9

106024 62.3 63.2 56.6 57.3

124080 96.8 96.1 95.5 92

153077 84.9 85.3 86.5 72.2

153093 66.4 66.3 68.2 68.8

181079 81.9 81.8 82.4 72.8

189080 89.9 90.2 89 88.7

208001 90.7 90.7 88.6 89.9

209070 72.1 74 75.8 69.8

227092 87.6 86.9 86.6 57

271008 68.5 69.9 75.2 83.9

304074 71.3 71.3 58.4 62.9

326038 81.7 80.4 82.9 73.9

376043 76 77.1 78.2 67.7

388016 89.8 89.5 79 79.8

BANANA1 93.1 93.1 92.2 76.1

BANANA2 87.1 87 84.1 76.7

BANANA3 91 90.8 91 82

BOOK 92.6 92.4 87.9 77

BOOL 87.1 86.9 91.7 88.5



NAME RS 5% RS 50% FREEHAND DATABASE

BUSH 67.5 69.4 59.1 60.6

CERAMIC 94.5 94.7 92.3 88.5

CROSS 99 99 99.1 97

DOLL 83.5 83.8 82.1 77.7

ELEPHANT 94 93.9 94.7 86

FLOWER 90.1 89.7 94.6 94.2

GRAVE 77.9 77.5 80.4 93.5

LLAMA 82.7 83.2 82.9 75.4

MEMORIAL 82.9 82.9 85.3 72.2

MOON 99.9 100 99.8 92.1

MUSIC 92.3 92.1 90.9 90.2

PERSON1 82.4 82.5 81.5 75.7

PERSON2 83.1 83.8 85.7 75.6

PERSON3 87.3 87.4 90.7 81.8

PERSON4 69.3 69.1 61.8 72.3

PERSON5 90.5 90.1 90.9 83.1

PERSON6 81.9 80.4 79.4 75

PERSON7 78.4 79.2 80.4 75.5

PERSON8 59.8 59.4 59.9 58.1

SCISSORS 96.5 96.4 95.9 89.4

SHEEP 92 92.1 91.1 87.3

STONE1 95.6 95.7 96.6 90.4

STONE2 98.3 98.4 98.4 93.6

TEDDY 99.1 99.2 99 97.6

TENNIS 87 86.8 88.5 82.7



AMH

Accuracy for each image with AMH copula, the results are presented in

percentages. RS stands for Random Sample.

NAME RS 5% RS 50% FREEHAND DATABASE

21077 84.3 86.4 81.9 80.9

24077 53.1 55.3 59.1 68.7

37073 88.3 87.7 86.8 85.9

65019 80.6 82.1 80.5 75.6

69020 76 76.1 77.4 87.9

86016 95.1 95.2 95.2 92

106024 72 72.4 60.2 56.1

124080 96.7 96.1 95.6 92.1

153077 87.7 87.6 87.6 74.9

153093 71.7 72 71.9 81.6

181079 84 84.5 84.3 76.5

189080 89.2 89.6 88.6 87.3

208001 90.8 90.7 90.1 91.4

209070 80.2 79.6 84.1 72.5

227092 89.5 88.7 89.1 81.2

271008 67.5 68.7 73.9 84.5

304074 69.9 68.7 70.3 61.9

326038 87 86 82.9 75.2

376043 80.9 82.2 82.1 71.5

388016 93.4 94.1 95.7 78.8

BANANA1 96 96 94.8 81.3

BANANA2 88.6 88.6 86.1 77.9

BANANA3 94.8 94.7 94.9 86.3

BOOK 97.7 97.7 95.5 83.2

BOOL 86.5 82.8 87.4 89.5



NAME RS 5% RS 50% FREEHAND DATABASE

BUSH 84 84.3 77.5 71.2

CERAMIC 96.6 96.7 95.1 93.1

CROSS 99 99 99.1 97.3

DOLL 90 89.4 87.2 86.5

ELEPHANT 94.1 94.1 94.8 86.4

FLOWER 93.8 93.4 96 96.8

GRAVE 77.3 76.9 79.6 95.7

LLAMA 87.1 87.4 89.6 76.6

MEMORIAL 84.9 85 87.4 73.8

MOON 99.9 100 99.5 92.1

MUSIC 93.2 93.2 90.7 91.1

PERSON1 86.7 86.3 85.6 74

PERSON2 86.8 89 89.6 78.9

PERSON3 92.7 92.9 96.7 86.6

PERSON4 73.5 71.4 66 75.3

PERSON5 93.1 93 94.2 89.4

PERSON6 80.1 78.2 78 78.6

PERSON7 84.5 84.5 84.3 83.4

PERSON8 59.3 59.1 58.7 69.4

SCISSORS 96.5 96.3 95.4 89.4

SHEEP 95.8 95.8 96.1 92.3

STONE1 96.4 96.5 97 94.5

STONE2 98.5 98.6 98.6 97.4

TEDDY 99 99.2 99.1 97.6

TENNIS 86.3 88.7 89 82.5



Clayton

Accuracy for each image with Clayton copula, the results are presented

in percentages. RS stands for Random Sample.

NAME RS 5% RS 50% FREEHAND DATABASE

21077 83.5 84.9 79.5 80.5

24077 75.7 70.8 75.3 74.4

37073 90.8 90.8 89.1 86.4

65019 89.9 89.3 87.9 75.3

69020 87.2 87 86.3 91.4

86016 96.9 96.9 96.2 90.3

106024 84.6 86.9 89.3 82.3

124080 97.7 97.7 97.1 93

153077 92 92 92.4 82.3

153093 87.3 87.6 91.2 87.5

181079 91.4 91.3 91.7 84.1

189080 95.1 95.1 94.3 94.2

208001 90.5 90.3 91.9 90.2

209070 73.5 75.1 77.6 75.5

227092 95.7 95 96.5 90.2

271008 82.6 82.3 85 69

304074 79.1 80.1 75.1 63

326038 86.4 86.1 82.9 79.9

376043 90.9 91.7 90.6 80.2

388016 97.4 97.3 96.2 97.6

BANANA1 96.1 95.7 92.7 80

BANANA2 92.8 92.9 91.1 81.1

BANANA3 96.6 96.7 96.8 85.4

BOOK 98.8 98.7 95.7 82.7

BOOL 92 90.3 93.8 91.5



NAME RS 5% RS 50% FREEHAND DATABASE

BUSH 86.9 87 85.5 73.7

CERAMIC 97.4 97.3 95.8 93.7

CROSS 92.6 93.3 99 97.2

DOLL 95.9 95.9 97.3 95

ELEPHANT 96.6 96.4 97.8 93.1

FLOWER 95.7 95.6 96.5 97.3

GRAVE 79.5 78.8 78.1 74.6

LLAMA 88.1 89.1 90.3 84.8

MEMORIAL 80.2 79 87.1 76.1

MOON 99.9 100 99.7 92.1

MUSIC 94.2 94.3 91.7 92.5

PERSON1 96.2 95.7 95.2 87.6

PERSON2 96.5 96.9 96.8 95.3

PERSON3 84 92.1 94.8 87.8

PERSON4 86.3 86.9 89.6 80.5

PERSON5 88.2 87.5 92.4 90.7

PERSON6 91.3 90.6 90.5 78.5

PERSON7 89.7 89.2 90.3 92.9

PERSON8 89.2 89.1 88.7 75.8

SCISSORS 95 96.2 91.9 93.5

SHEEP 98 98.1 97.1 97.4

STONE1 99.7 99.7 99.1 98.8

STONE2 99.3 99.2 99.3 95.7

TEDDY 86.5 99.4 99.1 97.2

TENNIS 91.2 90.5 91.2 73.1



FGM

Accuracy for each image with FGM copula, the results are presented in

percentages. RS stands for Random Sample.

NAME RS 5% RS 50% FREEHAND DATABASE

21077 83.8 87.1 83.1 82.1

24077 60.1 59.9 62.6 68.4

37073 83.2 82.6 82.9 86.1

65019 79.7 80.8 78.2 76.4

69020 75 75 74.9 75.2

86016 93.7 93.7 93.6 90

106024 59.6 60.9 52.1 56.4

124080 96.9 96.1 95.5 92.7

153077 87 87.3 87.1 73

153093 66.8 67 69.3 71.3

181079 82.7 82.6 82.3 73.1

189080 90 90.4 89 89.1

208001 91.4 91.3 90 90

209070 76.6 77.7 79.5 71.3

227092 87.7 87.1 88 74

271008 66.5 66.9 72.1 84.5

304074 72 71.6 59.7 62.3

326038 84.3 83.4 86.4 74.6

376043 77.8 79.1 80 67.9

388016 91.8 92.5 90.6 81.7

BANANA1 95 94.9 93.7 78.2

BANANA2 88.8 88.8 86.3 78.4

BANANA3 92.8 92.8 91.7 81.2

BOOK 95.1 94.9 90.3 78.8

BOOL 87.1 86.7 92.4 88.4



NAME RS 5% RS 50% FREEHAND DATABASE

BUSH 74.4 76.1 63.9 65.3

CERAMIC 95 95.2 92.8 89.3

CROSS 99 99 99.1 97

DOLL 83.6 83.9 83.4 80.3

ELEPHANT 94 93.9 94.6 85.9

FLOWER 92.9 92.6 96 96.7

GRAVE 77.6 77.2 79.9 94.2

LLAMA 85.5 85.9 86 75.5

MEMORIAL 84.8 84.9 87.2 71.7

MOON 99.9 100 99.8 92.1

MUSIC 93 92.9 91.3 91.3

PERSON1 85.2 85.8 85.8 75.9

PERSON2 86 86.9 88 75.6

PERSON3 89.1 89.1 92.9 82.5

PERSON4 71.2 70.4 65.1 73

PERSON5 90.4 90.1 91.8 87

PERSON6 81.5 80.1 80.8 76.8

PERSON7 82.6 82.8 84.1 80.5

PERSON8 59.5 59 58.4 65.7

SCISSORS 96.4 96.4 95.9 89.4

SHEEP 94.1 94.2 93.7 88.9

STONE1 96.5 96.5 96.9 90.8

STONE2 98.4 98.4 98.4 94.8

TEDDY 99.1 99.2 99 97.6

TENNIS 87.2 90 89.9 82.7



Frank

Accuracy for each image with Frank copula, the results are presented in

percentages. RS stands for Random Sample.

NAME RS 5% RS 50% FREEHAND DATABASE

21077 89 88 90.8 86.4

24077 76.7 76.1 78.5 76.4

37073 90.1 90.2 88 88.3

65019 88.9 89.2 87.9 77.3

69020 87.7 87.7 87.7 87.6

86016 95.8 95.9 96.5 92.1

106024 83.1 83.2 86.7 80.3

124080 98.4 98.5 97.2 92.3

153077 91.7 91.5 92 78.6

153093 93.3 93.3 90.6 88.6

181079 93 93.2 93.2 87.6

189080 94.9 94.6 93.6 89.6

208001 91 91.3 91.9 90.7

209070 74.9 75.2 74.3 73.7

227092 98.4 98.4 96.2 89.6

271008 71 70.9 80.4 86.4

304074 77.3 78.7 81.2 71.9

326038 79 80 81.7 77.4

376043 90.8 92.1 91.4 83.3

388016 96.9 96.4 95.8 94.1

BANANA1 96.1 96.1 94.9 80.5

BANANA2 95.5 95.4 94.2 91

BANANA3 97.4 97.3 97.2 88.2

BOOK 97.8 97.8 96.8 83.4

BOOL 92.6 92.4 94.3 89.6



NAME RS 5% RS 50% FREEHAND DATABASE

BUSH 85.7 86.5 86.3 76.4

CERAMIC 95.6 95.7 93.5 90.2

CROSS 98.9 98.9 98.8 96.8

DOLL 96.9 96.9 97.6 94.2

ELEPHANT 94 93.8 95.3 86.1

FLOWER 95.9 95.8 96.3 97.1

GRAVE 79.1 78.4 80.4 93.6

LLAMA 91.5 91.9 95 86

MEMORIAL 81.6 80.9 85.6 77.7

MOON 99.9 100 98.5 92.1

MUSIC 93.6 93.4 93.3 93.5

PERSON1 97.1 97.4 97.2 94.9

PERSON2 98.3 98.2 98.4 97.1

PERSON3 92.4 92.5 96.3 94.3

PERSON4 91 91 93.1 82.3

PERSON5 90.8 90.7 95.8 92.1

PERSON6 91 90.9 88.8 82.8

PERSON7 92.6 92.4 94.5 94.8

PERSON8 89.6 88.8 90.9 80.8

SCISSORS 94.1 94.5 93.7 94

SHEEP 98.4 98.5 98.6 97

STONE1 99 99.1 98.5 91.5

STONE2 98.7 98.8 98.9 97.9

TEDDY 99.2 99.3 99 97.5

TENNIS 94.6 94.4 93.4 78.2



Gaussian

Accuracy for each image with Gaussian copula, the results are

presented in percentages. RS stands for Random Sample.

NAME RS 5% RS 50% FREEHAND DATABASE

21077 88.7 88.4 90 82.6

24077 72.8 73.2 70.7 76.6

37073 92.6 92.6 89.6 88.6

65019 86.1 86.6 85.4 79.9

69020 88.6 88.6 87.8 87.3

86016 97.8 97.9 98 92.2

106024 92.4 86.5 81.3 77.9

124080 98.9 98.9 98 93.7

153077 92.6 92.3 92.7 82.6

153093 90.1 89.9 90.2 88.5

181079 93.6 93.6 93.7 87.8

189080 95.4 95.2 95.4 56.1

208001 91.3 91.4 91.7 90.1

209070 82.5 82.6 83.1 81.5

227092 98.2 98 97.8 87.9

271008 68.6 67.9 72.1 87.8

304074 78.3 79 74.9 69.2

326038 87.9 87.9 88 81.8

376043 94.1 94.1 93.9 82.9

388016 97.4 97.5 97.5 96.2

BANANA1 96.1 96 94.6 81.2

BANANA2 95.1 95.1 93.5 90.7

BANANA3 97.5 97.5 97.3 81.7

BOOK 99.2 99.2 98.3 84.5

BOOL 92.7 92.2 93.7 90.2



NAME RS 5% RS 50% FREEHAND DATABASE

BUSH 86.9 87.5 87.7 76.1

CERAMIC 96.1 96.2 94.3 92.9

CROSS 98.9 98.8 98.8 44.8

DOLL 97 97 97.6 96.4

ELEPHANT 95.9 95.7 96.8 64.4

FLOWER 95.6 95.5 96.2 97

GRAVE 80.6 79.9 81 94

LLAMA 91.7 92.4 94.9 86.1

MEMORIAL 81.7 81.1 82.5 79.3

MOON 99.9 100 99.6 87.7

MUSIC 93.1 93 95.2 93.8

PERSON1 97.8 98 97.7 94.6

PERSON2 98.4 98.2 97.8 96.9

PERSON3 94.1 93.9 97.3 93.6

PERSON4 90.8 90.3 93 82.6

PERSON5 90.9 91 93 90.2

PERSON6 89.5 88.1 87.8 82.2

PERSON7 93.9 94.6 95.7 94.8

PERSON8 91.5 90.8 90.6 83.3

SCISSORS 95.7 96.6 92.8 94.4

SHEEP 98.2 98.2 98.4 96.6

STONE1 99.5 99.5 98.5 98.2

STONE2 99.3 99.3 99.4 98.3

TEDDY 99.3 99.3 99 97.3

TENNIS 94.6 93.9 93.7 83.7



Gumbel

Accuracy for each image with Gumbel copula, the results are presented

in percentages. RS stands for Random Sample.

NAME RS 5% RS 50% FREEHAND DATABASE

21077 89.5 89.2 91.5 84.4

24077 75.1 74.8 73.3 78.1

37073 91.5 91.3 88.7 87.6

65019 87.9 88 87.2 79.9

69020 88.4 88.3 88.6 81.7

86016 97.5 97.6 97.8 93.6

106024 88.8 85.6 87.1 74.8

124080 99 99 98.1 93.1

153077 92 91.7 92.5 80

153093 91.2 90.2 87.6 87.4

181079 93.4 93.5 93.9 87.8

189080 95.2 95 93.7 56

208001 90.4 90.7 91.7 88.8

209070 81.9 82 83.9 80

227092 98.1 97.8 95.8 86.6

271008 70.1 69.8 72.4 87.3

304074 74.7 76 75.2 69.7

326038 85.2 85.6 85.7 80.5

376043 93.1 93.1 94.5 83

388016 97 96.7 96.6 94.9

BANANA1 95.7 95.7 94.9 80.4

BANANA2 95.6 95.4 94.3 92.1

BANANA3 97.6 97.5 97.4 88

BOOK 98.8 98.8 98.2 84.1

BOOL 92.6 92.3 94.3 89.8



NAME RS 5% RS 50% FREEHAND DATABASE

BUSH 85.3 86 88.1 78

CERAMIC 95.7 95.8 93.8 90.7

CROSS 98.9 98.9 99 79.1

DOLL 97.1 97.1 97.4 95.5

ELEPHANT 95.9 95.9 96.5 89.3

FLOWER 95.9 95.9 96.2 97

GRAVE 82.7 82.3 83.5 93.7

LLAMA 92.2 92.6 81.9 82.4

MEMORIAL 81.4 80.9 81.6 77.4

MOON 99.8 100 98.3 87.7

MUSIC 94 93.9 94.9 94.3

PERSON1 96.1 96.6 96.4 90.9

PERSON2 98 97.7 98.1 96.2

PERSON3 93.8 93.6 87.4 94.7

PERSON4 91.5 91.3 93.5 86.8

PERSON5 93.2 93.3 95.3 91.1

PERSON6 89 88 88.3 77.5

PERSON7 93.4 93.9 95.6 93.5

PERSON8 91 90.2 90.1 81.6

SCISSORS 93.1 93.1 92.4 94.5

SHEEP 98.2 98.2 98.4 94.9

STONE1 99.2 99.1 97.7 94.8

STONE2 98.8 98.9 99.1 98.7

TEDDY 99.3 99.3 99 97.6

TENNIS 95 94.8 94.2 89.9



Copula Selection

Accuracy for each image with copula selection, the results are presented

in percentages. RS stands for Random Sample.

NAME RS 5% RS 50% FREEHAND DATABASE

21077 88.1 88.9 91.3 86

24077 70.3 71.9 75 77.4

37073 91.5 91.3 88.2 88.1

65019 89.3 89.7 90 79.7

69020 88.8 88.7 88.6 85.4

86016 97.8 97.9 98 92.2

106024 93 90.1 87.4 79.9

124080 99 99 98.1 93.1

153077 91.9 91.7 93 80.1

153093 91.5 90.5 90.5 88.3

181079 93.6 93.6 94.2 88.4

189080 96.6 96.6 94.7 56

208001 90.8 90.9 91.4 86.8

209070 78.3 79.1 75.2 73.3

227092 87.7 88 97.6 91.2

271008 70.1 72.2 77.2 88.6

304074 79.1 79.6 74.9 70.6

326038 87.8 86.3 87.5 80.9

376043 94.3 94.3 95.2 82.1

388016 97.5 97.2 97 95.9

BANANA1 96.7 96.6 95.1 81.5

BANANA2 95.7 95.6 94.6 91

BANANA3 97.6 97.7 97.6 88.2

BOOK 99 99.1 98.1 84.1

BOOL 92.6 91.5 93.2 91.3



NAME RS 5% RS 50% FREEHAND DATABASE

BUSH 85.3 86 88.1 78.3

CERAMIC 97 97 94.5 93.7

CROSS 92.3 93.2 98.8 44.8

DOLL 97.2 97.2 97.5 94.3

ELEPHANT 97.6 97.7 97.9 67.9

FLOWER 96 96 95.9 96.8

GRAVE 83 82.6 83.5 93.9

LLAMA 92.5 91.7 94.5 85.4

MEMORIAL 84.5 84 86.6 78.9

MOON 99.9 100 98.5 92.1

MUSIC 93.9 93.7 94.8 94.3

PERSON1 97.7 97.7 97.6 94.6

PERSON2 98.6 98.5 98.6 97.9

PERSON3 87 92.2 96.8 95.4

PERSON4 89.9 89.7 91.9 85.9

PERSON5 91.1 91.1 95.3 92.8

PERSON6 91.2 90.9 89.8 82.8

PERSON7 94 94.3 95.1 94.2

PERSON8 90.5 88.3 90.7 80.8

SCISSORS 94.5 94.9 93.5 94.6

SHEEP 98.3 98.5 98.6 96.5

STONE1 99.6 99.6 98 98.7

STONE2 99.3 99 99.4 98.3

TEDDY 99.2 99.3 98.7 96.5

TENNIS 94.7 94.4 93.3 78.3
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